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abstract

There are two uniform-price auction formats—centrally and self-committed—that are used
commonly in wholesale electricity markets. Both formats are operated by an independent
third-party market operator, which solicits supply offers from generators and determines
how much energy they produce to serve customer demand. In centrally committed markets,
generators submit complex offers that convey all of their non-convex operating costs and
constraints. Conversely, generators submit simple offers in self-committed markets that
only specify the price at which they are willing to supply energy. Thus, generators must
internalize their non-convex costs and other operating constraints in submitting offers in
a self-committed market. Centrally committed markets include also a provision that each
generator is made whole on the basis of its submitted offers. No such guarantees exist in
self-committed markets.

This paper builds on the work of Sioshansi and Nicholson (2011) and studies
the energy-cost ranking and incentive properties of the two market designs in a multi-firm
oligopoly setting. We derive Nash equilibria under both market designs. We find that equi-
librium offer behavior across the two market designs is qualitatively similar to the duopoly
model when demand is high. However, when demand is low, cost equivalence between the
two market designs breaks down. This is because inframarginal generators are able to earn
positive profits in certain states of low demand in self-committed markets, whereas all gen-
erators are constrained to earn zero profits in low-demand states in the centrally-committed
market design.
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1. INTRODUCTION

The organization of wholesale electricity markets is a question of immense importance. However,
market designs of this nature remain an open area of inquiry. Two commonly utilized market designs
are centrally and self-committed markets. In both market designs, generators offer their supply into
a uniform-price auction that is operated by an independent third party, which we hereafter refer to as
the market operator (MO). What distinguishes these market designs is the format of the offers and
the way in which generator-operating decisions are made.

In a centrally committed market, each generator submits a complex offer, which contains
the generator’s complete cost and operating-constraint information, to the MO. The MO uses the
complex offers that it receives to make financially binding decisions regarding the commitment (i.e.,
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on/off status) of each generator and its dispatch (i.e., production levels).1 The MO makes these
decisions by solving a unit commitment model, which is formulated normally as a mixed-integer
optimization problem. Sheble and Fahd (1994); Baldick (1995); Hobbs et al. (2001); Padhy (2004)
provide discussions and surveys of unit commitment and dispatch models.

Conversely, in a self-committed market generators make their own commitment decisions
while dispatch decisions are left to the MO. A generator that decides to commit itself (i.e., switch
on) submits a simple offer, which specifies the minimum price at which it is willing to produce and
sell energy. The MO does not decide which units to commit. However, the MO does determine the
dispatch of each generating unit on the basis of the simple offers that are submitted. This is done by
stacking the simple offers in merit order into a supply function, which is intersected with electricity
demand to determine each generator’s production level and the market-clearing price.

Centrally committed markets are commonplace in North America, whereas much of the
rest of the world, including Australia and Western Europe, employ self-committed markets. Be-
cause of this regional divergence in designs, the debate regarding their relative merits is ongoing.
Cramton (2017) notes that ‘the exchange model [self commitment] operating in much of Europe is
improving, but still falls far short in pricing transmission congestion both within and across coun-
tries.’ Furthermore, while recognizing the benefits of the self-committed design in environments
without non-convex costs, Cramton (2017) notes that a centrally committed market design ‘better
handles non-convexities and is simpler for participants.’ Moreover, many European markets include
now limited non-convex constraints, such as block bids, in their dispatch markets, which complicate
price formation. These types of constraints are included to provide generators a mechanism with
which to enforce some of their complicated operating constraints in dispatch solutions. Thus, some
European markets are considering whether tighter co-ordination, for instance through a centrally
committed design, may be beneficial. Imran and Kockar (2014) provide a comparison of market
designs in North America and Europe.

The primary stated benefit of a centrally committed market is that the MO is in the best
position to make commitment decisions. This is because the MO co-optimizes the commitment and
dispatch of all units using all of the cost and constraint information that pertain to their operation.
A self-committed market may be inefficient because generators making commitment decisions inde-
pendently may not achieve the same level of co-ordination. On the basis of these observations, Ruff
(1994); Hogan (1994) advocate centrally committed markets over self-committed designs.

However, in a centrally committed market the MO must rely on cost and constraint data
that are provided by generators in their complex offers. Generators have weak incentives (at best)
to provide true information in their offers. For example, Oren and Ross (2005) show that generators
can misstate their ramping limits profitably. These misstated ramping limits reduce system efficiency
because the MO mistakenly (i.e., on the basis of incorrect constraint information) commits and
dispatches more expensive units. Further to this point, Muñoz et al. (2018) examine the long-term
efficiency of investments that are made within a market environment. They demonstrate that markets
that rely on audited cost information for dispatch and pricing can reduce social welfare relative to bid-
based market designs. This is because a cost-based market design can distort investment incentives.
To illustrate this phenomenon, they discuss the example of opportunity costs diverging from direct
fuel costs due to energy or start-up limits.

Another shortcoming of a centrally committed market design is price formation and gener-
ator cost recovery. Price formation in a self-committed market is relatively straightforward as the
market-clearing price is given by the intersection of aggregate demand and supply. Generators must
structure their offers to ensure that they recover all of their operating costs. In a centrally committed
market, the wholesale energy price normally is set based on the value of the dual variables that are

1The commitment and dispatch decisions are financially binding in the sense that a generator that is committed can opt
to not follow physically the commitment and dispatch instructions. In such an instance, it is financially liable for the cost of
procuring replacement energy from another market participant.
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associated with the load-balance constraints in the unit commitment model.2

The issue with pricing energy on the basis of these dual variables in a centrally committed
market is that generators that are committed and dispatched may not recover all of their costs. This is
a well known shortcoming of linear pricing in a setting with non-convexities and Scarf (1990, 1994)
provides analyses and illustrative examples of this phenomenon. This economic confiscation can
be overcome by some form of discriminatory pricing. O’Neill et al. (2005) propose addressing the
confiscation by pricing the non-convexities explicitly. This is done by adding constraints to a linear
relaxation of the unit commitment model that fix the commitment decisions to their optimal values.
The dual variables that are associated with these added constraints are used to supplement energy
payments that are made using the dual variables that are associated with the load-balance constraints.
Sioshansi (2014) shows, however, that the dual variables that are associated with the commitment
decisions may be negative. As such, inframarginal generators may ‘lose’ their inframarginal rents
through the supplemental payments and be constrained to earn zero profits. Convex hull pricing is
discussed as another approach to addressing the complications that non-convexities raise. Instead of
starting with a convex dispatch problem and adding back non-convexities for pricing, convex hull
pricing uses a ‘convexified’ unit commitment problem from the outset for operational planning and
pricing. Schiro et al. (2016) provide an in-depth discussion of convex hull pricing.

In practice, revenue adequacy is ensured in centrally committed markets by giving genera-
tors linear payments for energy (based on the dual variables that are associated with the load-balance
constraints) and make-whole payments. Make-whole payments provide any generator that would op-
erate at a net loss on the basis of the costs that are specified in its complex offer (which may differ
from its true costs) a supplemental payment that is equal exactly to its revenue shortfall. The ratio-
nale behind a make-whole payment is that absent the mechanism, generators have strong incentives
to overstate their costs in their offers to ensure that they are not operated at a loss. Moreover, an MO
economically confiscating a generating unit may run afoul of the owner’s property rights. Make-
whole payments are undesirable, however, because they are discriminatory and their costs must be
recovered by the MO, which is done typically by uplifting to consumers.

Given these shortcomings of the centrally committed market design, there are advocates of
self-committed markets. Elmaghraby and Oren (1999) argue that a self-committed market is more
efficient than a centrally committed design, when all of the incentive problems and uplift payments
are taken into account. Despite the tradeoffs between centrally and self-committed markets being
an area of interest and discussion, there is very little formal and systematic examination of the
two designs in the extant literature. Sioshansi and Nicholson (2011) compare offering incentives
under the two market designs for a symmetric duopoly. They derive equilibrium offering strate-
gies under the two market designs and show that if certain conditions are met, the two designs
are expected-cost-equivalent (when accounting for strategic profit-maximizing offer behavior by the
firms). Álvaro Riascos et al. (2016) conduct an econometric analysis of the Colombian electricity
market, which transitioned from a self-committed to a centrally committed design in 2009. They
find that while productive efficiency was increased after the transition, marginal cost markups and
prices were higher after 2009 than they would have been absent the market-design change. They
attribute this result to the possibility that firms are able to exercise market power more freely after
the transition to a centrally committed design.

This paper adds to this literature by building on the work of Sioshansi and Nicholson (2011)
and examining a general symmetric oligopoly. We characterize equilibrium offering strategies under
the two market designs. Importantly, we find that the expected-cost equivalence between the two
designs fails to hold in the oligopoly with more than two firms. The loss of expected-cost equivalence
occurs because with more than two firms there are low-demand states in which generating firms earn

2Because the unit commitment model is formulated normally as a mixed-integer optimization problem, it does not,
speaking strictly, have dual variables. As such, prices are in fact set by fixing the integer variables in the unit commitment
model to their optimal values and solving the resulting continuous relaxation to obtain dual-variable values.
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strictly positive profits under a self-committed market design. This cannot happen in low-demand
states with a centrally committed market. Conversely, in a duopoly, firms are restricted to earning
zero profits under both market designs in low-demand states. This is because the centrally committed
market design allows for discriminatory make-whole payments that allow for lower settlement costs
compared to the uniform-price nature of a self-committed design. This finding may have practical
relevance in market-design debates.

An important aspect of market design and price formation that we ignore in our analysis
is the recovery of investment costs. Sioshansi (2014); Muñoz et al. (2018) show that market-design
choices can effect the incentives for capacity investment in the long-run. Although investment in-
centives are a vitally important consideration in market design, our focus is on how centrally and
self-committed markets compare in terms of short-run operations and handling non-convex genera-
tion costs.

The remainder of this paper is organized as follows. Section 2 details the models of the
market designs that are used in our analysis. Section 3 provides the derivations of equilibria in
the two market designs. In Section 4 we use a numerical example to demonstrate our theoretical
results and show the cost-comparison result between the two market designs. Section 5 concludes
and provides some discussions on the regulatory and policy implications of our work. All of the
technical proofs are relegated to the appendices.

2. SYSTEM AND MARKET MODELS

Our model follows largely that used by Sioshansi and Nicholson (2011). The important distinction
between our model and theirs is that we examine general N-firm oligopolies, as opposed to restrict-
ing our attention to the duopoly case, as they do.

2.1 Power System and Firm Structure

The power system consists of N identical generating firms that are competing in a single-shot, single-
period, uniform-price auction to serve exactly a deterministic and commonly known l-MW load.
Each generator has the same commonly known generation capacities, K > 0. The total capacity is
assumed sufficient to serve the load, meaning that l < NK .3 For a given load, l, we define also Nl ,
such that:

(Nl − 1)K < l < NlK. (1)

Nl represents the minimum number of generators that must be committed to be able to serve the
load. The strict inequalities in (1) rule out uninteresting knife-edge cases in which either (Nl − 1)
or Nl generators are needed to operate exactly at their capacities to serve the load. Such a case
yields uninteresting perfectly competitive equilibria. For ease of exposition, we also define lr =

l − (Nl − 1)K as the residual load that remains if (Nl − 1) generators produce at their K-MW
capacity.

Each generator incurs a fixed start-up cost, S > 0, if it is committed, which it must be to
produce energy (otherwise its output must be zero). Each generator incurs also a constant marginal
generating cost, c > 0, for each MW produced. Thus, the actual cost to each firm of producing
q MW is:

C(q) =



















0, if q = 0;
S + cq, if 0 < q ≤ K ;
+∞, if q > K .

(2)

3The strict inequality rules out an uninteresting case in which all N generators must be dispatched at capacity. Such a
case is uninteresting because each supplier is pivotal and the market clears at the offer caps (Sections 2.2 and 2.3 detail the
offer caps).
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This cost structure is consistent with a stylized model of thermal generation. The cost parameters,
S and c, are commonly known to the generators but not to the MO. Instead, the generators submit
offers to the MO in the two market designs that are meant to convey this cost information. These
offers are the sole basis on which the MO clears the market.

2.2 Centrally Committed Market

In a centrally committed market, each generator submits a complex offer. Generator i’s offer has the
formωi = (σi , ǫ i ), with σi and ǫ i being its start-up and energy offers, respectively. We assume that
there are offer caps, which we denote as σ̄ and ǭ , on the two parts of the offer, respectively. These
offer caps exist in all competitive wholesale electricity markets as a blunt means of mitigating the
exercise of market power. Thus, we assume that 0 < σi ≤ σ̄ and 0 ≤ ǫ i ≤ ǭ ∀i = 1, . . . , N . σi is
assumed strictly positive to ensure that the equilibria that are studied under the centrally committed
market design differ from those under a self-committed market.

Indeed, how we model the complex offers under a centrally committed market design effec-
tively subsumes the self-committed design, insomuch as generators may submit offers with σi → 0+.
This observation addresses a nuance of centrally committed markets, which is that typically they give
generators the option to self commit their units, whereby a self-committed unit is dispatched on the
basis of simple offers (e.g., it participates in the market à la a self-committed design). As such, our
analysis of a centrally committed market subsumes effectively a case in which generators can self
commit (albeit imperfectly).

Because the MO does not know the values of S and c, it commits and dispatches generators
based on the costs that are specified in their offers. Let ω = (ω1 , . . . , ωn ) denote the entire vector
of complex offers. We use the subscript ‘−i’ (e.g., ǫ−i ) to denote offers that are submitted by
generator i’s rivals.

Based on ω, the MO uses a unit commitment model to determine the generator commit-
ments and dispatches. To formulate this model, we define the set of binary variables:

ui =

{

1, if generator i is committed;
0, otherwise.

(3)

∀i = 1, . . . , N . We define also qi as a continuous variable indicating how many MW are produced
by generator i, for all i = 1, . . . , N . The unit commitment problem is formulated then as:

min
u ,q

N
∑

i=1
(σiui + ǫ iqi ), (4)

s.t.
N
∑

i=1
qi = l , (5)

0 ≤ qi ≤ Kui , ∀i = 1, . . . , N, (6)

ui ∈ {0, 1}, ∀i = 1, . . . , N. (7)

Objective function (4) minimizes total commitment and dispatch cost on the basis of the offers. Con-
straint (5) imposes load balance. Constraint set (6) imposes generator-capacity limits and requires
a generator to be committed to produce a non-zero amount. Constraint set (7) requires the commit-
ment variables to be binary.

The solution to the MO’s unit commitment problem depends upon the demand level. If
Nl = N , all N generators must be committed to serve the load. We refer to any load level such that
Nl = N as a high-demand state. Conversely, if Nl < N , which we refer to as being in a low-demand

state, then at least one generator may be left inactive.
In high-demand states, the start-up offers are irrelevant for determining the optimal solution
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to (4)–(7). This is because all of the generators must be committed and their start-up offers are sunk
costs from the perspective of determining production levels. Thus, assuming random rationing, we
can determine generator i’s expected production level in a high-demand state, first by defining:

Mc
i = | |{ j |ǫ j = ǫ i }| |, (8)

as the number of generators that submit the same energy offer that generator i submits (including
generator i itself). Then, we define generator i’s expected production level in a high-demand state
as:

qc
i (ω; l) =











K, if ∃ j such that ǫ j > ǫ i ;
1

Mc

i

(l − (N − Mc
i

)K ), if ǫ j ≤ ǫ i ,∀ j .
(9)

There are two possible production levels for generator i in a high-demand state. First, generator i

produces at capacity if another generator submits an energy offer that is strictly greater than genera-
tor i’s offer. The second case in (9) arises if generator i submits the highest energy offer. In this case,
all of the generators that submit energy offers that are strictly less than that of generator i, of which
there are (N −Mc

i
), produce at their maximum capacity. All but one of the remaining Mc

i
generators

that submit the highest energy offer are assigned randomly to produce K MW while one serves the
residual load.

In low-demand states, the load can be served with strictly less than N generators being
committed. We show in the following lemma that because σi > 0,∀i = 1, . . . , N , it is optimal for
only Nl generators to be committed and the remaining generators to be kept offline.

Lemma 1 In low-demand states, it is suboptimal for the MO to commit more than Nl generators

under a centrally committed market design.

Proof. See Appendix 6.1. �

Following from Lemma 1, once Nl generators are selected to be committed, (Nl − 1) of
those generators are dispatched (solely on the basis of their energy offers) to produce at their K-MW
capacities. The remaining one generator with the highest marginal generating cost in its offer serves
the residual load, lr .

The energy price under a centrally committed market design is the highest of the accepted
energy offers among generators that have a positive dispatch:

pc = max
i=1,... ,N

{ǫ i |q
c
i > 0}, (10)

where qc
i

denotes generator i’s production level. In a high-demand state qc
i

is given explicitly by (9).
We characterize qc

i
in low-demand states when deriving equilibria in Section 3.

Based on this energy price, generator i earns energy revenues that are equal to pcqc
i

. These
energy payments may be insufficient for each generator to recover its non-convex start-up cost. As
such, the MO uses make-whole payments to ensure that no generator operates at a net loss, on the
basis of the costs that are specified in its offer. If we let Wi and Ti denote the make-whole and total
payments, respectively, that are given to generator i we have:

Ti = pcqc
i +Wi = pcqc

i +max{0, σi + (ǫ i − pc )qc
i }, (11)

meaning that:
Wi = max{0, σi + (ǫ i − pc )qc

i }. (12)

Equations (11) and (12) stem from the fact that generator i receives a non-zero make-whole payment
if and only if its net operating profit from receiving energy payments alone (on the basis of its offer),
which equals (pc − ǫ i )qc

i
−σi , is strictly negative. In such a case, we have from (12) that generator i

receives a make-whole payment of Wi = σi + (ǫ i − pc )qc
i

, meaning that its net operating profit
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from receiving the energy and make-whole payments is (pc − ǫ i )qc
i
− σi +Wi = 0. Otherwise, if

(pc − ǫ i )qc
i
−σi ≥ 0, generator i does not need a supplemental make-whole payment to recover the

costs that are specified in its offer. In such a case, we have from (12) that Wi = 0, as desired.

2.3 Self-Committed Market

In a self-committed market each generator submits a simple offer consisting of a single parameter;
δi specifies the minimum price at which generator i is willing to produce. We assume that this
minimum energy price must be non-negative and that it is subject to an offer cap, which we denote
as δ̄. All generators, including those that do not wish to commit, submit an offer. If generator i

does not wish to commit its unit it may offer δi = δ̄. Doing so withholds its capacity from the
market economically. Many restructured wholesale electricity markets have such a requirement that
generators offer their capacity at some price below the offer cap, to avoid unserved demand. We let
δ = (δ1, . . . , δN ) denote the offer vector.

As in the centrally committed market, because the MO does not know the values of S and
c, in a self-committed market it dispatches the generators based solely on δ. This dispatch problem
can be formulated as the following linear optimization problem:

min
q

N
∑

i=1
δiqi , (13)

s.t.
N
∑

i=1
qi = l , (14)

0 ≤ qi ≤ K, ∀i = 1, . . . , N, (15)

where the variables, qi ,∀i = 1, . . . , N , retain the same definitions as in (4)–(7). The objective
function and constraints of this dispatch problem are analogous to those in (4)–(7), except that
start-up costs are not included in the objective function nor are there binary variables representing
commitment decisions.

The solution to the dispatch problem depends upon the demand level and the rank ordering
of the offers. The solution can be expressed in closed form by relabeling the offers in increasing
order. Because the generators have identical true costs, without loss of generality we can relabel
them such that δ1 ≤ · · · ≤ δN . We define:

Ms
i = | |{ j |δ j = δi }| |, (16)

as the number of generators that submit the same offer that generator i submits. Assuming random
rationing, generator i’s expected production level is:

qs
i (δ; l) =























K, if δi < δNl
;

1
M s

i

(l − (Nl − Ms
i

)K ), if δi = δNl
;

0, if δi > δNl
.

(17)

Generator i has three possible production levels in a self-committed market. If its offer is strictly
lower than the Nl th offer (in ascending order), then generator i is dispatched to produce up to its
K-MW capacity. If generator i’s offer is strictly greater than the Nl th offer, then it is not dispatched
and produces 0 MW. If its offer is equal to the Nl th offer, then it is assigned randomly either to
produce K MW or to serve the residual load. This case is analogous to the treatment of ties in the
highest energy offer that is given in (9).
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The energy price under this market design is:

ps = max
i=1,... ,N

{δi |q
s
i > 0}, (18)

which is the highest of the accepted offers among generators that are producing a positive amount.
This yields generator i revenue that is equal to psqs

i
. Unlike in a centrally committed market, there

are no make-whole payments under a self-committed design. Instead, generators that choose to
commit themselves must ensure that they earn sufficient revenues from those sales to recover the
start-up costs that they incur. As such, we assume that the offer cap, δ̄, is sufficiently large to ensure
that any generator that produces a strictly positive amount of energy is able to recover its start-up
cost. That is, we assume that (δ̄ − c)lr ≥ S.

3. MARKET EQUILIBRIA

Both market designs have different types of equilibria, depending on the demand level. We have two
types of low-demand states. We refer to the first type, in which only one generator is needed to serve
the load, as weak low-demand states. We refer to the one generator that serves the load in a weak
demand state as the unique generator. The unique generator’s offer, production, profit, and payment
are denoted by the superscript, ‘U.’ The other type of regular low-demand states require at least two
generators to serve the load. Based on Lemma 1 and the discussion in Section 2.3, we know that the
MO’s problems in low-demand states (under both market designs) have optimal solutions in which
(Nl − 1) inframarginal generators operate at their K-MW capacity and one marginal generator

serves the residual load. We refer to any generators that produce 0 MW as inactive generators. As
needed, the offers, production, and profits of and payments to inframarginal, marginal, and inactive
generators are denoted by the superscripts, ‘I ,’ ‘M,’ and ‘V ,’ respectively.

The other type of demand state, in which all N generators are pivotal, that we have is a high-

demand state. We retain the same notion of inframarginal and marginal generators in high-demand
states as we have in low-demand states. However, there are no inactive generators in a high-demand
state.

We proceed by characterizing equilibria under the two market designs in different demand
states.

3.1 Equilibria Under a Centrally Committed Market Design

Our analysis of the centrally committed market design begins with the following lemma, which
characterizes payments to generators in different demand states.

Lemma 2 Under a centrally committed market design the total payment to the unique generator is

TU = σU + ǫU l while all other generators receive zero payments in a weak low-demand state.

In all other demand states the total payment to the marginal generator is T M = σM +ǫM lr ,

the payment to inframarginal generator i is T I
i
= max{ǫM K, σi + ǫ iK }, and the payments to any

inactive generators are zero under a centrally committed market design.

Proof. See Appendix 6.2.1. �

Next, we proceed by characterizing equilibrium offering strategies in the two types of low-
demand states and examining high-demand states.

3.1.1 Equilibria in Low-Demand States

We begin with the following lemma, which shows that in low-demand states the marginal generator
earns zero profits.

Copyright c© 2018 by the IAEE. All rights reserved.



9 / The Energy Journal

Lemma 3 In all low-demand states the marginal generator earns zero profits in a Nash equilibrium

under a centrally committed market design.

Proof. See Appendix 6.2.1. �

Lemma 3 implies the following corollary, which dictates the behavior of inactive generators
in a Nash equilibrium.

Corollary 1 In all low-demand states all inactive generators submit offers, ωV = (σV , ǫV ), such

that:

σV + ǫV lr ≥ S + clr , (19)

and this inequality is binding for at least one inactive generator in a Nash equilibrium under a

centrally committed market design.

Proof. See Appendix 6.2.1. �

Now we demonstrate that in weak low-demand states all generators earn zero profits.

Proposition 1 In weak low-demand states the set of pure-strategy Nash equilibria under a centrally

committed market design is characterized by at least two of the generators submitting offers of the

form:

ω ∈ ΩW = {(σ, ǫ ) |σ + ǫl = S + cl , σ ∈ (0, σ̄], ǫ ∈ [0, ǭ]}, (20)

and the remaining generators submitting offers of the form:

ω ∈ {(σ, ǫ ) |σ + ǫl ≥ S + cl , σ ∈ (0, σ̄], ǫ ∈ [0, ǭ]}. (21)

All generators earn zero profits.

Proof. See Appendix 6.2.1. �

Proposition 1 characterizes Nash equilibria in weak low-demand states. Characterizing
equilibria in regular low-demand cases is more challenging. We begin with the following lemma,
which shows that in a Nash equilibrium all inframarginal generators receive the same type of pay-
ment (i.e., either they all receive make-whole or energy payments).

Lemma 4 If at least one inframarginal generator receives energy payments (i.e., it does not receive

make-whole payments) in a regular low-demand state under a centrally committed market design,

then all inframarginal generators must receive energy payments in a Nash equilibrium.

Proof. See Appendix 6.2.1. �

Lemma 4 allows us to draw some inferences regarding equilibrium offers in a centrally
committed market that allows generators to self commit. We can conclude that if some inframarginal
generators are receiving make-whole payments, then there is not a Nash equilibrium in which other
generators are receiving energy payments (which is akin to self committing). This is because when a
generator self commits, it offers its generation to the market using simple offers, which precludes the
possibility of receiving make-whole payments. However, Lemma 4 shows that such a set of offers
cannot constitute a Nash equilibrium. This is because the self committing generator has an incentive
to increase its offers to receive higher make-whole payments.

This finding is in line with private discussions with participants in centrally committed mar-
kets. Units in such markets are seldom self committed, as doing so raises revenue risk through the
loss of potential make-whole payments. In some cases, a market participant may opt to self commit,
if it foresees high loads beyond the one-day lookahead that is common in centrally committed mar-
kets. This is because in such instances, it may be more profitable in the long-run (i.e., over several
days) for a unit that would not be committed by the MO to be self committed. Indeed, baseload
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generators (with low marginal generation but high start-up costs) may opt to self commit, depending
on the volume of day-ahead market activity.

The following corollary to Lemma 4 shows that in a Nash equilibrium all inframarginal
generators earn the same profits.

Corollary 2 All inframarginal generators earn the same profits in a Nash equilibrium under a cen-

trally committed market design in a regular low-demand state.

Proof. See Appendix 6.2.1. �

Now we proceed by examining three possible cases involving the offer of the marginal
generator—those in which the marginal-cost portion of its offer, ǫM , is strictly less than, equal to, or
strictly greater than its true marginal cost, c. We show in the following lemmata that equilibria are
not possible in the first case, are possible in the second, and that all generators earn zero profits in
the third.

Lemma 5 There are no Nash equilibria in which the marginal generator submits an offer with

ǫM < c in a regular low-demand state under a centrally committed market design.

Proof. See Appendix 6.2.1. �

Lemma 6 There are pure-strategy Nash equilibria in a regular low-demand state under a centrally

committed market design in which the marginal generator submits an offer with ǫM = c. Such

equilibria are characterized by the marginal generator submitting an offer with σM = S, all infra-

marginal generators submitting offers of the form:

ω ∈ ΩL = {(σ, ǫ ) |σ + ǫK = S + cK, σ ∈ (0, σ̄], ǫ ∈ [0, ǭ]}, (22)

and the inactive generators submitting offers of the form:

ω ∈ {(σ, ǫ ) |σ + ǫlr ≥ S + clr , σ ∈ (0, σ̄], ǫ ∈ [0, ǭ]}, (23)

with this inequality being binding for at least one inactive generator. All generators earn zero profits.

Proof. See Appendix 6.2.1. �

Lemma 7 If the marginal generator submits an offer with ǫM > c in a regular low-demand state

under a centrally committed market design, then all inframarginal generators earn zero profits in a

pure-strategy Nash equilibrium.

Proof. See Appendix 6.2.1. �

3.1.2 Equilibria in High-Demand States

In high-demand states all generators must be active, meaning that the generators’ start-up offers must
all be incurred by the MO. Thus, dispatch decisions are made solely on the basis of the generators’
energy offers. In the following proposition, we show that as a result of how the dispatch decisions are
made, there are no pure-strategy Nash equilibria in high-demand states under a centrally committed
market design.

Proposition 2 There are no pure-strategy Nash equilibria in a high-demand state under a centrally

committed market design.
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Proof. See 6.2.1. �

Because there are no pure-strategy Nash equilibria in a high-demand state under a centrally
committed market design, we characterise mixed-strategy Nash equilibria. Moreover, we derive an
analytical expression for a symmetric mixed-strategy Nash equilibrium, should one exist. We let
Fi (σi , ǫ i ) denote the cumulative distribution function of generator i’s mixed strategy, Φi denote its
support, and ǫ−

i
and ǫ+

i
denote the infimum and supremum energy offers, respectively, in Φi . We let

Φ = ∩N
i=1Φi denote the common support of the N cumulative distribution functions.

Lemma 8 The infimum energy offers of the mixed strategies that are used by the generators in a

high-demand state under a centrally committed market design are equal in a Nash equilibrium.

Proof. See Appendix 6.2.1. �

Lemma 9 None of F1(σ1 , ǫ1), F2(σ2, ǫ2), . . . , FN (σN , ǫN ) have a mass point on Φ in a mixed-

strategy Nash equilibrium in a high-demand state under a centrally committed market design.

Proof. See Appendix 6.2.1. �

Lemma 10 Φi is a connected set ∀i = 1, . . . , N, in a mixed-strategy Nash equilibrium in a high-

demand state under a centrally committed market design.

Proof. See Appendix 6.2.1. �

Lemma 11 The supremum energy offers of the mixed strategies that are used by the generators in a

high-demand state under a centrally committed market design are equal in a Nash equilibrium.

Proof. See Appendix 6.2.1. �

Lemma 12 The generators submit σ1 = σ2 = · · · = σN = σ̄ in a mixed-strategy Nash equilibrium

in a high-demand state under a centrally committed market design.

Proof. See Appendix 6.2.1. �

As a result of Lemma 12, we can write the cumulative distribution function of generator i’s
mixed strategy as Fi (ǫ i ) (i.e., it is not dependent on σi ). The following proposition gives an ana-
lytical expression that characterizes a mixed strategy Nash equilibrium, if a symmetric equilibrium
exists.

Proposition 3 If a symmetric mixed-strategy Nash equilibrium exists in a high-demand state under

a centrally committed market design, the cumulative distribution functions of the mixed strategies

that are used by the generators satisfy the delay differential equation:

f (ǫ ) =
1

N − 1

[

F (ǫ )
c − ǫ

+
F (ǫ + σ̄/K )N−1K

(l − NK )(c − ǫ )F (ǫ )N−2

]

, (24)

where f (ǫ ) is the probability density function of the mixed strategies.

Proof. See Appendix 6.2.1. �

Although we assume that the firms are symmetric, this on its own does not guarantee that
a symmetric Nash equilibrium exists. Moreover, for (24) to give a valid equilibrium, it must have
a solution that satisfies a number of properties of probability density and cumulative distribution
functions (i.e., f (ǫ ) ≥ 0 for ǫ ∈ [ǫ− , ǫ+], F (ǫ ) = 0 for ǫ ≤ ǫ− , and F (ǫ ) = 1 for ǫ ≥ ǫ+). We do
not have any theoretical guarantees that (24) yields a solution with such properties. However, our
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numerical testing shows that we can find solutions to (24) that satisfy the requisite properties for
many reasonable sets of cost, load, capacity, and offer-cap values. Equation (24) shows also that:

lim
ǫ→ǫ−

f (ǫ ) = +∞. (25)

There are, however, examples of probability density functions (the Gamma distribution is one exam-
ple) that exhibit such asymptotic behavior.

Lemma 13 If a symmetric mixed-strategy Nash equilibrium exists in a high-demand state under a

centrally committed market design, the equilibrium supremum energy offers of the mixed strategies

that are used by the generators in a high-demand state under a centrally committed market design

are equal to ǭ .

Proof. See Appendix 6.2.1. �

We conclude our analysis of Nash equilibria in a high-demand state under a centrally com-
mitted market design by computing the expected profits of the N generators.

Proposition 4 If a symmetric mixed-strategy Nash equilibrium exists in a high-demand state under

a centrally committed market design, each generator earns expected equilibrium profits that are

equal to E[πc] = σ̄ − S + (ǭ − c)lr .

Proof. See Appendix 6.2.1. �

3.2 Equilibria Under a Self-Committed Market Design

We proceed with the analysis of Nash equilibria under a self-committed market design by examining
low-demand states first.

3.2.1 Equilibria in Low-Demand States

We show in the following proposition that in weak-demand states all generators earn zero profits in
equilibrium.

Proposition 5 In weak low-demand states the set of pure-strategy Nash equilibria under a self-

committed market design is characterized by all of the generators submitting offers of the form:

δ ≥ c +
S

l
, (26)

with this inequality binding for at least two of them. All generators earn zero profits.

Proof. See Appendix 6.2.2. �

Unlike weak low-demand states, regular low-demand states entail at least one inframarginal
generator operating at full capacity while the marginal generator operates below its capacity. This
distinction results in inframarginal generators earning strictly positive profits in regular low-demand
states, as we demonstrate in the following proposition.

Proposition 6 In regular low-demand states the set of pure-strategy Nash equilibria under a self-

committed market design is characterized by (Nl − 1) generators submitting offers of the form:

δ ≤ c +
S

K
, (27)
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and the remaining generators submitting offers of the form:

δ ≥ c +
S

lr
. (28)

Of these remaining generators, at least two submit offers that make (28) binding. The marginal and

inactive generators earn zero profits while the inframarginal generators earn strictly positive profits.

Proof. See Appendix 6.2.2. �

The equilibria that are characterized in Proposition 6 are made possible by there being at
least one inframarginal generator that is producing at capacity while the marginal generator is pro-
ducing less than capacity. This does not occur in weak low-demand states. The marginal generator
must produce below its full capacity but must recover its fixed and variable costs. Because its costs
must be recovered through energy payments only (due to the lack of make-whole payments), the
energy price must be sufficiently high to recover both cost components. This higher energy price
allows the inframarginal generators to earn strictly positive profits. The inframarginal generators
‘enforce’ the equilibrium by submitting offers that are sufficiently low that neither the marginal nor
the inactive generators have profitable deviations in which they undercut an inframarginal generator.

Before proceeding, we remark on one of the important distinctions between the multi-firm
oligopoly setting that is studied here and the two-firm setting that Sioshansi and Nicholson (2011)
examine. In the two-firm setting, low-demand states that do not require both of the generators to
serve the load result in all generators earning zero profits under both the centrally and self-committed
market designs. This equivalence no longer holds in the multi-firm setting. Indeed, we find that
ceteris paribus, the self-committed market design is more expensive (in terms of remuneration to
generators) in low-demand states than a centrally committed design is. This result shows also an
important shortcoming of relying on linear energy payments only for recovering non-convex costs.
The lack of a discriminatory payment mechanism (i.e., make-whole payments) is what gives rise to
the higher remuneration costs under a self-committed market design.

3.2.2 Equilibria in High-Demand States

Finally, we turn to the case of equilibria in high-demand states under a self-committed market design.
Unlike the case of a centrally committed design, both pure- and mixed-strategy Nash equilibria exist
in high-demand states under a self-committed design. We begin by characterizing the set of pure-
strategy Nash equilibria in the following proposition.

Proposition 7 In high-demand states the set of pure-strategy Nash equilibria under a self-committed

market design is characterized by (N−1) generators submitting offers of the form δ ≤ (δ̄−c)lr/K+c

and the remaining generator submitting an offer of the form δ = δ̄. All generators earn non-negative

profits.

Proof. See Appendix 6.2.2. �

The intuition behind this set of pure-strategy Nash equilibria is straightforward. Because
the generator submitting the highest offer is marginal and sets the energy price, this generator has
an incentive to submit the highest offer possible. At the same time, the inframarginal generators
must submit offers that are sufficiently small to ensure that the marginal generator has no incentive
to undercut one of them. The threshold offer, (δ̄ − c)lr/K + c, is sufficiently small to ensure this.
Because the market has a uniform price that is set by the marginal generator, the offers submitted by
the inframarginal generators can be any value below this threshold (including offers that are below
cost). Because lr < K we have that the threshold offer is valid per the market rules.

We turn now to characterizing and deriving a closed-form expression for a mixed-strategy
Nash equilibrium in high-demand states under a self-committed market design. Unlike the case of
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a centrally committed market design, existence of a symmetric mixed-strategy Nash equilibrium
is guaranteed under the self-committed design. This is because the equilibrium can be derived
explicitly as the solution of an ordinary differential equation, which exhibits all of the requisite
properties of probability density and cumulative distribution functions. We let Gi (δi ) denote the
cumulative distribution function of generator i’s mixed strategy, Ψi denote its support, and δ−

i
and

δ+
i

denote the infimum and supremum offers, respectively, in Ψi . We let Ψ = ∪N
i=1Ψi denote the

common support of the N cumulative distribution functions.

Lemma 14 The infimum offers of the mixed strategies that are used by the generators in a high-

demand state under a self-committed market design are equal in a Nash equilibrium.

Proof. See Appendix 6.2.2. �

Lemma 15 None of G1(δ1),G2(δ2), . . . ,GN (δN ) have a mass point onΨ in a mixed-strategy Nash

equilibrium in a high-demand state under a self-committed market design.

Proof. See Appendix 6.2.2. �

Lemma 16 Ψi is a connected set ∀i = 1, . . . , N, in a mixed-strategy Nash equilibrium in a high-

demand state under a self-committed market design.

Proof. See Appendix 6.2.2. �

Lemma 17 The supremum offers of the mixed strategies that are used by the generators in a high-

demand state under a self-committed market design are all equal to δ̄ in a Nash equilibrium.

Proof. See Appendix 6.2.2. �

We derive now a closed-form expression of each generator’s equilibrium mixed strategy in
high-demand states under a self-committed market design.

Proposition 8 There is a symmetric mixed-strategy Nash equilibrium in a high-demand state under

a self-committed market design. The cumulative distribution functions of the mixed strategies that

are used by the generators are given by:

G(δ) =

(

δ − c

δ̄ − c

)λ

, (29)

where:

λ =
lr

(K − lr )(N − 1)
. (30)

Proof. See Appendix 6.2.2. �

We conclude our analysis of the mixed-strategy Nash equilibria in a high-demand state
under a self-committed market design by determining the expected profits of the generators.

Proposition 9 In a symmetric mixed-strategy Nash equilibrium in a high-demand state under a self-

committed market design each generator earns expected profits that are equal to E[πs] = −S + (δ̄ −
c)lr .

Proof. See Appendix 6.2.2. �

4. EXPECTED-COST COMPARISON OF MARKET DESIGNS

We begin our cost comparison of the two market designs by showing analytical results, which rely
on the properties of the equilibria that are derived in Section 3. Then we demonstrate the cost
comparisons using a numerical example.
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4.1 Analysis of Market Equilibria

We show first conditions under which the two market designs are expected-cost-equivalent and cases
in which cost equivalence fails to hold. Importantly, we find cases in which cost equivalence holds
in the duopoly case but fails to hold in the multi-firm case.

Proposition 10 Centrally and self-committed market designs have the same remuneration costs in

weak low-demand states.

Proof. See Appendix 6.3. �

Proposition 11 Centrally and self-committed market designs do not have the same remuneration

costs in regular low-demand states.

Proof. See Appendix 6.3. �

Cost comparison in high-demand states depends upon the offer caps that are set in the two
markets. As such, we compare the expected remuneration cost of the two market designs under a
range of random high-demand states. We add the following assumption that the offer caps under the
two market designs are ‘equivalent’ to one another. In essence, we assume that the market (regardless
of which design is adopted) clears repeatedly (e.g., hourly) at different load levels. The offer caps
under the two market designs are assumed to be set such that generators are not disadvantaged under
one market design relative to another (i.e., by one market design having an unduly low cap compared
to the other).

Assumption 1 The offer caps of the two market designs are set to satisfy:

σ̄ − S + (ǭ − c)E[lr |l > (N − 1)K] = −S + (δ̄ − c)E[lr |l > (N − 1)K]. (31)

The way that Assumption 1 compares the offer caps under the two market designs is based
on the expected profits of a generator submitting offers equal to the caps in high-demand states.
A generator submitting an offer at that cap is marginal with probability 1. Thus, the two terms
in the equality defining Assumption 1 are the expected profits of a generator offering at the cap.
Assumption 1 can be interpreted as the MO having a forecast of expected demand in high-demand
states. Using this forecast, the MO determines the expected residual load of the marginal generator.
On the basis of this expected residual load, the MO can set offer caps to guarantee that a generator
that submits an offer that is equal to the cap earns the same profit under either market design. This is
critical for a meaningful comparison between the two designs. What is of interest is the fundamental
properties of the two market designs, rather than artificially generating differences between them by
manipulating the offer caps. Assumption 1 allows us to make an ‘apples-to-apples’ comparison of
cost between the two designs.

The ‘equivalent’ offer cap under one market design can be determined from the offer cap
of the other market design without knowing the true generator costs. This is because the equality
in Assumption 1 can be simplified to σ̄ + ǭE[lr |l > (N − 1)K] = δ̄E[lr |l > (N − 1)K]. This is
desirable, as policymakers may not know true generator costs when designing markets and setting
offer caps. Indeed, if a policymaker knows true generator costs, one would not need to solicit offers
in the market as is examined in this paper.

We show now the cost-comparison properties of the two market designs in high-demand
states when Assumption 1 holds.

Proposition 12 Centrally and self-committed market designs have the same expected remuneration

costs in high-demand states if Assumption 1 holds and the generators follow mixed-strategy Nash

equilibria.

Copyright c© 2018 by the IAEE. All rights reserved.



Another Step Towards Equilibrium Offers in Unit Commitment Auctions with Nonconvex Costs: Multi-Firm

Oligopolies / 16

Proof. See Appendix 6.3. �

Corollary 3 Centrally and self-committed market designs do not have the same expected remuner-

ation costs in high-demand states if Assumption 1 holds and the generators follow a pure-strategy

Nash equilibrium under a self-committed market design.

Proof. See Appendix 6.3. �

These two results regarding cost comparisons in high-demand states have analogues in
the duopoly case. Sioshansi and Nicholson (2011) show that the two market designs are expected-
cost-equivalent in the duopoly if Assumption 1 holds and generators follow mixed-strategy Nash
equilibria. Otherwise, if duopolists follow a pure-strategy Nash equilibrium under a self-committed
market design, the self-committed market is more costly.

4.2 Numerical Example

We conclude this section with a simple numerical example that illustrates equilibrium prices and
remuneration costs under the two market designs. Table 1 lists the parameter values that are assumed
in the example. The offer caps that are in Table 1 satisfy Assumption 1 if lr is distributed uniformly
in high-demand states. We examine cases with different values for N . Increasing the number of
firms has two impacts on market equilibria. First, higher values of N mean that the load must be
higher for the market to be in a high-demand state. Second, having more firms in the market tends
to result in less aggressive offers (and lower expected energy prices) in high-demand states.

Table 1: Data for Numerical Example

Parameter Value

c $30/MWh
S $10000
K 500 MW
E[lr |l > (N − 1)K] 250 MW
ǭ $1000/MWh
σ̄ $25000
δ̄ $1100

Although the primary distinction between the two market designs arises in regular low-
demand states or if firms follow pure-strategy Nash equilibria in high-demand states under the self-
committed market, our analysis of the example focuses on high-demand states with the firms fol-
lowing mixed strategy equilibria. This is because it is easier to conceptualize the prices and market
outcomes that arise in low-demand states or from firms following pure strategies. The numerical
example provides a visual feel for the relationship between equilibrium offering behavior and the
residual load and number of firms if the firms follow mixed strategies.

Figure 1 shows the cumulative distribution functions that are derived from (24) with differ-
ent numbers of firms and residual-load levels. The figure shows, as expected, that:

lim
ǫ→ǫ−

f (ǫ ) = +∞,

which is seen by the functions being nearly vertical as they approach the infimum energy offer for
each parameter set. The infimum energy offer depends on the number of firms and residual load
level. This is because as the residual load increases, the opportunity cost of having a higher offer
(which increases the likelihood of a generator being marginal as opposed to inframarginal) decreases.
The figure shows also that having more firms results in the mixed strategies that are employed being
more competitive, as the cumulative distribution functions with N = 5 are first-order stochastically
dominated by the corresponding ones with N = 3.
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Figure 1: Cumulative distribution functions of mixed strategies that are derived from (24) with different

numbers of firms and residual-load levels.

Figure 2 shows expected energy prices under the two market designs as a function of the
residual load with different values of N , if the firms follow mixed-strategy Nash equilibria. Expected
energy prices under a self-committed market design are computed analytically, using the closed-
form expression for the equilibrium cumulative distribution function. Expected energy prices under
a centrally committed market design are approximated numerically by solving the delay differential
equation using finite differences to obtain the equilibrium cumulative distribution function. Then,
the cumulative distribution function is integrated using numerical quadrature to approximate the
expected energy price.

Figure 2 shows that with a greater number of firms, the expected energy price decreases
under both market designs. The figure shows also that for low residual-load levels the expected
energy price under a self-committed market design is lower than that under a centrally committed
design. This is because lower residual-load levels imply greater profit losses from being the marginal
as opposed to an inframarginal generator. Thus, generators submit more aggressive offers with lower
residual loads, resulting in lower expected prices. With higher residual loads expected energy prices
under the two market designs reverse.

Table 2 summarizes the total expected remuneration cost to the MO (which is likely borne
by customers) in the high-demand states that are shown in Figure 2, assuming that the residual loads
in the high-demand states are distributed uniformly between 50 MW and 450 MW and that the firms
follow mixed-strategy equilibria. As expected from Proposition 12, the expected settlement costs are
the same under the two market designs. The table shows that the make-whole payments represent a
non-trivial portion of the total cost, constituting about 5% of costs with N = 2 and decreasing to 2%
of costs with N = 10.

5. DISCUSSION AND CONCLUDING REMARKS

This paper studies equilibrium offering behavior under centrally and self-committed wholesale elec-
tricity market designs with an N-generator symmetric oligopoly. We show that the equilibrium re-
sults concerning high-demand states are qualitatively unchanged between the duopoly and oligopoly
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Figure 2: Expected energy price as a function of residual load for different values of N if firms follow

mixed-strategy Nash equilibria under centrally and self-committed market designs.

Table 2: Total Expected Remuneration Cost to MO Under Centrally and Self-Committed

Market Designs for Different Values of N if Firms Follow Mixed-Strategy Nash Equilibria

Centrally Committed Self-Committed

N = 2 N = 3 N = 10 N = 2 N = 3 N = 10
Expected Energy Price [$/MWh] 645 598 548 678 620 557
Expected Make-Whole 28 30 46 n/a n/a n/a

Payments [$ thousand]
Expected Settlement Cost 535 803 2675 535 803 2675

[$ thousand]

cases. There is, however, a stark point of departure between the two market designs in low-demand
states. As with a duopoly, all generators in a multi-firm oligopoly are constrained to earn zero
profits under a centrally committed market design in low-demand states. However, inframarginal
generators in a multi-firm oligopoly can earn strictly positive profits in low-demand states under
a self-committed market design. This difference is driven by low-demand states that require the
marginal generator to produce a positive amount of energy that is strictly less than its capacity. For
the marginal generator to recover all of operating its costs, it must submit an energy offer (which sets
the uniform energy price) that results in the inframarginal generators earning strictly positive profits.
This outcome is ruled out in the duopoly case because a low-demand state in that case results in only
one generator having to produce energy. Indeed, the equilibrium outcome in low-demand states in
a duopoly are analogous to weak low-demand states in the multi-firm oligopoly that we study here.
The upshot of this finding is that the uniform nature of payments under a self-committed market
design guarantees that inframarginal generators earn positive profits. Conversely, the discrimina-
tory nature of payments under a centrally-committed market design can result in lower prices and
generator profits.

Our results showing strictly positive profits under a self-committed market design in low-
demand states hold important policy and market-design implications. The analysis of a duopoly by
Sioshansi and Nicholson (2011) suggests that centrally and self-committed market designs are equiv-
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alent from the perspective of expected energy costs. Our analysis of multi-firm oligopolies shows
this conclusion to be invalid. Importantly, the lack of expected-cost equivalence is not due to one
market design being more prone to the exercise of market power. Indeed, expected-cost equivalence
still holds in high-demand states, wherein firms have the most potential to exercise market power.
Rather, expected-cost equivalence fails in low-demand states due to a deficiency of the payment
mechanism under a self-committed market design. The discriminatory nature of the make-whole
payment that is employed under a centrally committed market design allows for the non-convex
costs of the marginal generator to be recovered without impacting the profits of inframarginal gener-
ators. Because a self-committed market design is restricted to relying on a uniform energy payment,
cost recovery by the marginal generator results in positive profits for inframarginal generators. Thus,
our results suggest that self-committed market designs suffer a flaw that arises from the simple offers
and payment mechanism that they employ.

In a broader policy context, our results suggest that market designs that rely on simple
offers (such as those that are employed in much of Australia and Western Europe) may be overly
costly to consumers compared to the centrally committed designs that are now the archetype in the
United States. There is an important caveat of our analysis, in that we do not consider the recovery
of long-run investment and maintenance costs. The additional profits that generators earn in low-
demand states under a self-committed market design may embiggen the recovery of such costs. An
important nuance of these additional profits is that they are not earned due to scarcity. Rather, these
profits arise from inframarginal generators exploiting a defect in the remuneration mechanism that is
employed with a self-committed market to increase their profits. Thus, understanding the incentive
properties of centrally and self-committed market designs within the context of long-run investment
is an open question for further inquiry.

While we generate insights that go beyond the duopoly case, our model is highly stylized.
We assume symmetric firms and fixed deterministic demand. The cost structure that we assume is
consistent with thermal generation. The penetration of non-thermal (especially renewable) genera-
tion is growing in many parts of the world. Nevertheless, we focus on modeling thermal generation
because its operation entails non-convexities that complicate market design, pricing, and remunera-
tion. Given that renewable generation does not have start-up costs, it does not raise the same types
of market-design issues on which we focus. There is a growing body of work, including those of
Gugler et al. (2018); Grubb and Newbery (2018), that explores the integration of renewables into
spot energy markets and necessary market reforms that they raise. As such, future work might
consider a mixed model with characteristics of both thermal and renewable generation.

Promising work also remains to be done by relaxing the symmetric-firm and deterministic-
demand assumptions and exploring more general market designs. Such work may generate further
regulatory and market-design insights. That being said, we expect that our findings regarding the
lack of cost equivalence between the two market designs in low-demand states to be robust to these
assumptions. This is because the lack of cost equivalence arises from a limitation in relying on lin-
ear uniform prices for the recovery of non-convex costs. We do not anticipate that load uncertainty
or firm asymmetry would overcome this fundamental limitation. However, relaxing some of our
assumptions may provide firms with added avenues to exercise market power. Along these lines,
LaCasse (1995) studies how the possibility of prosecution alters incentives for firms to collude in
government procurements. Fabra (2003) considers the susceptibility of discriminatory versus uni-
form auctions to collusion in a repeated game.

Another important consideration that we neglect in our work is incentive-compatibility.
Chao and Wilson (2002) consider an optimal auction mechanism for the procurement of electricity
reserves. A promising direction, in which to take future work, is examining centrally committed
and self-committed markets from a theoretical mechanism design perspective, taking into account
explicit incentive-compatibility constraints. We neglect also distributional and market-efficiency
impacts of a centrally committed market that arise from the MO’s market model not being solved
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to complete optimality. Johnson et al. (1997); Sioshansi et al. (2008); Sioshansi and Tignor (2012)
show that this limitation of market modeling software can impact wholesale market prices and the
profits of individual generators. This introduces randomness in commitment, dispatch, and pricing
decisions. Finally, while the study of electricity auctions is growing within the theoretical literature,
it also remains a promising arena for future experimental work. Denton et al. (2001) conduct an
experimental analysis of spot-market design for electricity, while Rassenti et al. (2003) study price
volatility in discriminatory- and uniform-price auctions for electricity in an experimental setting. An
experimental analysis of centrally and self-committed market designs may generate useful informa-
tion regarding the behavior of participants in these markets as well as potential mechanisms for their
improvement.
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6. APPENDIX

6.1 Proof of Lemma from Section 2

Proof of Lemma 1. Suppose for contradiction that there is a solution to the MO’s problem in which
Ñ generators are committed, where Ñ > Nl . Without loss of generality, suppose that the generators
are labeled so that ǫ1 ≤ ǫ2 ≤ . . . ≤ ǫ Ñ are the generators that are committed and the remaining
generators are not committed.

Consider an alternate solution in which generators 1 through (Nl − 1) are dispatched to
produce K MW, generator Nl is dispatched to produce lr MW, and the remaining generators are
dispatched to produced nothing and switched off. Such a solution is less costly. �

6.2 Proof of Lemmata, Corollaries, and Propositions from Section 3

6.2.1 Proof of Lemmata, Corollaries, and Propositions from Section 3.1

Proof of Lemma 2. In a weak low-demand state only one generator is required to serve demand. As
such, this generator sets the energy price, pc = ǫU . Moreover, because σU > 0, this generator must
receive make-whole payments. Thus, from (11) we have that total payments to the unique generator
are TU = ǫU l+max{0, σU + (ǫU − ǫU )l} = σU + ǫU l. Because inactive generators produce nothing
and incur zero cost, they receive neither energy nor make-whole payments.

In all other demand states we have Nl ≥ 2. The marginal generator is dispatched to serve
the residual load, lr , and it sets the energy price. This is because it is optimal for the MO to have the
generator with the highest value of ǫ i in its offer (among the Nl generators that it commits) serve
the residual load. Thus, we have pc = ǫM . Following the same logic as in the weak low-demand
state, because σM > 0 the marginal generator must receive make-whole payments. Thus, the total
payments to the marginal generator are T M = ǫM lr +max{0, σM + (ǫM − ǫM )lr } = σM + ǫM lr .

The MO ensures that inframarginal generators earn revenues that cover their incurred costs
(as calculated on the basis of their offers). We know that inframarginal generators are dispatched
to produce K MW. Thus, from (11) we have that total payments to inframarginal generator i are
T I
i
= ǫM K +max{0, σi + (ǫ i − ǫM )K }. If max{0, σi + (ǫ i − ǫM )K } = σi + (ǫ i − ǫM )K this means

that σi + ǫ iK ≥ ǫM K and that energy payments alone are insufficient to recover the offer-based
cost that is incurred by generator i. Thus, generator i is given a make-whole payment that is equal
to σi + ǫ iK . Otherwise, if max{0, σi + (ǫ i − ǫM )K } = 0 we have that σi + ǫ iK ≤ ǫMK meaning
that energy payments are sufficient to recover the offer-based cost that is incurred by generator i.
In such a case, generator i is given an energy payment that is equal to ǫM K . Thus, in the end, an
inframarginal generator receives the larger of σi + ǫ iK and ǫM K in total payments, meaning that
T I
i
= max{ǫM K, σi + ǫ iK }. Finally, we have (as with weak low-demand states) that any inactive

generators receive neither energy nor make-whole payments. �

Proof of Lemma 3. Assume for contradiction that the marginal generator earns nonzero profits. If
its profits are negative, the marginal generator prefers to be inactive and earn zero profits. If the
marginal generator is earning positive profits, its offer can be profitably undercut by an inactive
generator. Thus, the profits of the marginal generator must be zero. �

Proof of Corollary 1. Based on Lemma 2 we know that the marginal generator receives T M =

σM + ǫM lr , in total payments. We know from Lemma 3 that the marginal generator earns zero
profits. Thus, we have that σM + ǫM lr = S + clr .

Now, assume for contradiction that no inactive generator submits an offer that satisfies (19).
This means that at least one inactive generator, generator j, submits an offerω j = (σ j , ǫ j ), such that
σ j + ǫ j lr < S + clr . However, in this case it would be optimal for the MO to commit and dispatch
generator j in place of the marginal generator, giving a contradiction.
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To prove the second part of the corollary, assume for contradiction that no inactive generator
submits an offer that makes (19) binding. Let generator i be the inactive generator with the offer that
gives the lowest value of σi+ǫ i lr . Then the marginal generator has a profitable deviation in which it
increases its offer to undercut σi + ǫ i lr , which increases the make-whole payments that the marginal
generator receives. �

Proof of Proposition 1. In a weak low-demand state the load is served by a single unique generator,
which is also, by definition, the marginal generator. From Lemma 3, we know that the unique
generator must earn zero profit. Combining this with Lemma 2 tells us that ωU ∈ ΩW . Corollary 1
shows that at least one inactive generator must submit an offer from the set ΩW and the property
regarding offers of the remaining inactive generators. From Lemma 2 we know that all generators
earn zero profits. �

Proof of Lemma 4. Assume for contradiction that there exists at least one inframarginal generator
that receives energy payments and another inframarginal generator, generator j, that receives make-
whole payments. This means that generator j receives total payments of σ j + ǫ j K which is greater
than ǫM K , the amount earned by the inframarginal generator receiving energy payments. Then, the
inframarginal generator receiving energy payments has a profitable deviation, in which it matches
generator j’s offer. �

Proof of Corollary 2. From Lemma 4 we know that all inframarginal generators receive the same
type of payments. If they all receive energy payments, then this result is true trivially.

If, on the other hand, they receive make-whole payments assume for contradiction that
inframarginal generator i receives a greater make-whole payment than inframarginal generator j.
This implies that σi + ǫ iK > σ j + ǫ jK . In such a case, however, generator j can deviate profitably
and match generator i’s offer. �

Proof of Lemma 5. Assume for contradiction that the marginal generator submits an offer with
ǫM < c. By Lemma 3 we must have σM > S and the marginal generator receives make-whole
payments to recover its actual incurred costs (and earn zero profits). This means that σM + ǫM lr =

S+clr . Given that lr < K and the assumption that ǫM < c, it must be true that σM +ǫM K < S+cK ,
which in turn implies that ǫM K < S + cK (because σM > 0). Thus, inframarginal generators must
receive make-whole payments, otherwise they earn negative profits.

For inframarginal generators to earn non-negative profits from make-whole payments, they
must submit offers such that σI +ǫ I K ≥ S+cK . This inequality implies, however, that σM+ǫMK <

S + cK ≤ σI + ǫ I K , meaning that it would be less costly (from the perspective of the MO) for
the marginal generator to be dispatched as an inframarginal generator. This gives a contradiction
showing that there are no equilibria in which ǫM < c. �

Proof of Lemma 6. We prove that a set of offers satisfying these conditions constitute a Nash
equilibrium by examining, in turn, the offers of the marginal, inactive, and inframarginal generators.
We know from Lemma 3 that the marginal generator must earn zero profits in a Nash equilibrium.
Combining this with Lemma 2 tells us that if ǫM = c then σM = S. Corollary 1 gives us the
properties of the offers of the inactive generators.

Finally, consider the offers of inframarginal generators. If an inframarginal generator sub-
mits an offer from the set, ΩL , it must receive make-whole payments (because the marginal gen-
erator sets the energy price equal to c, which is insufficient to recover the inframarginal genera-
tor’s start-up cost) and earns zero profits. This inframarginal generator has no incentive to submit
an offer, ω̃ = (σ̃, ǫ̃ ), such that σ̃ + ǫ̃K < S + cK , because doing so results in negative profits.
Moreover, consider a deviation in which this inframarginal generator submits an offer, ω̃, such that
σ̃ + ǫ̃K > S + cK . The marginal generator is submitting an offer with true costs. Thus, we have
σ̃ + ǫ̃K > S + cK = σM + ǫMK , meaning that the inframarginal generator becomes a marginal or
inactive generator (resulting in it earning zero profits) if it deviates and offers ω̃. Thus, we conclude
that the inframarginal generator has no profitable deviation from submitting an offer in the set ΩL .
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We can conclude also that there are no Nash equilibria in which any inframarginal generator
submits an offer that is not in the set ΩL . To see this, consider inframarginal generator i submitting
an offer, ωi = (σi , ǫ i ), such that σi + ǫ iK < S + cK . In this case, generator i earns negative profits
and has a profitable deviation in which it submits a sufficiently high offer that it becomes inactive.
Conversely, if inframarginal generator i submits an offer such that σi + ǫ iK > S + cK , then because
the marginal generator is submitting an offer with its actual costs, we know that it is not possible
for generator i to be inframarginal (i.e., there is a lower-cost solution to the MO’s problem in which
generator i is not an inframarginal generator). �

Proof of Lemma 7. Assume for contradiction that there is a Nash equilibrium in which ǫM > c and
in which the inframarginal generators earn strictly positive profits. We examine two cases, those in
which the inframarginal generators receive energy payments and those in which they receive make-
whole payments (we know from Lemma 4 that all inframarginal generators receive the same type of
payments in equilibrium).

First, consider the case in which inframarginal generators receive energy payments. For this
to be true, it must be the case that ǫM K > σi + ǫ iK , where generator i is an inframarginal generator.
For generator i’s profits to be strictly positive, it must also be the case that ǫMK > S+cK . Moreover,
because σM > 0 we must have that σM + ǫMK > ǫMK > S+ cK . Thus, generator i has a profitable
deviation in which it submits the offer, ω̃i = (σ̃i , ǫ̃ i ), such that σM + ǫMK > σ̃i + ǫ̃ iK > ǫ

MK .
Doing so results in generator i receiving make-whole payments (as opposed to energy payments),
which are greater than the energy payments it otherwise receives. Thus, we have a contradiction
showing that if ǫM > c there are no pure-strategy Nash equilibria in which inframarginal generators
receive energy payments and earn strictly positive profits.

Next, consider the case in which inframarginal generator i receives make-whole payments.
For generator i to be inframarginal, we need σM + ǫM K ≥ σi + ǫ iK . We consider now cases in
which this inequality is binding and not. If σM + ǫMK > σi + ǫ iK , generator i has a profitable
deviation in which it submits the offer, ω̃i = (σ̃i , ǫ̃ i ), such that σM + ǫMK > σ̃i + ǫ̃ iK > σi + ǫ iK ,
as doing so increases the make-whole payments that it receives. In the other case that:

σM + ǫM K = σi + ǫ iK, (32)

we note that for generator i to earn strictly positive profits we need that σi + ǫ iK > S + cK . Com-
bining this inequality with (32) gives σM + ǫM K = σi + ǫ iK > S + cK . This inequality gives the
marginal generator a profitable deviation, in which it undercuts generator i’s offer slightly, earning
it strictly positive profits. Thus, we again have a contradiction showing that if ǫM > c there are no
pure-strategy Nash equilibria in which inframarginal generators receive make-whole payments and
earn strictly positive profits.

Finally, we can conclude that the inframarginal generators cannot earn strictly negative
profits in an equilibrium, as each would have a profitable deviation in which it increases its offer to
become inactive. Thus, the inframarginal generators must earn exactly zero profits in equilibrium. �
Proof of Proposition 2. Assume for contradiction that the offers, (σ1 , ǫ1), (σ2, ǫ2), . . . , (σN , ǫN ),
constitute a pure-strategy Nash equilibrium. If any generator is operating at a net profit loss, it can
deviate and submit the offer, (σ̄, ǭ ). By assumption, such offers are high enough to guarantee cost
recovery. Thus, we assume henceforth that no generator is operating at a net profit loss under the
assumed equilibrium.

Without loss of generality, suppose that the generators are labeled so that ǫ1 ≤ ǫ2 ≤ · · · ≤
ǫN . Because all N generators must be committed, we know that they are dispatched based solely
on the merit order of the marginal costs that are specified in their offers. As such, generators 1
through (N − 1) are inframarginal generators, generator N is the marginal generator, and the energy
price is ǫN . We consider now two cases, depending on whether there is a tie between the marginal
costs specified in the offers of generators (N − 1) and N .

Consider, first, the case in which ǫN−1 < ǫN . If generator (N − 1) receives make-whole
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payments, then generator (N − 1) has a profitable deviation in which it submits an offer, ω̃N−1 =

(σN−1, ǫN −η), with η > 0 sufficiently small. Offering ω̃N−1 results in generator (N−1) remaining
an inframarginal generator but earning higher make-whole payments. Conversely, if generator (N −

1) receives energy payments, this means that ǫN K > σN−1 + ǫN−1K . Generator (N − 1) has also
a profitable deviation in this case, wherein it submits the offer, ω̃N−1 = (σN , ǫN − η), with η > 0
sufficiently small so that σN + (ǫN − η)K > ǫN K . Offering ω̃N−1 results in generator (N − 1)
remaining an inframarginal generator but receiving make-whole payments, which are greater than
the energy payments, ǫN K . The profitable deviations for generator (N − 1) in both of these cases
show that there are no pure-strategy Nash equilibria in which there is a unique marginal generator
with the highest marginal cost in its offer.

Now, consider the second case, in which ǫN−1 = ǫN . We know from (9) that the expected
profit of generator (N − 1) is σN−1 − S + (ǫN − c) 1

Mc

N

(l − (N − Mc
N

)K ), where Mc
N

is defined
by (8). Consider a deviation, in which generator (N − 1) submits the offer, ω̃N−1 = (σN−1, ǫN − η),
with η > 0 sufficiently small. Offering ω̃N−1 causes generator (N − 1) to become an inframarginal
generator that receives make-whole payments. As such, its profit changes to σN−1−S+(ǫN−η−c)K .
We have that σN−1 − S + (ǫN − η − c)K > σN−1 − S + (ǫN − c)(l − (N − Mc

N
)K )/Mc

N
, because

K > (l − (N −Mc
N

)K )/Mc
N

, whereas η can be made arbitrarily small. Thus, we have a contradiction
showing that there are no pure-strategy Nash equilibria in which there are multiple generators tied
with the highest energy offer, proving the desired result. �

Proof of Lemma 8. Assume for contradiction that ǫ−
i
< ǫ−

j
. In such a case, generator i has a prof-

itable deviation wherein it moves the density that is assigned to the interval, [ǫ−
i
, ǫ−

j
), to ǫ−

j
−η, with

η > 0 sufficiently small. By doing so, generator i increases its expected profit without decreasing
the probability that it is an inframarginal generator. Thus, we have a contradiction showing that the
infimum energy offers in a mixed-strategy Nash equilibrium must be equal. �

Proof of Lemma 9. Assume for contradiction that Fi (σi , ǫ i ) has a mass point, which we denote as
ǫ̂ i . There exist η > 0 and ρ > 0 such that some generator j , i can deviate profitably by moving the
density that is assigned to the interval, [ǫ̂ i , ǫ̂ i + η), to the offer ǫ̂ i − ρ, contradicting the assumption
of an equilibrium mass point.

To see that this is a profitable deviation, we consider the following three possible cases of
whether generator j is marginal or inframarginal before and after the deviation. First, if generator j

is inframarginal before and after the deviation, there is no profit loss if it receives energy payments.
Otherwise, if it receives make-whole payments its profit loss is at most (η + ρ)K . Second, if gener-
ator j is marginal before and after the deviation, there is a profit loss of at most (η + ρ)K . Finally, if
generator j is marginal before the deviation and inframarginal after the deviation, its profit increases
by at least (ǫ̂ i − c)(K − lr ) − ρK − ηlr . For η and ρ sufficiently small, the profit increase in the third
case outweighs the profit losses in the first two. �

Proof of Lemma 10. Assume for contradiction that there exists an interval, [ǫ̂ i , ǫ̂ i + η] with η > 0,
on which generator i places zero density in a mixed-strategy Nash equilibrium. Generator j , i has
a profitable deviation in which the density that is assigned to the interval, (ǫ̂ i − ρ, ǫ̂ i ), is assigned
to the offer, ǫ̂ i + η − ξ, where ρ > 0 and ξ ∈ (0, η), contradicting the assumption that Φi is not
connected.

To see that this is a profitable deviation, we consider the following three possible cases of
whether generator j is marginal or inframarginal before and after the deviation. First, if generator j is
inframarginal before and after the deviation, there is no profit change if it receives energy payments.
Otherwise, if it receives make-whole payments its profits increase by at least (η − ξ)K . Second, if
generator j is marginal before and after the deviation, its profits increase by at least (η−ξ)lr . Finally,
if generator j is inframarginal before the deviation and marginal after the deviation, its profits change
by at most (ǫ̂ i − c)(lr − K ) + (η − ξ)lr + ρK . Thus, generator j only stands to have a profit loss
in the third case. However, ρ can be chosen to make the probability of this event arbitrarily close to
zero. �
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Proof of Lemma 11. Assume for contradiction that ǫ+
i
< ǫ+

j
. Generator i could deviate profitably

by moving the density that is assigned to the interval, (ǫ+
i
− η, ǫ+

i
], with η > 0 sufficiently small, to

ǫ+
j
− ρ, with ǫ+

j
− ρ > ǫ+

i
. By doing so, generator i increases its expected profits without decreasing

the probability that it is an inframarginal generator. This contradiction shows that the supremum
energy offers must be equal. �

Proof of Lemma 12. There are only mixed-strategy Nash equilibria in a high-demand state under
a centrally committed market design. Moreover, we have that Φ1 = Φ2 = · · · = ΦN . Thus, each
generator has a strictly positive probability of being the marginal generator. From Lemma 2 we
know that the marginal generator’s profit is strictly increasing in σM . Moreover, the profits of the
inframarginal generators are non-decreasing in σI . Finally, we know that the assignment of the
N generators to being marginal or inframarginal does not depend on the values of σ1 = σ2 = · · · =

σN in a high-demand state. Thus, it is expected-profit-maximizing for each generator to submit the
highest possible value for the start-up cost, σ̄, in its offer. �

Proof of Proposition 3. We begin by assuming that all of generator i’s rivals follow the symmetric
equilibrium that is given by the probability density function, f (ǫ ), and the associated cumulative
distribution function, F (ǫ ). We can write generator i’s expected profit, as a function of its own offer,
ǫ i , as:

E[πc
i

(ǫ i )] = F (ǫ i )
N−1[σ̄ − S + (ǫ i − c)lr ]

+
[

F (ǫ i + σ̄/K )N−1 − F (ǫ i )
N−1

]

[σ̄ − S + (ǫ i − c)K]

+

∫ ǭ

ǫi+σ̄/K

[−S + (ǫmax
−i − c)K]d

(

F (ǫmax
−i )N−1

)

= F (ǫ i )
N−1[σ̄ − S + (ǫ i − c)lr ] (33)

+
[

F (ǫ i + σ̄/K )N−1 − F (ǫ i )
N−1

]

[σ̄ − S + (ǫ i − c)K]

+

∫ ǭ

ǫi+σ̄/K

[−S + (ǫmax
−i − c)K](N − 1)F (ǫmax

−i )N−2 f (ǫmax
−i )dǫmax

−i ,

where ǫmax
−i

represents the maximum energy offer of generator i’s rivals.
The first-order necessary condition (FONC) for maximizing (33) with respect to ǫ i can be

written as:

f (ǫ i ) =
1

N − 1

[

F (ǫ i )
c − ǫ i

+
F (ǫ i + σ̄/K )N−1K

(l − NK )(c − ǫ i )F (ǫ i )N−2

]

. (34)

Finally, because we are assuming a symmetric equilibrium, we drop the subscript, i, which gives the
desired delay differential equation. �

Proof of Lemma 13. Assume for contradiction that ǫ+1 = ǫ
+
2 = · · · = ǫ

+
N
= ǫ+ < ǭ in a Nash

equilibrium. Then generator i has a profitable deviation in which it moves the density that is assigned
to the interval, (ǫ+ − η, ǫ+], where η > 0, to the energy offer, ǭ , contradicting the assumption of a
Nash equilibrium in which ǫ+ < ǭ .

To see that this is a profitable deviation, we consider the following three possible cases of
whether generator i is marginal or inframarginal before and after the deviation. First, if generator i

is inframarginal before and after the deviation, there is no change in its profits if it receives energy
payments. Otherwise, if it receives make-whole payments its profits increase by at least (ǭ − ǫ+)K .
Second, if generator i is marginal before and after the deviation, its profits increase by at least (ǭ −
ǫ+)lr . Finally, if generator i is inframarginal before the deviation and marginal after the deviation,
its profits change by at most (ǭ − c)lr − (ǫ+ − c)K . Thus, generator i only stands to have a profit loss
in the third case. However, η can be chosen to make the probability of this event arbitrarily close to
zero. �
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Proof of Proposition 4. From (33) we have that generator i earns an expected profit of:

E[πc
i

(ǭ )] = F (ǭ )N−1[σ̄ − S + (ǭ − c)lr ] (35)

+
[

F (ǭ + σ̄/K )N−1 − F (ǭ )N−1
]

[σ̄ − S + (ǭ − c)K]

+

∫ ǭ

ǭ+σ̄/K

[−S + (ǫmax
−i − c)K](N − 1)F (ǫmax

−i )N−2 f (ǫmax
−i )dǫmax

−i (36)

= σ̄ − S + (ǭ − c)lr , (37)

if it submits an energy offer that is equal to ǭ . Because the mixed strategies constitute a Nash
equilibrium, all energy offers in Φ must yield the same expected profit for each generator. Thus, we
have that E[πc

i
(ǫ )] = σ̄ − S + (ǭ − c)lr ,∀ǫ ∈ Φ, i = 1, . . . , N , showing the desired result. �

6.2.2 Proof of Propositions and Lemmata from Section 3.2

Proof of Proposition 5. Without loss of generality, assume that the generators are labeled so that
δ1 ≤ δ2 ≤ · · · ≤ δN . Because we are in a weak low-demand state, we know that generator 1 is the
unique generator, which is dispatched to produce l MW, and its profits are −S + (δ1 − c)l.

First, assume for contradiction that δ1 < c + S/l. In this case, generator 1’s profits are
negative and it has a profitable deviation in which it submits an offer that is strictly greater than δ2.
Doing so makes generator 1 inactive and its profits zero. Thus, we have a contradiction showing that
in an equilibrium, all generators submit offers satisfying (26).

Next, assume for contradiction that δ1 > c + S/l. In this case, generator 1’s profits are
strictly positive and all of generators 2 through N have profitable deviations in which they undercut
slightly δ1. Doing so results in the deviating generator becoming the unique generator (in place of
generator 1) and earning strictly positive profits. This contradiction shows that in an equilibrium,
inequality (26) must be binding for at least one generator.

To show that (26) must be binding for at least two generators, assume for contradiction that
δ1 = c+ S/l while δ2 > c+ S/l. In this case generator 1 earns zero profits. However, generator 1 has
a profitable deviation in which it increases it offer to undercut generator 2’s offer slightly. Doing so
allows generator 1 to remain the unique generator but earn strictly positive profits. This contradiction
shows that in an equilibrium at least two generators must submit offers that make (26) binding.

Finally, we have that the unique generator exactly breaks even and earns zero profits. More-
over, because the remaining generators are inactive, they earn zero profits as well. �

Proof of Proposition 6. Without loss of generality, assume that the generators are labeled so that
δ1 ≤ δ2 ≤ · · · ≤ δN . Because we are in a regular low-demand state, we know that generators 1
through (Nl −1) are inframarginal and dispatched to produce K MW, while generator Nl is marginal
and produces lr < K .

First, assume for contradiction that δNl
< c + S/lr . In this case, generator Nl ’s profits

are negative and it has a profitable deviation in which it submits an offer that is strictly greater than
δNl+1. Doing so makes generator Nl inactive and its profits zero. Thus, we have a contradiction
showing that in an equilibrium δNl

, δNl+1, . . . , δN must satisfy (28).
Next, assume for contradiction that δNl

> c + S/lr . In this case, generator Nl ’s profits
are strictly positive and all of generators (Nl + 1) through N have profitable deviations in which
generator i > Nl undercuts slightly generator Nl ’s offer. Doing so results in generator i becoming
marginal (in place of generator Nl ) and earning strictly positive profits. This contradiction shows
that in an equilibrium, inequality (28) must be binding for at least one generator.

To show that (28) must be binding for at least two generators, assume for contradiction that
δNl
= c + S/lr while δNl+1 > c + S/lr . In this case, generator Nl earns zero profits. However, this

generator has a profitable deviation in which it increases its offer to undercut slightly generator (Nl +

1)’s offer. Doing so allows generator Nl to remain marginal but earn strictly positive profits. This
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contradiction shows that in an equilibrium at least two generators must submit offers that make (28)
binding.

To derive (27), assume for contradiction that c+S/K < δNl−1. In this case, generator Nl has
a profitable deviation in which it undercuts generator (Nl − 1)’s offer. Doing so makes generator Nl

inframarginal and generator (Nl − 1) marginal. Moreover, the energy price under this deviation
is ps = δNl−1 > c + S/K . This means that generator Nl ’s profits are −S + (δNl−1 − c)K >

−S + (c + S/K − c)K > 0, after the deviation. Thus, we have a contradiction showing that in an
equilibrium, δ1, δ2, . . . , δNl−1 must satisfy (27).

Finally, we have that the inactive generators earn zero profits, because they produce nothing.
The marginal generator also earns zero profit, because the energy price is exactly high enough for
it to recover its costs. The profits of each inframarginal generator are equal to −S + (δNl

− c)K =

−S + (c + S/lr − c)K = S · (K/lr − 1) > 0, because lr < K . �

Proof of Proposition 7. Without loss of generality, assume that the generators are labeled so that
δ1 ≤ δ2 ≤ · · · ≤ δN . Because we are examining a high-demand state, we know that generators 1
through (N − 1) are inframarginal and dispatched to produce K MW, while generator N is marginal
and produces lr < K , and that the energy price is δN .

First, we show that generator N does not have a profitable deviation. If generator N sub-
mits an offer less than δN but greater than δN−1, it remains the marginal generator and its profits
decrease strictly because the energy price decreases. Next, consider a deviation in which generator N

undercuts one of the other generators. In such an instance, it becomes an inframarginal generator
and the energy price is at most (δ̄ − c)lr /K + c. Thus, its profits after this deviation are at most
−S + [(δ̄ − c)lr/K + c − c]K = −S + (δ̄ − c)lr . However, its profits before the deviation are
−S + (δ̄ − c)lr , which is non-negative by assumption. This means that the marginal generator does
not have a profitable deviation in which it undercuts the offer of an inframarginal generator.

Thus, this shows that the marginal generator must submit an offer equal to δ̄ in a pure-
strategy Nash equilibrium. Moreover, we can conclude that the inframarginal generators must submit
offers no greater than (δ̄ − c)lr /K + c for the marginal generator not to have a profitable deviation.
We have finally that the profits of inframarginal generators are −S + (δ̄ − c)K > 0. �

Proof of Lemma 14. Assume for contradiction that δ−
i
< δ−

j
. In such a case, generator i has a prof-

itable deviation wherein it moves the density that is assigned to the interval, [δ−
i
, δ−

j
), to δ−

j
− η with

η > 0 sufficiently small. By doing so, generator i increases its expected profit without decreasing
the probability that it is an inframarginal generator. Thus, we have a contradiction showing that the
infimum energy offers must be equal in a mixed-strategy Nash equilibrium. �

Proof of Lemma 15. Assume for contradiction that Gi (δi ) has a mass point, which we denote as δ̂i .
There exist η > 0 and ρ > 0 such that some generator j , i can deviate profitably by moving the
density that is assigned to the interval, [δ̂i , δ̂i + η), to the offer, δ̂i − ρ, contradicting the assumption
of an equilibrium mass point.

To see that this is a profitable deviation, we consider the following three possible cases of
whether generator j is marginal or inframarginal before and after the deviation. First, if generator j is
inframarginal before and after the deviation, there is no profit loss. Second, if generator j is marginal
before and after the deviation, there is a profit loss of at most (η + ρ)K . Finally, if generator j is
marginal before the deviation and inframarginal after the deviation, its profit increases by at least
(δ̂i − c)(K − lr ) − ρK − ηlr . For η and ρ sufficiently small, the profit increase in the third case
outweighs the profit losses in the second. �

Proof of Lemma 16. Assume for contradiction that there exists an interval, [δ̂i , δ̂i + η], with η > 0,
on which generator i places zero density in a mixed-strategy Nash equilibrium. Generator j , i has a
profitable deviation in which the density that it assigns to the interval, (δ̂i − ρ, δ̂i ), is assigned to the
offer, δ̂i + η − ξ, where ρ > 0 and ξ ∈ (0, η), contradicting the assumption that Ψi is not connected.

To see that this is a profitable deviation, we consider the following three possible cases of
whether generator j is marginal or inframarginal before and after the deviation. First, if generator j
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is inframarginal before and after the deviation, there is no profit change. Second, if generator j is
marginal before and after the deviation, its profits increase by at least (η−ξ)lr . Finally, if generator j

is inframarginal before the deviation and marginal after the deviation, its profits change by at most
(δ̂i − c)(lr − K ) + (η − ξ)lr + ρK . Thus, generator j only stands to have a profit loss in the third
case. However, ρ can be chosen to make the probability of this event arbitrarily close to zero. �

Proof of Lemma 17. To first show that the supremum energy offers are the same, we assume,
for contradiction, that δ+

i
< δ+

j
. Generator i could deviate profitably by moving the density that it

assigns to the interval, (δ+
i
− η, δ+

i
], with η > 0 sufficiently small, to δ+

j
− ρ with δ+

j
− ρ > δ+

i
. By

doing so, generator i increases its expected profits without decreasing the probability that it is an
inframarginal generator. This contradiction demonstrates that the supremum energy offers must be
equal.

To show that the supremum energy offers equal δ̄, we assume, for contradiction, that δ+1 =
δ+2 = . . . = δ

+
N
= δ+ < δ̄ in a Nash equilibrium. Generator i has a profitable deviation in which it

moves the density that is assigned to the interval, (δ+ − η, δ+], where η > 0, to the energy offer, δ̄,
contradicting the assumption of a Nash equilibrium in which δ+ < δ̄.

To see that this is a profitable deviation, we consider the following three possible cases of
whether generator i is marginal or inframarginal before and after the deviation. First, if generator i is
inframarginal before and after the deviation, there is no change in its profits. Second, if generator i

is marginal before and after the deviation, its profits increase by at least (δ̄ − δ+)lr . Finally, if
generator i is inframarginal before the deviation and marginal after the deviation, its profits change
by at most (δ̄ − c)lr − (δ+ − c)K . Thus, generator i only stands to have a profit loss in the third case.
However, η can be chosen to make the probability of this event arbitrarily close to zero. �

Proof of Proposition 8. We assume that all of generator i’s rivals follow the symmetric equilibrium
that is given by the probability density function, g(δ), and the cumulative distribution function, G(δ).
Thus, generator i’s expected profit, as a function of its offer, δi , is given by:

E[πs
i
(δi )] = G(δi )

N−1[−S + (δi − c)lr ] +
∫ δ̄

δi

[−S + (δmax
−i − c)K]d

(

G(δmax
−i )N−1

)

, (38)

where δmax
−i

represents the maximum offer of generator i’s rivals. Differentiating (38) with respect
to δi gives the FONC for generator i’s profit-maximizing offer, which can be written as g(δi ) −
λG(δi )/(δi − c) = 0, where λ is given by (30). Because we assume a symmetric equilibrium, we
can eliminate the subscripts, giving:

g(δ) − λ
G(δ)
δ − c

= 0. (39)

Differential equation (39) can be solved explicitly by defining the integrating factor:

µ(δ) = exp

(

−

∫ δ

a

λ

x − c
dx

)

=

(

δ − c

a − c

)

−λ

, (40)

where a is an arbitrary constant. Multiplying both sides of (39) by µ(δ) gives:

(

δ − c

a − c

)

−λ

g(δ) −

(

δ − c

a − c

)

−λ

λ
G(δ)
δ − c

= 0. (41)

Integrating the left-hand side of this equation with respect to δ gives:

(

δ − c

a − c

)

−λ

G(δ) − b = 0, (42)
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where b is the constant of integration. Thus, we have that:

G(δ) = b ·

(

δ − c

a − c

)λ

. (43)

Because we know that G(δ̄) = 1, we have that:

b =

(

a − c

δ̄ − c

)λ

, (44)

which gives the desired result when substituted into (43). �

Proof of Proposition 9. From (38) we have that generator i earns an expected profit of:

E[πs
i
(δ̄)] = G(δ̄)N−1[−S+(δ̄−c)lr ]+

∫ δ̄

δ̄

[−S+(δmax
−i −c)K]d

(

G(δmax
−i )N−1

)

= −S+(δ̄−c)lr , (45)

if it submits an offer equal to δ̄. Because the mixed strategies constitute a Nash equilibrium, all
offers in Ψ must yield the same expected profit for all generators. Thus, we have that E[πs

i
(δ)] =

−S + (δ̄ − c)lr , ∀δ ∈ Ψ, i = 1, . . . , N , which is the desired result. �

6.3 Proof of Propositions and Corollary from Section 4

Proof of Proposition 10. This result follows immediately from Propositions 1 and 5, which show
that all generators earn zero profits under both market designs in weak low-demand states. �

Proof of Proposition 11. From Lemma 6 we know that in regular low-demand states there are pure-
strategy Nash equilibria under a centrally committed market design in which all generators earn
zero profits. On the other hand, we know from Proposition 6 that in a regular low-demand state the
set of pure-strategy Nash equilibria under a self-committed market design results in inframarginal
generators earning strictly positive profits. Thus, cost equivalence fails to hold. �

Proof of Proposition 12. From Propositions 4 and 9, respectively, we have that expected generator
profits in high-demand states are E[πc] = σ̄ − S + (ǭ − c)lr , under a centrally committed market
design and E[πs] = −S + (δ̄ − c)lr , if generators follow mixed-strategy Nash equilibria under a self-
committed market design. Expected-cost-equivalence would require the expectation (with respect to
lr ) of these two terms to be equal, or:

El [E[πc]|l > (N − 1)K] = El [E[πs]|l > (N − 1)K] (46)

σ̄ − S + (ǭ − c)E[lr |l > (N − 1)K] = −S + (δ̄ − c)E[lr |l > (N − 1)K], (47)

which is the equality in Assumption 1. �

Proof of Corollary 3. From Proposition 7 we know that if generators follow a pure-strategy Nash
equilibrium under a self-committed market design the energy price is equal to δ̄. We know also
from Proposition 8 that if the generators follow a mixed-strategy Nash equilibrium under a self-
committed market design there is a non-zero probability that they submit energy offers that are
strictly less than δ̄ (meaning that the energy price is less than δ̄). Because the mixed-strategy Nash
equilibrium under a self-committed market design is expected-cost-equivalent to the mixed-strategy
Nash equilibrium under a centrally committed market design, it must be the case that the pure-
strategy Nash equilibrium under a self-committed market design is more costly. �
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