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Comparing Electric Water Heaters and Batteries as Energy-Storage

Resources for Energy Shifting and Frequency Regulation

Mahan A. Mansouri, Student Member, IEEE and Ramteen Sioshansi, Fellow, IEEE

Recent technical, market, and policy developments in the electricity industry are increasing interest in and need for energy storage.
We examine the potential for using the flexibility of an aggregation of tank electric water heaters as a source of virtual energy
storage. Specifically, we examine the operational performance of and operating profit that is earned by a fleet of water heaters that
provide energy shifting and frequency regulation. We contrast this performance and operating profit to that of a lithium-ion battery.
We find that water heaters do not achieve the same level of performance or operating profit that a battery does. However, when
accounting for the capital costs of the two technologies, water heaters are superior, insomuch as they have a better cost-to-profit
ratio. We find that both water heaters and batteries earn significant operating profits from frequency regulation as opposed to
energy shifting. Water heaters have a stronger bias towards frequency regulation, due to temporal constraints on load shifting.
Relaxing these constraints improve water-heater performance slightly.

Index Terms—Energy storage, power-system economics, electric water heater, energy shifting, frequency regulation

NOMENCLATURE

Common Parameters

f+
t

hour-t dispatch-to-contract ratio of upward frequency

regulation (p.u.)

f−

t
hour-t dispatch-to-contract ratio of downward frequency

regulation (p.u.)

t time index

T number of hours within the optimization horizon

π̄d
t

hour-t price of downward frequency regulation ($/MW)

π̄e
t

hour-t energy price ($/MWh)

π̄u
t hour-t price of upward frequency regulation ($/MW)

Battery-Specific Parameters

P+ charging capacity of the battery (MW)

P− discharging capacity of the battery (MW)

S+ maximum state of energy (SOE) of the battery (MWh)

S− minimum SOE of the battery (MWh)

η̄ charging efficiency of the battery (p.u.)

Water-Heater-Specific Parameters

C̄ nominal power capacity of the water heaters (MW)

t̄ allowable time shift of water-heater load (h)

µ̄t hour-t water-heater availability factor (p.u.)

Battery-Specific Variables

ec
t

scheduled hour-t battery charging (MW)

edt scheduled hour-t battery discharging (MW)

qd
t

hour-t downward frequency regulation that is provided

by the battery (MW)

qu
t

hour-t upward frequency regulation that is provided by

the battery (MW)
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Water-Heater-Specific Variables

St ending hour-t SOE of the battery (MWh)

vt binary variable that equals 1 if δt is positive and equals 0
otherwise

δt hour-t net water-heater discharge (MW)

δc
t

maximum between 0 and −δt (MW)

δdt maximum between 0 and δt (MW)

ǫc
t

scheduled hour-t water-heater charging (MW)

ǫdt scheduled hour-t water-heater discharging (MW)

ρd
t

hour-t downward frequency regulation that is provided

by the water heaters (MW)

ρu
t

hour-t upward frequency regulation that is provided by

the water heaters (MW)

I. INTRODUCTION

TECHNICAL, market, and policy developments in the

electricity industry are increasing interest in energy stor-

age [1]. Battery energy storage is seeing major recent cost

declines [2]. Nevertheless, at current costs, battery energy

storage is economically viable for limited applications.

Aggregations of tank electric water heaters could be a low-

cost source of virtual energy storage. Water heaters act as

energy storage by exploiting their load flexibility—the timing

of water heating is controlled to shift energy demand. From

the perspective of the electricity system this demand shifting is

indistinguishable from battery charging and discharging. Using

water heaters as energy-storage resources entails minimal cost,

insomuch as the capital cost is borne by the water-heater

owner. As of 2020 there are over 58 million residential units

in United States of America with electric water heaters, which

is greater than the number of natural-gas water heaters.1 There

are some incremental costs for deploying and maintaining sys-

tems to monitor and control the aggregation of water heaters,

however. The primary disadvantage of using water heaters

for energy storage is their limited flexibility. There is a time

window within which water-heating demand can be shifted,

otherwise hot-water users will be inconvenienced. Moreover,

water-heating load has diurnal and seasonal patterns, which

1https://www.eia.gov/consumption/residential/data/2020/#waterheating
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yield temporal variability in shiftable demand that is available.

Given these benefits, there are legislative and policy efforts

to encourage the use of electric water heaters for providing

electricity-system services.

The extant literature studies technical facets of using water

heaters for energy shifting and ancillary services [3]–[14]. One

set of works [3], [4], [6] characterize and model water-heating

loads whereas another [5], [7]–[14] examines or models the

demand-response potential of such loads. Different approaches

are used to represent the temperature dynamics of the tank.

Single-element models assume a uniform water temperature

within the tank and do not capture heat transfer between its

upper and lower sections [3]–[9]. Two-element models address

this shortcoming by modeling the hot and cold portions of

the tank at the top and bottom, respectively [10]. Diao et al.

[11] employ a hybrid approach that switches between one-

and two-element models. They use a two-element model when

the water heater is recovering and a one-element model when

the water temperature reaches its maximum. A more complex

approach employs single-dimensional partial differential equa-

tions, which represent the dynamics as a continuum within the

tank’s vertical column [12], [13].

Another body of work, which Mukherjee et al. [15] survey,

focuses on controlling water-heater loads. One technique is

selective-curtailment control, whereby the on and off states

of water heaters are adjusted using a predefined logic. If

this control strategy does not incorporate water-temperature

measurements, hot-water users may be inconvenienced. An-

other approach uses a variable set point that is adjusted based

on the service that is being provided. For example, some

techniques use droop control that is based on a temperature set

point that follows a frequency-regulation signal or a rule-based

temperature set point that is based on energy prices.

A gap in this literature, which our work fills, is a direct

comparison of the technical and economic performance of

water heaters to other ‘conventional’ energy-storage technolo-

gies, such as batteries. In particular, we focus on the use

of these technologies for the provision of energy shifting

and frequency regulation. To our knowledge, no such direct

comparisons exist. Instead, much of the technical literature

[16] examines generic energy-storage technologies [17]. Some

of the literature has a particular focus on battery energy storage

[18]–[26], given the aforementioned recent cost reductions.

A common approach to this type of analysis is to use a

price-taking model, whereby the prices for the services that en-

ergy storage provides are fixed exogenously [16]. Most price-

taking models use linear or mixed-integer structures [17]–

[20], [22]–[24], which we use in our work. Other modeling

approaches, e.g., dynamic optimization [21], [25] and deter-

ministic policy gradients [26], can be applied, often to capture

system or market dynamics. Cheng and Powell [25] use nested

dynamic optimization to combine hourly, five-minute, and

two-second models to co-optimize the provision of energy and

frequency regulation and capture multiple timescales therein.

Miao et al. [26] use a noise-decay method to capture uncertain

real-time prices.

In this paper we develop price-taking operational models of

battery and water-heater energy storage. The models assume

that these resources provide energy shifting and frequency

regulation and are tailored based on the rules of the wholesale

market that is operated by California Independent System Op-

erator (CAISO). Our models capture all of the key operational

characteristics of using batteries and water heaters for energy-

storage services (or can be adapted easily to capture these, as

is detailed below). As such, our models are sufficiently general

to represent the use of these technologies for the provision of

most any service in most any wholesale electricity market. We

apply the models to three illustrative one-day examples and a

full year’s data from the CAISO market. We find that batteries

are more profitable than water heaters, due to their greater

operational flexibility and ability to use their full capacity

at all times. Water heaters have limited flexibility to shift

water-heating load and the amount of load that can be shifted

depends upon time-variant hot-water demands. Most of the

operating profits for both technologies come from providing

frequency regulation. This bias is greater for water heaters, due

to their flexibility constraints. The capital cost of controlling

an aggregation of water heaters is much lower than that of

building a battery. Thus, in net, water heaters have better

cost/benefit performance.

Our paper makes three major contributions to the existing

literature. First, we develop a model to optimize the oper-

ation of an aggregation of water heaters for the provision

of electricity-system services. Our focus is the provision of

energy shifting and frequency regulation, but the model can

be generalized to capture other services. Second, we conduct

a direct comparison of the operating profit and capital costs

of batteries and aggregated water heaters. To the best of

our knowledge, no such comparison appears in the extant

technical literature. Third, we provide a detailed analysis of the

trade-offs between providing frequency regulation and energy

shifting and the effect thereupon of energy deployed from

providing frequency regulation. Currently, CAISO is exploring

modifications to its market-participation models for energy

storage to account for these trade-offs, which reinforces the

practical value of this third contribution of our work. We

envision two types of direct beneficiaries of our findings. First,

entities that promote or develop the use of water heaters as a

source of virtual energy storage could use our work to quantify

the benefits of such efforts. Such entities include water-

heater and control-system developers, aggregators, utilities that

procure services from water heaters, or regulators or legislators

that set policy surrounding such use of water heaters. A second

type of direct beneficiary are designers of wholesale electricity

markets, who set rules that govern such use of water heaters.

The remainder of this paper is structured as follows. Sec-

tion II provides our model formulations. Section III summa-

rizes the data that underlie our case study. Section IV provides

a detailed analysis of battery and water-heater operations dur-

ing three illustrative day-long periods. Section V summarizes

results of our year-long case study. Section VI concludes.

II. MODEL FORMULATIONS

Our focus is day-ahead dispatch-planning of batteries and

electric water heaters, as opposed to considering the details of
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battery or water-heater control. As such, our model assumes

hourly time increments, which is aligned with the temporal

granularity of CAISO’s (and most) day-ahead wholesale elec-

tricity market.

A. Battery Model

The battery model is formulated as:

max

T
∑

t=1

[

π̄e

t ·
(

edt − ect
)

+ π̄d

t q
d

t + π̄u

t q
u

t

+π̄e

t ·
(

f+
t qut − f−

t qdt
)]

(1)

s.t.St = St−1 − ed
t
+ ec

t
/η̄ − f+

t qu
t
+ f−

t qd
t
/η̄;

∀t = 1, . . . , T (2)

St−1 + ect/η̄ + qdt /2 ≤ S+; ∀t = 1, . . . , T (3)

St−1 − ed
t
− qu

t
/2 ≥ S−; ∀t = 1, . . . , T (4)

S− ≤ St ≤ S+; ∀t = 1, . . . , T (5)

P− ≤ ect + qdt ≤ P+; ∀t = 1, . . . , T (6)

P− ≤ ed
t
+ qu

t
≤ P+; ∀t = 1, . . . , T (7)

ect , e
d

t , q
d

t , q
u

t ≥ 0; ∀t = 1, . . . , T. (8)

Objective function (1) gives total operating profit that is

earned from providing energy and frequency regulation and

consists of three components. The first:

π̄e

t ·
(

edt − ect
)

;

is operating profit that is earned from scheduled energy sales

and purchases. The second, π̄u
t q

u
t + π̄d

t q
d
t , is operating profit

that is earned from providing frequency-regulation capacity.

Following CAISO’s market design, we allow providing differ-

ent amounts of upward and downward frequency regulation,

which have different prices. Not all markets separate upward

and downward frequency regulation in this manner. Such

markets can be captured by having a single hourly price for

frequency regulation and a single variable that represents the

amount of (upward and downward) frequency regulation that

is provided during each hour. The final component of (1) gives

operating profit that is earned from energy that is provided by

the battery to fulfill its frequency-regulation obligation. For

all t = 1, . . . , T , we use dispatch-to-contract ratios, f+
t

and

f−

t , to model the amount of energy that must be provided

during hour t to fulfill this requirement [27], [28]. Objective

function (1) measures operating profit in the sense that it

captures that cost of charging energy, but not the capital cost

of the battery.

Constraint set (2) gives the evolution of the battery’s state

of energy (SOE) from one hour to the next. We use a

single parameter, η̄, to reflect energy losses when the bat-

tery is charged. Our model can be generalized to include

energy losses when discharging and a self-discharge rate.

Constraint sets (3) and (4) ensure that fulfilling scheduled

charging, discharging, and frequency regulation would not

violate the battery’s SOE. CAISO rules require that energy-

storage resources have sufficient SOE headroom to serve their

frequency-regulation commitments for at least 30 minutes,

which is why qdt and qut are halved in these constraints. These

one-half coefficients can be adjusted if modeling a different

market that imposes different headroom requirements on en-

ergy storage that provides frequency regulation. Constraint

sets (6) and (7) impose power capacities on battery charging

and discharging and (8) imposes non-negativity.

Model (1)–(8) does not include any direct cost on battery

cycling. Objective function (1) does capture the opportunity

cost of discharging as opposed to retaining stored energy.

Moreover, the efficiency factor, η̄, captures an implicit cost

of energy that is lost through cycling. One could include a

direct cost on battery cycling in (1). One reason to do so could

be to capture the effect of battery degradation or maintenance

[21], [29]. Including a degradation-related cost in (1) would

reduce the extent to which the batteries are used (a larger price

difference between discharging and charging energy would be

needed to justify their use), which would reduce the financial

performance of the batteries.

B. Water-Heater Model

The water-heater model is formulated as:

max

T
∑

t=1

[

π̄e

t
·
(

ǫd
t
− ǫc

t

)

+ π̄d

t
ρd
t
+ π̄u

t
ρu
t

+π̄e

t ·
(

f+
t ρut − f−

t ρdt
)]

(9)

s.t.δt = ǫd
t
− ǫc

t
+ f+

t
ρu
t
− f−

t
ρd
t
; ∀t = 1, . . . , T (10)

−M · (1− vt) ≤ δt ≤ Mvt; ∀t = 1, . . . , T (11)

δc
t
≤ −δt +Mvt; ∀t = 1, . . . , T (12)

− δt ≤ δct ; ∀t = 1, . . . , T (13)

δc
t
≤ M · (1− vt); ∀t = 1, . . . , T (14)

δdt ≤ δt +M · (1− vt); ∀t = 1, . . . , T (15)

δt ≤ δd
t
; ∀t = 1, . . . , T (16)

δdt ≤ Mvt; ∀t = 1, . . . , T (17)

t
∑

τ=1

δcτ ≤

t+t̄
∑

τ=1

δdτ ; ∀t = 1, . . . , T (18)

t
∑

τ=1

δd
τ
≤

t+t̄
∑

τ=1

δc
τ
; ∀t = 1, . . . , T (19)

ǫct + ρdt ≤ µ̄tC̄; ∀t = 1, . . . , T (20)

ǫd
t
+ ρu

t
≤ µ̄tC̄; ∀t = 1, . . . , T (21)

δct , δ
d

t , ǫ
c

t , ǫ
d

t , ρ
d

t , ρ
u

t ≥ 0; ∀t = 1, . . . , T (22)

vt ∈ {0, 1}; ∀t = 1, . . . , T ; (23)

where M is an arbitrarily large constant. Net water-heater

discharging, which is represented by δt, ∀t = 1, . . . , T , is

physically different than battery charging and discharging.

Water heaters discharge energy by delaying water heating,

meaning that the delayed water-heating load must be served

within some window of time. Water heaters charge energy

by water heating, e.g., pre-heating water before it is needed

or recovering the water temperature following delayed water

heating. These activities must be done within a limited window

of time, so that the tank’s water temperature remains within

acceptable bounds.
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Objective function (9) gives operating profit that is earned

from providing energy and frequency regulation and consists

of the same three components that are in (1). Objective

function (9) measures operating cost in the same sense that (1)

does—it does not account for the capital cost of the water

heaters. Objective function (9) does not include any direct

cost on water-heater cycling. In part, this modeling choice

is made because it is not clear from empirical data whether

water-heater cycling imposes any degradation or other direct

cost (so long as water-heating is shifted within a window of

time that does not disrupt hot-water use).
Constraint set (10) defines net hour-t discharging based on

scheduled charging and discharging and energy requirements

from providing frequency regulation. For all t = 1, . . . , T ,

we use the convention that a positive value of δt means

that the water heaters are being discharged in net during

hour t whereas a negative value means that they are being

charged. Constraint set (11) uses Big-M method to define,

∀t = 1, . . . , T , the values of the binary variable, vt, based

on the sign of δt. vt equals 1 if δt is positive and equals 0
otherwise. Constraint sets (12)–(14) employ Big-M method

to linearize the definition of δc
t
, ∀t = 1, . . . , T , which is,

δct = max{0,−δt}. Constraint sets (15)–(17) do the same for

δd
t

, ∀t = 1, . . . , T , which is δd
t
= max{0, δt}. The purpose of

these variables and constraints is to decompose water-heating

operations into charging and discharging actions. Constraint

sets (18) and (19) impose flexibility restrictions and are akin

to the SOE bounds that are imposed upon the battery by (2)–

(5). Constraint set (18) ensures that ∀t = 1, . . . , T , the total

amount of energy that is charged into the water heaters (e.g.,

through water pre-heating) up until hour t is discharged within

the t̄-hour flexibility window. Constraint set (19) imposes an

analogous restriction on discharged energy. Collectively, these

constraints ensure that the desired water temperature of the

tank and comfort of the water user are maintained. Constraint

sets (20) and (21) impose power constraints on water-heater

charging and discharging. These constraints are time-variant,

because they depend upon the water-use profile of the heaters.

Constraint sets (22) and (23) impose non-negativity and binary

restrictions, respectively.

III. CASE-STUDY DATA

Our case study examines the operation of the battery and

water heaters over a year-long period. To this end, hourly

historical year-2020 day-ahead energy and regulation-capacity

prices are obtained from CAISO. Table I provides summary

statistics of the market prices. Historical frequency-regulation

data (hourly procurements of frequency-regulation and real-

time deployment of frequency-regulation resources) are used

to compute dispatch-to-contract ratios.
We examine a 10-MW lithium ion battery with an 80%

roundtrip efficiency, 40-MWh energy-carrying capacity, and

$350/kWh capital cost [2]. Water heaters are modeled using

data that are obtained from a private company that has an

over seven-year history of aggregating and controlling electric

water heaters to transact energy and frequency regulation in

numerous wholesale electricity markets, including that oper-

ated by PJM Interconnection LLC. Based on their data, a

TABLE I
SUMMARY STATISTICS OF MARKET PRICES FOR CASE STUDY

Minimum Mean Median Maximum

π̄e
t

−10.34 34.78 29.66 1 062.64

π̄d
t

0.00 9.45 6.84 207.26
π̄u
t

0.10 9.81 5.92 962.54

standard 4.5-kW water heater provides 400 W of manage-

able capacity at a capital cost of $200 (to install sensing,

control, and communication equipment). We assume that the

sensing, control, and communication equipment is installed

on existing water heaters that are used primarily for hot-water

use. Thus, the cost of the water heater itself is not included

in our analysis. An aggregation of 25 000 water heaters has

nominal charging and discharging capacities of 10 MW and a

$500/kW capital cost. Typically, the water heaters have lower

charging and discharging capacities than 10 MW, because

these capacities depend upon real-time water-heating demand.

This dependency is modeled through the parameters, µ̄t,

∀t = 1, . . . , T , which are estimated using historical data from

the company. These parameters are affected by environmental

(e.g., the inlet temperature of water) and behavioral (e.g.,

water-usage patterns) factors. We do not model these factors

directly. Rather, the data that are provided to us by the private

company account for these impacts in estimating the values of

µ̄t, ∀t = 1, . . . , T . Fig. 1 shows the average, minimum, and

maximum (over the modeled year) diurnal availability factor

of the water heaters. The figure shows that the water heaters

have an average availability of about 50% and that availability

has considerable intraday and seasonal variability. Our base

case assumes that t̄ = 2. Data that are provided by the private

company indicate that water-heating load can be shifted within

a two-hour window with negligible thermal-energy losses and

without any noticeable impact on hot-water users. As such,

we do not need to model the thermodynamics of the water

heaters. We contrast this base case to a case with t̄ = 4, to

examine the effects of relaxing the flexibility window.

IV. ILLUSTRATIVE DAY-LONG EXAMPLES

Before summarizing complete case-study results in Sec-

tion V, we examine battery and water-heater operations during

three illustrative one-day periods. The three days—14 Au-

gust, 2020, 14 December, 2020, and 22 April, 2020—have,

respectively, relatively high, average, and low prices. For each

example the optimization models are solved using a 48-hour

optimization horizon. Hours 25–48 are included to ensure that

the battery’s SOE, which is assumed to be at its minimum

as of the beginning of each day, is not depleted fully as of

the end of hour 24 [30]. The water heaters are assumed to

begin as of hour 1 of each day without any previous charging

or discharging. Hours 25–48 are included in the optimization

horizon to ensure that charged and discharged energy as of the

end of hour 24 can be replenished during the following day.

For simplicity, we assume in these examples that η̄ = 1.0, to

illustrate how the battery is operated independent of energy
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Fig. 1. Maximum, average, and minimum diurnal water-heater availability
factors for case study.

losses. Assuming a lower value of η̄ does not change our re-

sults qualitatively, but results in less battery cycling. We begin

with cases without energy dispatch from providing frequency

regulation, e.g., f+
t = 0 and f−

t = 0, ∀t = 1, . . . , T . Then we

consider cases with non-zero values for these parameters.

A. f+
t

= 0 and f−

t
= 0, ∀t = 1, . . . , T

1) High-Price Day

Fig. 2 summarizes market prices and battery operations

during the high-price day. Although they are positive, we use

the convention in this and other figures of showing regulation-

down capacities below the horizontal axis. Given the high

evening energy prices, the battery’s overall strategy is to charge

energy during the morning when energy prices are relatively

low and to discharge and sell energy during the evening. When

possible, the battery provides frequency regulation, which can

be limited by power and energy constraints. For instance,

because its starting hour-1 SOE is zero, the battery can provide

only downward frequency regulation during hour 1. As another

example, the battery charges at its power capacity during

hours 3–5 and (6) prevents the battery from providing down-

ward frequency regulation simultaneously with this charging.

The battery can provide both upward and downward frequency

regulation during hours that the battery neither is charging nor

discharging (e.g., hours 2, 6–15, 17–18, and 21–24).

Energy shifting is profit-maximizing only when the associ-

ated revenues outweigh foregone revenues from not providing

frequency regulation. The battery discharges during hour 16,

when the energy price is $90.41/MWh, as opposed to during

hours 17 or 18, when the energy prices are $143.29 and

$479.23/MWh, respectively. The reason for this behavior is

that upward-frequency-regulation prices during hours 16–18
are $33.20/MW, $90.74/MW, and $425.46/MW, respectively.

As such, it is profit-maximizing to discharge during hour 16
and provide upward frequency regulation during hours 17
and 18.

Fig. 2. Prices and optimized battery dispatch with zero f+

t
and f−

t
during

high-price day.

Fig. 3 summarizes prices and the optimized operation of

the water heaters with t̄ = 2 for the same day that is

shown in Fig. 2. We use the convention in this and other

figures of showing discharging below the horizontal axis. The

figure shows water heaters operating under two significant

constraints. First, the two-hour limit on load shifting allows

for relatively little energy shifting. The capacity factor of the

battery charging that is shown in Fig. 2 is about 14.58% as

opposed to 5.40% for the water heaters. The trade-off between

providing energy shifting and frequency regulation is another

limiting factor in providing energy shifting. Despite the energy

price peaking above $930/MWh during hours 19 and 20, it is

not profit-maximizing for energy storage to discharge energy

during these hours. This is not profit-maximizing because with

the two-hour load-shifting window, the lowest-priced charging

energy that could be used to discharge during hours 19 and 20
costs $88.24/MWh. The fact that prices for upward frequency

reserves are above $820/MW makes it preferable to provide

frequency regulation during hours 19 and 20. Fig. 4 summa-

rizes the operation of the water heaters with t̄ = 4. Having

t̄ = 4 yields significantly more charging and discharging—

the charging capacity factor of the water heaters increases to

34.84%—due to the relaxed flexibility constraint.

The second limitation on water-heater operations is the time-

varying nature of the water-heating load. During the high-

price day, the availability factor of the water heaters reaches

a maximum of 62.00% and averages 37.79%.

2) Medium-Price Day

Fig. 5 summarizes market prices and battery operations

during the medium-price day, which has price patterns that

are the most common (during the year that we model) of

the three illustrative examples. As is common during many

days (in California and other electricity markets with high

penetrations of solar generation), there are two price peaks.

Midday prices are suppressed by solar-energy availability. As

such, the battery has two charging and discharging cycles as

opposed to only one during the high-price day (cf. Fig. 2).

Battery operations during the medium-price day exhibit many
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Fig. 3. Prices and optimized water-heater dispatch with t̄ = 2 and zero f+

t

and f−

t
during high-price day.

Fig. 4. Prices and optimized water-heater dispatch with t̄ = 4 and zero f+

t

and f−

t
during high-price day.

of the same qualitative properties that we observe during

the high-price day. When possible, the battery provides up-

ward and downward frequency regulation simultaneously. The

provision of upward or downward frequency regulation is

limited during hours that the battery schedules discharging or

charging, respectively. We observe also the trade-off in how

the battery schedules charging, discharging, and frequency

regulation. The battery discharges during hour 6, when the

energy price is $39.97/MWh, as opposed to during hour 7,

when the energy price is $52.04/MWh. It discharges during

hour 6 because the price of upward frequency regulation is

considerably higher during hour 7 ($27.10/MW) relative to

during hour 6 ($5.00/MW).

Fig. 6 summarizes prices and the optimized operation of

the water heaters with t̄ = 2 for the same day that is shown

in Fig. 5. As is the case during the high-price day, the water

heaters are used considerably less than the battery for energy

shifting (the charging capacity factor of the water heaters is

5.40% as opposed to 18.75% for the battery). However, the

Fig. 5. Prices and optimized battery dispatch with zero f+

t
and f−

t
during

medium-price day.

two-hour flexibility window does allow the water heaters to

capture both peaks in the energy prices. If t̄ is relaxed to

equal 4 (for sake of brevity, we do not include a figure for this

case), the water heaters’ charging capacity factor increases to

12.13%.

Fig. 6. Prices and optimized water-heater dispatch with t̄ = 2 and zero f+

t

and f−

t
during medium-price day.

3) Low-Price Day

Fig. 7 summarizes market prices and battery operations

during the low-price day. As with the medium-price day,

many low-price days have two price peaks, as is shown in

Fig. 7. These two price peaks are due to solar generation

suppressing midday prices. The battery follows the same

operational strategy as during the medium-price day, except

with less total energy shifting. During both high- and medium-

price days, the battery’s SOE reaches a maximum of 35 MWh.

While this is less than the 40-MWh SOE limit, it is the highest

SOE that allows the battery to provide 10 MW of downward

frequency regulation. During the low-price day, the battery’s

SOE reaches a maximum of 25 MWh. The maximum battery
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SOE is lower because the lower prices during this day reduce

profit opportunities from energy shifting. Water heaters with

t̄ = 2 and t̄ = 4 are operated in the exact same manner

during this day. They provide frequency regulation only and

no energy shifting. This lack of energy shifting is due to very

small energy-price differences during the course of the day and

relatively high revenue opportunities from providing frequency

regulation.

Fig. 7. Prices and optimized battery dispatch with zero f+

t
and f−

t
during

low-price day.

B. Non-Zero Values of f+
t

and f−

t

Assuming non-zero values of f+
t and f−

t changes the

trade-off between energy shifting and providing frequency

regulation. This change is due to frequency regulation im-

pacting the SOE of the battery or requiring offsetting water-

heater charging or discharging. Thus, this case with non-zero

f+
t

and f−

t
gives rise to what we term indirect charging

and discharging, or indirect energy shifting. Indirect energy

shifting is the effect of frequency regulation, through the

values of f+
t and f−

t , ∀t = 1, . . . , T , on the battery or water

heaters. CAISO and other market operators aim to have an

energy-neutral frequency-regulation signal. Thus, the impact

of indirect energy shifting on the battery and water heaters is

exacerbated if they provide an imbalanced mix of upward and

downward frequency regulation.
In some cases, indirect energy shifting may be preferable

to direct energy shifting, because the energy storage captures

frequency-regulation-capacity payments to supplement energy-

transaction settlements. For example, it can be preferable to

undertake indirect charging as opposed to direct charging

during an hour with a higher price for downward frequency

regulation than the price for upward frequency regulation. The

price data that underlie our examples and case study show such

correlations—hours with low energy prices tend to have higher

prices for downward frequency regulation than for upward

frequency regulation. This relationship tends to be reversed

during hours with high energy prices.
We examine the same three illustrative examples that are

examined in Section IV-A.

1) High-Price Day

Fig. 8 summarizes market prices and battery operations

during the same day that is summarized in Fig. 2. The battery

follows the same overall strategy with non-zero values of f+
t

and f−

t as is shown in Fig. 2—it charges energy during low-

price hours to sell during the evening peak.

Fig. 8. Prices and optimized battery dispatch with non-zero f+

t
and f−

t

during high-price day.

There are two key differences in battery operations with

non-zero values of f+
t

and f−

t
. First, the battery does non-

trivial amounts of indirect energy shifting with non-zero

values of f+
t and f−

t . The battery’s SOE reaches a peak of

36.10 MWh, which is followed by a low of 6.20 MWh, as

of the beginning of hours 16 and 23, respectively, of the day

that is shown in Fig. 8. A total of 33.03 MWh of energy is

charged directly during hours 4, 5, 14, and 15. The remaining

3.07 MWh is charged indirectly. In addition, the battery sched-

ules no direct discharging, meaning that the battery discharges

entirely through the provision of upward frequency regulation.

This behavior reflects the aforementioned relationship between

high prices for energy and upward frequency regulation.

The fact that the battery relies upon indirect energy shifting

gives the second key operational difference with non-zero

values of f+
t and f−

t . All of Figs. 2–7 show that energy storage

tends to provide equal amounts of upward and downward

frequency regulation with zero f+
t and f−

t . With non-zero

f+
t

and f−

t
, there is more unbalanced frequency-regulation

provision, which allows controlling the SOE indirectly through

frequency-regulation deployments.

The trade-off between direct and indirect energy shifting de-

pends upon the relative values of the three market prices. The

hour-14 upward and downward frequency-regulation prices

are $12.04/MW and $2.90/MW, respectively. As such, direct

charging is preferable to indirect charging during hour 14,

because direct charging allows providing 10 MW of upward

frequency regulation simultaneously. Indirect charging would

require providing more downward and less upward frequency

regulation, which would reduce operating profit.

Fig. 9 summarizes prices and the optimized operation of

the water heaters with t̄ = 2 during the high-price day. The
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key difference between water-heater operations with zero and

non-zero values of f+
t and f−

t is that with non-zero values, it

is profit-maximizing for the water heaters to exploit indirect

energy shifting during the evening energy-price peak. Non-

zero values of f+
t

and f−

t
make this a profit-maximizing strat-

egy for the water heaters because they can capture revenues

from both energy and upward frequency regulation during

hours 18–21 through indirect discharging. Energy charging is

achieved through pre-heating water during hours 16 and 17 and

deferring water heating until hours 22 and 23. Relaxing the

flexibility of the water heaters with t̄ = 4 yields an operational

profile that is qualitatively similar to what is shown in Fig. 9.

A figure for this case is excluded for sake of brevity.

Fig. 9. Prices and optimized water-heater dispatch with t̄ = 2 and non-zero
f+

t
and f−

t
during high-price day.

2) Medium-Price Day

Fig. 10 summarizes market prices and battery operations

during the medium-price day. Contrasting this with Figs. 5

and 8 shows qualitatively similar battery operations in this

case. The key difference is that with non-zero values of

f+
t and f−

t , the energy prices justify only a single charg-

ing/discharging cycle during the day, as opposed to the two

cycles that are shown in Fig. 5. There are some small SOE

fluctuations during hours 4–11 in Fig. 10, which are due to

frequency-regulation energy deployments. The battery SOE

reaches a peak of 35 MWh as of the beginning of hour 17.

Only 9.25 MWh of this energy is charged directly. The remain-

ing energy is obtained through the deployment of downward

frequency regulation. There is no direct discharging during this

day. The battery’s SOE reaches 19.30 MWh after the peak in

the energy prices only through providing upward frequency

regulation.

Water-heater operations are qualitatively similar to the

aforementioned cases, and figures summarizing their opera-

tions are excluded for sake of brevity.

3) Low-Price Day

Fig. 11 summarizes market prices and battery operations

during the low-price day. Overall battery operations are quali-

tatively similar during this day with zero and non-zero values

of f+
t and f−

t —the energy prices justify a single energy-

Fig. 10. Prices and optimized battery dispatch with non-zero f+

t
and f−

t

during medium-price day.

shifting cycle. The key difference is the use of indirect energy

shifting with non-zero values of f+
t and f−

t . With non-zero

values of f+
t

and f−

t
, the battery’s SOE reaches a peak

of 30.70 MWh, of which 22.52 MWh is sold during the

day. Only 10 MWh of direct discharging is scheduled during

hour 22. The remainder of energy shifting is through providing

frequency regulation.

Fig. 11. Prices and optimized battery dispatch with non-zero f+

t
and f−

t

during low-price day.

It is profit-maximizing to sell energy through direct dis-

charging because of the relatively low hour-22 frequency-

regulation prices. The battery could collect two revenue

streams through indirect discharging. However, the relatively

low dispatch-to-contract ratio means that the battery would

forego on the volume of energy that is sold to collect a

relatively small frequency-regulation payment. As such, it

is preferable to sell energy during this hour through direct

discharging.

Fig. 12 summarizes market prices and the optimized op-

eration of the water heaters with t̄ = 2 during the low-price
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day. The key difference between operations with zero and non-

zero values of f+
t and f−

t is that direct discharging is profit-

maximizing during some hours in the latter case. With zero

values of f+
t and f−

t , the water heaters provide frequency

regulation only. With non-zero values of f+
t

and f−

t
, the

water heaters charge indirectly during hours 17 and 18, when

downward-frequency-regulation prices are relatively high, to

provide 26.39 MW of direct discharging during hour 19. This

direct discharging offsets 11.99 MW of indirect charging. This

strategy is profitable because the water heaters maximize the

amount of frequency regulation that they are able to provide

(based on hour-19 hot-water use) and collect energy payments

from direct discharging when the energy price is relatively

high.

Fig. 12. Prices and optimized water-heater dispatch with t̄ = 2 and non-zero
f+

t
and f−

t
during low-price day.

Water-heater operations with t̄ = 4 is qualitatively similar

to the operations that are shown in Fig. 12, and a figure that

summarizes this case is excluded for sake of brevity.

V. CASE-STUDY RESULTS

Table II summarizes the operating profits that are earned

with zero and non-zero values of f+
t and f−

t by the battery

and water heaters during the three illustrative days that are

examined in Section IV. Non-zero values of f+
t

and f−

t
reduce

battery profits during the medium- and low-price days (relative

to the case with zero values of f+
t

and f−

t
), while this impact

is reversed for high-price days. Water-heater profits are higher

during the high- and low-price days with non-zero values of

f+
t

and f−

t
. These varied operating-profit effects are due to

frequency regulation having different impacts on the battery

as opposed to water heaters. The operating profits that are

reported in Table II represent the marginal value during these

days of the energy storage to the CAISO system and to the

energy-storage owner [31], [32].

The primary benefit to water heaters of non-zero values of

f+
t

and f−

t
is that energy shifting becomes more economically

viable. With zero values of f+
t and f−

t , the time limit on shift-

ing water-heating loads restricts the ability of the water heaters

TABLE II
ENERGY-STORAGE OPERATING PROFITS EARNED ($ THOUSAND) DURING

HIGH- (HP), MEDIUM- (MP), AND LOW-PRICE (LP) DAYS

Zero f+

t
and f−

t
Non-Zero f+

t
and f−

t

Technology HP MP LP HP MP LP

Battery 24.19 5.37 3.61 33.17 4.90 3.47
Water Heater
t̄ = 2 13.37 2.04 1.75 18.69 2.02 1.75
t̄ = 4 13.97 2.22 1.75 19.60 2.14 1.81

to exploit high energy prices. This restriction is exacerbated

by the trade-off between providing frequency regulation as

opposed to energy shifting (cf. Fig. 3 and the accompanying

discussion). There is some benefit to a battery from indirect

energy shifting with non-zero values of f+
t

and f−

t
. However,

this benefit is relatively small during many days, because the

operational flexibility of the battery allows it to provide much

more frequency regulation and energy shifting than the water

heaters are able to provide.

Table III summarizes the overall financial performance of

the battery and water heaters with the two different flexibility

windows, assuming non-zero values of f+
t

and f−

t
. The

operating profits that are reported in Table III consider the

full year, as opposed to only the three days that are examined

in Section IV. The battery is assumed to begin with S0 = S−

and the water heaters are assumed to begin as of hour 1 of the

year without any previous charging or discharging. Following

from our analysis in Section IV, annual operating profit of the

battery is almost twice as high as that of the aggregated water

heaters if t̄ = 2. If the water heaters can be operated with

greater flexibility (i.e., with t̄ = 4), this operating-profit gap

is reduced slightly. With current cost estimates, the battery

is nearly three times as expensive as the water heaters. We

do not account for any actual or perceived cost to the hot-

water users, because we assume that the flexibility window

is chosen so as not to inconvenience them. If they bear such

costs, that should be incorporated into our cost estimates. We

use the ratio between capital cost and annual operating profit

as a back-of-the-envelope estimate of the net benefit of the

two energy-storage technologies. On the basis of this metric,

the water heaters outperform the battery.

TABLE III
CAPITAL COSTS AND OPERATING PROFITS OF ENERGY-STORAGE

TECHNOLOGIES

Capital Cost Annual Operating Cost-To-Profit
Technology ($ Million) Profit ($ Million) Ratio

Battery 14 1.689 8.3
Water Heater

t̄ = 2 5 0.979 5.1
t̄ = 4 5 1.028 4.9

The cost-to-profit ratios that are reported in Table III assume

that the year that we model in our case study is representative

of conditions that impact energy-storage revenues during the

life of a battery or water-heater aggregation. Our operating-

profit estimates rely upon year-2020 energy and frequency-
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regulation prices and the seven-year history of water-heater

data that provide our case-study inputs. We do not consider

the potential degradation of the energy-storage media. The data

that are provided to us by the water-heater aggregator do not

show any notable degradation from using water heaters in this

manner. Many modern batteries carry multi-year warranties.2

Thus, considering degradation may reduce the net benefit of

batteries relative to water heaters, insomuch as a cost-to-profit

ratio of 8.3 means that a battery may be nearing the end of its

usable life once operating profits recover the upfront capital

cost.

VI. CONCLUSIONS

This paper examines the performance of an aggregation

of tank electric water heaters as a source of virtual energy

storage and compares it to battery energy storage. To do

so, we develop models to optimize battery and water-heater

operations. We focus on using energy storage for energy

shifting and frequency regulation, but our model is sufficiently

general that other market-priced services could be incorporated

and considered. Our models are structured for the CAISO

market and we apply them to a case study that is based on

CAISO data. Nevertheless, our models can be adapted to study

other wholesale electricity markets with different rules. For

instance, the one-half coefficients in (3) and (4) can be changed

to reflect the headroom requirement of a different market. As

another example, the parameter and variable definitions can be

changed to capture a market that does not separate upward and

downward frequency regulation into two separate products.

We conduct a detailed examination of three illustrative days

and consider cases with zero and non-zero values of f+
t and

f−

t . We find that the greater operational flexibility of the

battery yields higher operating profit compared to the water

heaters under all of the cases that we examine. Electric water

heaters face two significant operating constraints. They are

restricted by the window of time within which water-heating

loads are able to be shifted without impacting water-user

comfort. In addition, the ability of water heaters to charge

and discharge during any given hour depends on that hour’s

water-heating demand. Relaxing the window of time within

which water-heating loads can be shifted yields some small

operating-profit increases.

Providing energy shifting is profit-maximizing only if the

associated operating profit outweighs the operating-profit loss

from foregone provision of frequency regulation. The operat-

ing profit that is earned from energy shifting depends upon the

price difference between the discharging and charging energy.

The operating profit that is earned from providing frequency

regulation depends upon the frequency-regulation price, the

dispatch-to-contract ratio, and the price difference between the

discharging and charging energy. The flexibility window limits

the economic viability of water heaters providing energy shift-

ing, which makes water heaters ideal for providing frequency

regulation. Although the battery provides significant amounts

2As an example, Tesla, Inc. provides a standard eight-year warranty on the
batteries that are in its vehicles.

of frequency regulation as well, a larger portion of its operating

profit is derived from energy shifting.

Overall, the water heaters outperform the battery when ac-

counting for capital costs. However, future battery costs could

be lower than they are today, e.g., some estimates of $150/kWh

by 2050 [2]. Such cost reductions could improve the economic

case for battery energy storage. Improvements in water-heater

control, sensing, and communication can yield further reduc-

tions in the cost of this technology. Such improvements could

be spurred by current legislative and regulatory levers that

are encouraging or requiring the deployment of controllable

water heaters (e.g., learning-by-doing effects) [33]. The cost

estimates that we use for the water heaters assume that control,

sensing, and communication equipment is added to existing

water heaters. If dedicated water heaters must be built for

this application, their costs should be incorporated into our

estimates.

We use a price-taking model, which assumes that the

prices are fixed exogenously. This is an appropriate modeling

approach to estimate the value to the bulk electricity system

and the asset owner of marginal energy-storage capacity. Other

modeling approaches would be needed to understand how the

value of battery or water-heater energy storage changes as

the penetrations of these or other technologies change [34].

Another natural extension of our work would be to model

operating profits over multiple years.

Our models are fully deterministic, meaning that the de-

cision maker knows all prices, dispatch-to-contract ratios,

and water-use patterns a priori. In practice these data must

be estimated or forecasted, which can impact energy-storage

operations and operating profits that are earned [35]. Simple

techniques, such as backcasting, can have fairly good per-

formance relative to the perfect-foresight benchmark that we

examine [17]. No doubt this is an important consideration that

should be examined if batteries or water heaters are being

used to provide energy shifting or frequency regulation. We do

not focus on this issue, because our goal is to benchmark the

operational and financial performance of water heaters relative

to a battery.
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