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Abstract We compare two types of uniform-price auction formats commonly used
in wholesale electricity markets—centrally committed andself-committed markets.
Auctions in both markets are conducted by an independent system operator that col-
lects generator bids and determines which generators will operate and how much
electricity each will produce. In centrally committed markets, generators submit two-
part bids consisting of a startup cost and a variable energy cost. Self-committed mar-
kets force generators to incorporate their startup costs into a one-part energy bid. The
system operator in a centrally committed system ensures that each generator recovers
the startup and energy costs stated in its two-part bid, while no such guarantees are
made in self-committed markets. The energy cost ranking andincentive properties of
these market designs remains an open question. While the system operator can de-
termine the most efficient dispatch with a centralized market, the auction mechanism
used to solicit generator data compels generators to overstate costs. Self commit-
ment might involve less efficient dispatch but have better incentive properties. We
derive Nash equilibria for both market designs in a symmetric duopoly setting. We
also derive simple conditions under which the two market designs will be expected
cost-equivalent.
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1 Introduction

Wholesale electricity markets facilitate the trade of electricity across a system of
transmission lines. Such markets often use uniform-price auctions to determine the
price of electricity, and the generators that submit the lowest bids, or equivalently
offer to produce electricity at the lowest price, are selected to produce electricity. The
two key outcomes of the auction process are generator commitment (which gener-
ators startup), and generator dispatch (the amount of electricity each generator pro-
duces). Independent system operators (SOs) conduct the uniform-price auctions re-
peatedly throughout the day.

A debate exists as to which entity, the SO or the generators themselves, should
make these decisions. In centrally committed markets, generators submit two-part
bids, subject to offer caps, and the SO makes the commitment and dispatch decisions
and guarantees that each generator recovers the startup costs stated in its energy offer.
This guarantee is made through a make-whole payment, which is a supplemental pay-
ment given to a generator for any deficit between its as-bid cost and energy payments.
In a self-committed market each generator makes its own commitment decision and
submits a single-part bid for energy, also subject to an offer cap, and must incorporate
its startup costs into this bid.1

An unresolved issue in wholesale electricity market designand regulation is what
equilibrium bidding behavior, the total cost of electricity service, and system effi-
ciency would be under central and self commitment. This design question is impor-
tant, given the considerable size of the markets.2 The revenues in these markets also
have significant implications for investment in new generation capacity, which deter-
mines the future electricity costs. The debate over the two market designs centers on
the tradeoff between efficient dispatch and commitment, andgenerator incentives to
truthfully reveal startup and energy costs. [Ruff (1994),Hogan (1994),Hogan (1995),
Hunt (2002)] support centrally committed markets because they give theSO, which
has the best information about the electric system as a whole, the authority to make
both commitment and dispatch decisions. However, [Oren and Ross (2005)] show
that generators can have incentives to misstate their coststo increase profit if the
SO collects multi-part bids. Moreover, [Johnson et al (1997),Sioshansi et al (2008)]
claim that incentive compatibility issues in a centrally committed market can be fur-
ther exacerbated if the SO must rely on suboptimal solutionsto its unit commitment
model. As such, [Wilson (1997),Elmaghraby and Oren (1999)] suggest that commit-
ment decisions are ultimately more efficient in self-committed markets.

Despite the various claims about the two market designs, their incentive proper-
ties have not been directly compared. To this end, we developa single-period sym-
metric duopoly model of two markets: a centrally committed market with two-part
offers (energy and startup); and a self-committed market with one-part offers (energy
only). By analyzing the market as a uniform-price auction with system-wide caps on

1 Some electricity markets operate as a hybrid between the twodesigns highlighted here. For instance,
the New York ISO incorporates some non-convex costs, such asstartup costs, into the energy price.

2 According to their 2007 Annual Reports, the sum of wholesaletransactions in 2007 were: $30.5 billion
in PJM Interconnection, $9.5 billion in New York ISO, $10 billion in ISO New England, and $1.9 billion
in ERCOT.
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each bid element, we are able to characterize Nash equilibria in each market. We fur-
ther derive conditions on the offer caps in the two markets that will yield expected
cost equivalence between the two market designs. We also usea numerical example
to demonstrate and compare the nature of the equilibria of the two markets. The re-
mainder of the paper is organized as follows: section2 describes our model, section3
derives our equilibrium and cost-equivalence results, section 4 presents our numerical
example, and section5 concludes and discusses some regulatory implications of our
model and analysis. It is important to stress, and this is discussed further in section5,
that the model we use to analyze the unit commitment auction is a highly stylized
representation of actual electricity markets. Thus this work should be viewed as an
exploratory analysis of these types of markets.

2 Model

Two identical generators compete in a uniform-price auction to serve a deterministic
load, l , that is commonly known and must be served exactly. The generators each
have capacity constraintsK > 0 on their generation. Each generator incurs a fixed
startup costS> 0 and a constant marginal generating cost,c > 0. The capacity of the
two generators is assumed to always be sufficient to serve theload, or that 0≤ l < 2K.
Thus the cost to each firm of generatingq MWh is:

C(q) =







0, for q = 0;
cq+S, for 0 < q≤ K;
+∞, for q > K.

2.1 Centrally Committed Market

Under a centrally committed market, each generator submitsa bid with two elements,
an energy offer,ε, that specifies a marginal generating cost, and a fixed startup cost,
σ , that is incurred if any positive quantity of electricity isproduced. We letωi =
(εi ,σi) denote generatori’s bid. We assume that both bid components must be non-
negative, and that there are caps,ε∗ andσ∗, on the two components.

The SO then uses a mixed-integer program (MIP) to determine the commitment
and dispatch of each generator based on the two sets of bid. Ifwe defineu1 andu2

to be a binary variables indicating whether each generator is started up andq1 andq2

to be continuous variables indicating how much each energy generator produces, the
SO’s MIP is:

min
u,q

2

∑
i=1

(uiσi +qiεi)

s.t.
2

∑
i=1

qi = l

0≤ qi ≤ uiK ∀ i = 1,2

ui ∈ {0,1} ∀ i = 1,2.
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If l ≤ K only one generator needs to be committed and dispatched to serve load,
which will be the one with the bid that producesl MWh at lowest total cost. The
expected quantity sold by generatori is thus given by:

qc
i (ωi ,ω j , l) =







min{l ,K}, if σi + lεi < σ j + lε j andl ≤ K;
1
2 min{l ,K}, if σi + lεi = σ j + lε j andl ≤ K;
0, if σi + lεi > σ j + lε j andl ≤ K;

and the uniform price of energy is set based on theε of the generator that is committed
and dispatched. We assume that ties are broken with equal probability. Conversely if
l > K, both generators must be committed and dispatched and the quantity sold by the
generators will be based on energy cost only. Thus generatori’s expected production
is:

qc
i (ωi ,ω j , l) =







K, if εi < ε j andl > K;
1
2 l , if εi = ε j andl > K;
l −K, if εi > ε j andl > K;

and the uniform energy price isp = max{εi ,ε j}.
In both cases, the generators receive energy payments,p ·qc

i (ωi ,ω j , l). However,
the generators have non-convex costs due to their startup cost, so these energy pay-
ments alone may be confiscatory. The only information the SO has about the costs of
the generators is their ‘as-bid’ costs inω , and the SO uses this information to ensure
that no generator operates at a loss according to the bids. For example, suppose that
l ≤ K and generator 1 wins the uniform-price auction. Henceqc

1 = l andp= ε1, how-
ever the net profit to generator 1, on the basis of its bids, is(p−ε1)qc

1−σ1 =−σ1 ≤ 0.
Most centrally committed wholesale electricity markets overcome this problem

by giving generators supplemental ‘make-whole’ payments,which cover any revenue
shortfall based on the costs specified in each generator’s bid. If the uniform price isp
and a generator is committed and dispatched to produceqc

i MWh, its total payment,
Ti , from the SO is the sum of an energy payment and a make-whole payment,Wi :

Ti = p ·qc
i +Wi

= p ·qc
i +max{0,σi +qc

i (εi − p)},

which ensures that each generator recovers all of its costs,as-bid. We assume the
centrally committed market includes such a make-whole payment provision.

2.2 Self-Committed Market

In a self-committed market each generator submits a single-part bid,δ , which spec-
ifies the minimum price it is willing to accept to generate a MWh of energy. The
generators decide independently whether to commit themselves and the SO does not
provide make-whole payments,3 however a dispatched generator is financially liable
for serving its scheduled load. As before, we assume that theenergy bids must be

3 As we noted before, some markets, such as the New York ISO, do incorporate non-convex startup
costs into the energy price.
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non-negative and that there is a cap,δ ∗, below which the bids must be. Given the
bids, the SO uses a uniform-price auction to dispatch the generators to serve the load
at least cost and set the uniform energy price. Thus, generator i’s dispatch is given
by:

qs
i (δi ,δ j , l) =







min{l ,K}, if δi < δ j ;
1
2[min{l ,K}+max{0, l −K}] = 1

2 l , if δi = δ j ;
max{l −K,0}, if δi > δ j ;

(1)

and the uniform price is:

p =

{

min{δi,δ j}, if l ≤ K;
max{δi ,δ j}, if l > K.

3 Market Equilibria

In both markets, there will be different types of equilibriadepending on whether
the load can be served by a single generator or both generators are needed. If only
one generator is needed, then under both market designs Bertrand-style competition
will drive the market to perfectly competitive pure-strategy Nash equilibria with zero
generator profits. If both generators are needed the generators’ profits will be strictly
positive in equilibrium. In this case the centrally committed market will only have
mixed-strategy Nash equilibria, whereas the self-committed market will have both
pure- and mixed-strategy equilibria. Moreover, the pure-strategy equilibria in the self-
committed market will always be more costly to the SO than themixed-strategy equi-
libria. We proceed by analyzing each market design under these two load scenarios
separately.

In examining these scenarios, for cases in whichl ≤ K and only one generator
is committed, the committed generator will be referred to asthe unique generator,
and its bid, payments, and profit will be denoted with the subscript,U . Whenl > K
and both generators are needed, we refer to the unit dispatched at full capacity as the
inframarginal generatorand the unit dispatched below its capacity as themarginal
generator, and denote their bids, payments, and profits by the subscripts, I andM,
respectively.

3.1 Centrally Committed Market Equilibrium

We begin the analysis of the centrally committed market by characterizing the total
payments to the generators under the two load scenarios.

Lemma 1 In a centrally committed market with l≤ K, the total payment to the
unique generator will be TU = εU l + σU .

If l > K, both generators will produce a strictly positive amount,and the total
payment to the marginal generator will be TM = εM(l −K)+ σM and the total pay-
ment to the inframarginal generator will be TI = max{εMK,εI K + σI}.
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Proof Whenl ≤ K the unique generator will be dispatched to serve the entire load,l ,
and the uniform price for energy isp = εU . Since the startup cost in its offer is non-
negative,σU ≥ 0, the unique generator’s surplus from energy payments according to
as-bid costs isεU l − (εU l + σU) ≤ 0. Thus the make-whole payment will beWU =
max{0,σU + l(εU −εU )} = σU . Hence, the unique generator’s total payment isTU =
εU l + σU .

Whenl > K the marginal generator will be dispatched to serve(l −K) units of the
load and the uniform price isp = εM. Again, sinceσM ≥ 0, the marginal generator’s
as-bid surplus from energy payments will be non-positive, thus the total payments
will be the sum of energy and make-whole payment, henceTM = εM(l −K)+ σM,
where the make-whole payment isWM = σM.

Moreover, because of the make-whole provision, the SO will ensure the infra-
marginal generator’s as-bid surplus is max{(εM −εI )K−σI ,0}. If max{(εM −εI )K−
σI ,0} = (εM − εI )K −σI , thenεMK ≥ εI K + σI and the total payment to the infra-
marginal generator is simply the energy payment,εMK, because the energy payment
alone is sufficient to cover the inframarginal generator’s (as-bid) startup and variable
operating costs. Otherwise, if max{(εM − εI )K −σI ,0} = 0 thenεMK < εI K + σI ,
and the total payment to the inframarginal generator is:

TI = pK+WI

= εMK +max{0,σI +K(εI − εM)}

= εI K + σI ,

which is the desired expression.

Having characterized generator payments under the centrally committed market,
we now prove the following result, which gives the set of Nashequilibria when only
one of the generators is needed to serve the load.

Proposition 1 If l ≤ K, the unique set of pure-strategy Nash equilibria of the cen-
trally committed market consists of offers such thatωi ∈ B for i = 1,2, where B is the
set:

B =
{

(ε,σ) ∈ R
2 | ε l + σ = cl +S, ε ∈ [0,ε∗], andσ ∈ [0,σ∗]

}

,

and each generator has an expected profit of zero.

Proof Given thatl ≤ K, the SO only needs to commit and dispatch one generator
and the SO does so in the least-costly way. Thus, the SO selects the generator with
the lowest total cost. The dispatch is determined by the ranking of these costs, which
for simplicity we refer to asbi = εi l + σi for i = 1,2. This game is thus isomorphic
to a simple Bertrand game, but in this case, each generator submits a total costbi =
εi l + σi . The total cost of each generator,bi is such thatbi = cl + S for i = 1,2 and
generators earn zero profit in equilibrium. Clearly, there are manyω that belong to
the setB but all vectors are payoff-equivalent because they result in the same expected
commitment, dispatch, and profits. Moreover, since the total cost of the offers equal
actual costs, expected profits are zero in equilibrium.
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We now turn to the case in whichl > K and both generators must be commit-
ted and dispatched to serve the load. Since both generators must be committed, their
startup costs must be borne, thus the optimal commitment anddispatch decisions will
be made purely on the basis of each generator’s energy offer,ε. As we show in the fol-
lowing lemmas and propositions, this characteristic of an optimum, coupled with the
generators’ binding capacity constraints, eliminates thepossibility of a pure-strategy
Nash equilibrium in the bidding game. As such, we assume thatthe generators fol-
low mixed-strategy equilibria. This, in turn, implies thateach generator has a strictly
positive probability of receiving make-whole payments, and as such each generators’
expected profit function is a non-decreasing function of itsstartup bid. Thus, each
generator will submit an offer with a startup cost equal to the startup offer cap,σ∗.

Proposition 2 If l > K, no pure-strategy Nash equilibria exist in the centrally com-
mitted market.

Proof Suppose(ε̃i , σ̃i), for i = 1,2, constitute a pure-strategy Nash equilibrium, and
assume without loss of generality that the generators have been labeled such that
ε̃1 ≤ ε̃2.

Suppose first that̃ε1 < ε̃2. Then generator 1 is the inframarginal generator and its
profit is:

Π̃1 = max{ε̃2K, ε̃1K + σ̃1}−cK−S.

If max{ε̃2K, ε̃1K + σ̃1} = ε̃1K + σ̃1 then generator 1 can profitably deviate by chang-
ing the energy portion of its offer tôε1 = ε̃2 −η , with η > 0 and small, since its
profits are increasing inε1. If, instead, max{ε̃2K, ε̃1K + σ̃1} = ε̃2K then generator 1
can profitably deviate by changing its offer to(ε̂1, σ̂1) such thatε̂1 = ε̃2 −η , with
η > 0 and small, and̂σ1 > 0 and sufficiently large, so that max{ε̃2K, ε̂1K + σ̂1} =
ε̂1K + σ̂1 > ε̃2K.

Suppose instead thatε̃1 = ε̃2 = e. Then both generators’ expected profits are given
by:

E[Π̃i ] =
1
2

l(e−c)+ σi −S.

Supposee≤ c, then either generator can profitably deviate by submittingan offer
with a higherεi , since this will guarantee it a strictly positive margin on energy sold
whereas an offer ofe gives it a non-positive margin. Otherwise, ife> c, either gen-
erator can profitably deviate by submitting an energy offer of ε̂i = e−η , with η > 0
and small. This gives generatori an expected profit of:

E[Π̂i ] = (e−c)K + σi −S,

which is greater thanE[Π̃i ] for η sufficiently small, sinceK > 1
2 l .

Having ruled-out pure-strategy Nash equilibria, we will let Fi(εi ,σi) denote the
cumulative distribution function (CDF) of generatori’s mixed-strategy Nash equilib-
rium, letΦi denote the support ofFi , and letε i andε i denote the infimum and supre-
mum energy offers, respectively, ofΦi . We also defineΦ = Φ1

⋂

Φ2 as the common
support of the two CDFs. We show in the following lemmas that the range of energy
offers in Φ1 andΦ2, must intersect, and as such generators will always submit the
highest possible startup cost.
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Lemma 2 If l > K, then the infimum energy offers in a Nash equilibrium are equal.

Proof Suppose that the infimum energy bids of the two generators differ in equilib-
rium and that the generators are labeled such thatε1 < ε2. Generator 1 has a profitable
deviation because it can move all of the density in the interval [ε1,ε2), to ε2−η for
η > 0 small, as doing so increases generator 1’s expected profit and does not change
the probability that it is the inframarginal generator.

We further characterize equilibrium CDFs by showing that they cannot have mass
points on their common support and thatΦ1 andΦ2 are connected and have a com-
mon supremum.

Lemma 3 If l > K, then neither F1 nor F2 can have a mass point onΦ.

Proof Suppose for contradiction that there is aε̃ ∈ Φ which is a mass point ofFi.
Then there existη > 0 andρ > 0 such that generatorj would have a profitable
deviation by moving the density assigned to the interval[ε̃ , ε̃ +η) to ε̃ −ρ , since the
profit from offers in the interval[ε̃, ε̃ + η) is at most:

(ε̃ + η −c)(l −K)+ σ j −S,

and the profit from an offer of̃ε −ρ is:

(ε̃ −c)K + σ j −S,

which is greater forη sufficiently small, contradicting the assumption of a mass point
in an equilibrium.

Lemma 4 If l > K, thenΦi is a connected set (interval) for both generators.

Proof Suppose for contradiction that there is an interval[ε̃, ε̃ + η ], with η > 0 on
which generatori places zero density. Consider a deviation by generatorj wherein it
moves the density assigned to the interval(ε̃ −ρ , ε̃) to an energy offer of̃ε + η − ξ ,
with ρ > 0 andη > ξ > 0. We can bound the change in generatorj ’s expected profits
depending on whether it would be the marginal or inframarginal generator with the
original strategy and deviation:

– If generator j is the inframarginal generator and would have been the infra-
marginal generator without deviating, its expected profitswill either increase by
at least(η − ξ )K if it receives make-whole payments or not change if it does not
receive make-whole payments.

– If generatorj is the marginal generator and would have been the marginal genera-
tor without deviating, the deviation will increase the price of energy and generator
j ’s expected profits will increase by at least(η − ξ )(l −K).

– If generator j is the marginal generator but would have been the inframarginal
generator without deviating, its expected profits will change by at most(ε̃ + η −
ξ )(l −K)− ε̃K.
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Thus, the only cost to generatorj involves situations where it would have been
the inframarginal generator without deviating but becomesthe marginal generator as
a result of deviating. Howeverρ can be chosen to make the probability of this event
arbitrarily close to zero.

Lemma 5 If l > K, then the supremum energy offers in a Nash equilibrium are equal.

Proof Suppose the suprema are different such thatε i < ε j . Generatori has a prof-
itable deviation, which is to move some density from the interval (ε i −η ,ε i ] for some
smallη > 0, just belowε j . Doing so increases generatori’s expected profit without
decreasing the probability that generatori will be the inframarginal generator, as there
is no density in the interval(ε i ,ε j).

Lemma 6 If l > K, then in equilibrium each generator submits the maximum possi-
ble startup cost in its offer. That is,σ1 = σ2 = σ∗, almost surely.

Proof Because there are only mixed-strategy Nash equilibria andΦ1 = Φ2, each
generator has a strictly positive probability of being the marginal generator. Since
the payoff to the marginal generator is strictly increasingin σ , the payoff to the
inframarginal generator is non-decreasing inσ , and the value ofσ does not impact
the dispatch of the generators, it is optimal to submit an offer with σi = σ∗.

The essence of Lemma6 is that because the SO’s dispatch depends solely on the
energy portion of the generators’ offers, the two-dimensional offer problem (energy
and startup costs) collapses into a one-dimensional offer problem with only an energy
cost. Therefore, we will hereafter denote the equilibrium CDFs asFi(εi). The next
step is to determineFi(εi) by optimizing the profit function of the generators, which
are symmetric.

In order to find an equilibrium CDF, we first express generatori’s expected profit
as a function of its energy offer,εi , assuming generatorj follows the CDF,F(ε j).
This expected profit is:

E[πC
i (εi)] = F(εi)[(l −K)(εi −c)+ σ∗−S]

+ [F(εi + σ∗/K)−F(εi)][(εi −c)K + σ∗−S] (2)

+

∫ ε∗

εi+σ∗/K
[(ε j −c)K−S]dF(ε j ).

The first term in equation (2) gives generatori’s expected profit conditional on being
the marginal generator, whereas the other two give the expected profit conditional on
being the inframarginal generator. The first-order necessary condition (FONC) for an
expected profit-maximizing choice ofεi is:

f (εi)(l −2K)(εi −c)+F(εi)(l −2K)+F(εi + σ∗/K)K = 0,

which can be re-written as:

f (εi) =
F(εi)

c− εi
+

F(εi + σ∗/K)K
(l −2K)(c− εi)

,
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or as:

f (ε) =
F(ε)

c− ε
+

F(ε + σ∗/K)K
(l −2K)(c− ε)

, (3)

since the equilibrium is symmetric.
Equation (3) is a differential difference equation (DDE) characterizing a symmet-

ric Nash equilibrium energy offer density function. We can find a particular solution
of the DDE if we specify an interval of boundary conditions ofwidth (σ∗/K). We do
this by showing that the common supremum of the Nash equilibrium CDFs must be
the offer cap,ε∗, which implies thatF(ε) = 1 for all ε ≥ ε∗.

Lemma 7 If l > K, then a Nash equilibrium energy offer density function must have
ε = ε∗:

Proof Suppose thatε < ε∗ in an equilibrium. Then generatorj has a profitable de-
viation whereby it moves the density assigned to the interval (ε −η ,ε) to an energy
offer of ε∗, with η > 0. We can bound the change in generatorj ’s expected profits
depending on whether it would be the marginal or inframarginal generator with the
original strategy and deviation:

– If generator j is the inframarginal generator and would have been the infra-
marginal generator without deviating, its expected profitswill either increase by
at least(ε∗− ε̄)(l −K) if it receives make-whole payments or will not change if
it does not receive make-whole payments.

– If generatorj is the marginal generator and would have been the marginal genera-
tor without deviating, the deviation will increase the price of energy and generator
j ’s expected profits will increase by at least(ε∗− ε̄)(l −K).

– If generator j is the marginal generator but would have been the inframarginal
generator without deviating, its expected profits will change by at mostε∗(l −
K)− εK.

Thus, the only cost to generatorj involves situations where it would have been
the inframarginal generator without deviating but becomesthe marginal generator as
a result of deviating. Howeverη can be chosen to make the probability of this event
arbitrarily close to zero.

Because this is a mixed-strategy Nash equilibrium, all energy offers in the sup-
port of the equilibrium CDF must yield the two generators thesame expected profit.
Because the equilibrium CDF has no mass point, we know that a generator that sub-
mits the energy offer cap will necessarily be the marginal generator, and as such will
yield an expected profit of:

E[πC(ε∗)] = (l −K)(ε∗−c)+ σ∗−S.

We further know that any energy offer will yield the same expected profit, or that:

E[πC(ε)] = (l −K)(ε∗−c)+ σ∗−S, ∀ ε ∈ Φ. (4)
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3.2 Self-Committed Market Equilibrium

With a self-committed market design, generators independently decide whether to
commit themselves, and submit single-part energy offers,δ ∈ [0,δ ∗] to the uniform-
price auction conducted by the SO. The only revenue available to generators is the
energy payment,p ·qs

i , wherep is the uniform electricity price andqs
i is the quantity

sold in the self-committed market, as defined in equation (1). We assume the offer cap
is sufficiently high so that the generators can always recover their startup cost if they
bid δ ∗. Thus, ifl ≤K we assume that(δ ∗−c)l ≥Sand if l > K that(δ ∗−c)(l −K)≥
S. Otherwise, the market would not clear because one or both ofthe generators would
choose not to participate.

We again proceed by analyzing equilibrium behavior depending on whether one
generator or both are needed to serve the load. We first consider the case in which
only one generator must be dispatched, the energy offer of which will set the uniform
energy price. We can easily characterize this game as havinga Bertrand-type Nash
equilibrium in which the generators’ expected profits are both zero.

Proposition 3 If l ≤ K, then the unique pure-strategy Nash equilibrium of the self-
committed market is for each generator to offerδ1 = δ2 = c+S/l, with each gener-
ator having an expected profit of zero.

Proof The proof of this proposition follows that of Proposition1—sincel ≤ K the
SO will only dispatch one generator, which the SO will selecton the basis of the
energy bids. Because the generators are competing on the basis of price without any
binding capacity constraints, the game is isomorphic to a Bertrand-type game and
will have a Bertrand equilibrium.

We now turn to the case in whichl > K and both generators must be dispatched
to serve the load. The dispatch of the two generators will be determined by their
energy offers. Again, the generator with the lower energy offer will be dispatched to
its capacity,K, while the other generator will serve the residual load,(l −K). Once
again, it is trivial to show that the uniform energy price will equal the energy offer of
the marginal generator. We now rely on a result of [Fabra et al (2006)] which shows
that this game can have either pure- or mixed-strategy equilibria, and also gives some
properties of the mixed-strategy equilibrium.

Proposition 4 If l > K, then the self-committed market will have both pure- and
mixed-strategy Nash equilibria. The pure-strategy Nash equilibria will be of the form
δM = δ ∗,δI ≤ δ̂ , for someδ̂ ∈ (c,δ ∗). The mixed-strategy Nash equilibrium will be
unique and symmetric, and have a differentiable distribution function and an atom-
less density function.

Proof The generators in this market are submitting energy bids into a uniform-price
auction with two capacity-constrained generators. [Fabra et al (2006)] show the exis-
tence of pure-strategy Nash equilibria (Proposition 1) andthe properties of the mixed-
strategy Nash equilibrium (Lemma 3). As such we do not repeatthe proofs.
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The pure-strategy Nash equilibria of this auction are relatively straightforward—
the marginal generator bids at the offer cap,δ ∗, and the inframarginal generator sub-
mits a bid sufficiently low so that the marginal generator hasno incentive to undercut
it. Moreover, the threshold value,δ̂ , below which the inframarginal generator must
bid is easy to derive. To see this, note that the marginal generator’s profit in the pure-
strategy equilibrium is:

(δ ∗−c)(l −K)−S,

whereas the maximum profit it can earn from deviating (by undercutting the infra-
marginal generator) is:

(δI −c)K−S.

The Nash equilibrium requires:

(δ ∗−c)(l −K)−S≥ (δI −c)K−S,

or

δI ≤ (δ ∗−c)
l −K

K
+c= δ̂ .

Moreover, because(l −K)/K ∈ (0,1) if l > K, we have that̂δ ∈ (c,δ ∗). Finally, it
is important to note that under these pure-strategy Nash equilibria the energy price
will always be at the offer cap,δ ∗, regardless of the load (so long asl > K). Thus the
profit of the inframarginal generator will be:

πS,P
I = (δ ∗−c)K−S, (5)

while the profit of the marginal generator will be:

πS,P
M = (δ ∗−c)(l −K)−S. (6)

To find the mixed-strategy Nash equilibrium of the self-committed market we
express the expected profit of generatori as a function of its energy bid, assuming
generatorj bids according to the CDFG(δ j), and analyze the FONC. Generatori’s
expected profit is given as:

E[πS,M
i (δi)]

4 = G(δi)[(l −K)(δi −c)−S]+

∫ δ ∗

δi

[K(τ −c)−S]dG(τ). (7)

The first term in equation (7) is generatori’s expected profit conditional on it being the
marginal generator, while the integral term is generatori’s expected profit conditional
on it being the inframarginal generator. The FONC for an expected profit-maximizing
choice ofδi , which must hold for allδi in the support ofG, is:

g(δi)[(l −K)(δi −c)−S]+G(δi)(l −K)−g(δi)[K(δi −c)−S] = 0,

which can be re-written as:

g(δi)−
G(δi)(l −K)

(2K− l)(δi −c)
= 0,

4 The superscript,M, on πS,M
i is meant to denote the fact that this expected profit functionis for the

mixed-strategy Nash equilibrium.
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or

g(δ )−λ
G(δ )

δ −c
= 0, (8)

where we have dropped the subscripts, due to the symmetry of the equilibrium, and
definedλ = (l −K)/(2K− l). The differential equation (8) can be solved by defining
the integrating factor:

µ(δ ) = exp

{

−
∫ δ

a

λ
τ −c

dτ
}

=

(

δ −c
a−c

)−λ
,

wherea is an arbitrary constant. Multiplying both sides of equation (8) by µ(δ ) and
integrating with respect toδ yields:

G(δ ) = bexp

{

∫ δ

a

λ
τ −c

dτ
}

= b

(

δ −c
a−c

)λ
,

whereb is a constant of integration. In order to specify an exact solution to the differ-
ential equation we use the boundary condition that neither generator has a mass point
at the supremum offer,δ ∗, henceG(δ ∗) = 1 which gives:

b

(

δ ∗−c
a−c

)λ
= 1 =⇒ b =

(

a−c
δ ∗−c

)λ
=⇒ G(δ ) =

(

δ −c
δ ∗−c

)λ
,

which is the CDF of the mixed-strategy Nash equilibrium.
We can also derive expressions for the expected energy offerand expected profit

of each generator under this mixed-strategy Nash equilibrium. The expected energy
offer is derived by first determining the infimum energy offerand then using the
property of mixed-strategy Nash equilibria that all offersin the support must yield
the same expected profit. The infimum energy offer,δ , is determined by solving the
equationG(δ ) = 0, which implies thatδ = c.

Next, the expected profit of each generator as a function of its bid is given by:

E[πS,M(δ )] = (l −K)(δ −c)G(δ )+K
∫ δ ∗

δ
(η −c)dG(η)−S.

More specifically, we have that:

E[πS,M(δ ∗)] = (δ ∗−c)(l −K)−S,

and:

E[πS,M(c)] = K
∫ δ ∗

δ
(η −c)dG(η)−S

= K(E[δ ]−c)−S,
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Equating these two terms gives:

(δ ∗−c)(l −K)−S= K(E[δ ]−c)−S,

which can be rewritten as:

E[δ ] =
(δ ∗−c)(l −K)

K
+c, (9)

and gives an expression for the expected energy bid in the Nash equilibrium.
Equation (9) also shows a number of properties of the mixed-strategy equilibrium

in the self-committed market. One is that the expected energy offer is increasing inl ,
which is in keeping with economic theory. The higher the loadis, the lower the cost
of being the marginal generator. As the load decreases the generators become more
aggressive and submit lower energy offers:

lim
l→K+

E[δ ] = c,

and the reverse is also true:
lim

l→2K−
E[δ ] = δ ∗ (10)

Moreover:
∂
∂ l

E[δ ] =
δ ∗−c

K
> 0, (11)

showing that the expected energy price is strictly monotonically increasing inl and
will always be less thanδ ∗ if l < 2K. This implies that the expected energy price will
always be less under the mixed-strategy Nash equilibrium than with the pure-strategy
one. Additionally,E[δ ] is increasing in the energy bid cap,δ ∗, and the marginal cost,
c. Finally, the expected energy bid is only indirectly related to the fixed startup cost,
S, insomuch as we imposed the assumption(δ ∗−c)(l −K) ≥ Sonδ ∗.

We can also derive an expression for the expected profit of each generator, since
in a mixed-strategy Nash equilibrium all energy offers in the support ofG must yield
the same expected profit. Since we know that bidding the offercap yields an expected
profit of (δ ∗−c)(l −K)−S, we know that:

E[πS,M(ε)] = (l −K)(δ ∗−c)−S, ∀ δ ∈ [c,δ ∗]. (12)

3.3 Expected Cost Equivalence of Central- and Self-Committed Market Designs

Equations (4)–(6) and (12) give expressions for the expected profit of each generator
under the two market designs. These equations show that generator capacities and
costs, the total load, and the offer caps set in the two markets will determine genera-
tor profits and settlement costs. Thus, we can derive conditions under which the two
markets will be expected cost-equivalent. In deriving these conditions, we will as-
sume that the markets will operate over multiple settlementperiods, which will have
different loads, and thatE[l ] is the expected load over the settlement periods.

We now prove the following proposition which states that if the offer caps of the
two markets are set such that expected revenues to a generator from bidding the cap
in both markets are equivalent and the generators follow themixed-strategy Nash
equilibria whenl > K, then the markets will have the same expected settlement cost.
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Proposition 5 If the offer caps of the two markets are set such that:

δ ∗(E[l | l > K]−K) = ε∗(E[l | l > K]−K)+ σ∗, (13)

and the generators follow the mixed-strategy Nash equilibrium under each market
design whenever l> K, then the two market designs will be expected cost-equivalent.

Proof If l ≤ K then both markets are cost equivalent, since generators will reveal
their true total cost and generator profits will be zero. Thus, we only need to consider
cases in whichl > K. If l > K then the expected profit to a generator in the centrally
committed market as a function of the load is:

πC(l) = (l −K)(ε∗−c)+ σ∗−S,

while the expected profit in the self-committed market is:

πS,M(l) = (l −K)(δ ∗−c)−S.

If the two markets have the same expected settlement costs, then the expected
profit to the generators will be equivalent under the two market designs, or:

E[πC] = E[πS,M]

E[πC(l) | l > K] = E[πS,M(l) | l > k]

(E[l | l > K]−K)(ε∗−c)+ σ∗−S= (E[l | l > K]−K)(δ ∗−c)−S

ε∗(E[l | l > K]−K)+ σ∗ = δ ∗(E[l | l > K]−K),

which is the desired condition.

It bears mentioning that the condition yielding cost-equivalence is a property that
one should naturally expect of the market designs: the caps should be set such that
generators are not disadvantaged in one market due to constraints on available bid-
ding strategies. Moreover, setting the cost-equivalent offer cap in one market based
on the offer caps used in the other does not require the SO or regulator to have any
information about the generators’ costs. Rather, only the expected load and generat-
ing capacity of the generators is needed. Generator cost information would obviously
be needed, however, in order to set reasonable offer caps (based on actual generator
costs).

As a corollary, we now show that cost equivalence will not hold if generators
follow the pure-strategy Nash equilibria in the self-committed market and the offer
caps are set to satisfy equation (13). Rather, the self-committed market will yield
higher expected settlement costs.

Corollary 1 If the offer caps of the two markets are set such that:

δ ∗(E[l ]−K) = ε∗(E[l ]−K)+ σ∗,

and the generators follow a pure-strategy Nash equilibriumin the self-committed
market whenever l> K, then the self-commmitted market will have a higher expected
settlement cost than the centrally committed one.
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Proof The result follows immediately from equations (10) and (11). Since we know
that the energy price will always beδ ∗ when l > K if the generators follow a pure-
strategy Nash equilibrium in the self-committed market, the expected energy price
when generators follow the mixed-strategy Nash equilibrium will always be (weakly)
less than the price when they follow the pure-strategy equilibrium.

4 Numerical Example

We use a numerical example to compare equilibrium behavior,energy prices, and
settlement costs of the centralized and self-committed market designs. Because both
markets result in the same perfectly competitive outcome when l ≤ K, we assume in
our computations thatl > K. We further consider markets with offer caps that satisfy
the cost-equivalence condition in equation (13).

Table1 summarizes the parameter assumptions underlying our example. The load
profile is computed by assuming that the loads have a minimum of 550 MW and a
maximum of 950 MW.5 We then compute 8760 loads in such a way to fit the 2006
load duration curve of the California ISO. The pure- and mixed-strategy equilibria
and associated expected costs for the self-committed market are computed directly in
closed form. The DDE for the centrally committed market is approximated numeri-
cally using thedde23 function in Matlab, which is based on a Runge-Kutta algorithm.

Table 1 Generator characteristics, expected load, and offer caps used for numerical example

Parameter Value

c $30/MWh
S $10,000
K 500 MW
E[l ] 703 MW
ε∗ $1,000/MWh
σ∗ $25,000
δ ∗ $1,123/MWh

Table2 shows the expected cost to the SO of the two market designs, consider-
ing both the pure- and mixed-strategy Nash equilibria in theself-committed market.
The costs given are per-settlement period, meaning that this is the SO’s expected cost
each time it conducts the auction and determines the dispatch and payments of the
generators. The expected settlement cost of the centrally committed market, which
is given in the last row of the table, include make-whole payments. The table shows
an approximately $5 difference in expected settlement costs between the two mar-
ket designs when the mixed-strategy Nash equilibrium is used in the self-committed
market, which amounts to less than 0.001% of the total settlement cost. We attribute
this difference to approximation errors in solving and integrating the DDE character-
izing the centrally committed equilibrium. Otherwise, thetwo markets have the same

5 The DDE characterizing the equilibrium of the centrally committed market becomes difficult to solve
if l is too close to eitherK or 2K, which is why we choose these particular upper and lower bounds onl .
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expected settlement costs. Although the two markets are expected cost-equivalent,
energy prices will not generally be the same in the two markets. This is shown both
in table2 and in figure1, which shows the expected energy price as a function of the
load under the two market designs. Instead, the centrally committed market tends to
have lower prices than the self-committed, but make-whole payments account for a
nontrivial portion of settlement costs (about $38/MWh or 6%of total settlement costs
in this example), which must be paid by the SO and borne by ratepayers. Moreover,
the expected settlement costs are not equal under all load scenarios. Rather, at low
load levels settlement costs are higher in the centrally committed market than under
the self-committed design, due to the make-whole payments.Table2 also shows that
when generators follow a pure-strategy Nash equilibrium inthe self-committed mar-
ket, the expected energy price and settlement costs rise significantly compared to the
mixed-strategy equilibrium and the centrally committed market.

Table 2 Expected per-settlement period energy price and cost to SO of centrally and self-committed mar-
kets

Centrally Self-Committed
Committed Mixed-Strategy Pure-Strategy

Expected Energy Price 615 652 1123
Expected Make-Whole Payments 26,791 n/a n/a
Expected Settlement Costs 465,648 465,653 789,893
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Fig. 1 Expected energy prices in centrally and self-committed markets when generators use mixed-
strategy Nash equilibrium in self-committed market
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5 Discussion and Conclusion

This paper uses a symmetric duopoly model to examine equilibrium behavior, pric-
ing, and settlement costs in centrally and self-committed electricity markets. Given
the size of wholesale electricity markets and the potentialfor allocative or productive
efficiency losses, regulators need to understand the implications of different market
designs. We show that if the load can be served by a single generator, then a Bertrand-
style equilibrium, in which costs are truthfully revealed and generator profits are zero,
will occur. When both generators are needed, however, the equilibria will generally
be non-competitive with bids above marginal costs and strictly positive generator
profits. In this case, the centrally committed market has only a mixed-strategy Nash
equilibrium whereas both pure- and mixed-strategy Nash equilibria exist in the self-
committed market. The nature of the equilibria show that when both generators are
needed to serve the load, the generators are not more likely to bid their true costs
under one market design than the other. In the centrally committed market generators
always bid their startup costs at the offer cap and mix over the full range of energy
offers. With self-commitment the generators will either mix over the full range of
energy offers, or follow strategies which will necessarilyyield an energy price equal
to the energy offer cap.

We also show that if the offer caps in the two markets are set sothat a generator
bidding the caps receives the same expected revenue in both markets, then the out-
comes of the two auction formats will be expected cost-equivalent if the generators
follow the mixed-strategy Nash equilibria. Otherwise, if they follow pure-strategy
Nash equilibria in the self-committed market, then costs will be higher with self
commitment. Thus, if one expects the generators to follow the mixed-strategy equi-
librium, the two market designs can be made cost equivalent on an expected basis by
setting the offer caps in a very natural manner. Importantly, computation of the cost-
equivalent offer caps does not require the SO or regulator toknow the generators’
cost parameters, but only the expected load and their generating capacities. Other-
wise, if pure-strategy Nash equilibria are expected, the cap in the self-committed
market must be lowered. These findings suggest that regulators should be especially
cautious in implementing self-committed markets, due to potentially higher settle-
ment and consumer energy costs.

Our results also show that self-committed markets will tendto have higher en-
ergy prices than under centralized commitment. This is because self-committed mar-
kets typically do not include a make-whole provision and as such energy payments
must be sufficiently high for generators to recover both their fixed and marginal
costs. These higher energy prices can result in allocative efficiency losses if demand
is price-responsive, as demonstrated by [Sioshansi et al (2010)]. Depending on how
make-whole payments are allocated to ratepayers, these efficiency losses may be mit-
igated in a centrally committed market. If the make-whole payments are incorporated
into a linear retail electricity tariff, then similar efficiency losses will persist. If, how-
ever, the regulator imposes a two-part tariff, in which the make-whole payments are
included in the lump-sum payment, then marginal energy prices and consumption de-
cisions will not be affected. This would be difficult to implement in practice because
such a tariff involves treating heterogeneous customers with different load profiles
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symmetrically, despite the fact that they impose differentcosts on the SO. Directly
assigning joint costs to customers with drastically different load profiles, such as res-
idential and industrial customers, is a complex process that takes place in hearings
before State Public Utility Commissions rather than being decided by the SO.

Despite these and other findings, the issue of how electricity markets should be
organized and how much authority the SO should have to make binding market de-
cisions has and will continue to be contentious. Although centrally committed mar-
kets can, in theory, maximize welfare, they have computational issues. These can
introduce incentive problems, in addition to those that we have analyzed here. Self-
committed markets can overcome these problems, however thenon-convex nature of
the generators’ commitment decisions and costs can lead to some coordination and
productive efficiency losses. [Sioshansi et al (2008),Sioshansi et al (2010)] demon-
strate this using a numerical example based on the ISO New England system as well
as through some stylized examples. They show that even underperfect competition,
the system can experience non-trivial productive efficiency losses under self commit-
ment. This is due to an inherent limitation of using linear prices in a system with
non-convex costs—the prices cannot properly signal the benefits or costs of activities
to market participants—and has been examined in the contextof unit commitment
pricing by [O’Neill et al (2005)]. With strategic generator behavior, the lack of co-
ordination and associated efficiency losses may be even greater. These incentive and
efficiency issues can be resolved by implementing a different auction format, such
as a Vickrey-Clarke-Groves (VCG) mechanism. [Chao and Wilson (2002)], for ex-
ample, derive an optimal auction mechanism for procurementof electricity reserves.
Similarly a VCG auction would, in theory, address both the incentive and efficiency
issues of the unit commitment auction. The VCG mechanism raises other challenges
of its own, however. One is the computational burden of determining the transfer
payments—the VCG will require the centralized unit commitment model to be solved
to complete optimalityN + 1 times, whereN is the number of bidders in the auc-
tion. Since the centralized unit commitment cannot currently be solved to complete
optimality once (within the time window during which the SO must determine gen-
erators’ day-ahead schedules), this is presently impossible. A second issue with the
VCG mechanism is that it is generally not budget balanced, and would require the SO
or another entity to subsidize the transfer payments. We do not directly address this
type of a mechanism design issue in this paper, rather we derive equilibrium behavior
and resulting pricing and settlement costs in two popular electricity market designs.
Our results are nevertheless informative, as they suggest that a centrally committed
market may be preferred if the regulator or SO believes that generators may follow a
pure-strategy Nash equilibrium in the self-committed design.

As noted before, it is important to qualify the findings of this paper. This analysis
is based on a stylized model of an electricity market with twosymmetric generators
competing in a static single-shot auction without transmission constraints or demand
uncertainty. This model is rather divorced from actual electricity systems, which typ-
ically have multiple generators, multiblock bids, intertemporal constraints, and other
factors complicating the structure of the bids and market settlements. Moreover, SOs
and regulators often limit the extent to which generators can adjust their bid ele-
ments. For instance, the California ISO only allows generators to adjust their startup
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bids every six months. Furthermore, regulators often empower SOs to conduct market
mitigation, whereby they can scrutinize bids that seem excessively high or uncompet-
itive. These types of factors are not included in our analysis either, which is reflected
in the nature of the equilibria that we derive. For instance,the pure-strategy Nash
equilibria that we find in the self-committed market would likely lead to scrutiny, and
perhaps more drastic regulatory action. In light of these limitations, this work should
be viewed as an exploratory step in comparing the incentive,price, and cost proper-
ties of the two market designs. Future work that examines theimpacts of asymmetric
costs, demand uncertainty, and multiple generators will beneeded to more fully un-
derstand these properties. We nevertheless feel that regulators, SOs, and others can
use these results to better inform their market design decisions.
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