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Abstract

We study the incentive properties of the two primary approaches to incorporating unit-commitment decisions in wholesale
electricity markets. One approach is centralized unit commitment, wherein generating firms provide complex multi-part
offers that specify their non-convex fixed and variable operating costs. The market operator uses these offers to co-
optimize unit-commitment and economic-dispatch decisions. The second approach is self-commitment, whereby firms
determine unit-commitment decisions for their generating units individually and submit simple offers for the provision
of energy. Operators of self-committed markets determine generator dispatch based on the merit order of the simple
offers.

Comparing the incentive properties of the two market designs is challenging because the offer-optimization problem
for a firm that participates in a centrally committed market is a bi-level model with binary variables in the lower-level
problem. To address this challenge, we develop a computationally efficient approach to solve such a problem and illustrate
the method with examples. We use the examples to compare the incentive properties of the two market designs. Our
examples show that the profit of the profit-maximizing firm does not differ significantly between the two market designs
but that system costs can be higher under a self-committed design. These cost differences are because the complex offers
and discriminatory payment schemes that are used under centrally committed designs can mitigate incentives for the
profit-maximizing firm to exercise market power.

Keywords: OR in energy, bi-level optimization, power-system economics, unit commitment, economic dispatch

1. Introduction

Designing wholesale electricity markets raises the ques-
tion of how unit-commitment decisions are co-ordinated
amongst generators. Existing markets use two primary ap-
proaches. Some markets, especially those in United States
of America, employ a centrally committed design. With
such a design, unit-commitment decisions are made by a
market operator (MO), which receives complex offers from
firms that specify the non-convex costs and constraints of
their generating units. Muckstadt and Koenig (1977) give
a formative application of Lagrangian relaxation (LR) to
solve the model that underlies a centrally committed mar-
ket. Baldick (1995) gives a generalized formulation of the
model, which accounts for a broad array of constraints,
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and refines the LR algorithm. Hobbs et al. (2001) survey
such models and algorithmic developments. Scarf (1990,
1994) notes a pricing challenge with centrally commit-
ted designs—uniform linear pricing can be economically
confiscatory, due to the non-convex costs and constraints
that govern generator operations. O’Neill et al. (2005);
Sioshansi (2014) discuss make-whole payments as a com-
mon mechanism to address this challenge. Make-whole
payments are discriminatory transfers from the MO to
each generator to ensure that the latter earns non-negative
profit (on the basis of the offers that the generator submits
to the market). In most cases, the costs of make-whole
payments are socialized to customers.

Another common design, especially in Europe and Aus-
tralia, are self-committed wholesale electricity markets.
Generating firms in such markets determine individually
the commitments of their units and submit simple offers
that specify prices at which the units provide energy. Op-

Preprint submitted to European Journal of Operational Research April 29, 2024



erators of self-committed markets determine the dispatch
of generating units based on the merit order of the simple
offers. Because self-committed markets rely upon simple
offers being submitted into the market, the onus is upon
generating firms to ensure that the offers yield revenues
that recover their non-convex costs. Imran and Kockar
(2014) compare the designs of European and North Ameri-
can electricity markets, including with respect to the treat-
ment of unit-commitment decisions.

There are works that examine these two market de-
signs. Johnson et al. (1997); Sioshansi et al. (2008a) show
that using LR to solve the market model that underlies
a centrally committed design can impact the profits of
individual generating units. Profit differences arise be-
cause solutions that yield similar total cost can give dif-
ferent prices and unit-commitment and dispatch decisions.
Sioshansi and Tignor (2012) demonstrate that these profit
impacts under a centrally committed design can be most
pronounced for generators with greater operational flex-
ibility. Elmaghraby and Oren (1999) consider the treat-
ment of intertemporal constraints and non-convex costs
under a self-committed design. They propose a horizontal
market-clearing procedure to address these aspects of the
market-clearing problem. Sioshansi et al. (2008b) show
that even with truthful cost revelation, a self-committed
design yields productive-efficiency losses. Ahlqvist et al.
(2022) compare the two designs, including their relative
merits vis-à-vis supply and demand flexibility, resource re-
muneration, and market power and efficiency.

These works that examine the two market designs as-
sume truthful revelation by the participating generating
firms. We know of two works that compare the market
designs while considering strategic behavior with asym-
metric information between generating firms and the MO.
Sioshansi and Nicholson (2011) characterize and compare
Nash equilibria under the two market designs assuming
two symmetric firms that compete during a single operat-
ing period. Duggan, Jr. and Sioshansi (2019) extend the
work of Sioshansi and Nicholson (2011) by relaxing the
duopoly assumption, assuming a symmetric oligopoly with
an arbitrary number of firms.

This paper relaxes the assumptions of these previous
works and explores strategic behavior by a single firm that
participates in a market with one of the two designs, i.e.,
the offers of the other firms are fixed. Specifically, we relax
the symmetric-firm assumption by assuming that generat-
ing firms have the same capacities but can have different
production costs. We consider also multiple as opposed
to a single operating period. Multiple operating periods
complicate the profit-maximizing behavior of the strate-
gic firm under a centrally committed design in two ways.
First, it is typical for the MO to use the same so-called
long-lived offers to clear the market during multiple op-
erating periods (e.g., 24 hour-long periods is common of
many day-ahead wholesale electricity markets). Second,
the determination of any make-whole payment that a gen-
erator receives depends upon revenue and cost across mul-

tiple operating periods. Our modeling approach allows the
strategic firm to account for these complexities.

We cast our problem as a bi-level optimization model,
which has the strategic firm’s profit maximization as the
upper-level and the MO’s market clearing as the lower-
level problem. There is an extensive literature that ap-
plies bi-level optimization to model strategic behavior in
markets, especially when the lower-level problem is convex.
Fampa et al. (2008) propose a penalty-based heuristic and
a mixed-integer-linear program (MILP), which uses binary
expansion, to solve a bi-level problem with economic dis-
patch in the lower level. Gabriel and Leuthold (2010) con-
sider a quadratic lower-level model and employ a lineariza-
tion technique, which is based on a set of discrete genera-
tion levels, to obtain an MILP formulation for their prob-
lem. Hobbs et al. (2000) model profit-maximizing firms
competing in a transmission-constrained market and solve
the model using a penalty-based interior-point method.
Barroso et al. (2006) discretize the strategy sets of mar-
ket participants and compute Nash equilibria of the resul-
tant game. Bakirtzis et al. (2007) assume that generating
firms use stepped offers to participate in an energy market.
Ruiz and Conejo (2009) model the lower level of a bi-level
model as a multi-period optimal-power-flow problem that
considers uncertainty in consumers’ bids and rival gen-
erators’ offers. Kozanidis et al. (2013) incorporate unit-
commitment decisions into the lower-level market clearing
of a bi-level model. They use parametric integer optimiza-
tion to develop a problem-specific algorithm that exploits
the relationship between the offers that are submitted by
the strategic firm and total system cost.

Our paper has two primary contributions to this ex-
isting literature. First, we provide an efficient algorithm
to compute optimal offers by a strategic market partici-
pant under a centrally committed design. This is our pri-
mary technical contribution, which addresses the challenge
of having binary variables in the lower level of a bi-level
model. Second, we use numerical examples to compare
centrally and self-committed designs for wholesale electric-
ity markets. In particular, we examine the extent to which
a strategic generating firm can manipulate its offers under
the two market designs to impact prices, profits, settle-
ment costs, and other market-performance metrics.

The remainder of the paper is organized as follows.
Section 2 presents the formulations of bi-level models for
a profit-maximizing generator under the two market de-
signs and assumptions that are common to the market
designs. Section 3 applies standard approaches to con-
vert the bi-level model for the self-committed market into
an equivalent single-level optimization problem. Section 4
examines the properties of a centrally committed market
and develops an algorithm to solve the bi-level model that
corresponds to this case. The appendix provides a proof
of a proposition that underlies this analysis. Section 5 ex-
tends the algorithm that is developed in Section 4 to the
case of a centrally committed design with make-whole pay-
ments. Section 6 presents numerical examples that we use
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to compare the two market designs. Section 7 concludes.

2. Model Assumptions and Formulations

This section provides assumptions and formulations of
bi-level optimization models for a profit-maximizing firm
that participates in centrally and self-committed markets.

2.1. Model Notation

Under both designs, we assume that the market con-
sists of a set, G, of generating firms and let j ∈ G be a
generic generating-firm index. We let i ∈ G denote the
index of the strategic generator, the offers of which are
optimized in our models. For notational ease, we assume
that each generating firm owns a single generator. As is
common, the MO’s market model is assumed to use hourly
operating periods. We let T and t ∈ T denote the set of
hours in the MO’s model horizon and the time index, re-
spectively.

We introduce the following assumption regarding the
treatment of transmission constraints in the MO’s model.

Assumption 1. The market model includes no binding
transmission constraints and treats all generators and load
as being at a single transmission-network node.

Assumption 1 is needed for model tractability. Includ-
ing transmission constraints would hamper significantly
our analysis of a centrally committed market design. In ad-
dition, Yao et al. (2004) note that transmission constraints
can complicate the derivation of profit-maximizing strate-
gies by strategic generating firms. In some cases it can
be optimal for a firm to follow a strategy that congests or
decongests a transmission line infinitesimally. Such strate-
gies can be difficult to capture using the bi-level modeling
approach that we employ. An implication of Assumption 1
is that our work does not capture added firm-behavior
complexities that are associated with the use of locational
marginal pricing in some wholesale electricity markets.

Next, we define the following parameters, which are
common to both market designs.
b̄v maximum energy offer ($/MWh)

cfj fixed operating cost of firm j ($/hour)

cvj variable operating cost of firm j ($/MWh)
Dt hour-t demand (MW)
K generator production capacity (MW)

Generators are assumed to have the same capacities
but different costs. Generation costs are non-convex, be-
cause ∀j ∈ G, firm j incurs a fixed cost of cfj if it is com-
mitted during a given hour. Otherwise, if it is shutdown
during that hour, it incurs no cost during that hour but
its production during that hour must be zero.

2.2. Model of Self-Committed Design

To formulate firm i’s profit-maximization under a self-
committed design, first we define bvj as firm j’s energy
offer ($/MWh). For all j ∈ G, t ∈ T we let uj,t denote

firm j’s hour-t unit-commitment status. uj,t is equal to 1 is
firm j is online during hour t and is equal to zero otherwise.
For all j ∈ G, bvj and uj,t are treated as fixed parameters
in the MO’s lower-level problem. bvi and ui,t, ∀t ∈ T
are variables in firm i’s upper-level profit-maximization
problem, whereas ∀j ∈ G, j 6= i, t ∈ T , bvj and uj,t are
treated as parameters by firm i. We define also xj,t as
firm j’s hour-t power output (MW). For all j ∈ G, t ∈ T ,
xj,t is a variable that is determined in the MO’s lower-level
model, which is formulated as:

min
∑

j∈G,t∈T

bvjxj,t (1)

s.t.
∑

j∈G

xj,t = Dt; ∀t ∈ T (ωt) (2)

0 ≤ xj,t ≤ Kuj,t; ∀j ∈ G, t ∈ T (α−
j,t, α

+
j,t); (3)

where the decision variables are xj,t, ∀j ∈ G, t ∈ T and the
Lagrange-multiplier set that is associated with each con-
straint set is in parentheses to its right. Objective func-
tion (1) minimizes the cost of operating the system, based
on the supply offers that are submitted by the generating
firms (i.e., it may be that bvj 6= cvj for some j ∈ G). Con-
straint set (2) ensures hourly load balance and (3) enforces
production limits. If uj,t = 0 for some j ∈ J , t ∈ T , then
xj,t must equal zero as well.

Firm i’s bi-level profit-maximization problem is:

max
∑

t∈T

[

(ωt − cvi )xi,t − cfi ui,t

]

(4)

s.t.0 ≤ bvi ≤ b̄v (5)

ui,t ∈ {0, 1}; ∀t ∈ T (6)

(1)–(3); (7)

where the decision variables are ui,t, ∀t ∈ T , bvi , and all
of the variables of (1)–(3). Objective function (4) maxi-
mizes firm i’s profit. We use the standard convention that
∀t ∈ T , the Lagrange multiplier, ωt, that is associated
with hour-t load-balance requirement (2) sets the hour-t
energy price. Constraint (5) imposes standard restrictions
on firm i’s energy offer. Constraint set (6) requires that
firm i’s unit-commitment decisions be binary. Because we
are modeling a self-committed design, firm i makes its own
unit-commitment decisions as opposed to those decisions
being made by the MO. Constraint set (7) embeds the
MO’s market-clearing model within firm i’s profit maxi-
mization. This is necessary, because the MO’s model de-
termines the values of xi,t and ωt, ∀t ∈ T .

2.3. Model of Centrally Committed Design

To formulate a model for a centrally committed de-
sign, we retain the same notation as is used for the self-
committed market. In addition, ∀j ∈ G, we define bfj as
firm j’s fixed-cost offer ($/hour), which is treated as a
parameter in the MO’s model, and b̄f as the maximum
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fixed-cost offer ($/hour), which is a parameter. Under a
centrally committed design, the MO’s model is:

min
∑

j∈G,t∈T

(

bvjxj,t + bfj uj,t

)

(8)

s.t.
∑

j∈G

xj,t = Dt; ∀t ∈ T (9)

0 ≤ xj,t ≤ Kuj,t; ∀j ∈ G, t ∈ T (10)

uj,t ∈ {0, 1}; ∀j ∈ G, t ∈ T ; (11)

where the decision variables are xj,t and uj,t, ∀j ∈ G, t ∈
T . Objective function (8) minimizes the cost of operating
the system, which includes non-convex fixed-cost offers.
Although they impose an ancillary cost upon customers,
make-whole payments are not included normally in the
MO’s objective function. Make-whole payments are ex-
cluded from (8) because including them would cause the
MO to clear the market as a monopsonist, which is eco-
nomically inefficient. Constraint set (9) ensures hourly
load balance, (10) enforces production limits, and (11) im-
poses integrality on unit-commitment decisions.

Firm i’s profit-maximization problem is:

max
∑

t∈T

[

(ηt − cvi )xi,t − cfi ui,t

]

(12)

s.t.0 ≤ bvi ≤ b̄v (13)

0 ≤ bfi ≤ b̄f (14)

(8)–(11); (15)

where the decision variables are bvi , bfi , and all of the
variables of (8)–(11). Objective function (12) maximizes
firm i’s profit. For all t ∈ T , we let ηt denote the hour-t
energy price. Problem (8)–(11) does not have well defined
dual variables or Lagrange multipliers, because of the inte-
grality restrictions. We impose a standard assumption in
Section 4 on how to set marginal prices, which behave sim-
ilarly to ωt, ∀t ∈ T under a self-committed design. Con-
straints (13) and (14) impose standard limits on firm i’s
offer and (15) embeds the MO’s model as the lower-level
problem.

2.4. Additional Assumptions

We conclude this section by introducing the following
two additional assumptions that underlie our analysis.

Assumption 2. Under a self-committed market design
firm i knows the values of bvj and uj,t, ∀j ∈ G, j 6= i, t ∈ T ,
with certainty. Under a centrally committed market design
firm i knows the values of bvj and bfj , ∀j ∈ G, j 6= i, with
certainty.

Assumption 2 is needed to make analysis of a cen-
trally committed design tractable. Assumption 2 can be
viewed as related to the definition of a Nash equilibrium.
Nash, Jr. (1950) defines a Nash equilibrium as assuming

that each player predicts perfectly the strategies of its ri-
vals and selecting a strategy from which it has no profitable
unilateral deviation. So long as firm i’s rival select bvj and
uj,t, ∀j ∈ G, j 6= i, t ∈ T under a self-committed design
to maximize their individual profits, a solution to (4)–(7)
satisfies this definition. The same can be said of a solution
to (12)–(15), so long as bvj and bfj , ∀j ∈ G, j 6= i maximize
the individual profits of firm i’s rivals.

Assumption 2 makes (4)–(7) and (12)–(15) static in na-
ture, due to the assumed sequence of events. Specifically,
under a self-committed design, firm i’s rivals are assumed
to choose bvj and uj,t, ∀j ∈ G, j 6= i, t ∈ T , which is followed
by firm i’s profit-maximizing choice of bvi and ui,t, ∀t ∈ T
and then the MO determining prices and production lev-
els. A centrally committed design has a similar sequence
of events. Firm i’s rivals choose bvj and bfj , ∀j ∈ G, j 6= i,
which is followed by firm i’s profit-maximizing choice of
bvi and bfi , and the MO determining prices, commitments,
and production levels.

Assumption 3. Under a self- and centrally committed
market design, respectively, if (1)–(3) or (8)–(11) have
multiple optimal solutions, one that is preferable to firm i
is chosen.

Assumption 3 states that if there are multiple opti-
mal solutions, the MO chooses a market-clearing solu-
tion that maximizes firm i’s profit. This assumption is
key to the standard approach that we employ to analyze
firm i’s profit-maximization under a self-committed design
(cf. Section 3 for details). As such, it is natural to adopt
this assumption for analysis of a centrally committed de-
sign.

3. Equivalent Single-Level Formulation of (4)–(7)

The standard approach to make (4)–(7) computation-
ally tractable is to recast it as an equivalent single-level
model, which can be solved using off-the-shelf optimiza-
tion software. Problem (1)–(3) is a convex linear opti-
mization. Thus, Sioshansi and Conejo (2017) note that
an optimal solution to (1)–(3) can be characterized by its
necessary and sufficient Karush-Kuhn-Tucker (KKT) con-
ditions, which are:

bvj − ωt − α−
j,t + α+

j,t = 0; ∀j ∈ G, t ∈ T (16)

(2) (17)

0 ≤ xj,t ⊥ α−
j,t ≥ 0; ∀j ∈ G, t ∈ T (18)

xj,t ≤ Kuj,t ⊥ α+
j,t ≥ 0; ∀j ∈ G, t ∈ T . (19)

Conditions (18)–(19) include complementary-slackness
requirements that are non-convex. Hereafter, we assume
that (18)–(19) are convexified using the approach that
Fortuny-Amat and McCarl (1981) propose, which entails
the use of auxiliary specially-ordered-set variables.

Thus, we can convert (4)–(7) into an equivalent single-
level problem which consists of (4)–(6) and (16)–(19). The
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replacement of (7) with (16)–(19) relies, implicitly, upon
Assumption 3. This reliance stems from the property that
if (7) has multiple optimal solutions, (4)–(6) and (16)–
(19) necessarily selects one that maximizes firm i’s profit.
Constraints (5)–(6) and (16)–(19) yield a convex feasible
region, but (4) is non-convex because it contains bi-linear
terms in which ωt and xi,t are multiplied. We obtain an
exactly equivalent convexification of (4) by noting that
by (16):

∑

t∈T

[

(ωt − cvi )xi,t − cfi ui,t

]

=

∑

t∈T

[

(

bvi − α−
i,t + α+

i,t − cvi
)

xi,t − cfi ui,t

]

;

and that by (18) and (19):

∑

t∈T

[

(

bvi − α−
i,t + α+

i,t − cvi
)

xi,t − cfi ui,t

]

=

∑

t∈T

(

bvi xi,t +Kui,tα
+
i,t − cvi xi,t − cfi ui,t

)

. (20)

The strong-duality equality for (1)–(3) is:

∑

j∈G,t∈T

bvjxj,t =
∑

t∈T



Dtωt −
∑

j∈G

Kuj,tα
+
j,t



 ; (21)

Substituting (21) into (20) gives:

∑

t∈T

[

(ωt − cvi )xi,t − cfi ui,t

]

=
∑

t∈T



Dtωt

−
∑

j∈G,j 6=i

(

bvjxj,t +Kuj,tα
+
j,t

)

− cvi xi,t − cfi ui,t



 ; (22)

which is convex and linear in the decision variables of (4)–
(7). Thus, a computationally efficient approach to solv-
ing (4)–(7) is to solve the single-level mixed-integer linear
optimization problem:

max
∑

t∈T



Dtωt −
∑

j∈G,j 6=i

(

bvjxj,t +Kuj,tα
+
j,t

)

− cvi xi,t − cfi ui,t



 (23)

s.t.(5)–(6), (16)–(19). (24)

Because (23) is equal exactly to (4), solving (23)–(24) gives
an exact solution to (4)–(7).

4. Properties of and Solution Algorithm for Cen-
trally Committed Design

The analysis of (12)–(15) is more complicated than
what is presented in Section 3. The complexity arises be-
cause (8)–(11) has binary variables, meaning that there are

no computationally tractable optimality conditions with
which to replace (15). Thus, our approach to analyz-
ing (12)–(15) is to prove characteristics of an optimal so-
lution to (8)–(11), which are used to develop a solution
algorithm for (12)–(15).

We begin with the following assumption, which elim-
inates cases wherein demand is an exact integer multiple
of the firms’ capacities, which would raise technical chal-
lenges without added insights.

Assumption 4. For all t ∈ T , Dt is not an integer mul-
tiple of K.

For all t ∈ T , we define rt = Dt −K · ⌊Dt/K⌋ as the
hour-t residual demand. By Assumption 4, rt ∈ (0,K),
∀t ∈ T .

We let (x∗, u∗) denote an optimal solution to (8)–(11)
and ∀t ∈ T we partition the generating firms into the sets,
GIt , G

M
t , and GVt . GIt is the set of hour-t-inframarginal

generators and x∗
j,t = K, ∀j ∈ GIt . G

M
t is the set of hour-

t-marginal generators and x∗
j,t ∈ (0,K), ∀j ∈ GMt . By

Assumption 4, GMt is non-empty ∀t ∈ T . Finally, GVt is
the set of hour-t-inactive generators and x∗

j,t = 0, ∀j ∈ GVt .
Next, we prove the following lemma, which shows that

all hour-t marginal generators have the same energy offer.

Lemma 1. For all t ∈ T and j, h ∈ GMt , we have that
bvj = bvh.

Proof. Suppose for contradiction that ∃t ∈ T and j, h ∈
GMt with j 6= h and that, without loss of generality, j and
h are labeled such that bvj < bvh. The value of (8) is reduced
if x∗

h,t is decreased by ǫ and x∗
j,t is increased by ǫ where

ǫ is sufficiently small that x∗
h,t − ǫ ≥ 0 and x∗

j,t + ǫ ≤ K.
This gives the desired contradiction.

We add the following assumption that hourly energy
prices are equal to the energy offer of the marginal unit(s).

Assumption 5. For all t ∈ T , ηt is equal to bvj for some

j ∈ GMt .

The following lemma shows the relationship between
the energy offers of inframarginal and marginal generators.

Lemma 2. For all t ∈ T , l ∈ GIt , and h ∈ GMt we must
have bvl ≤ bvh.

Proof. Following from Lemma 1 we have that ∀t ∈ T , the
optimized value of:

∑

j∈G

(

bvjxj,t + bfj uj,t

)

;

equals:
∑

j∈GI
t

(

bvjK + bfj

)

+ bvh ·
(

Dt −K ·
∣

∣GIt
∣

∣

)

+
∑

j∈GM
t

bfj ;

where h ∈ GMt . Suppose for contradiction that ∃l ∈ GIt
such that bvl > bvh. This contradicts the optimality of
(x∗, u∗), because the value of (8) is reduced by making
generator l marginal and generator h inframarginal.
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Now we show the following key property of an optimal
solution to firm i’s bi-level profit-maximization problem.

Proposition 1. Suppose that (bfi
∗
, bvi

∗) is an optimum
of (12)–(15). Then ∃(x∗, u∗) that is an optimum of (8)–
(11), satisfies Assumption 3, and has x∗

i,t ∈ {0, rt,K},
∀t ∈ T .

Proof. Suppose for contradiction that ∃τ ∈ T such that
x∗
i,τ 6∈ {0, rτ ,K}. We can consider the following two cases.
First, suppose that x∗

i,τ ∈ (0, rτ ). In such a case, we

must have
∣

∣GMτ
∣

∣ ≥ 2 to satisfy (9). We define ǫ = rτ −x∗
i,τ

and by (9) we must have:

∑

j∈GM
τ ,j 6=i

x∗
j,τ = K ·

(⌊

Dτ

K

⌋

−
∣

∣GIτ
∣

∣

)

+ ǫ.

Thus, we must have that:

∣

∣GMτ \ {i}
∣

∣ ≥

⌊

Dτ

K

⌋

−
∣

∣GIτ
∣

∣+ 1. (25)

We let G̃τ ⊂ GMτ be a (possibly empty) proper subset of
GMτ such that i /∈ G̃τ and:

∣

∣

∣G̃τ

∣

∣

∣ =

⌊

Dτ

K

⌋

−
∣

∣GIτ
∣

∣ .

Such a subset is guaranteed to exist by (25). Consider an
alternative solution, (x̃, ũ), to (8)–(11) where x̃j,t = x∗

j,t

and ũj,t = u∗
j,t, ∀t 6= τ , x̃j,τ = K and ũj,τ = 1, ∀j ∈

GIτ ∪ G̃τ , x̃i,τ = rτ and ũi,τ = 1, and x̃j,τ = 0 and ũj,τ = 0,

∀j /∈ GIτ ∪ G̃τ ∪ i. Such a solution improves the value of (8)
by:

∑

j∈GM
τ \G̃τ ,j 6=i

bfj ;

which is non-negative.
Next, suppose that x∗

i,τ ∈ (rτ ,K), in which case we

must have
∣

∣GMτ
∣

∣ ≥ 2 to satisfy (9). Firm i’s hour-τ profit
is:

(ωτ − cvi )x
∗
i,τ − cfi .

We can consider two cases, which depend upon the sign of
ωτ − cvi . If ωτ − cvi ≥ 0, consider an alternative solution
to (8)–(11) in which x∗

i,τ is increased by ǫ and:

∑

j∈GM
τ ,j 6=i

x∗
j,τ ;

is decreased by ǫ, where ǫ is sufficiently small so as not
to violate (10). Such an alternative solution does not
change the value of (8), because by Lemma 1 we have that
bvi

∗ = bvj , ∀j ∈ G
M
τ . However, this alternative solution

increases firm i’s profit. This contradicts (x∗, u∗) satisfy-
ing Assumption 3. If ωτ − cvi < 0, consider an alternative
solution to (8)–(11) in which x∗

i,τ is decreased by ǫ and:

∑

j∈GM
τ ,j 6=i

x∗
j,τ ;

is increased by ǫ, where ǫ is sufficiently small so as not to
violate (10). Such an alternative solution does not change
the value of (8). However, this alternative solution in-
creases firm i’s profit, which contradicts (x∗, u∗) satisfying
Assumption 3.

Proposition 1, which relies upon the assumption that
all generators have the same K-MW capacity, reduces the
complexity of (12)–(15) considerably. Problem (12)–(15)
is simplified, because by Proposition 1, (12)–(15) has at
most 3|T | candidate optimal solutions. Next, we introduce
the following lexicographic assumption on an optimal solu-
tion, (x∗, u∗), to (12)–(15), which simplifies the subsequent
analysis without loss of generality.

Assumption 6. The firms are ordered lexicographically
by fixed-cost offer and then by index so that an optimal
solution, (x∗, u∗), to (12)–(15) has |GMt | = 1, ∀t ∈ T .

Assumption 6 and its lexicographic ordering can be
satisfied without loss of generality. To see this, suppose
that a solution, (x̃, ũ), with |GMt | ≥ 2 for some t ∈ T , is
optimal to (12)–(15). By Lemmata 1 and 2 we must have
bvj = bvh, ∀j, h ∈ G

M
t and bvj ≤ bvh, ∀j ∈ G

I
t and h ∈ GMt .

Place the elements of GMt into a lexicographic order by the

values of bfj , ∀j ∈ G
M
t and break ties by indices. Consider

an alternative solution in which the first |GMt |−1 members
of GMt are assigned to GIt and the final member remains in
GMt but produces rt MW during hour t. Such a solution
can be no more costly than (x̃, ũ) is.

Next, we define the following metric with which to
compare the offers of two firms and state the subsequent
lemma, which we do not prove, because it follows trivially
from the definition and the principle of optimality.

Definition 1. We say that firm j is weakly less expensive
than firm h when producing m MW, which we denote as
j ≤m h, if bvjm + bfj ≤ bvhm+ bfh. We define firm j being
cost-equivalent to and weakly more expensive than firm h,
which are denoted as j =m h and j ≥m h, respectively,
analogously.

Lemma 3. Suppose that (x∗, u∗) is optimal to (12)–(15)
and gives the partitions, (GIt ,G

M
t ,GVt ), ∀t ∈ T . Then ∀t ∈

T we have j ≤K h, ∀j ∈ GIt and h ∈ GVt and j ≤rt h,
∀j ∈ GMt and h ∈ GVt .

Next, we consider optimal solutions to two variants
of (8)–(11). The first removes firm i from the set of can-

didate generators and ∀t ∈ T , we let (GI,−t ,GM,−
t ,GV,−t )

denote the resultant hour-t partition of the firms. The
second has firm i with arbitrarily small offers among the
set of candidate generators (i.e., firm i is inframarginal
∀t ∈ T such that Dt > K and is marginal during other
hours) and ∀t ∈ T , we let (GI,+t ,GM,+

t ,GV,+t ) denote the
resultant hour-t partition of the firms. For notational ease,
we give the following definition of the indices of the unique
marginal generators during each hour under these two sets
of partitions.
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Definition 2. For all t ∈ T and the resultant partitions,
(GI,−t ,GM,−

t ,GV,−t ) and (GI,+t ,GM,+
t ,GV,+t ), we define jM,−

t

and jM,+
t , respectively, as the index of the unique firms

that are members of GM,−
t and GM,+

t .

We prove now the following two lemmata, which show
important relationships between the two sets of partitions.

Lemma 4. For all t ∈ T such that GI,−t 6= ∅, ∃j ∈ GI,−t

such that:
GI,+t =

(

GI,−t \ {j}
)

∪ {i}.

Proof. If for any given t ∈ T we have GI,−t 6= ∅ then we

must have Dt > K, which means that GI,+t 6= ∅. By its

definition, i is an element of GI,+t . Thus, all we must show

is that ∀j ∈ GI,+t with j 6= i, we must have that j ∈ GI,−t .

Suppose, for contradiction, that ∃j ∈ GI,+t with j 6= i

and j 6∈ GI,−t . By Assumption 6 we must have:

∣

∣

∣G
I,−
t

∣

∣

∣ =
∣

∣

∣G
I,+
t

∣

∣

∣ .

Thus, there must be h, k ∈ GI,−t with k 6= h and h, k 6∈

GI,+t . At least one of h or k must be a member of GV,+t ,

because by Assumption 6, GM,+
t is a singleton. With-

out loss of generality, we assume that h ∈ GV,+t , mean-

ing that either k ∈ GV,+t or k = jM,+
t . Let us assume

that j = jM,−
t . If k = jM,+

t , the lexicographic ordering

of Assumption 6 is violated. Conversely, if k ∈ GV,+t , we

know that jM,+
t 6= jM,−

t , because of our assumption that

j = jM,−
t . Thus, we have either that jM,+

t ∈ GI,−t or

jM,+
t ∈ GV,−t . However, we cannot have jM,+

t ∈ GI,−t , as
this would violate the lexicographic ordering of Assump-
tion 6. On the other hand, if jM,+

t ∈ GV,−t the principle of
optimality requires:

bvjK + bfj + bv
j
M,+
t

rt + bf
j
M,+
t

< bvhK + bfh + bvj rt + bfj ; (26)

where the strict inequality is required by imposing the
lexicographic-ordering requirement of Assumption 6 on the
partition, (GI,−t ,GM,−

t ,GV,−t ). However, (26) violates the

optimality of the partition, (GI,−t ,GM,−
t ,GV,−t ). Thus, we

can have neither jM,+
t ∈ GI,−t nor jM,+

t ∈ GV,−t , which

means that k 6∈ GV,+t and that we must have j ∈ GV,−t .

However, because h ∈ GI,−t and h ∈ GV,+t , we must have
j =K h, which violates the lexicographic ordering of As-
sumption 6.

Lemma 5. For all t ∈ T exactly one of following holds:
either jM,+

t ∈ GI,−t or GM,−
t = GM,+

t .

Proof. For any t ∈ T both statements cannot hold simul-
taneously, because by Assumption 6 both GM,−

t and GM,+
t

are singletons. Thus, we must show that it is impossible
for neither statement to hold.

Suppose for contradiction that ∃t ∈ T for which nei-
ther statement holds. Then, jM,+

t ∈ GV,−t . By Lemma 4

this requires that jM,−
t 6∈ GI,+t , which implies that jM,−

t ∈

GV,+t . However, having jM,−
t ∈ GV,+t contradicts the lexi-

cographic ordering of Assumption 6.

Lemma 4 shows that if GI,−t is non-empty for a given

t ∈ T , then GI,−t and GI,+t differ exactly by one firm

(i.e., firm i becomes a member of GI,+t and one member

of GI,−t becomes a member of GM,+
t or GV,+t ). Lemma 5

states that ∀t ∈ T , a firm that is inactive under the par-
tition, (GI,−t ,GM,−

t ,GV,−t ), cannot become marginal under

the partition, (GI,+t ,GM,+
t ,GV,+t ).

Proposition 1 provides a theoretical foundation with
which to develop an algorithm to solve (12)–(15). Specif-
ically, one can compute firm i’s profit under each of the
3|T | candidate solutions that Proposition 1 characterizes
and select the optimal one. Enumerating completely all
3|T | solutions is computationally costly. Moreover, this
technique does not connect firm i’s offers to the resultant
production allocation. Thus, we derive necessary and suf-
ficient conditions that provide this linkage.

To do so, we begin with the following definition.

Definition 3. For all t ∈ T and the resultant partition,
(GI,−t ,GM,−

t ,GV,−t ), such that GI,−t 6= ∅, we define:

jI,−t = argmax
j∈GI,−

t

bvjK + bfj .

Next, we let:

x̂i =
(

x̂i,1, . . . , x̂i,|T |

)

;

denote a candidate set of production levels for firm i, which
is of the form that is given by Proposition 1. We define
the following constraint set, Bx̂i

, that relates firm i’s offer
to x̂i. The subsequent proposition shows that Bx̂i

is ne-

cessary and sufficient for the offer, (bfi , b
v
i ), to yield x̂i as

firm i’s production levels that are given by (8)–(11).
For each t ∈ T , there are three possible hour-t produc-

tion levels. We add different constraints to Bx̂i
depending

upon the desired value of x̂i,t. The totality of these con-
straints ∀t ∈ T gives the set, Bx̂i

. We begin with the case
of x̂i,t = 0. In such a case, we add the inequalities:

bvi rt + bfi ≥ max
{(

bv
j
I,−
t

− bv
j
M,−
t

)

K + bf
j
I,−
t

− bf
j
M,−
t

, 0
}

+ bv
j
M,−
t

rt + bf
j
M,−
t

(27)

bviK + bfi ≥ max
{(

bv
j
M,−
t

− bvj

)

rt + bf
j
M,−
t

− bfj , 0
}

+ bvjK + bfj ; ∀j ∈ G
I,−
t ; (28)

to Bx̂i
.

If x̂i,t = rt, there are two possible cases. First, if

jM,−
t ≥K jI,−t , we add the inequalities:

bvi rt + bfi ≤ bv
j
M,−
t

rt + bf
j
M,−
t

(29)

bvi ≥ bvj ; ∀j ∈ G
I,−
t (30)
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bviK + bfi + bv
j
M,−
t

rt + bf
j
M,−
t

≥ bv
j
I,−
t

K + bf
j
I,−
t

+ bvi rt + bfi ; (31)

to Bx̂i
. Otherwise, if jM,−

t <K jI,−t , we add the inequali-
ties:

bvi rt + bfi ≤ bv
j
M,−
t

rt + bf
j
M,−
t

+
(

bv
j
I,−
t

− bv
j
M,−
t

)

K

+ bf
j
I,−
t

− bf
j
M,−
t

(32)

bvi ≥ bv
j
M,−
t

(33)

bviK + bfi +N ≥M + bvi rt + bfi ; (34)

to Bx̂i
, where:

M = max
j∈(GI,−

t ∪GM,−
t )\{jI,−t }

(

bvjK + bfj

)

;

and:
N = min

j∈{jI,−t }∪GV,−
t

(

bvj rt + bfj

)

.

Finally, if x̂i,t = K, there are two possible cases. First,

if jM,−
t 6= jM,+

t , we add the inequalities:

bviK + bfi + bv
j
M,+
t

rt + bf
j
M,+
t

≤ bv
j
M,+
t

K + bf
j
M,+
t

+ bv
j
M,−
t

rt + bf
j
M,−
t

(35)

bvi ≤ bv
j
M,+
t

; (36)

to Bx̂i
. Otherwise, if jM,−

t = jM,+
t , we add the inequali-

ties:

bviK + bfi ≤ bvpK + bfp (37)

bvi ≤ bv
j
M,+
t

(38)

bvpK + bfp + bvi rt + bfi

≥ bviK + bfi + bv
j
M,+
t

rt + bf
j
M,+
t

; (39)

to Bx̂i
, where p ∈ GI,−t and p 6∈ GI,+t . Such a firm, p, is

guaranteed to exist by Lemma 4.

Proposition 2. For any set of firm-i production levels, x̂i,
that is of the form that is characterized by Proposition 1,
the constraint set, Bx̂i

, which is defined by (27)–(39), is
necessary and sufficient to have x̂i be optimal in (8)–(11).

The proof of Proposition 2 is provided in the appendix
in three parts, which correspond to showing the necessity
and sufficiency of Bx̂i

for hours, t ∈ T , such that x̂i,t = 0,
x̂i,t = rt, and x̂i,t = K.

Proposition 2 connects firm i’s upper-level variables,
which constitutes its offer, to a commitment and dispatch
schedule that it wants to receive from the lower-level MO
problem. However, Proposition 2 provides constraints that
the offers must satisfy, not an optimal set of offers. Hence,
we introduce the following auxiliary problem:

max
b
f
i
,bv

i

bvi

s.t.
(

bfi , b
v
i

)

∈ Bx̂i

(13)–(14);

which we denote as PA
C (x̂i). We prove in the following

lemma that for a given x̂i, PA
C (x̂i) generates firm-i offers

that result in those production levels from the MO’s lower-
level problem and maximize firm i’s profit.

Lemma 6. For any x̂i that is of the form that is character-
ized by Proposition 1, an optimal solution to PA

C (x̂i) gener-
ates firm-i offers that result in x̂i being optimal in (8)–(11)
and (12) being maximized.

Proof. Objective function (12) is additively separable in t
and we can consider separately hours such that x̂i,t = 0,
x̂i,t = K, and x̂i,t = rt. By definition, firm i’s profit is
zero during all hours t ∈ T such that x̂i,t = 0. For hours
t ∈ T , such that x̂i,t = K, we have from Assumption 5

that ηt depends upon neither bvi nor bfi . Thus, for all
t ∈ T such that x̂i,t = 0 or x̂i,t = K, firm i’s hour-t profit
does not depend upon firm i’s offer. For the final case of
all t ∈ T such that x̂i,t = rt, Assumptions 5 and 6 imply
that firm i’s hour-t profit is:

(ηt − cvi )xi,t − cfi ui,t = (bvi − cvi )xi,t − cfi ui,t;

which is strictly increasing in bvi . Thus, the objective func-
tion of PA

C (x̂i) maximizes the terms in firm i’s profit func-
tion that are dependent upon firm i’s offers.

The final step before developing our solution algorithm
for (12)–(15) is to introduce the following variant of the
MO’s lower-level problem. This variant takes as an input
a partition set, (GIt ,G

M
t ,GVt ), ∀t ∈ T and is formulated as:

min
∑

j∈G,t∈T

(

bvjxj,t + bfj uj,t

)

(40)

s.t.
∑

j∈G

xj,t = Dt; ∀t ∈ T (λt) (41)

0 ≤ xj,t ≤ Kuj,t; ∀j ∈ G, t ∈ T (ρ−j,t, ρ
+
j,t) (42)

0 ≤ uj,t ≤ 1; ∀j ∈ G, t ∈ T (β−
j,t, β

+
j,t) (43)

uj,t ≥ 1; ∀t ∈ T , j ∈ GIt ∪ G
M
t (ζj,t) (44)

uj,t ≤ 0; ∀t ∈ T , j ∈ GVt (ζj,t). (45)

Problem (40)–(45) is the same as (8)–(11) except that in-
tegrality restriction (11) is relaxed and replaced with re-
strictions that fix the values of the commitment variables
based on the given partition set. Problem (40)–(45) is a
convex linear optimization, meaning that it has well de-
fined Lagrange multipliers, which are given in parentheses
to the right of each constraint set. Following Assump-
tion 5, ∀t ∈ T , λt can be used as the hour-t energy price.

We conclude our theoretical analysis of a centrally com-
mitted design by presenting pseudocode in Algorithm 1 for
our technique to solve (12)–(15). Lines 1 and 2 begin by

determining the two sets of partitions, (GI,−t ,GM,−
t ,GV,−t )
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and (GI,+t ,GM,+
t ,GV,+t ), ∀t ∈ T , respectively. Line 3 ini-

tializes the main iterative loop, which is in Lines 4–14. z∗

stores the incumbent best value of firm i’s objective func-

tion and bfi
∗
and bvi

∗ represent the offer that achieves z∗.

Algorithm 1 Solution Technique for (12)–(15)

1: Solve (8)–(11) with i removed from G to obtain the

partitions, (GI,−t ,GM,−
t ,GV,−t ), ∀t ∈ T

2: Solve (8)–(11) with bfi ← 0 and bvi ← 0 to obtain the

partitions, (GI,+t ,GM,+
t ,GV,+t ), ∀t ∈ T

3: z∗ ← −∞, bfi
∗
← b̄f , bvi

∗ ← b̄v

4: for x̂i ∈ Ξ do
5: (b̂vi , b̂

f
i )← argmaxPA

C (x̂i)
6: if PA

C (x̂i) is feasible and bounded then

7: Solve (8)–(11) with bfi ← b̂fi and bvi ← b̂vi to

obtain the partitions, (ĜIt , Ĝ
M
t , ĜVt ), ∀t ∈ T

8: Solve (40)–(45) with partitions, (ĜIt , Ĝ
M
t , ĜVt ),

∀t ∈ T , to obtain energy prices, λ̂t, ∀t ∈ T
9: ẑ ←

∑

t∈T [(λ̂t − cvi )x̂i,t − cfi ûi,t]
10: if ẑ > z∗ then
11: z∗ ← ẑ, bfi

∗
← b̂fi , b

v
i
∗ ← b̂vi

12: end if
13: end if
14: end for

Lines 4–14 loop through the elements of, Ξ, which is
the set of possible values of x̂i in accordance with Propo-
sition 1, i.e., ∀x̂i ∈ Ξ we have x̂i,t ∈ {0, rt, k}, ∀t ∈ T .
For each x̂i ∈ Ξ, Line 5 solves PA

C (x̂i) to determine opti-
mal offers that attain the dispatch level x̂i. PA

C (x̂i) may
be infeasible for some x̂i, e.g., the inequalities that define
Bx̂i

may be inconsistent. Such x̂i are excluded from fur-
ther consideration. If PA

C (x̂i) is feasible and bounded (cf.

Line 6), the optimized value of (b̂fi , b̂
v
i ) that is found in

Line 5 is used to find the partitions, (ĜIt , Ĝ
M
t , ĜVt ), ∀t ∈ T ,

in Line 7. Line 8 solves (40)–(45) to determine the resul-
tant energy prices, which are used in Line 9 to compute
firm i’s profit, where we assume that ûi,t = 0, ∀t ∈ T such
that x̂i,t = 0 and ûi,t = 1 for all other t. If the profit that
firm i earns from x̂i is greater than z∗ (cf. Line 10) then

z∗ and (bfi
∗
, bvi

∗) are updated in Line 11.
We conclude this section with the following lemma,

which states that Algorithm 1 is guaranteed to find an
optimal solution to (12)–(15).

Lemma 7. Algorithm 1 is guaranteed to produce an opti-
mal solution to (12)–(15).

Proof. By Proposition 1, an optimal solution to (12)–(15)
occurs at an element of Ξ. By Lemma 6, for each x̂i ∈ Ξ,
PA
C (x̂i) finds firm-i offers that maximize firm-i profit.

5. Centrally Committed Market with Make-Whole
Payments

Make-whole payments are a common approach to ad-
dress potential economic confiscation under centrally com-

mitted designs. Extending (12)–(15) to include make-
whole payments is straightforward, because such payments
change only firm i’s objective function. With make-whole
payments, (12)–(15) changes to:

max
∑

t∈T

[

(ηt − cvi )xi,t − cfi ui,t

]

+max

{

0,
∑

t∈T

[

(bvi − ηt)xi,t + bfi ui,t

]

}

(46)

s.t.(13)–(15); (47)

and retains the same decision variables.
Importantly, the MO’s lower-level problem does not

change with make-whole payments, meaning that most of
the analysis that we present in Section 4 applies to (46)–
(47). Extending our analysis to include make-whole pay-
ments requires three steps. First, we prove a result that is
analogous to Proposition 1. Next, we linearize (46). Third,
we develop an algorithm that is akin to Algorithm 1.

Proposition 3. Suppose that (bfi
∗
, bvi

∗) is an optimum
of (46)–(47). Then ∃(x∗, u∗) that is an optimum of (8)–
(11), satisfies Assumption 3, and has x∗

i,t ∈ {0, rt,K},
∀t ∈ T .

Proof. The sole difference between (46)–(47) and (12)–(15)
is the max{·} operator that is in (46). If the max{·} op-
erator equals zero, then Proposition 3 follows immediately
from Proposition 1. Thus, we consider the other case,
wherein the max{·} operator is strictly positive. In such a
case, firm i’s profit is:

∑

t∈T

[

(bvi
∗ − cvi )xi,t +

(

bfi
∗
− cfi

)

ui,t

]

.

Suppose for contradiction that ∃τ ∈ T such that x∗
i,τ 6∈

{0, rτ ,K}. We consider two cases.
First, consider a case wherein x∗

i,τ ∈ (0, rτ ). We can use
the exact same argument as in the proof of Proposition 1
to show that there is an alternative feasible solution that
is less costly in (8)–(11).

Next, consider a case wherein x∗
i,τ ∈ (rτ ,K), in which

case we must have |GMτ | ≥ 2 to satisfy (9). By Lemma 1
we have that bvi

∗ = bvj , ∀j ∈ G
M
τ and by Assumption 5

we have that ητ = bvi
∗. We can consider two cases, which

differ by the sign of bvi
∗ − cvi . If bvi

∗ − cvi ≥ 0, consider an
alternative solution in which x∗

i,τ is increased by ǫ and:

∑

j∈GM
τ ,j 6=i

x∗
j,τ ;

is decreased by ǫ, where ǫ is sufficiently small so as not to
violate (10). Such an alternative solution does not change
the value of (8) but weakly increases the value of (46),
which contradicts (x∗, u∗) satisfying Assumption 3. For
the other case, wherein bvi

∗−cvi < 0, consider an alternative
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solution in which x∗
i,τ is decreased by ǫ and:

∑

j∈GM
τ ,j 6=i

x∗
j,τ ;

is increased by ǫ, where ǫ is sufficiently small so as not to
violate (10). This alternative solution does not change the
value of (8) but increases strictly the value of (46), which

contradicts the optimality of (bfi
∗
, bvi

∗) in (46)–(47).

As is the case without make-whole payments, Propo-
sition 3 allows us to limit our attention to a finite set of
production levels for firm i. Next, to linearize (46), we
begin with the KKT conditions for (40)–(45), which are:

bvj − λt − ρ−j,t + ρ+j,t = 0; ∀j ∈ G, t ∈ T (48)

bfj −Kρ+j,t − β−
j,t + β+

j,t − ζj,t = 0;

∀t ∈ T , j ∈ GIt ∪ G
M
t (49)

bfj −Kρ+j,t − β−
j,t + β+

j,t + ζj,t = 0; ∀t ∈ T , j ∈ GVt (50)

(41) (51)

0 ≤ xj,t ⊥ ρ−j,t ≥ 0; ∀j ∈ G, t ∈ T (52)

xj,t ≤ Kuj,t ⊥ ρ+j,t ≥ 0; ∀j ∈ G, t ∈ T (53)

0 ≤ uj,t ⊥ β−
j,t ≥ 0; ∀j ∈ G, t ∈ T (54)

uj,t ≤ 1 ⊥ β+
j,t ≥ 0; ∀j ∈ G, t ∈ T (55)

uj,t ≥ 1 ⊥ ζj,t ≥ 0; ∀t ∈ T , j ∈ GIt ∪ G
M
t (56)

uj,t ≤ 0 ⊥ ζj,t ≥ 0; ∀t ∈ T , j ∈ GVt ; (57)

and its strong-duality equality, which is:

∑

j∈G,t∈T

(

bvjxj,t + bfj uj,t

)

=
∑

t∈T



Dtλt −
∑

j∈G

β+
j,t

+
∑

j∈GI
t ∪GM

t

ζj,t



 . (58)

We break (46) into two parts to linearize it. First, we
have from (48) and Assumption 5 that:

∑

t∈T

[

(ηt − cvi )xi,t − cfi ui,t

]

=
∑

t∈T

[

(bvi − ρ−i,t + ρ+i,t − cvi )xi,t − cfi ui,t

]

. (59)

From (52) and (53), the right-hand side of (59) simplifies
to:

∑

t∈T

[

bvi xi,t +Kui,tρ
+
i,t − cvi xi,t − cfi ui,t

]

;

which becomes:

∑

t∈T



Dtλt −
∑

j∈G

β+
j,t +

∑

j∈GI
t ∪GM

t

ζj,t −
(

bfi −Kρ+i,t

)

ui,t

−
∑

j∈G,j 6=i

(

bvjxj,t + bfj uj,t

)

− cvi xi,t − cfi ui,t



 ; (60)

by (58). Conditions (49) and (50) imply that (60) becomes:

∑

t∈T :i∈GI
t ∪GM

t



Dtλt −
∑

j∈G

β+
j,t +

∑

j∈GI
t ∪GM

t

ζj,t

−
(

β−
i,t − β+

i,t + ζi,t
)

ui,t −
∑

j∈G,j 6=i

(

bvjxj,t + bfj uj,t

)

− cvi xi,t − cfi ui,t



+
∑

t∈T :i∈GV
t



Dtλt −
∑

j∈G

β+
j,t

+
∑

j∈GI
t ∪GM

t

ζj,t −
(

β−
i,t − β+

i,t − ζi,t
)

ui,t

−
∑

j∈G,j 6=i

(

bvjxj,t + bfj uj,t

)

− cvi xi,t − cfi ui,t



 ;

which by (54)–(57) simplifies further to:

∑

t∈T :i∈GI
t ∪GM

t



Dtλt −
∑

j∈G

β+
j,t +

∑

j∈GI
t ∪GM

t

ζj,t + β+
i,t

−ζi,t −
∑

j∈G,j 6=i

(

bvjxj,t + bfj uj,t

)

− cvi xi,t − cfi ui,t





+
∑

t∈T :i∈GV
t



Dtλt −
∑

j∈G

β+
j,t +

∑

j∈GI
t ∪GM

t

ζj,t + β+
i,t

−
∑

j∈G,j 6=i

(

bvjxj,t + bfj uj,t

)

− cvi xi,t − cfi ui,t



 ;

and can be rewritten as:

∑

t∈T



Dtλt −
∑

j∈G,j 6=i

(

β+
j,t + bvjxj,t + bfj uj,t

)

+
∑

j∈GI
t ∪GM

t ,j 6=i

ζj,t − cvi xi,t − cfi ui,t



 ;

which is linear in the decision variables of (46)–(47).
The second part of (46) has the max{·} operator. Us-

ing (48) and Assumption 5, the term in the max{·} oper-
ator in (46) can be written as:

∑

t∈T

[

(bvi − ηt)xi,t + bfi ui,t

]

=
∑

t∈T

[

(

ρ−i,t − ρ+i,t
)

xi,t + bfi ui,t

]

;
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which simplifies further to:
∑

t∈T

(

−Kρ+i,t + bfi

)

ui,t;

by (52) and (53). This expression becomes:

∑

t∈T :i∈GI
t ∪GM

t

(

β−
i,t − β+

i,t + ζi,t
)

ui,t

+
∑

t∈T :i∈GV
t

(

β−
i,t − β+

i,t − ζi,t
)

ui,t;

by (49) and (50), which simplifies further to:
∑

t∈T :i∈GI
t ∪GM

t

ζi,t −
∑

t∈T

β+
i,t; (61)

by (54)–(57). We introduce an auxiliary binary variable,
φ, which equals 1 if the term in the max{·} operator in (46)
is positive and equals 0 otherwise. With this definition, we
can write the max{·} operator in (46) as:

max

{

0,
∑

t∈T

[

(bvi − ηt)xi,t + bfi ui,t

]

}

=
∑

t∈T

[

(bvi − ηt)xi,t + bfi ui,t

]

φ;

the right-hand side of which becomes the linear expression:





∑

t∈T :i∈GI
t ∪GM

t

ζi,t −
∑

t∈T

β+
i,t



φ

=
∑

t∈T :i∈GI
t ∪GM

t

ζ̂i,t −
∑

t∈T

β̂+
i,t;

by (61), where we define ζ̂i,t = ζi,tφ and β̂+
i,t = β+

i,tφ,

∀t ∈ T . For all t ∈ T , ζ̂i,t and β̂+
i,t are bilinear, however

because these are the products of continuous and binary
variables, they can be linearized by adding the constraints:

φ ∈ {0, 1} (62)

0 ≤ ζ̂i,t ≤Mφ; ∀t ∈ T : i ∈ GIt ∪ G
M
t (63)

ζi,t − (1− φ)M ≤ ζ̂i,t ≤ ζi,t; ∀t ∈ T : i ∈ GIt ∪ G
M
t (64)

0 ≤ β̂+
i,t ≤Mφ; ∀t ∈ T (65)

β+
i,t − (1− φ)M ≤ β̂+

i,t ≤ β+
i,t; ∀t ∈ T ; (66)

where M is a sufficiently large constant (cf. the work of
Sioshansi and Conejo (2017) for further details).

We define now an auxiliary problem, which plays a
similar role in our solution methodology to that of PA

C (x̂i)
in the case without make-whole payments. The auxiliary
problem takes as an input a set of firm-i production levels,
x̂i, and an associated partition set, (GIt ,G

M
t ,GVt ), ∀t ∈ T ,

and is formulated as:

max
∑

t∈T



Dtλt −
∑

j∈G,j 6=i

(

β+
j,t + bvjxj,t + bfj uj,t

)

+
∑

j∈GI
t ∪GM

t ,j 6=i

ζj,t − cvi xi,t − cfi ui,t − β̂+
i,t





+
∑

t∈T :i∈GI
t ∪GM

t

ζ̂i,t (67)

s.t.
(

bfi , b
v
i

)

∈ Bx̂i
(68)

(48)–(57), (62)–(66); (69)

where the decision variables include all of the variables
of (46)–(47), the Lagrange multipliers of (48)–(57), and

the auxiliary variables, ζ̂i,t and β̂+
i,t, t ∈ T and φ. We show

now the following two lemmata. The first shows that there
is a one-to-one correspondence between x̂i and a partition
set, (GIt ,G

M
t ,GVt ), ∀t ∈ T . The second is akin to Lemma 6,

and shows that for a given x̂i, (67)–(69) yields offers that
solve (46)–(47).

Lemma 8. For any (bfi , b
v
i ) ∈ Bx̂i

there is a unique resul-
tant partition set that satisfies the lexicographic ordering
that underlies Assumption 6.

Proof. Suppose for contradiction that for a given (bfi , b
v
i ) ∈

Bx̂i
, ∃τ ∈ T such that there are two partitions, which we

denote as (GIτ ,G
M
τ ,GVτ ) and (ĜIτ , Ĝ

M
τ , ĜVτ ). Consider, first,

the case wherein x̂i,τ = K. In such a case, we have that:

∑

j∈GI
τ\{i}

(

bvjK + bfj

)

+ bvjMτ rτ + bf
jMτ

=
∑

j∈ĜI
τ\{i}

(

bvjK + bfj

)

+ bv
ĵMτ

rτ + bf
ĵMτ

;

where jMτ and ĵMτ denote the unique elements of GMτ and
ĜMτ , respectively. This equality, which holds because if it
does not one of the partitions is not optimal in (8)–(11),
implies that the two partitions are identical, otherwise the
lexicographic ordering of Assumption 6 is violated.

The other cases wherein x̂i,τ = rt and x̂i,τ = 0 yield
the equalities:

∑

j∈GI
τ

(

bvjK + bfj

)

=
∑

j∈ĜI
τ

(

bvjK + bfj

)

;

and:

∑

j∈GI
τ

(

bvjK + bfj

)

+ bvjMτ rτ + bf
jMτ

=
∑

j∈ĜI
τ

(

bvjK + bfj

)

+ bv
ĵMτ

rτ + bf
ĵMτ

;

respectively, which yield the same conclusions that the two
partitions must be equivalent.

Lemma 9. For any x̂i that is of the form that is char-
acterized by Proposition 3, an optimal solution to (67)–
(69) generates firm-i offers that result in x̂i being optimal
in (8)–(11) and maximizing (46).
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Proof. By Proposition 2, the constraint set, Bx̂i
, is necess-

ary and sufficient for (bfi , b
v
i ) to yield x̂i as an optimum

of (8)–(11). By Lemma 8, for a given offer, (bfi , b
v
i ) ∈ Bx̂i

,
there is a unique partition that is associated with x̂i. Thus,
fixing this partition, (8)–(11) can be replaced with (40)–
(45), which, in turn, can be replaced with necessary and
sufficient KKT conditions (48)–(57). Finally, (62)–(66)
are needed to linearize the max{·} in (46), which yields
the equivalent objective function that is given by (67).

To conclude our analysis of a centrally committed de-
sign with make-whole payments, we provide pseudocode
in Algorithm 2 for our technique to solve (46)–(47). Algo-
rithms 1 and 2 are similar, with the key difference in Line 8
of the former. For each given firm-i production schedule,
Algorithm 1 determines firm-i profit in Line 9 by deter-
mining first prices in Line 8. Line 8 of Algorithm 2 does
this in one step by solving (67)–(69), which incorporates
make-whole payments.

Algorithm 2 Solution Technique for (46)–(47)

1: Solve (8)–(11) with i removed from G to obtain the

partitions, (GI,−t ,GM,−
t ,GV,−t ), ∀t ∈ T

2: Solve (8)–(11) with bfi ← 0 and bvi ← 0 to obtain the

partitions, (GI,+t ,GM,+
t ,GV,+t ), ∀t ∈ T

3: z∗ ← −∞, bfi
∗
← b̄f , bvi

∗ ← b̄v

4: for x̂i ∈ Ξ do
5: (b̂vi , b̂

f
i )← argmaxPA

C (x̂i)
6: if PA

C (x̂i) is feasible and bounded then

7: Solve (8)–(11) with bfi ← b̂fi and bvi ← b̂vi to

obtain the partitions, (ĜIt , Ĝ
M
t , ĜVt ), ∀t ∈ T

8: ẑ ← max (67) s.t. (68)–(69)
9: if ẑ > z∗ then

10: z∗ ← ẑ, bfi
∗
← b̂fi , b

v
i
∗ ← b̂vi

11: end if
12: end if
13: end for

The following lemma shows that Algorithm 2 is guar-
anteed to find an optimal solution to (46)–(47).

Lemma 10. Algorithm 2 is guaranteed to produce an op-
timal solution to (46)–(47).

Proof. By Proposition 3, an optimal solution to (46)–(47)
occurs at an element of Ξ. By Lemma 9, for each x̂i ∈ Ξ,
solving (67)–(69) yields a set of firm-i offers that maxi-
mizes firm i’s profit.

6. Numerical Example

This section presents two numerical examples in which
firm i has two rivals, which are denoted as firms 1 and 2,
and there are |T | = 3 operating hours with demands, D1 =
25 MW,D2 = 34 MW, andD3 = 38MW. Firms i, 1, and 2
have K = 20 MW capacities in both examples. The fixed

costs of firms 1 and 2, cf1 and cf2 , are non-zero in the first
example and are zero in the second example.

We consider these two examples because having non-
zero cf1 or cf2 complicates comparing the two market de-
signs. Under a centrally committed design, firms can sig-
nal and recover their fixed costs through their multi-part
offers and make-whole payments. Under a self-committed
design, firms must account for their fixed costs in their en-
ergy offers. As such, we use the first example to examine
how firm i structures its fixed- and variable-cost offers to
compete against its two rivals under a centrally commit-
ted design. The second example is used to contrast firm i’s
offering behavior between centrally and self-committed de-
signs.

Another issue in comparing the two market designs
is that Assumption 6 guarantees that a single marginal
generator is operated during each operating period. Our
approach to solving firm i’s profit-maximization problem
under a self-committed design has no such guarantee. In
comparing the two market designs with the second exam-
ple, we assume that the generating firms and MO behave
in a manner to yield a similar result to Assumption 6.

6.1. Non-Zero cf1 and cf2
6.1.1. Data

Columns two and three of Table 1 provide the assumed
cost parameters of firms 1 and 2. Our base case assumes
that firm i has a fixed cost of cfi = 10 and considers cases
wherein cvi varies from 0.50 to 5.00 at increments of 0.25.
Section 6.1.3 presents a parametric analysis, in which we
examine the sensitivity of firm i’s profit-maximizing be-
havior and resultant market operations with different val-
ues of cfi .

Table 1: Cost Data for Firms 1 and 2 With Non-Zero c
f
1
and c

f
2

j cvj cfj

1 4 10
2 5 10

6.1.2. Base-Case Results

Figure 1 shows optimized firm-i offers in the base case
under a centrally committed design with make-whole pay-
ments for different values of cvi . Firm i’s strategy differs
for high and low values of cvi . If cvi ≤ 3.00, firm i sub-
mits an offer with bvi = 4.00, so it matches firm 1’s energy

cost, and bfi = 15, which is the highest value that allows
firm i to be an inframarginal generator during all three
hours. In following such a strategy, the energy price is set
by firm 1, which is the marginal generator, to $4.00/MWh
during each hour and firm i’s make-whole payments are
maximized. Conversely, if cvi ≥ 3.25, firm i submits an

offer with bvi = 5.00 and bfi = 10, which allows firm i to
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match firm 2 on cost and to become the marginal gener-
ator during all three hours, yielding $5.00/MWh energy
prices during each hour.

Figure 1: Optimized Firm-i Offers Under Centrally Committed De-

sign With Non-Zero c
f
1
and c

f
2
in the Base Case

Figure 2 summarizes the optimized profit, which is bro-
ken into two components, that firm i earns under the cen-
trally committed design with different values of cvi . The
first profit component is operating profit from energy sales,
i.e., total revenue from selling energy less the sum of vari-
able and fixed operating costs. This profit component is
negative for cvi ≥ 4.25. The second profit component is
the make-whole payment. Figure 2 shows that total profit
is decreasing in cvi . Moreover, for sufficiently high values
of cvi , firm i’s profit-maximizing strategy is to submit an
offer that yields an actual profit loss, which is recovered
through make-whole payments (firm i’s optimal profit is
exactly zero for the boundary case of cvi = 5.00). Firm i
receives make-whole payments for all values of cvi that we
examine, despite earning positive rents from energy pay-
ments for cvi ≤ 4.00.

Figure 1 shows that cvi = 3.25 is the threshold be-
yond which it is profitable under a centrally committed
design for firm i to submit offers that result in its being
the marginal generator. For instance, if cvi = 4.00 an opti-
mal offer that results in firm i being inframarginal yields a
profit loss of $30 from energy sales, which is supplemented
by a $45 make-whole payment, for a total profit of $15.
Conversely, the optimized offers that are shown in Figure 1
that result in firm i being marginal during each hour yields
$7 of profit from energy sales, which is supplemented by
a $30 make-whole payment. This result demonstrates the
trade-off between selling more energy at a lower price as
an inframarginal generator versus selling less energy at a
higher price as a marginal supplier. Make-whole payments
affect this trade-off.

Figure 3 summarizes three different cost metrics from
the optimized firm-i offers under a centrally committed

Figure 2: Optimized Firm-i Profit Under Centrally Committed De-

sign With Non-Zero c
f
1
and c

f
2
in the Base Case

design. The first is actual cost, which is defined as:

∑

j∈G,t∈T

(

cvjx
∗
j,t + cfj u

∗
j,t

)

;

where ∀j ∈ G, t ∈ T we let x∗
j,t and u∗

j,t denote the values
of xj,t and uj,t that are obtained from solving the bi-level
problem for the centrally committed design. The second
is as-offered cost, which is defined as the value of (8). The
distinction between actual and as-offered costs are that
the former are actual costs that are incurred by the gener-
ating firms, whereas the latter are what the MO believes
their costs to be, based upon offers that it receives. The
final cost metric is settlement cost, which is defined as the
sum of energy and make-whole payments to the generating
firms. Finally, Figure 3 shows the true cost minimum. The
distinction between actual and true-minimal cost is that
the former is based on commitment and dispatch decisions
that are made using offers, which may not reflect actual
cost and may be suboptimal with true cost information.
Thus, the latter may be viewed as the cost of a perfectly
competitive benchmark.

Figure 3 shows that if 2.50 ≤ cvi ≤ 3.00, the cen-
trally committed design yields the true cost minimum. If
cvi < 4.00 and 4.00 < cvi < 5.00, firm i is strictly less costly
than firm 1 and 2, respectively. However, firm i’s optimal
offering strategies (cf. Figure 1) result in firm i appear-
ing to be as costly as its more-expensive rival. Under a
centrally committed design, 3.25 ≤ cvi is the threshold,
beyond which firm i increases its offer to match firm 2’s
cost. As such, a centrally committed design is not cost
optimal if 3.25 ≤ cvi ≤ 3.75. Productive-efficiency losses
arise for these values of civ because it is profit-maximizing
for firm i to submit offers that result in its being oper-
ated as a marginal generator, whereas it is cost-minimal
for it operate as an inframarginal unit. A centrally com-
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Figure 3: Resultant Actual, As-Offered, and Settlement Costs from
Optimized Firm-i Offers Under Centrally Committed Design and

True Cost Minimum With Non-Zero c
f
1
and c

f
2
in the Base Case

mitted design yields cost-minimal solutions if 4.00 ≤ cvi .
This result stems from firm i’s behavior during hour 1.
Specifically, the make-whole payment provides a financial
incentive for firm i to operate as the marginal generator
during all three hours.

System operations appear considerably more costly, on
the basis of the offers that are submitted, than actual costs.
This is because firm i’s optimal offers result in its appear-
ing to be as costly as its more-expensive rival. Specifically,
if cvi ≤ 3.25, firm i submits offers that makes it appear as
costly as firm 1. Above this threshold, firm i submits offers
to appear as costly as firm 2. Settlement cost is higher,
also, than actual and as-offered costs.

We conclude our analysis of the base case with non-
zero cf1 and cf2 with two profit comparisons. First, Fig-
ure 4 summarizes total generator profits under a centrally
committed design in two cases. The first, which is labeled
‘Firm-i Optimal’, uses firm i’s optimal offers. The second,
which is labeled ’Competitive Benchmark’ assumes that
firm i submits offers that are equal to its actual costs. As
expected, generator profits are higher under if firm i opti-
mizes its offer as compared to a competitive benchmark.

Our second profit comparison relaxes the requirement
that firm i submit the same set of long-lived offers for
each of the |T | = 3 operating hours and instead allows
for so-called short-lived offers, which can be different for
each hour. Figure 5 summarizes optimized firm-i profit
under a centrally committed design with long- and short-
lived offers. The figure shows that allowing short-lived of-
fers yields profit increases, especially if cvi is relatively low.
As an example, consider the case with cvi = 0.50. With
long-live offers, it is profit-maximizing for firm i to submit
bvi = 4.00, which is the highest offer that allows firm i to be

inframarginal, and bfi = 15, which is the highest offer that
prevents firm 2 being committed and dispatched in firm i’s

Figure 4: Total Generator Profits Resulting From Optimized Firm-i

Offers Under Centrally Committed Design With Non-Zero c
f
1
and c

f
2

in the Base Case Assuming Firm-i Optimal and Competitive Offers

place. With short-lived offers, it is profit-maximizing for
firm i to submit the same offers during hour 1 but to offer
instead bfi = 24 and bfi = 28 during hours 2 and 3, respec-
tively. Although the energy price remains $4.00/MWh
during all three hours with the short-lived offers, firm i
receives greater make-whole payments, due to the higher
values of bfi .

Figure 5: Optimized Firm-i Profit Under Centrally Committed De-

sign With Non-Zero c
f
1

and c
f
2

in the Base Case With Long- and
Short-Lived Offers

6.1.3. Sensitivity of Results to Fixed Cost

We examine cases with cfi = 5 and cfi = 15 to de-
termine how firm i’s fixed cost impacts its offers and the
resultant impact on dispatch, profit, and costs under a cen-
trally committed design. Both cost levels yield the same
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type of threshold offering behavior. If cfi = 5, firm i sub-
mits offers under a centrally committed design that match
firm 1 so long as cvi ≤ 3.00. Otherwise, it submits offers

to match firm 2. With cfi = 15, firm i matches firm 1 up
to the same threshold value of cvi ≤ 3.00. Thereafter, if
3.25 ≤ cvi ≤ 4.50, firm i submits offers to match firm 2.
If cvi ≥ 4.75, firm i submits an offer at the price ceiling,
thereby withdrawing its capacity from the market com-
pletely. This capacity withholding stems from firm i being
unable to compete profitably with firm 2 if firm-i costs are
too high.

With cfi = 5, firm i is an inframarginal generator when
its offer matches firm 1 and is the marginal generator when
its offer matches firm 2. With cfi = 15, firm i is an infra-
marginal generator when its offer matches firm 1 and its
dispatch is mixed when its offer matches firm 2. Specifi-
cally, firm i is the marginal generator if 3.25 ≤ cvi ≤ 3.75.
If 4.00 ≤ cvi ≤ 4.50, firm i is not dispatched during hour 1
and firm 2 is the marginal generator during hour 1 instead.

Figures 6 and 7 summarize for the two cases with cfi =

5 and cfi = 15, respectively, the cost metrics that Figure 3
provides for the base case. The results are qualitatively
similar in these sensitivity cases to the base case. There are
productive-efficiency losses in cases wherein firm i should
be an inframarginal generator under the cost minimum but
firm i is the marginal generator instead due to its offering
strategy. Settlement costs are higher than actual costs.

Figure 6: Resultant Actual, As-Offered, and Settlement Costs from
Optimized Firm-i Offers Under Centrally Committed Design and

True Cost Minimum With Non-Zero c
f
1
and c

f
2
and c

f
i = 5

Figures 8 and 9 summarize optimized firm-i profit with
cfi = 5 and cfi = 15, respectively. As under the base case,
firm i is able to extract a make-whole payment in all cases
in which it is dispatched, regardless of whether it earns a
strictly positive rent from energy payments only.

Figure 7: Resultant Actual, As-Offered, and Settlement Costs from
Optimized Firm-i Offers Under Centrally Committed Design and

True Cost Minimum With Non-Zero c
f
1
and c

f
2
and c

f
i = 15

Figure 8: Optimized Firm-i Profit Under Centrally Committed De-

sign With Non-Zero c
f
1
and c

f
2
and c

f
i = 5

6.2. cf1 = cf2 = 0

Having cf1 = cf2 = 0 simplifies the comparison of the
two market designs, because it obviates the need for mak-
ing a behavioral assumption regarding how firms 1 and 2
incorporate their fixed costs into their energy offers un-
der a self-committed design. Instead, with cf1 = cf2 = 0,
we assume simply that firms 1 and 2 submit their per-
unit energy-generation costs under the two market designs.
This example assumes that cv1 = 5 and cv2 = 6.

Figures 10–12 summarize the same information for the
case with cf1 = cf2 = 0 that Figures 1–3 do for the base

case with non-zero cf1 and cf2 . Overall, the results for the
centrally committed design are qualitatively similar be-
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Figure 9: Optimized Firm-i Profit Under Centrally Committed De-

sign With Non-Zero c
f
1
and c

f
2
and c

f
i
= 15

tween cases with zero and non-zero cf1 and cf2 . Moreover,
firm i’s optimal offering strategies under centrally and self-
committed designs exhibit the same threshold-type behav-
ior. Thus, market outcomes under the two designs have
qualitative similarities.

Figure 10: Optimized Firm-i Offers Under Centrally and Self-

Committed Designs With c
f
1
= c

f
2
= 0

Specifically, with cf1 = cf2 = 0, if cvi ≤ 3.25 firm i
matches firm 1’s offer and is the inframarginal generator
under a self-committed design. If cvi ≥ 3.50, firm i raises its
offer under a self-committed design to match firm 2’s cost
and is the marginal generator. Firm i’s behavior under a
centrally committed differs slightly with zero compared to
non-zero cf1 and cf2 if cvi is relatively high. With cf1 = cf2 =
0 and cvi ≤ 3.75, firm i submits offers under a centrally
committed design to be the inframarginal generator during

Figure 11: Optimized Firm-i Profit Under Centrally and Self-

Committed Designs With c
f
1
= c

f
2
= 0

Figure 12: Resultant Actual, As-Offered, and Settlement Costs from
Optimized Firm-i Offers Under Centrally and Self-Committed De-

signs and True Cost Minimum With c
f
1
= c

f
2
= 0

all three hours. If cf1 = cf2 = 0 and 4.00 ≤ cvi ≤ 4.50, firm i
submits offers that make it inactive during hour 1 and
inframarginal during hours 2 and 3. If cf1 = cf2 = 0 and
4.75 ≤ cvi , firm i submits the same offers under a centrally
and self-committed design and is the marginal generator
during hours 2 and 3 with centralized commitment.

Figure 11 shows that firm i’s profit under a centrally
committed design is slightly superior to that under self
commitment for all values of cvi that we consider. This
result arises from the principle of optimality. Because
cf1 = cf2 = 0, we assume that firms 1 and 2 submit the
same offers under the two market designs. As such, the
additional degrees of freedom that are provided by multi-
part offers and a make-whole payment under centralized

16



commitment imply that firm-i profit can be no less under
such a design.

Figure 12 shows that centralized commitment yields
lower productive-efficiency losses compared to self com-
mitment. This result stems from cvi = 4.50 and cvi = 3.50
being the thresholds under a centrally and self-committed
design, respectively, beyond which its optimal behavior re-
sults in firm i matching the offer of its more expensive rival
(firm 2). By matching firm 2’s offer, firm i switches from
being an inframarginal to the marginal generator. This
switch yields productive-efficiency losses, because the MO
makes inefficient operational decisions on the basis of the
incorrect cost information that firm i submits. The avail-
ability of the make-whole payment under a centrally com-
mitted design makes it preferable for firm i to remain as
an inframarginal as unit for a larger range of values of cvi .

Figure 11 shows firm i’s profit is lower under a self-
committed design as compared to centralized committ-
ment. However, for relatively high values of cvi , settlement
cost is much higher under self commitment (cf. Figure 12).
This higher settlement cost implies that total generator
profits are higher under self commitment for high values
of cvi . The lack of a make-whole payment under such a de-
sign means that firm i’s sole mechanism to increase profit is
through the uniform energy price, which is paid also to the
inframarginal firm 1. Under a centrally committed design,
firm i has an additional degree of freedom in collecting
a make-whole payment, which is discriminatory and does
not affect settlements that are paid to firm 1. This finding
suggests that the discriminatory nature of the make-whole
payment may mitigate the cost of the exercise of market
power.

Finally, we examine the impact of relaxing the long-
lived-offer requirement. Figure 10 shows that if cvi = 4.75,
firm i’s profit-maximizing long-lived offers under central-

ized commitment are bfi
∗
= 0 and bvi

∗ = 6.00. These offers
result in firm i being inactive during hour 1 and marginal
during hours 2 and 3 and earning hourly energy profits of
$0.00, $7.50, and $12.50, respectively. Conversely, if firm i
is able to submit short-lived offers, it submits arbitrarily
high offers during hour 1 (thereby remaining inactive). For
the other two hours it submits bvi

∗ = 5.00 (thereby being

dispatched as the inframarginal generator) and bfi
∗
= 14

and bfi
∗
= 18 during hours 2 and 3, respectively, which

maximize make-whole payments. These offers yield losses
of $5.00 during each of hours 2 and 3 from energy pay-
ments, which are supplemented by make-whole payments
of $14.00 and $18.00, respectively, and give a total net
profit of $22.00.

Figure 13 summarizes the same cost information for the
case of long-lived offers that Figure 12 does for the case of
short-lived offers. Figure 13 shows that centralized com-
mitment continues to outperform a self-committed design
with short-lived offers. Indeed, there are no productive-
efficiency losses with centralized commitment and short-
lived offers, because actual cost equals the true cost min-

imum for all values of cvi that we consider. Productive-
efficiency losses under centralized commitment that are
shown in Figure 12 for 4.00 ≤ cvi ≤ 4.50 arise because
firm i’s profit-maximizing long-lived offers result in its be-
ing inactive during hour 1. Such offers maximize firm-
i profit, despite firm i being lower-cost to operate than
firm 2. As such, firm 2 is dispatched in firm i’s place, which
yields the cost increases. Figure 13 shows that short-lived
offers can alleviate these productive-efficiency losses, be-
cause firm i can submit offers during hour 1 that result in
its being dispatched without unduly impacting its earnings
during the remaining hours.

Figure 13: Resultant Actual, As-Offered, and Settlement Costs from
Optimized Firm-i Offers Under Centrally and Self-Committed De-

signs and True Cost Minimum With c
f
1
= c

f
2
= 0 if Firm i Submits

Short-Lived Offers

6.3. Computational Performance

Algorithms 1 and 2 examine a set of 3|T | candidate op-
timal firm-i production levels and solve subproblems for
each. As such, it may scale poorly. We benchmark the
computational performance of Algorithm 2 to the method
that is proposed by Huppmann and Siddiqui (2018), which
solves (12)–(15) by solving an auxiliary mixed-integer non-
linear optimization problem. Although this method re-
quires solving only one problem, the problem includes aux-
iliary binary variables and constraints, the numbers of
which grow exponentially in |G| and |T |.

To conduct such a comparison, we use sets of randomly
generated instances of (12)–(15). Each set has different-
sized sets, G and T . The sets of instances are solved using
the two methods, which are programmed using Python 3.7.
The optimization problems are solved using Gurobi 9.1.1.
All of the computations are conducted on a system with a
processor with two 2.90-GHz cores and 16.0 GB of mem-
ory. We impose a 43200-s (12-hour) time limit on the com-
putations. Table 2 reports the average time to solve (12)–
(15) across each set of random instances using the two
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methods. Computation times of ∞ indicate that the in-
stances are not solvable within the 12-hour time limit.

Table 2: Average Computational Performance of Algorithm 2 and
Method of Huppmann and Siddiqui (2018) (Denoted as HS)

HS Algorithm 2
|G| |T | Time (s) Time (s) Infeasible PA

C (x̂i)

2 2 0.176 0.066 0.06
2 3 2.572 0.098 0.21
2 4 70.073 0.212 0.66
2 5 5827.641 0.319 1.63
3 2 5.167 0.086 0.83
3 3 1159.978 0.153 4.61
3 4 ∞ 0.296 17.99
3 5 ∞ 0.660 59.89
4 2 ∞ 0.061 1.50
4 3 ∞ 0.135 8.93
4 4 ∞ 0.275 33.00
4 5 ∞ 0.531 104.15
5 2 ∞ 0.068 1.97
5 3 ∞ 0.146 10.51
5 4 ∞ 0.302 37.73
5 5 ∞ 0.651 119.49

Overall, Algorithm 2 scales better than the method
of Huppmann and Siddiqui (2018). Algorithm 2 has two
properties that provide better scaling performance. First,
the number of optimization problems that Algorithm 2 re-
quires solving grows only with the size of T . Conversely,
the method of Huppmann and Siddiqui (2018) entails solv-
ing an optimization problem that grows with the size of
both G and T . As such, none of the instances with |G| ≥ 4
and only some instances with |G| = 3 can be solved by that
method within 12 hours. If G is held fixed, computation
times for Algorithm 2 roughly double each time an addi-
tional hour is added to the model horizon. On the other
hand, if T is held fixed, computation times for Algorithm 2
see relatively small changes as G grows.

Another property of Algorithm 2 that provides for fa-
vorable scaling is that many of the subproblems are infea-
sible. Any firm-i allocation, x̂i, that yields an infeasible
PA
C (x̂i) can be eliminated from consideration. The final

column of Table 2 shows that as G and T increase, an in-
creasing number of these subproblems are infeasible. For
instance, with G = 4 and T = 5, there are 35 = 243 can-
didate firm-i allocations to examine. However, nearly half
of these yield infeasible subproblems and do not require
further consideration.

The methodology of Huppmann and Siddiqui (2018) is
more general and can solve any bi-level optimization prob-
lem with binary variables in the lower level. Conversely,
Algorithm 2 is tailored for our specific problem and as-
sumptions. Thus, the work of Huppmann and Siddiqui
(2018) has an advantage relative to our work, in its more
broad applicability.

7. Concluding Remarks

This paper explores profit-maximizing strategic behav-
ior in wholesale electricity markets, considering two com-
mon archetypal market designs—self- and centrally com-
mitted. We analyze both designs using a bi-level model,
whereby the strategic firm determines profit-maximizing
offers in the upper level and the MO clears the market
in the lower level. We incorporate make-whole payments,
which are a commonly used remuneration scheme under
centrally committed designs, into the bi-level model of the
centrally committed market.

The bi-level model of the self-committed design is com-
putationally tractable using standard techniques, because
its lower-level problem is a linear optimization. Thus, an
optimum of the MO’s problem can be characterized using
optimality conditions, allowing the bi-level problem to be
converted to a single-level problem. This approach cannot
be taken with the model of the centrally committed de-
sign, because its lower-level problem includes binary vari-
ables. Huppmann and Siddiqui (2018) propose a general
methodology, which can be applied to any bi-level model
with binary variables in its lower level. However, their ap-
proach does not exploit model structure, which can make
their method computationally expensive. A major contri-
bution of our work is developing an efficient solution al-
gorithm, which exploits model structure, for the model of
the centrally committed design. Importantly, our solution
algorithm is exact, insomuch as it introduces no approxi-
mations. We prove that our methodology is guaranteed to
find an optimal solution and demonstrate the model and
its computational efficiency using numerical examples.

Our examples demonstrate trade-offs between the two
market designs. A self-committed design is relatively sim-
ple, with firms internalizing their non-convex costs into
energy offers. This simplicity and the lack of a discrimina-
tory make-whole payment through which firms can recover
their non-convex costs yield two undesirable properties.
For one, the strategic firm is incentivized to submit higher
offers under a self-committed design. This property is re-
flected in the threshold value of cvi beyond which firm i
matches firm 2’s offer being lower under a self-committed
design. This property gives rise to greater productive ef-
ficiency losses under a self-committed design. The sec-
ond property is that under a self-committed design, firms
must rely upon increasing the uniform energy price to in-
crease their profits. The discriminatory nature of make-
whole payments under a centrally committed design re-
duces firm i’s incentives to increase the energy price. This
property is reflected by the higher settlement costs un-
der a self-committed design with higher values of cvi . A
centrally committed design allowing firm i to increase its
profit with a reduced cost impact appears to be consistent
with the theory of two-part tariffs. Tirole (1988) shows
that a monopolist can use a two-part tariff to extract sur-
plus without reducing social welfare. On the other hand,
firm i is able to manipulate its offers under a centrally com-
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mitted design to receive make-whole payments, even when
it earns a positive rent from energy payments. We study
the effect on market-participant behavior of long- versus
short-lived offers. Strategic-firm profit increases with the
latter, but productive-efficiency losses under a centrally
committed design are eliminated. It is unclear whether
this is a general result or specific to our example and fur-
ther study is needed before drawing broad market-design
conclusions.

We compare the computational performance of our so-
lution method to that of Huppmann and Siddiqui (2018).
Both methods grow exponentially in the problem size, but
our method scales better in our computational test due
to its having two inherent advantages. First, our method
grows only with the number of time periods. The method
of Huppmann and Siddiqui (2018) grows with the number
of time periods and firms. Moreover, as the problem size
increases, more of the subproblems that must be solved
under our methodology are infeasible and can be excluded
from consideration.

Our model is a stylized simplification of actual whole-
sale electricity markets. Relaxing our simplifying assump-
tions provides many avenues for further research. We
assume that firms have equal capacities and we neglect
intertemporal constraints and costs, e.g., ramping con-
straints or a fixed cost to keep a generator online between
one hour and the next. These assumptions facilitate the
development of Algorithms 1 and 2, because they limit
firm i to three possible production levels during each hour.
A second simplification is that we compute a static par-
tial equilibrium, whereby a single firm optimizes its offer,
taking the offers and behavior of its rivals as fixed. As
such, it is challenging to compare the two market designs
if firm i’s rivals have non-zero fixed costs, because we must
make a behavioral assumption about how those costs are
incorporated into energy offers under a self-committed de-
sign. Relaxing these assumptions, for instance by finding
a Nash equilibrium with multiple strategic firms, may re-
veal additional insights into the relative merits of the two
market designs. An alternative avenue for further work is
to relax Assumption 2 and optimize firm i’s offers under
uncertainty regarding its rivals’ behavior. Another simpli-
fying assumption is that the profit-maximizing firm has
only price as a strategic variable. Allowing the profit-
maximizing firm to determine the quantity that it offers
could provide an additional degree of freedom to exercise
market power. Tirole (1988) discusses such a finding in
comparing the stylized Bertrand and Nash-Cournot mod-
els of competition.

Another limitation of our work is that it compares the
two market designs solely from the perspective of short-
run system and market operations and on the basis of cost
and operational efficiency alone. There are other consid-
erations, which are beyond the scope of our work, but
which may be valuable areas of future study and com-
parison of the two market designs. One consideration is
the allocation of the cost of make-whole (or any other

discriminatory) payments that are necessitated by non-
convexities in unit-commitment decisions. Most centrally
committed markets socialize these costs to customers in
a pro rata or similar simple fashion, which may be nei-
ther efficient, individually rational, nor incentive compati-
ble. O’Neill et al. (2017) propose a pricing scheme, which
ensures non-negative economic gains to each agent that
clears the market. The use of such a pricing scheme likely
would change profit-maximizing behavior by the strate-
gic generator (and our findings). Moreover, the complex-
ity of such a pricing scheme may make the simplicity of
the self-committed design desirable. As another example
of a consideration that is beyond the scope of our work,
Mays et al. (2021) examine the impacts of discriminatory
payments in centrally committed designs upon generator-
entry and -exit decisions. They demonstrate that such
payments can distort these decisions and the resultant
capacity mix, whereas pricing schemes that increase uni-
form prices to reduce discriminatory payments may sup-
port higher capacity levels. Including these considerations
in a comparison between self- and centrally committed de-
signs would be an important extension of our work. While
our model assumes fixed capacity levels, it may be possi-
ble to extend it by including capacity decisions into the
upper-level problems of the two market designs.
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Appendix A. Proof of Proposition 2

Proof ∀t ∈ T such that x̂i,t = 0. We let (ĜIt , Ĝ
M
t , ĜVt ) de-

note a partition that is optimal in (8)–(11) and let ĵMt
denote the unique member of ĜMt . We show that we must
have:

∑

j∈ĜI
t

(

bvjK + bfj

)

+ bv
ĵMt

rt + bf
ĵMt

=
∑

j∈GI,−
t

(

bvjK + bfj

)

+ bv
j
M,−
t

rt + bf
j
M,−
t

;

otherwise at least one of the partitions, (GI,−t ,GM,−
t ,GV,−t )

or (ĜIt , Ĝ
M
t , ĜVt ), violates its definition. The lexicographic

ordering of Assumption 6 requires that GI,−t = ĜIt and

GM,−
t = ĜMt . Thus, by the principle optimality, minimiz-

ing (8) requires that:

∑

j∈GI,−
t

(

bvjK + bfj

)

+ bv
j
M,−
t

rt + bf
j
M,−
t
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≤
∑

j∈GI,−
t

(

bvjK + bfj

)

+ bvi rt + bfi ;

which implies (27) if jI,−t ≤K jM,−
t . Otherwise, if jI,−t >K

jM,−
t , we have that:

∑

j∈GI,−
t

(

bvjK + bfj

)

+ bv
j
M,−
t

rt + bf
j
M,−
t

≤
∑

j∈(GI,−
t ∪{jM,−

t })\{jI,−t }

(

bvjK + bfj

)

+ bvi rt + bfi ;

which implies (27) as well. In addition, ∀g ∈ GI,−t such

that jM,−
t ≤rt g we have that:

∑

j∈GI,−
t

(

bvjK + bfj

)

+ bv
j
M,−
t

rt + bf
j
M,−
t

≤
∑

j∈(GI,−
t ∪{i})\{g}

(

bvjK + bfj

)

+ bv
j
M,−
t

rt + bf
j
M,−
t

;

which implies (28) ∀g ∈ GI,−t such that jM,−
t ≤rt g. For

the other case of all g ∈ GI,−t such that jM,−
t >rt g we

have that:

∑

j∈GI,−
t

(

bvjK + bfj

)

+ bv
j
M,−
t

rt + bf
j
M,−
t

≤
∑

j∈(GI,−
t ∪{i})\{g}

(

bvjK + bfj

)

+ bvgrt + bfg ;

which implies (28) ∀g ∈ GI,−t such that jM,−
t >rt g.

To prove the sufficiency of (27)–(28) we show that if the
inequalities hold, x̂i,t = 0 is weakly preferable to x̂i,t =
rt and x̂i,t = K in terms of minimizing (8). To show

this, consider the partition, (GI,−t ,GM,−
t ,GV,−t ), which by

definition excludes firm i. Suppose, for contradiction, that
when firm i is included it is optimal for i to replace jM,−

t as

the marginal generator. For this to be true, ∃j ∈ GI,−t such

that j >K jM,−
t , because by Lemma 3 we know that g ≤K

h, ∀g ∈ GI,−t and h ∈ GV,−t . Thus, by the definition of

jI,−t , we have that jI,−t ≥K jM,−
t . Therefore, (27) implies

that replacing jI,−t (or any member of GI,−t ) with jM,−
t

and making jM,−
t an element of GI,−t increases the value

of (8) weakly, which contradicts the optimality of replacing

jM,−
t with i as the marginal generator.

Finally, suppose for contradiction that when firm i is
added to the candidate set of generators that it is opti-
mal for i to replace a member of GI,−t as an inframarginal

generator. For this to be optimal, ∃j ∈ GI,−t such that

j <rt j
M,−
t , because by Lemma 3 we have that jM,−

t ≤rt h,

∀h ∈ GV,−t and j ≤K h, ∀j ∈ GI,−t and h ∈ GV,−t . However,

(28) implies that replacing j ∈ GI,−t such that j <rt j
M,−
t

with jM,−
t increases the value of (8) weakly, which contra-

dicts the optimality of having i replace a member of GI,−t .

Thus, (27)–(28) are sufficient to ensure that x̂i,t = 0 is
optimal in (8)–(11).

Proof ∀t ∈ T such that x̂i,t = rt. We let (ĜIt , Ĝ
M
t , ĜVt ) de-

note a partition that is optimal in (8)–(11) and assume
that i is the unique member of ĜMt . We know that:

∣

∣

∣ĜIt

∣

∣

∣ =
∣

∣

∣G
I,−
t

∣

∣

∣ ;

otherwise (9) is violated by at least one of (ĜIt , Ĝ
M
t , ĜVt ) or

(GI,−t ,GM,−
t ,GV,−t ). We consider now the two cases that

depend upon the relationship between jM,−
t and jI,−t .

First, consider the case wherein jM,−
t ≥K jI,−t , which

implies that jM,−
t ≥K j, ∀j ∈ GI,−t . In this case we have

that jM,−
t 6∈ ĜIt . Otherwise, if jM,−

t ∈ ĜIt , ∃j ∈ G
I,−
t with

j 6∈ ĜIt and jM,−
t ≥K j, which violates the lexicographic

requirement of Assumption 6 if the inequality holds as an
equality and violates the optimality of ĜIt if the inequality
is strict. To prove that (29)–(31) is necessary, we begin by
showing by contradiction that we must have:

∑

h∈ĜI
t

(

bvhK + bfh

)

=
∑

h∈GI,−
t

(

bvhK + bfh

)

. (A.1)

Suppose to the contrary that the left-hand side of (A.1)

is smaller. In such a case, given that jM,−
t 6∈ ĜIt , the

partition, (GI,−t ,GM,−
t ,GV,−t ), violates its definition. Con-

versely, suppose that the left-hand side of (A.1) is larger.
This case yields a contradiction as well, because the parti-
tion, (ĜIt , Ĝ

M
t , ĜVt ), violates its definition. Thus, by (A.1)

we have that ĜIt = GI,−t . Applying the principle of opti-
mality to (8)–(11) gives:

∑

h∈GI,−
t

(

bvhK + bfh

)

+ bvi rt + bfi

≤
∑

h∈GI,−
t

(

bvhK + bfh

)

+ bv
j
M,−
t

rt + bf
j
M,−
t

;

which yields (29). We have also that:

∑

h∈GI,−
t

(

bvhK + bfh

)

+ bvi rt + bfi

≤
∑

h∈(GI,−
t ∪{i})\{g}

(

bvhK + bfh

)

+ bvgrt + bfg ;

for all g ∈ GI,−t , which gives (30). Finally, we have:

∑

h∈GI,−
t

(

bvhK + bfh

)

+ bvi rt + bfi

≤
∑

h∈(GI,−
t ∪{i})\{jI,−t }

(

bvhK + bfh

)

+ bv
j
M,−
t

rt + bf
j
M,−
t

;

which gives (31).
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To prove sufficiency of (29)–(31) for the case wherein

jM,−
t ≥K jI,−t , consider a partition in which GI,−t are the

inframarginal units, i is marginal, and GV,−t ∪ GM,−
t are

the inactive units. By (29) we know that this partition

gives a weakly smaller value of (8) than (GI,−t ,GM,−
t ,GV,−t )

does. This means that having x̂i,t = rt is better than
having x̂i,t = 0. If the MO has x̂i,t = K, then ∃j ∈

GM,−
t ∪GV,−t that is selected to be the marginal unit. Such

a j is selected to be the marginal unit because by (30)

switching i and h, ∀h ∈ GI,−t weakly increases the value

of (8). Similarly, ∀j ∈ GM,−
t ∪GV,−t and g ∈ GI,−t , switching

j and g weakly increases the value of (8) by Lemma 3

and due to the assumption that jM,−
t ≥K jI,−t . Finally,

we know from Lemma 3 that jM,−
t ≤rt g, ∀g ∈ GV,−t .

Inequality (31) implies that having i as an inframarginal

unit and jM,−
t as a marginal unit gives a weakly higher

value of (8) compared to having jI,−t as an inframarginal
unit and i as a marginal unit. Thus, by appealing to the
definition of jI,−t , we can argue that having x̂i,t = K is
suboptimal in (8)–(11).

We consider now the other case wherein jM,−
t <K jI,−t .

We show the necessity of (32)–(34) by arguing that we
must have:

ĜIt =
(

GI,−t ∪ GM,−
t

)

\
{

jI,−t

}

. (A.2)

To show this equivalence, note that by Lemma 3 we have
that j ≤K h, ∀j ∈ GI,−t and h ∈ GV,−t , by assumption we

have that jM,−
t <K jI,−t , and by definition we have that

jI,−t ≥K j, ∀j ∈ GI,−t . As such, we conclude that having
ĜIt as is given by (A.2) is an inframarginal-generator set
that minimizes (8). Therefore, applying the principle of
optimality to (8)–(11) gives:

∑

j∈ĜI
t

(

bvjK + bfj

)

+ bvi rt + bfi

≤
∑

j∈GI,−
t

(

bvjK + bfj

)

+ bv
j
M,−
t

rt + bf
j
M,−
t

;

which yields (32) after rearranging terms. Furthermore,
we have that:

∑

j∈ĜI
t

(

bvjK + bfj

)

+ bvi rt + bfi

≤
∑

j∈(ĜI
t ∪{i})\GM,−

t

(

bvjK + bfj

)

+ bv
j
M,−
t

rt + bf
j
M,−
t

;

which implies (33). Finally, using the definitions of M and
N that are given following the definition of (34), we have:

∑

j∈ĜI
t

(

bvjK + bfj

)

+ bvi rt + bfi

≤
∑

j∈(ĜI
t ∪{i})\{M∗}

(

bvjK + bfj

)

+N ;

where:

M∗ = argmax
j∈(GI,−

t ∪GM,−
t )\{jI,−t }

(

bvjK + bfj

)

;

from which (34) follows.

To show the sufficiency of (32)–(34) if jM,−
t <K jI,−t ,

we assume that (32)–(34) and consider a partition wherein:

(

GI,−t ∪ GM,−
t

)

\
{

jI,−t

}

;

is the inframarginal-generator set, i is marginal, and:

GV,−t ∪
{

jI,−t

}

;

is the inactive-generator set. If (32) holds, then this par-
tition gives a weakly lower value of (8) than the parti-

tion, (GI,−t ,GM,−
t ,GV,−t ), does. By definition, the parti-

tion, (GI,−t ,GM,−
t ,GV,−t ), corresponds to a case wherein

x̂i,t = 0. To show that x̂i,t = rt yields a weakly lower value
of (8) compared to x̂i,t = K, we note that by Lemma 2 we

have that bv
j
M,−
t

≥ bvj , ∀j ∈ G
I,−
t . Thus, (33) implies that

bvi ≥ bvj , ∀j ∈ G
I,−
t . As such, for any:

j ∈
(

GI,−t ∪ GM,−
t

)

\
{

jI,−t

}

;

it cannot improve the value of (8) to switch i and j by
having i as an inframarginal generator and j as a marginal
generator. Thus, for x̂i,t = K to be optimal in (8)–(11),
there must exist:

h ∈ GV,−t ∪
{

jI,−t

}

; (A.3)

and:
j ∈

(

GI,−t ∪ GM,−
t

)

\
{

jI,−t

}

; (A.4)

such that it is optimal in (8)–(11) for h to become marginal
and j to become inactive, because by Lemma 3, the defi-
nition of jI,−t , and the assumption that jM,−

t <K jI,−t we
have that j ≤K h for all:

j ∈
(

GI,−t ∪ GM,−
t

)

\
{

jI,−t

}

;

and for all:
h ∈ GV,−t ∪

{

jI,−t

}

.

However, by (34), there is no pair, j and h, that satisfies:

bviK + bfi + bvhrt + bfh < bvjK + bfj + bvi rt + bfi ;

meaning that there is no pair, j and h, that satisfies (A.3)
and (A.4) and which does not increase the value of (8) if h
becomes marginal and j becomes inactive. Thus, having
x̂i,t = rt weakly reduces the value of (8) relative to having
x̂i,t = K.

21



Proof ∀t ∈ T such that x̂i,t = K. We let (ĜIt , Ĝ
M
t , ĜVt ) de-

note a partition that is optimal in (8)–(11) and let ĵMt de-
note the unique member of ĜMt . By assumption we have
that i ∈ ĜIt . We know that:

∣

∣

∣ĜIt

∣

∣

∣ =
∣

∣

∣G
I,+
t

∣

∣

∣ ;

otherwise (9) is violated by at least one of (ĜIt , Ĝ
M
t , ĜVt ) or

(GI,+t ,GM,+
t ,GV,+t ). Indeed, we can argue that the parti-

tions, (ĜIt , Ĝ
M
t , ĜVt ) and (GI,+t ,GM,+

t ,GV,+t ), are equal ex-
actly to one another. To do so, we begin by noting that
by the definitions of the two partitions, we have:

∑

j∈ĜI
t \{i}

(

bvjK + bfj

)

+ bv
ĵMt

rt + bf
ĵMt

=
∑

j∈GI,+
t \{i}

(

bvjK + bfj

)

+ bv
j
M,+
t

rt + bf
j
M,+
t

.

As such, from the lexicographic requirement of Assump-
tion 6 we have that ĜIt \ {i} = G

I,+
t \ {i} and ĵMt = jM,+

t .

Thus, we must have that ĜIt = GI,+t and ĜVt = GV,+t . We
consider now the two possible cases that are implied by
Lemma 5, and which differ based on whether jM,−

t and

jM,+
t are equal or not.

We consider first the case wherein jM,−
t 6= jM,+

t . By

Lemmata 4 and 5 we must have that jM,+
t ∈ GI,−t and

GV,+t = GM,−
t ∪ GV,−t . To show the necessity of (35)–(36),

we note from applying the principle of optimality to (8)–
(11) that:

∑

j∈GI,+
t

(

bvjK + bfj

)

+ bv
j
M,+
t

rt + bf
j
M,+
t

≤
∑

j∈GI,−
t

(

bvjK + bfj

)

+ bv
j
M,−
t

rt + bf
j
M,−
t

.

Combining this inequality with the fact that jM,+
t ∈ GI,−t

gives (35). Moreover, we have that:

∑

j∈GI,+
t

(

bvjK + bfj

)

+ bv
j
M,+
t

rt + bf
j
M,+
t

≤
∑

j∈(GI,+
t ∪{jM,+

t })\{i}

(

bvjK + bfj

)

+ bvi rt + bfi ;

which implies (36).
To show the sufficiency of (35)–(36), suppose that they

hold and consider the partition, (GI,+t ,GM,+
t ,GV,+t ). If (35)

holds then the value of (8) is weakly lower under this parti-

tion as opposed to under the partition, (GI,−t ,GM,−
t ,GV,−t ),

which is equivalent to having x̂i,t = 0. Thus, having
x̂i,t = K is a weak improvement over having x̂i,t = 0.
On the other hand, for the MO to select x̂i,t = rt then

∃j ∈ GM,+
t ∪ GV,+t that is selected to be an inframarginal

generator. If j = jM,+
t is selected to be inframarginal, (36)

implies that the value of (8) increases weakly compared
to having i as an inframarginal generator. We can show
also that selecting a firm, j ∈ GV,+t , to be inframarginal
weakly increases the value of (8) by arguing that ∀j ∈

GM,−
t ∪GV,−t we have that jM,+

t ≤K j. To show this, recall

that by Lemmata 4 and 5, GV,+t = GM,−
t ∪ GV,−t . Based

on the definition of the partition, (GI,−t ,GM,−
t ,GV,−t ), and

because we know that jM,+
t ∈ GI,−t , Lemma 3 implies

that jM,+
t ≤K j, ∀j ∈ GV,−t . Furthermore, Lemma 2 im-

plies that bv
j
M,+
t

≤ bv
j
M,−
t

. Thus, from the definition of the

partition, (GI,+t ,GM,+
t ,GV,+t ), and Lemma 3 we have that

jM,+
t ≤rt jM,−

t , because jM,−
t ∈ GV,+t . Thus, we have

that jM,+
t ≤K jM,−

t , which completes the argument that

jM,+
t ≤K j, ∀j ∈ GM,−

t ∪ GV,−t .

We consider now the other case wherein jM,−
t = jM,+

t .

In this case, by Lemma 4 ∃p ∈ GI,−t such that:

GI,+t =
(

GI,−t ∪ {i}
)

\ {p}.

Thus, GV,+t = GV,−t ∪ {p}. To show the necessity of (37)–
(39), we note that by applying the principle of optimality
to (8)–(11) we have:

∑

j∈GI,+
t

(

bvjK + bfj

)

+ bv
j
M,+
t

rt + bf
j
M,+
t

≤
∑

j∈(GI,+
t ∪{p})\{i}

(

bvjK + bfj

)

+ bv
j
M,+
t

rt + bf
j
M,+
t

;

which gives (37). We have also that:

∑

j∈GI,+
t

(

bvjK + bfj

)

+ bv
j
M,+
t

rt + bf
j
M,+
t

≤
∑

j∈(GI,+
t ∪{jM,+

t })\{i}

(

bvjK + bfj

)

+ bvi rt + bfi ;

which yields (38). Finally, we have:

∑

j∈GI,+
t

(

bvjK + bfj

)

+ bv
j
M,+
t

rt + bf
j
M,+
t

≤
∑

j∈(GI,+
t ∪{p})\{i}

(

bvjK + bfj

)

+ bvi rt + bfi ;

which implies (39).
To show the sufficiency of (37)–(39), we assume that

they hold and consider the partition, (GI,+t ,GM,+
t ,GV,+t ).

Due to (37) and the assumption for this case that jM,−
t =

jM,+
t , we know that the value of (8) is weakly lower un-

der the partition, (GI,+t ,GM,+
t ,GV,+t ), as opposed to the

partition, (GI,−t ,GM,−
t ,GV,−t ), which corresponds to having

x̂i,t = 0. Thus, having x̂i,t = K is a weak improvement
from the MO’s perspective over having x̂i,t = 0. For it
to be optimal for the MO to select x̂i,t = rt then ∃j ∈
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GM,+
t ∪GV,+t that is selected to be an inframarginal gener-

ator. If (38) holds, then selecting j = jM,+
t to become an

inframarginal generator increases weakly the value of (8)
compared to having x̂i,t = K. Consider the other case in

which j ∈ GV,+t = GV,−t ∪ {p} is selected to become an
inframarginal generator. We can show making such a j an
inframarginal generator increases the value of (8) weakly
by showing that selecting j = p to become inframarginal
increases the value of (8) weakly. Considering the case of

j = p is sufficient, because p ∈ GI,−t and by Lemma 3

we have that p ≤K g, ∀g ∈ GV,−t . Inequality (39) implies
that having x̂i,t = rt and j = p as an inframarginal gen-
erator increases the value of (8) weakly compared to the

partition, (GI,+t ,GM,+
t ,GV,+t ).
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