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Abstract We compare two types of uniform-price auction formats cominosed
in wholesale electricity markets—centrally committed aedf-committed markets.
Auctions in both markets are conducted by an independeteraysperator that col-
lects generator bids and determines which generators pétaie and how much
electricity each will produce. In centrally committed merk generators submit two-
part bids consisting of a startup cost and a variable enargly 8elf-committed mar-
kets force generators to incorporate their startup cotdsaimne-part energy bid. The
system operator in a centrally committed system ensurés#éth generator recovers
the startup and energy costs stated in its two-part bid,entol such guarantees are
made in self-committed markets. The energy cost rankingracehtive properties of
these market designs remains an open question. While thensysperator can de-
termine the most efficient dispatch with a centralized miatke auction mechanism
used to solicit generator data compels generators to etersosts. Self commit-
ment might involve less efficient dispatch but have betteeiriive properties. We
derive Nash equilibria for both market designs in a symroettiopoly setting. We
also derive simple conditions under which the two marketgiesswill be expected
cost-equivalent.
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1 Introduction

Wholesale electricity markets facilitate the trade of &leity across a system of
transmission lines. Such markets often use uniform-pricdiens to determine the
price of electricity, and the generators that submit theelsiwbids, or equivalently
offer to produce electricity at the lowest price, are selddb produce electricity. The
two key outcomes of the auction process are generator cananit(which gener-
ators startup), and generator dispatch (the amount ofrigiégteach generator pro-
duces). Independent system operators (SOs) conduct tfermrnprice auctions re-
peatedly throughout the day.

A debate exists as to which entity, the SO or the generaterasblves, should
make these decisions. In centrally committed markets, rgéors submit two-part
bids, subject to offer caps, and the SO makes the commitmeidiapatch decisions
and guarantees that each generator recovers the startastaded in its energy offer.
This guarantee is made through a make-whole payment, whichupplemental pay-
ment given to a generator for any deficit between its as-tstlaod energy payments.
In a self-committed market each generator makes its own doment decision and
submits a single-part bid for energy, also subject to arr ofip, and must incorporate
its startup costs into this bitl.

An unresolved issue in wholesale electricity market deaigghregulation is what
equilibrium bidding behavior, the total cost of electrjcgervice, and system effi-
ciency would be under central and self commitment. Thisgregiuestion is impor-
tant, given the considerable size of the markeTie revenues in these markets also
have significant implications for investment in new generatapacity, which deter-
mines the future electricity costs. The debate over the takat designs centers on
the tradeoff between efficient dispatch and commitment,gerekrator incentives to
truthfully reveal startup and energy costsuff (1994)Hogan (1994 Hogan (1995)
Hunt (2002) support centrally committed markets because they givestBewhich
has the best information about the electric system as a wth@euthority to make
both commitment and dispatch decisions. Howevergeh and Ross (20058how
that generators can have incentives to misstate their tosterease profit if the
SO collects multi-part bids. Moreoveridhnson et al (199,/3ioshansi et al (200B)
claim that incentive compatibility issues in a centrallyronitted market can be fur-
ther exacerbated if the SO must rely on suboptimal solutiorits unit commitment
model. As such,\[Vilson (1997)Elmaghraby and Oren (199%uggest that commit-
ment decisions are ultimately more efficient in self-contedtmarkets.

Despite the various claims about the two market designs, itieentive proper-
ties have not been directly compared. To this end, we deekipgle-period sym-
metric duopoly model of two markets: a centrally committedrket with two-part
offers (energy and startup); and a self-committed markit ane-part offers (energy
only). By analyzing the market as a uniform-price auctiothvgiystem-wide caps on

1 Some electricity markets operate as a hybrid between thelésigns highlighted here. For instance,
the New York ISO incorporates some non-convex costs, sustaasip costs, into the energy price.

2 According to their 2007 Annual Reports, the sum of wholesalesactions in 2007 were: $30.5 billion
in PJM Interconnection, $9.5 billion in New York ISO, $10liwih in ISO New England, and $1.9 billion
in ERCOT.
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each bid element, we are able to characterize Nash eqailibgach market. We fur-
ther derive conditions on the offer caps in the two markeas will yield expected
cost equivalence between the two market designs. We alsa nsmerical example
to demonstrate and compare the nature of the equilibriasofvtlo markets. The re-
mainder of the paper is organized as follows: secfidescribes our model, sectién
derives our equilibrium and cost-equivalence resultdj@ed presents our numerical
example, and sectidhconcludes and discusses some regulatory implicationsrof ou
model and analysis. It is important to stress, and this isudised further in sectids
that the model we use to analyze the unit commitment aucsi@highly stylized
representation of actual electricity markets. Thus thiskwahould be viewed as an
exploratory analysis of these types of markets.

2 Model

Two identical generators compete in a uniform-price auctmserve a deterministic
load, |, that is commonly known and must be served exactly. The géorsreach
have capacity constraints > 0 on their generation. Each generator incurs a fixed
startup cos6> 0 and a constant marginal generating cost,0. The capacity of the
two generators is assumed to always be sufficient to sentedteor that 6< | < 2K.
Thus the cost to each firm of generatiplylWh is:

0, forq=0;
C(g)=4 cq+S for0<q<K;
4o, forqgq> K.

2.1 Centrally Committed Market

Under a centrally committed market, each generator sutanhitd with two elements,

an energy offerg, that specifies a marginal generating cost, and a fixed ptadst,

o, that is incurred if any positive quantity of electricity jsoduced. We lety =
(&,01) denote generatois bid. We assume that both bid components must be non-
negative, and that there are capsando™, on the two components.

The SO then uses a mixed-integer program (MIP) to deterrhimedmmitment
and dispatch of each generator based on the two sets of big dfefineu; andu,
to be a binary variables indicating whether each generastaited up and; andgp
to be continuous variables indicating how much each enesggigtor produces, the
SO’s MIP is:

2
min i;(um + &)

2
s.t. i;qi =1

0<g<uK Vi=12
u€{0,1} vi=12.
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If | <K only one generator needs to be committed and dispatchedv® Isad,
which will be the one with the bid that producke$/Wh at lowest total cost. The
expected quantity sold by generatds thus given by:

min{l,K}, if gi+1g < gj+lg andl <K;
of(w,wj,l) = ¢ $min{l,K}, if g +1g = gj + ¢ andl <K;
0, if g +1g > gj+lgj andl <K;

and the uniform price of energy is set based oretbéthe generator that is committed
and dispatched. We assume that ties are broken with equasipifity. Conversely if
| > K, both generators must be committed and dispatched and @&mgitysold by the
generators will be based on energy cost only. Thus genéaimtxpected production
is:

K, if & <¢gjandl > K;

of(w,wj,l)=1¢ 3, if §=¢ andl >K;
| - K, if & > g andl > K;

and the uniform energy price = max{&;, ¢; }.

In both cases, the generators receive energy paymer$(w , wj,|). However,
the generators have non-convex costs due to their starstpsmthese energy pay-
ments alone may be confiscatory. The only information the &0dbout the costs of
the generators is their ‘as-bid’ costsdn and the SO uses this information to ensure
that no generator operates at a loss according to the bidexiample, suppose that
| <K and generator 1 wins the uniform-price auction. Hegfice | andp = &;, how-
ever the net profit to generator 1, on the basis of its bidg-se1)q] — 01 = —01 <0.

Most centrally committed wholesale electricity marketgmome this problem
by giving generators supplemental ‘make-whole’ paymenttéch cover any revenue
shortfall based on the costs specified in each generatdr’¢bhe uniform price ig
and a generator is committed and dispatched to progub®Vh, its total payment,
T;, from the SO is the sum of an energy payment and a make-whypieqra, W :

Ti=pog+W
= p-of + max0,0;+ o (& —p)},

which ensures that each generator recovers all of its castbjd. We assume the
centrally committed market includes such a make-whole atrprovision.

2.2 Self-Committed Market

In a self-committed market each generator submits a sipgtebid,d, which spec-
ifies the minimum price it is willing to accept to generate a M\&f energy. The
generators decide independently whether to commit thereselnd the SO does not
provide make-whole payment$jowever a dispatched generator is financially liable
for serving its scheduled load. As before, we assume thagnieegy bids must be

3 As we noted before, some markets, such as the New York ISOpatwriorate non-convex startup
costs into the energy price.
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non-negative and that there is a cé&p, below which the bids must be. Given the
bids, the SO uses a uniform-price auction to dispatch thergeors to serve the load
at least cost and set the uniform energy price. Thus, geéimdispatch is given

by:

min{I,K}, if & < 5],;
OF(&.85.1) = ¢ Amin{l.K} +max0.l ~K}] =31, f 6 =8; (1
maX{l—K,O}, if d >6J'

and the uniform price is:

[ min{&,9;}, if | <K;
P= max{&, o}, if | > K.

3 Market Equilibria

In both markets, there will be different types of equilibdapending on whether
the load can be served by a single generator or both genem@mneeded. If only
one generator is needed, then under both market designaueittyle competition
will drive the market to perfectly competitive pure-stiggeNash equilibria with zero
generator profits. If both generators are needed the gengratofits will be strictly
positive in equilibrium. In this case the centrally committmarket will only have
mixed-strategy Nash equilibria, whereas the self-conemitharket will have both
pure- and mixed-strategy equilibria. Moreover, the purategy equilibria in the self-
committed market will always be more costly to the SO thamthed-strategy equi-
libria. We proceed by analyzing each market design undesethgo load scenarios
separately.

In examining these scenarios, for cases in whiehK and only one generator
is committed, the committed generator will be referred tah@sunique generatqr
and its bid, payments, and profit will be denoted with the stips U. Whenl > K
and both generators are needed, we refer to the unit disgghetHull capacity as the
inframarginal generatorand the unit dispatched below its capacity asrtreginal
generator and denote their bids, payments, and profits by the sultsdripndM,
respectively.

3.1 Centrally Committed Market Equilibrium

We begin the analysis of the centrally committed market aratterizing the total
payments to the generators under the two load scenarios.

Lemma 1 In a centrally committed market with< K, the total payment to the
unigue generator will beJ = gyl + ay.

If I > K, both generators will produce a strictly positive amouentd the total
payment to the marginal generator will b eu (I — K) + om and the total pay-
ment to the inframarginal generator will be £ maxevK, K+ g }.
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Proof Whenl < K the unique generator will be dispatched to serve the emtae,l,
and the uniform price for energy [3= &y. Since the startup cost in its offer is non-
negative gy > 0, the unique generator’s surplus from energy paymentgdicgpto
as-bid costs igyl — (&ul + oy) < 0. Thus the make-whole payment will b, =
max{0,0y +1(eu — &)} = ou. Hence, the unique generator’s total paymetis=
eyl +ou.

Whenl > K the marginal generator will be dispatched to s€iveK) units of the
load and the uniform price ip = &u. Again, sincegy > 0, the marginal generator’s
as-bid surplus from energy payments will be non-posititiestthe total payments
will be the sum of energy and make-whole payment, héfige= ev (I — K) + ou,
where the make-whole paymeniig, = au.

Moreover, because of the make-whole provision, the SO wiluee the infra-
marginal generator’s as-bid surplus is nfiéegs — & )K — g7,0}. If max{(ew — & )K —
01,0} = (em — &)K — g, theneyK > K + i and the total payment to the infra-
marginal generator is simply the energy paymenk, because the energy payment
alone is sufficient to cover the inframarginal generata&iid) startup and variable
operating costs. Otherwise, if mgbem — & )K — 07,0} = 0 theneyK < K + g,
and the total payment to the inframarginal generator is:

T = pK+W
= euK+max{0,0 +K(& —&m)}
=&gK+0,

which is the desired expression.

Having characterized generator payments under the cntoahmitted market,
we now prove the following result, which gives the set of Naghilibria when only
one of the generators is needed to serve the load.

Proposition 1 If | <K, the unique set of pure-strategy Nash equilibria of the-cen
trally committed market consists of offers such twat B fori= 1,2, where B is the
set:

B={(¢,0)€R?| el +o=cl+S e€[0,e"], ando € [0,0"]},

and each generator has an expected profit of zero.

Proof Given thatl < K, the SO only needs to commit and dispatch one generator
and the SO does so in the least-costly way. Thus, the SO sé¢lecgenerator with
the lowest total cost. The dispatch is determined by theingnif these costs, which

for simplicity we refer to a®; = &l + o; for i = 1,2. This game is thus isomorphic

to a simple Bertrand game, but in this case, each generdioritsua total cosb; =

&l + gi. The total cost of each generatby,is such thab; = cl + Sfori = 1,2 and
generators earn zero profit in equilibrium. Clearly, thex® manyw that belong to

the seB but all vectors are payoff-equivalentbecause they restiits same expected
commitment, dispatch, and profits. Moreover, since thd tuist of the offers equal
actual costs, expected profits are zero in equilibrium.
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We now turn to the case in whidh> K and both generators must be commit-
ted and dispatched to serve the load. Since both generatstdi® committed, their
startup costs must be borne, thus the optimal commitmendigpdtch decisions will
be made purely on the basis of each generator’s energy &ffss,we show in the fol-
lowing lemmas and propositions, this characteristic of ptneum, coupled with the
generators’ binding capacity constraints, eliminatesibssibility of a pure-strategy
Nash equilibrium in the bidding game. As such, we assumetligagenerators fol-
low mixed-strategy equilibria. This, in turn, implies thesich generator has a strictly
positive probability of receiving make-whole paymentg] as such each generators’
expected profit function is a non-decreasing function okftstup bid. Thus, each
generator will submit an offer with a startup cost equal ®startup offer capg*.

Proposition 2 If | > K, no pure-strategy Nash equilibria exist in the centralbne
mitted market.

Proof Suppos€§, i), fori = 1,2, constitute a pure-strategy Nash equilibrium, and
assume without loss of generality that the generators haee kabeled such that
& < &.
Suppose first tha; < €. Then generator 1 is the inframarginal generator and its
profit is:
Iy = max{&K, &K + &} —cK—S.

If max{&K, &K + 01} = &K + 07 then generator 1 can profitably deviate by chang-
ing the energy portion of its offer t&; = & — n, with n > 0 and small, since its
profits are increasing igy. If, instead, max&;K, &K + 61} = &K then generator 1
can profitably deviate by changing its offer (&, 1) such that; = & — n, with
n > 0 and small, and; > 0 and sufficiently large, so that mggsK, &K + 61} =
&K + 61 > &K.

Suppose instead thét = &, = e. Then both generators’ expected profits are given
by:
E[T] = %I(e—c)+0i -S
Supposee < ¢, then either generator can profitably deviate by submitéingffer
with a higherg;, since this will guarantee it a strictly positive margin areggy sold
whereas an offer aof gives it a non-positive margin. Otherwisegif> c, either gen-
erator can profitably deviate by submitting an energy offefi e= e—n, withn > 0
and small. This gives generatioan expected profit of:

E[ll] = (e—c)K+a —S,

which is greater thaf[[T;] for n sufficiently small, sinc& > %I.

Having ruled-out pure-strategy Nash equilibria, we will (&, 0;) denote the
cumulative distribution function (CDF) of generats mixed-strategy Nash equilib-
rium, let @, denote the support &%, and letg; andg; denote the infimum and supre-
mum energy offers, respectively, . We also defingb = &, &, as the common
support of the two CDFs. We show in the following lemmas thatange of energy
offers in ®; and @,, must intersect, and as such generators will always sulmit t
highest possible startup cost.
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Lemma 2 If | > K, then the infimum energy offers in a Nash equilibrium areadqu

Proof Suppose that the infimum energy bids of the two generatdiex diif equilib-
rium and that the generators are labeled suchethate,. Generator 1 has a profitable
deviation because it can move all of the density in the ity , £,), to £, — n for

n > 0 small, as doing so increases generator 1's expected pndfd@es not change
the probability that it is the inframarginal generator.

We further characterize equilibrium CDFs by showing thaytbannot have mass
points on their common support and tht and @, are connected and have a com-
mon supremum.

Lemma 3 If| > K, then neither Fnor F, can have a mass point ah.

Proof Suppose for contradiction that there i€ & ® which is a mass point df.
Then there exist) > 0 andp > 0 such that generatgr would have a profitable
deviation by moving the density assigned to the intef&a + n) to € — p, since the
profit from offers in the intervalg, € + n) is at most:

(E+n—-c(—-K)+0;—-S
and the profit from an offer of — p is:
(E—c)K+0;—-S

which is greater fon sufficiently small, contradicting the assumption of a masatp
in an equilibrium.

Lemma4 If| > K, thend; is a connected set (interval) for both generators.

Proof Suppose for contradiction that there is an intefgak + n], with n > 0 on
which generator places zero density. Consider a deviation by geneljatdrerein it
moves the density assigned to the inteii&al- p, &) to an energy offer of +n — &,
with p > 0 andn > & > 0. We can bound the change in genergt®expected profits
depending on whether it would be the marginal or inframaagenerator with the
original strategy and deviation:

— If generatorj is the inframarginal generator and would have been the-infra
marginal generator without deviating, its expected profitseither increase by
at least(n — &)K if it receives make-whole payments or not change if it dods no
receive make-whole payments.

— If generatorj is the marginal generator and would have been the marginarge
tor without deviating, the deviation will increase the jgrief energy and generator
j's expected profits will increase by at ledgt— &) (1 — K).

— If generatorj is the marginal generator but would have been the inframalgi
generator without deviating, its expected profits will chay at mostg + n —
&)(I—K) —EK.
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Thus, the only cost to generatpinvolves situations where it would have been
the inframarginal generator without deviating but becothesmarginal generator as
a result of deviating. Howevegy can be chosen to make the probability of this event
arbitrarily close to zero.

Lemma 5 Ifl > K, then the supremum energy offers in a Nash equilibrium quak

Proof Suppose the suprema are different such #hat ;. Generatoi has a prof-
itable deviation, which is to move some density from therivag(g; — n, ;] for some
smalln > 0, just belowg;j. Doing so increases generatsrexpected profit without
decreasing the probability that generatwill be the inframarginal generator, as there
is no density in the intervdE;j,€;).

Lemma 6 If | > K, then in equilibrium each generator submits the maximusspo
ble startup cost in its offer. That isy = g, = g*, almost surely.

Proof Because there are only mixed-strategy Nash equilibria@ne= @,, each
generator has a strictly positive probability of being tharginal generator. Since
the payoff to the marginal generator is strictly increasimgr, the payoff to the
inframarginal generator is non-decreasinginand the value o0& does not impact
the dispatch of the generators, it is optimal to submit aaroffith g; = *.

The essence of Lemntais that because the SO’s dispatch depends solely on the
energy portion of the generators’ offers, the two-dimenalmffer problem (energy
and startup costs) collapses into a one-dimensional oftdri@m with only an energy
cost. Therefore, we will hereafter denote the equilibriuBDFS asFi(g). The next
step is to determinE; (&) by optimizing the profit function of the generators, which
are symmetric.

In order to find an equilibrium CDF, we first express genergsaxpected profit
as a function of its energy offeg;, assuming generatgrfollows the CDF,F (g;).

This expected profit is:

E[n(&)] = F(&)[(1 -K)(& —c)+ 0"~ §

+ [F(&+0"/K)—F(&)][(s —c)K+0*—9 2
+ /Eiim/K[(ej oK - SdF(g)).

The first term in equatior?j gives generatars expected profit conditional on being
the marginal generator, whereas the other two give the égp@cofit conditional on
being the inframarginal generator. The first-order neggssandition (FONC) for an
expected profit-maximizing choice efis:

f(&)(—2K)(&—c)+F(&)(I —2K)+F(§+0"/K)K =0,

which can be re-written as:

| _F(a)  F(a+07/KK
f(el)—c_gi+(|_2K)(C—8i)’
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or as:
_F(e)  F(e+0"/K)K
f(g)_c—e (I—2K)(c—¢)’

since the equilibrium is symmetric.

Equation B) is a differential difference equation (DDE) charactargza symmet-
ric Nash equilibrium energy offer density function. We camdfa particular solution
of the DDE if we specify an interval of boundary conditionswadith (o* /K). We do
this by showing that the common supremum of the Nash equilibCDFs must be
the offer capg™, which implies that () = 1 for all e > €*.

®)

Lemma 7 If| > K, then a Nash equilibrium energy offer density functiontrhase
E=¢"

Proof Suppose thaf < £* in an equilibrium. Then generatgrhas a profitable de-
viation whereby it moves the density assigned to the inteigza n,€) to an energy
offer of £*, with n > 0. We can bound the change in genergtsrexpected profits
depending on whether it would be the marginal or inframagenerator with the
original strategy and deviation:

— If generatorj is the inframarginal generator and would have been the-infra
marginal generator without deviating, its expected profitseither increase by
at least(e* — €)(I — K) if it receives make-whole payments or will not change if
it does not receive make-whole payments.

— If generatorj is the marginal generator and would have been the marginarge
tor without deviating, the deviation will increase the jgraf energy and generator
j’s expected profits will increase by at legst — €)(1 — K).

— If generatorj is the marginal generator but would have been the inframalgi
generator without deviating, its expected profits will charby at mose*(l —

K)— K.

Thus, the only cost to generatpinvolves situations where it would have been
the inframarginal generator without deviating but becothesmarginal generator as
a result of deviating. Howevear can be chosen to make the probability of this event
arbitrarily close to zero.

Because this is a mixed-strategy Nash equilibrium, all gneffers in the sup-
port of the equilibrium CDF must yield the two generatorsshene expected profit.
Because the equilibrium CDF has no mass point, we know thahargtor that sub-

mits the energy offer cap will necessarily be the marginakgator, and as such will
yield an expected profit of:

E[rC(e")] = (I =K)(¢* —¢c)+ 0" - S
We further know that any energy offer will yield the same estpd profit, or that:

E[rc(e)]=( -K)(e*—c)+0*—S Veec ®. 4)
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3.2 Self-Committed Market Equilibrium

With a self-committed market design, generators indepethdeecide whether to
commit themselves, and submit single-part energy ofters|0, 6*] to the uniform-
price auction conducted by the SO. The only revenue availbyenerators is the
energy paymeng - ¢?, wherep is the uniform electricity price angf is the quantity
sold in the self-committed market, as defined in equatldprifle assume the offer cap
is sufficiently high so that the generators can always recinr startup cost if they
bid 6*. Thus, ifl <K we assume thgd* —c)l > Sand ifl > K that(6* —c)(l —K) >

S. Otherwise, the market would not clear because one or bdtteafenerators would
choose not to participate.

We again proceed by analyzing equilibrium behavior depemndin whether one
generator or both are needed to serve the load. We first cartid case in which
only one generator must be dispatched, the energy offer imhwhill set the uniform
energy price. We can easily characterize this game as havBgrtrand-type Nash
equilibrium in which the generators’ expected profits arthlzero.

Proposition 3 If | <K, then the unique pure-strategy Nash equilibrium of thé sel
committed market is for each generator to oféer= &, = c+ S/I, with each gener-
ator having an expected profit of zero.

Proof The proof of this proposition follows that of Propositidr-sincel < K the
SO will only dispatch one generator, which the SO will selectthe basis of the
energy bids. Because the generators are competing on tisedb@sice without any
binding capacity constraints, the game is isomorphic to dr&ed-type game and
will have a Bertrand equilibrium.

We now turn to the case in whidh> K and both generators must be dispatched
to serve the load. The dispatch of the two generators will &erchined by their
energy offers. Again, the generator with the lower enerdgrafill be dispatched to
its capacityK, while the other generator will serve the residual lo@dd; K). Once
again, it is trivial to show that the uniform energy priceleifjual the energy offer of
the marginal generator. We now rely on a resultfefljra et al (200§ which shows
that this game can have either pure- or mixed-strategyiegailand also gives some
properties of the mixed-strategy equilibrium.

Proposition 4 If | > K, then the self-committed market will have both pure- and
mixed-strategy Nash equilibria. The pure-strategy Nastildxjia will be of the form

ou = 0%, < 9, for somed € (c,d0%). The mixed-strategy Nash equilibrium will be
unigue and symmetric, and have a differentiable distrinufunction and an atom-
less density function.

Proof The generators in this market are submitting energy bidsaniniform-price
auction with two capacity-constrained generatdrsijra et al (200§ show the exis-
tence of pure-strategy Nash equilibria (Proposition 1)thegroperties of the mixed-
strategy Nash equilibrium (Lemma 3). As such we do not refieaproofs.
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The pure-strategy Nash equilibria of this auction are et straightforward—
the marginal generator bids at the offer c&p, and the inframarginal generator sub-
mits a bid sufficiently low so that the marginal generatorma#centive to undercut
it. Moreover, the threshold valué, below which the inframarginal generator must
bid is easy to derive. To see this, note that the marginalrgéoes profit in the pure-
strategy equilibrium is:

(0" =01 -K)=§
whereas the maximum profit it can earn from deviating (by uoatéing the infra-
marginal generator) is:
(& —c)K-S.

The Nash equilibrium requires:
(8" —c)(I-K)=S> (8 —c)K-S§,
or

3 g(é*—c)l_TK+c:3.

Moreover, becausé —K)/K € (0,1) if | > K, we have thad € (c,0%). Finally, it
is important to note that under these pure-strategy Naslilatpithe energy price
will always be at the offer cag@*, regardless of the load (so longlas K). Thus the
profit of the inframarginal generator will be:

m=(8 - oK-S, 5)
while the profit of the marginal generator will be:
= (8 -c)-K)-S ©)

To find the mixed-strategy Nash equilibrium of the self-coitted market we
express the expected profit of generatas a function of its energy bid, assuming
generatorj bids according to the CDB(J;), and analyze the FONC. Generaisr
expected profit is given as:

B (@) = G(@) (1 -K)E-0) -5+ [ K(r-0-Sd6(r. (1)

The firstterm in equatiorvj is generator's expected profit conditional on it being the
marginal generator, while the integral term is genered@xpected profit conditional
on it being the inframarginal generator. The FONC for an efgubprofit-maximizing
choice ofd, which must hold for alb in the support ofG, is:

9(3)[(1 =K) (& —¢) =§+G(&) (I —K) —9(&)[K(d —¢) —§ =0,
which can be re-written as:

2K-D(E—0)

4 The superscriptM, on rqu is meant to denote the fact that this expected profit fundsdior the
mixed-strategy Nash equilibrium.

207
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or
G(d) _
9(5)—)\5TC =0, (8)
where we have dropped the subscripts, due to the symmetheafquilibrium, and
definedA = (I —K)/(2K —1I). The differential equatiorsj can be solved by defining

_[(d6—-cC A

~\a-c ’
wherea is an arbitrary constant. Multiplying both sides of equat{8) by u(5) and
integrating with respect té yields:

G(5) = bexp{/:%dr}

5—c\*
B b (—> ’
a—c
whereb is a constant of integration. In order to specify an exaaitgah to the differ-

ential equation we use the boundary condition that neiteretator has a mass point
at the supremum offed*, henceG(6*) = 1 which gives:

5 —c\? a—c\’ 5-c\’
b<a_c) _1=>b_(—6*_c) :G@_(_&_C) ,

which is the CDF of the mixed-strategy Nash equilibrium.

We can also derive expressions for the expected energyasfteexpected profit
of each generator under this mixed-strategy Nash equilioriThe expected energy
offer is derived by first determining the infimum energy oféerd then using the
property of mixed-strategy Nash equilibria that all offergdhe support must yield
the same expected profit. The infimum energy offeiis determined by solving the
equationG(9) = 0, which implies thad = c.

Next, the expected profit of each generator as a functiors difidt is given by:

5
E[mS(5)] = (I =K)(6 —¢)G(5) + K/s (n—c)dG(n)-S
More specifically, we have that:
E[mS(8%)] = (8" —¢)(1 =K) =S,

and:
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Equating these two terms gives:
(8" —0)(I — K) — S=K(E[8] —¢) - S,

which can be rewritten as:
(6" —c)(l = K)
B[] = ——

and gives an expression for the expected energy bid in thie &aslibrium.

Equation 9) also shows a number of properties of the mixed-strategyiegqum
in the self-committed market. One is that the expected gnafgr is increasing in,
which is in keeping with economic theory. The higher the ladhe lower the cost
of being the marginal generator. As the load decreases theragrs become more
aggressive and submit lower energy offers:

+cC, (9)

lim E[d] =c,
| K+
and the reverse is also true:
lim E[d] =0" (20)
| —2K—
Moreover: 3 5
*—cC
EE[(S] =~ > 0, (12)

showing that the expected energy price is strictly monalhi increasing il and
will always be less that* if | < 2K. This implies that the expected energy price will
always be less under the mixed-strategy Nash equilibriam tith the pure-strategy
one. Additionally,E[J] is increasing in the energy bid cal,, and the marginal cost,
c. Finally, the expected energy bid is only indirectly rethte the fixed startup cost,
S, insomuch as we imposed the assumpfid@h—c)(l —K) > Son é*.

We can also derive an expression for the expected profit ¢f gawerator, since
in a mixed-strategy Nash equilibrium all energy offers ia support ofcG must yield
the same expected profit. Since we know that bidding the offpiyields an expected
profit of (0* — ¢)(I — K) — S, we know that:

E[mrSM(g)] = (I —K)(&8* —¢c) - S, V€ [c,5"]. (12)

3.3 Expected Cost Equivalence of Central- and Self-Conechitlarket Designs

Equations4)—(6) and (L2) give expressions for the expected profit of each generator
under the two market designs. These equations show thatajeneapacities and
costs, the total load, and the offer caps set in the two mawkiitdetermine genera-
tor profits and settlement costs. Thus, we can derive camditinder which the two
markets will be expected cost-equivalent. In deriving éhesnditions, we will as-
sume that the markets will operate over multiple settlerpeniods, which will have
different loads, and th&[l] is the expected load over the settlement periods.

We now prove the following proposition which states thahi¢ bffer caps of the
two markets are set such that expected revenues to a garfesatcdbidding the cap
in both markets are equivalent and the generators follownhe&d-strategy Nash
equilibria whenl > K, then the markets will have the same expected settlement cos
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Proposition 5 If the offer caps of the two markets are set such that:
O*(Ell |1 >K]—=K)=€¢"(E[l || >K]-K)+ 0%, (13)

and the generators follow the mixed-strategy Nash equilibrunder each market
design whenever} K, then the two market designs will be expected cost-eantal

Proof If | < K then both markets are cost equivalent, since generatolrsevéal
their true total cost and generator profits will be zero. Thnesonly need to consider
cases in whicl > K. If [ > K then the expected profit to a generator in the centrally
committed market as a function of the load is:

()= (1-K)(e—c)+0"—S
while the expected profit in the self-committed market is:
™M) =(1-K)(*—¢c)-S

If the two markets have the same expected settlement cbsts,the expected
profit to the generators will be equivalent under the two rebdesigns, or:
E[n°] = E[V]
E[rC() |1 > K] = E[M(1) || > K
(E[l [ >K]=K)(e*"—¢c)+0"—=S= (E[l || >K]-K)(0*—c)—S
eEN |l >K]|=K)+ 0" =d*E[l || >K]-K),

E

[
[

which is the desired condition.

It bears mentioning that the condition yielding cost-eqiéwce is a property that
one should naturally expect of the market designs: the dapsld be set such that
generators are not disadvantaged in one market due to amriston available bid-
ding strategies. Moreover, setting the cost-equivaléietr aiap in one market based
on the offer caps used in the other does not require the SQyalater to have any
information about the generators’ costs. Rather, only #peeted load and generat-
ing capacity of the generators is needed. Generator castiation would obviously
be needed, however, in order to set reasonable offer capsdlwm actual generator
costs).

As a corollary, we now show that cost equivalence will notchiblgenerators
follow the pure-strategy Nash equilibria in the self-cortied market and the offer
caps are set to satisfy equatiat3). Rather, the self-committed market will yield
higher expected settlement costs.

Corollary 1 If the offer caps of the two markets are set such that:
o*(E[l] - K) = ¢"(E[l] - K) + o™,

and the generators follow a pure-strategy Nash equilibritmrthe self-committed
market whenever} K, then the self-commmitted market will have a higher exquect
settlement cost than the centrally committed one.
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Proof The result follows immediately from equatioris){ and (L1). Since we know
that the energy price will always h¥ whenl > K if the generators follow a pure-
strategy Nash equilibrium in the self-committed markeg #xpected energy price
when generators follow the mixed-strategy Nash equilionuill always be (weakly)
less than the price when they follow the pure-strategy dagiiim.

4 Numerical Example

We use a numerical example to compare equilibrium behagiogrgy prices, and
settlement costs of the centralized and self-committeketalesigns. Because both
markets result in the same perfectly competitive outcomeniik< K, we assume in
our computations thdt> K. We further consider markets with offer caps that satisfy
the cost-equivalence condition in equatid)(

Tablel summarizes the parameter assumptions underlying our d&aihe load
profile is computed by assuming that the loads have a minimusb@ MW and a
maximum of 950 MW2 We then compute 8760 loads in such a way to fit the 2006
load duration curve of the California 1ISO. The pure- and rdis&rategy equilibria
and associated expected costs for the self-committed remdeomputed directly in
closed form. The DDE for the centrally committed market ipraximated numeri-
cally using theide23 function in Matlab, which is based on a Runge-Kutta alganith

Table 1 Generator characteristics, expected load, and offer csgxd for numerical example

Parameter  Value

$30/MWh
$10,000

500 MW

703 MW
$1,000/MWh
$25,000
$1,123/MWh

™ E R 0o

29

Table2 shows the expected cost to the SO of the two market designsides-
ing both the pure- and mixed-strategy Nash equilibria insglé-committed market.
The costs given are per-settlement period, meaning thaisttie SO’s expected cost
each time it conducts the auction and determines the disatd payments of the
generators. The expected settlement cost of the centrathyitted market, which
is given in the last row of the table, include make-whole pagta. The table shows
an approximately $5 difference in expected settlementsdostween the two mar-
ket designs when the mixed-strategy Nash equilibrium il irs¢he self-committed
market, which amounts to less than 0.001% of the total setthe cost. We attribute
this difference to approximation errors in solving and gnéding the DDE character-
izing the centrally committed equilibrium. Otherwise, th® markets have the same

5 The DDE characterizing the equilibrium of the centrally eoitied market becomes difficult to solve
if | is too close to eitheK or 2K, which is why we choose these particular upper and lower g®wonl .
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expected settlement costs. Although the two markets arectag cost-equivalent,
energy prices will not generally be the same in the two markehis is shown both
in table2 and in figurel, which shows the expected energy price as a function of the
load under the two market designs. Instead, the centrathyntitted market tends to
have lower prices than the self-committed, but make-whalgments account for a
nontrivial portion of settlement costs (about $38/MWh or 6ftotal settlement costs
in this example), which must be paid by the SO and borne byagtrs. Moreover,
the expected settlement costs are not equal under all leathgos. Rather, at low
load levels settlement costs are higher in the centrallymiited market than under
the self-committed design, due to the make-whole paym&atde?2 also shows that
when generators follow a pure-strategy Nash equilibriuth@self-committed mar-
ket, the expected energy price and settlement costs ris#isamtly compared to the
mixed-strategy equilibrium and the centrally committed et

Table 2 Expected per-settlement period energy price and cost tof 8éntrally and self-committed mar-
kets

Centrally Self-Committed
Committed  Mixed-Strategy  Pure-Strategy
Expected Energy Price 615 652 1123
Expected Make-Whole Payments 26,791 n/a n/a
Expected Settlement Costs 465,648 465,653 789,893
1100
1000
= 900F
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@ 800f
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£ 700f
>
>
2 600f
w
ks
5 500
[<5]
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W g400f
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Fig. 1 Expected energy prices in centrally and self-committedketarwhen generators use mixed-
strategy Nash equilibrium in self-committed market
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5 Discussion and Conclusion

This paper uses a symmetric duopoly model to examine equilibbehavior, pric-
ing, and settlement costs in centrally and self-committedtacity markets. Given
the size of wholesale electricity markets and the potefdrallocative or productive
efficiency losses, regulators need to understand the iatfits of different market
designs. We show that if the load can be served by a singleagenghen a Bertrand-
style equilibrium, in which costs are truthfully revealettlayenerator profits are zero,
will occur. When both generators are needed, however, thiiledp will generally
be non-competitive with bids above marginal costs andthtrjmositive generator
profits. In this case, the centrally committed market hay anhixed-strategy Nash
equilibrium whereas both pure- and mixed-strategy Nasliibga exist in the self-
committed market. The nature of the equilibria show thatmwheth generators are
needed to serve the load, the generators are not more likddidttheir true costs
under one market design than the other. In the centrally dtteshmarket generators
always bid their startup costs at the offer cap and mix overftli range of energy
offers. With self-commitment the generators will eithexnover the full range of
energy offers, or follow strategies which will necessayilgld an energy price equal
to the energy offer cap.

We also show that if the offer caps in the two markets are s#taioa generator
bidding the caps receives the same expected revenue in lzoktets, then the out-
comes of the two auction formats will be expected cost-eajaitt if the generators
follow the mixed-strategy Nash equilibria. Otherwise,higy follow pure-strategy
Nash equilibria in the self-committed market, then costh e higher with self
commitment. Thus, if one expects the generators to foll@wntlixed-strategy equi-
librium, the two market designs can be made cost equivaleahaexpected basis by
setting the offer caps in a very natural manner. Importantynputation of the cost-
equivalent offer caps does not require the SO or regulatkntov the generators’
cost parameters, but only the expected load and their gemgi@@pacities. Other-
wise, if pure-strategy Nash equilibria are expected, the inathe self-committed
market must be lowered. These findings suggest that regsilsttould be especially
cautious in implementing self-committed markets, due ttepwally higher settle-
ment and consumer energy costs.

Our results also show that self-committed markets will temthiave higher en-
ergy prices than under centralized commitment. This is bezaelf-committed mar-
kets typically do not include a make-whole provision andashsenergy payments
must be sufficiently high for generators to recover bothrtfized and marginal
costs. These higher energy prices can result in allocaffiemcy losses if demand
is price-responsive, as demonstrated By fhansi et al (201]))Depending on how
make-whole payments are allocated to ratepayers, thesieeély losses may be mit-
igated in a centrally committed market. If the make-wholgmpants are incorporated
into a linear retail electricity tariff, then similar effemcy losses will persist. If, how-
ever, the regulator imposes a two-part tariff, in which thekexwhole payments are
included in the lump-sum payment, then marginal energyeprand consumption de-
cisions will not be affected. This would be difficult to imphent in practice because
such a tariff involves treating heterogeneous custometts aifferent load profiles
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symmetrically, despite the fact that they impose differeodts on the SO. Directly
assigning joint costs to customers with drastically défarload profiles, such as res-
idential and industrial customers, is a complex processtdi@@s place in hearings
before State Public Utility Commissions rather than beiagided by the SO.

Despite these and other findings, the issue of how elegtrc#rkets should be
organized and how much authority the SO should have to malding market de-
cisions has and will continue to be contentious. Althoughti@dly committed mar-
kets can, in theory, maximize welfare, they have computatitsssues. These can
introduce incentive problems, in addition to those that weechanalyzed here. Self-
committed markets can overcome these problems, howevaptheonvex nature of
the generators’ commitment decisions and costs can leaghte soordination and
productive efficiency lossesS[oshansi et al (20083 ioshansi et al (201pPdemon-
strate this using a numerical example based on the ISO Nevakshgystem as well
as through some stylized examples. They show that even pediect competition,
the system can experience non-trivial productive effiggdasses under self commit-
ment. This is due to an inherent limitation of using lineaic@s in a system with
non-convex costs—the prices cannot properly signal thefitsrior costs of activities
to market participants—and has been examined in the cootaxtit commitment
pricing by [O'Neill et al (2005]. With strategic generator behavior, the lack of co-
ordination and associated efficiency losses may be evetegréhese incentive and
efficiency issues can be resolved by implementing a difteaection format, such
as a Vickrey-Clarke-Groves (VCG) mechanistahpo and Wilson (200},)for ex-
ample, derive an optimal auction mechanism for procuremeslectricity reserves.
Similarly a VCG auction would, in theory, address both theeimtive and efficiency
issues of the unit commitment auction. The VCG mechanisgesabther challenges
of its own, however. One is the computational burden of deitging the transfer
payments—the VCG will require the centralized unit comneiimodel to be solved
to complete optimalityN + 1 times, whereN is the number of bidders in the auc-
tion. Since the centralized unit commitment cannot cutydme solved to complete
optimality once (within the time window during which the SQust determine gen-
erators’ day-ahead schedules), this is presently imples#osecond issue with the
VCG mechanism is that it is generally not budget balancediyauld require the SO
or another entity to subsidize the transfer payments. Weoddlinectly address this
type of a mechanism design issue in this paper, rather weedeguilibrium behavior
and resulting pricing and settlement costs in two populectekity market designs.
Our results are nevertheless informative, as they suggasatcentrally committed
market may be preferred if the regulator or SO believes thaegators may follow a
pure-strategy Nash equilibrium in the self-committed gesi

As noted before, it is important to qualify the findings ofstpiaper. This analysis
is based on a stylized model of an electricity market with symmetric generators
competing in a static single-shot auction without transiois constraints or demand
uncertainty. This model is rather divorced from actual gleity systems, which typ-
ically have multiple generators, multiblock bids, intenfgoral constraints, and other
factors complicating the structure of the bids and markitieseents. Moreover, SOs
and regulators often limit the extent to which generators adjust their bid ele-
ments. For instance, the California ISO only allows geresab adjust their startup
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bids every six months. Furthermore, regulators often engp&@s to conduct market
mitigation, whereby they can scrutinize bids that seemssigely high or uncompet-
itive. These types of factors are not included in our analggher, which is reflected
in the nature of the equilibria that we derive. For instartbe, pure-strategy Nash
equilibria that we find in the self-committed market woukekly lead to scrutiny, and
perhaps more drastic regulatory action. In light of thesgtditions, this work should
be viewed as an exploratory step in comparing the incergiiee, and cost proper-
ties of the two market designs. Future work that examinesipeacts of asymmetric
costs, demand uncertainty, and multiple generators witideded to more fully un-
derstand these properties. We nevertheless feel thatategsil SOs, and others can
use these results to better inform their market design bess
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