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Abstract—Given its physical characteristics and the range
of services that it can provide, energy storage raises unique
modeling challenges. This paper summarizes capabilities that op-
erational, planning, and resource-adequacy models that include
energy storage should have and surveys gaps in extant models.
Existing models that represent energy storage differ in fidelity of
representing the balance of the power system and energy-storage
applications. Modeling results are sensitive to these differences.
The importance of capturing chronology can raise challenges
in energy-storage modeling. Some models ‘decouple’ individual
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operating periods from one another, allowing for natural de-
composition and rendering the models relatively computationally
tractable. Energy storage complicates such a modeling approach.
Improving the representation of the balance of the system can
have major effects in capturing energy-storage costs and benefits.

Index Terms—Energy storage, power system operations, power
system expansion planning, power system economics, modeling

I. INTRODUCTION

THIS paper surveys needs in energy-storage modeling.

This guidance is needed because energy storage repre-

sents modeling challenges that do not apply to most other

power-system assets. These challenges arise from the physical

characteristics of energy storage and range of services that

it can provide. Existing models have a subset of our desir-

able capabilities, leaving gaps that can be filled with further

research. We have a specific aim of informing the research

community on these needs. The important issue of translating

research advances into commercial software tools and industry

dissemination is beyond our scope.

We examine operational, planning, and resource-adequacy

modeling. A defining characteristic of operational models is

that they capture the operation of a power system with a fixed

asset mix. Planning models optimize the mix of resources to

add to or remove from a power system. Resource-adequacy

models focus on meeting system-reliability targets.

The remainder of this paper is organized as follows. Sec-

tion II discusses contexts for energy-storage use. Section III

provides an overview of challenges in energy-storage modeling

and model desirables, which pertain to most of the model

types that we survey. Section IV discusses energy-storage

valuation. Section V surveys the state-of-the-art in energy-

storage modeling and discusses gaps that are specific to each

model type. Section VI concludes.

II. CONTEXTS FOR ENERGY-STORAGE USE AND

MODELING

We identify three possible energy-storage users, their po-

tential objectives, services that energy storage can provide,

and pertinent model types. Planners and operators minimize

the cost or maximize the reliability of a power system.
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Such entities may compare energy storage to other resources

as part of a least-cost plan via planning tools, including

capacity-expansion, resource-adequacy, and production-cost

(PCM) models. A wholesale-market participant may seek to

maximize profit, which can be evaluated using a price-taking

model (using historic or forecasted prices), a PCM (estimating

future prices), or a strategic-behavior model (e.g., capturing

price-making behavior). Behind-the-meter (BTM) customers

aim to minimize their retail costs, which can be estimated

using a price-taking model with retail tariffs. There are also

hybrid combinations, e.g., a BTM customer may share energy

storage with an aggregator, which uses part of the capacity

in the wholesale market. Such a use of energy storage would

yield a combined objective of minimizing costs and maximiz-

ing revenue. Energy-storage applications that are not market-

priced require a comparison to cost-of-service alternatives.

In addition, policymakers, regulators, or market designers

may model energy storage. For instance, a PCM could examine

proposed energy-storage projects or a strategic-behavior model

could analyze potential market or policy reforms.

III. CHALLENGES AND DESIRABLES IN ENERGY-STORAGE

MODELING

A. Generic Modeling Considerations

We begin with generic modeling issues that are not unique

to energy storage. Validation against actual outcomes, which

is not possible for all model types, is one consideration.

Validation can be conducted reflectively, e.g., ensuring that a

model captures the rules, constraints, and financial settlements

of the power system or market in question. If possible,

comparing simulated results to an actual energy-storage project

with similar characteristics can be valuable [1].

Cross-model comparison can illustrate the value of different

model formulations, which raise context-specific trade-offs

between fidelity and tractability [2]–[4]. Individual resources

included in a system-wide model may be represented with lim-

ited details relative to stand-alone modeling of those resources.

Another consideration is selecting a model that is well suited

to the study question. Model detail depends also on available

time (e.g., operational versus planning applications).

B. Multi-Timeframe Modeling

Energy-storage technologies have a range of power and

energy (duration) capacities and response rates.1 Markets

operate and clear with different temporal horizons and res-

olutions. These properties and the range of services that it can

provide may require modeling energy storage across multiple

timeframes. Multi-timeframe modeling remains an outstanding

challenge, which could be addressed, e.g., using an integrated

multi-scale model or by decomposing the problem with a suite

of models. A related challenge is to bridge the gap between

the timescales of markets and energy-storage operations.

1http://www.energystorageexchange.org/

C. Energy-Storage Model ‘Desirables’

1) Representing Energy-Storage Capabilities: A model

should capture technical energy-storage capabilities, so long

as the benefit of detail outweighs the cost of inclusion.

Some energy-storage technologies may entail modeling power

electronics, including dc/ac conversion and control of real- or

reactive-power. The minimum of energy-storage modeling is:

st = (1 − ηs)st−1 +∆tpct/η
c −∆tηdpdt , ∀t (1)

smin ≤ st ≤ smax, ∀t (2)

0 ≤ pct ≤ pc,max, ∀t (3)

0 ≤ pdt ≤ pd,max, ∀t. (4)

Equalities (1) calculate, ∀t, time-t state of energy (SOE),2

st, in terms of time-(t − 1) SOE and time-t charging and

discharging, pct and pdt , respectively. ηs, ηc, and ηd represent

the use-independent energy-loss rate and charging and dis-

charging efficiencies, respectively. ∆t is the time-step duration

and converts power into energy. Inequalities (2)–(4) impose

SOE, charging, and discharging limits, respectively.

Constraints (1)–(4) have a computationally simple structure

and capture basic facets of energy-storage operations, but

may be limited therein. The following surveys some modeling

issues, the relative impact of which may depend on the

technology and model focus, and should be examined in-detail.

a) Dependency of Power on SOE: Power and SOE can

be related, which is neglected in (3)–(4) and most models [5].

b) Dependency of Efficiency on Current: Efficiencies are

constant in (1), whereas they can depend on charging and

discharging currents and rates [6]. This means that ηc and ηd

depend on pct and pdt , which is not captured in (1).

c) Power Range: Some technologies can operate in a

continuous range between maximum charge and discharge

rates whereas others may have minimum-operating points [7].

A mixed-integer formulation or discontinuous feasible region

may be needed to capture the latter in (3)–(4) [8].

d) Capacity-Recovery Effect: This battery-specific effect

occurs when discharging to minimum voltage, especially at

a fast rate, after which the voltage recovers and further

discharging is possible [9]. This effect is not investigated fully.

e) Degradation: Many energy-storage technologies de-

grade with each cycle. Rainflow-counting algorithms [10] are

a state-of-the-art degradation-characterization approach. These

algorithms are highly non-linear, and embedding them into a

model yields a non-linear optimization, which raises compu-

tational issues. Some energy-storage technologies are subject

to age-related degradation, which may have highly non-linear

relationships with their SOE and temperature profiles [11].

Linear and mixed-integer approximations of degradation

models are used commonly [12]–[17]. Another approach is to

add cycling limits [18]–[20] or to conduct depth-of-discharge

control [21]. These approaches are heuristic and rely on

proper parameter selection. The development of more robust

approaches to manage degradation, which balance fidelity and

tractability of the degradation characterization, is needed.

2SOE denotes stored energy (Wh). ‘State of charge’ (SOC) indicates
electrical charge (Ah). SOE is the product of SOC and voltage. Voltage can
depend on SOC, which would yield a nontrivial relationship with SOE.

http://www.energystorageexchange.org/
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f) Parasitics: Energy-storage use may entail parasitic

loads (e.g., heating or cooling of the storage medium), which

may have temporal variance (e.g., peak during periods of

highest energy-storage use) [22], [23].

2) Balance of the Power System: Energy storage derives

value from impacting the balance of the power system. Thus,

improvements in representing the balance of the power system

may be more beneficial in improving energy-storage represen-

tation relative to energy-storage-specific modeling [24], [25].

Examples of non-energy-storage modeling choices include

uncertainty characterization and temporal resolution (capturing

the flexibility value of energy storage) and spatial resolution

and transmission modeling (capturing spatio-temporal energy

shifting and provision of transmission deferral and voltage and

reactive-power support by energy storage) [26].

3) Uncertainty Characterization: Uncertainty can have out-

sized impacts on energy storage due to the technology’s

physical characteristics and energy-limited nature [27]. A

deterministic model can overstate energy-storage value by

assuming that pertinent data are known a priori [28]. Con-

tinuously deployed reserve products, e.g., frequency reserves,

are important, as changes in bias toward upward or downward

deployment can affect energy-storage operations and revenue.

Risk preferences may be an important consideration.

Approaches to handling uncertainty include stochastic,

robust, and chance-constrained optimization [8], [29]–[42].

However, these techniques introduce tractability and scaling

issues, which may require model decomposition, relaxation,

approximation, or heuristics [34], [40], [42]–[45].

4) Market and Financial-Settlement Rules: Most markets

have resource-participation rules, which models should aim to

capture. For example, energy-storage qualification in capacity

mechanisms varies between markets. Simplifications include

how resources participate or schedule in markets, how their

operations are optimized, and financial settlements. A related

issue is that many models focus on estimating the system value

of energy storage without considering remuneration [15], [16],

[33], [35], [36], [38]. In some cases energy storage can be

socially beneficial but operate at a loss [46].

In some cases energy-storage operators find differences

between forecast and actual results and market-operating

strategies [1]. Developing models to analyze market rules and

remuneration schemes would be beneficial. Such development

is complicated by the diversity of wholesale market rules,

which requires tailoring models to each case.

5) Computational Complexity: Computational complexity

is related to the mathematical structure of a model. Linear

and convex models can be solved relatively efficiently whereas

other model structures may require significant effort. Thus,

heuristic methods are used sometimes to approximate solutions

before employing formal optimization [13], [47], [48]. Further

development of efficient approaches to solving energy-storage

models is needed, especially as other modeling gaps that we

highlight are addressed (and increase model complexity).

IV. ENERGY-STORAGE VALUATION

Energy-storage valuation is a common use of energy-storage

models. Energy-storage value streams and business models

depend on location and owner [49]. Services from front-of-

the-meter energy storage include energy arbitrage, ancillary

services (AS), resource adequacy, and asset deferral [37]. BTM

energy storage can be used for tariff management, demand

response, power quality, and (potentially) front-of-the-meter

services [50]. Front-of-the-meter services from BTM energy

storage may require an intermediary or aggregator. Energy

storage also can provide societal benefits, e.g., reducing power-

system emissions or enabling higher penetrations of renewable

energy [51], [52], or can impose external costs [53]–[55].

Flexibility and modularity is an energy-storage benefit that

can be difficult to capture. For example, ‘wires’ transmission

and distribution projects are available in discrete sizes, which

may require a large investment in anticipation of uncertain

future demand. An energy-storage solution can be sized flex-

ibly and additional energy-storage modules can be added

as more capacity is needed. Moreover, many energy-storage

technologies can be transported elsewhere once a transmission

or distribution upgrade is deployed [56].

A. Market and Regulatory Structures

Given many potential applications, there is interest in value

stacking or multi-use applications, wherein energy storage is

used for multiple services [57]. Multi-use applications raise

market and regulatory issues, due to potential monetization

barriers [51]. For example, a utility that participates in a

wholesale electricity market may capture transmission- and

distribution-deferral benefits as part of its planning. By offer-

ing excess energy-storage capacity into the wholesale market,

its energy-arbitrage and AS benefits can be captured as well.

However, some jurisdictions bar regulated utilities from

owning assets that participate in wholesale markets [57].

Another potential barrier is services being procured in different

markets, in which energy storage cannot participate simulta-

neously. Another issue is regulators tying cost recovery to the

ownership structure of energy storage.

Multi-use applications also may raise operational con-

straints. An example framework for multi-use applications of

energy storage3 prioritizes some services (e.g., asset deferral),

meaning that energy storage cannot provide services that

conflict with its ability to fulfill prioritized-application obliga-

tions. This proposal raises additional concerns around double-

counting of services, insomuch as energy storage should

receive an incremental payment for a second service only if it

is distinct from another service that it is providing.

Proposed solutions to these barriers include contracting,

tradeable capacity rights, capacity-sharing algorithms, and

hybrid resource-ownership models [57]–[61]. Steps that are

employed to mitigate such barriers should be captured in

energy-storage models, with the caveat that markets and reg-

ulation are evolving quickly. Regulators are removing barriers

to the participation of energy storage in wholesale markets.4

As market rules and tariffs are modified to facilitate energy-

storage participation, questions regarding the relative merits

3cf. docket number R.15-03-011 for further details.
4cf. Federal Energy Regulatory Commission docket numbers RM16-23-000

and AD16-20-000 for an example.
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and efficiency of these designs will arise. The modeling

methodologies that we survey (especially strategic-behavior

models) could support market-rule development.

B. Energy-Storage Costs

Energy-storage capital cost depends on technology and

capacity. The contribution to total cost of the storage medium

relative to other components (e.g., power electronics, control

systems, and casing) may be small for some technologies [62].

Operation and maintenance (O&M) cost depends on the

device’s lifetime (through depreciation) and operating profile.

Except for component replacement, O&M cost tend to be

relatively low. Some applications yield ‘aggressive’ cycling

profiles that can result in faster cycle-life degradation and

component replacement. End-of-life costs (e.g., component re-

cycling) may introduce additional costs and design challenges.

Cost projections of energy storage vary widely [63] and are

available from a variety of sources.5 Despite the availability

of public cost data, more robust estimates of long-run perfor-

mance and component-replacement costs of energy storage is

of importance, particularly for planning modeling.

V. EXISTING MODELING TOOLS AND GAP ANALYSIS

A. Price-Taking Models

Price-taking models estimate the value of energy storage

providing market-priced services. These models assume that

energy storage is sufficiently small to have no impact on prices,

the market, or power system. This assumption yields a simpli-

fied (often linear [37]) model, allowing for objective-function

maximization without needing to represent the balance of the

power system. Dynamic and mixed-integer formulations are

used as well [15], [64]. Pricing-taking models appear widely

in the literature, due to their simplicity [29], [65].

1) General Model Description: Profit maximization is a

common objective and price-taking models can include tech-

nical and regulatory constraints [66], [67]. These models

estimate the value of providing any system services with prices

against which energy-storage operation can be optimized and

can represent multi-use applications [66], [68], [69].

A generic price-taking model:

max
∑

t

[revenuet − operational costt] (5)

s.t. device constraints (6)

external constraints (7)

market-design constraints, (8)

maximizes operating profit over a fixed time horizon with

discrete time steps, which are indexed by t.
2) State-of-the-Art:

a) Revenue: Objective function (5) captures revenue

based on prices for services. The revenue terms in (5) can

vary depending on the services that are modeled. For example,

some markets provide performance, mileage, and capacity

payments for frequency regulation [41] and (5) should reflect

these if modeling such a market.

5e.g., https://atb.nrel.gov/

b) Operational Cost: Operational cost in (5) can depend

on market transactions (e.g., cost of charging energy), fuel

costs (e.g., natural gas used by diabatic compressed-air energy

storage), degradation costs [70], [71], and other factors. Degra-

dation costs are borne in the future and should be discounted

to compute the net present value of energy storage [13], [14],

[17], [72]. Energy losses, which are inherent in energy-storage

use, require a minimum price difference between charging and

discharging energy to yield positive profit.

c) Device Constraints: Device constraints (6) represent

technical characteristics and limitations of energy storage in

providing services. The bare minimum of device constraints

include (1)–(4). Other complicating factors can include ramp

and response rates, capacity changes (e.g., due to degradation),

and minimum-power levels when charging or discharging.

d) External Constraints: Constraints (7) can include use-

specific externally imposed restrictions on energy storage. For

instance, there may be minimum-SOE constraints if energy

storage provides backup energy to a distribution feeder or

distribution deferral [72], [73].

e) Market-Design Constraints: Wholesale markets may

impose market-participation requirements (e.g., a minimum

offer size or discharge duration). Such requirements may

be particularly pertinent for certain services (e.g., capacity

products). Another example is differences in how SOE man-

agement is conducted by market operators [74].

f) Temporal Resolution and Horizon: Typically, the tem-

poral granularity meets that of the market that is being ana-

lyzed (e.g., hourly for day-ahead and sub-hourly for real-time

markets). The time horizon can depend on the applications that

are under consideration (e.g., a day-long model for energy

arbitrage in a day-ahead market as opposed to diurnal and

seasonal modeling of a reservoir hydroelectric system). A

fixed optimization horizon can yield myopic decision making

(e.g., fully discharged energy storage at the end of the model

horizon). Some models that are limited to a single market

cycle have an ending target SOE to mitigate myopic behavior

[75]. This approach is heuristic and sensitive to selecting a

reasonable ending SOE, which may be dynamic. For instance,

the target SOE may depend on weather and load conditions

that are forecasted several days into the future.

g) Uncertainty Characterization: Stochastic, robust, and

dynamic optimization are used to represent uncertainty [32],

[34], [37], [39], [41]. Simulation- or scenario-based ap-

proaches, e.g., optimization with a forecast and conducting

ex post calculations using actual data, are employed also [28].

3) Gaps and Research Needs:

a) Price-Taking Assumption: The price-taking assump-

tion is a major limitation. The operation of a sufficient volume

of energy storage can impact market or system conditions [76].

Moreover, energy storage must compete with other resources

and may not be selected for dispatch. Thus, price-taking

models may yield suboptimal decisions and over-estimate asset

values. The price-taking assumption can be relaxed, e.g., by

using PCMs or strategic-behavior models. However, these

modeling frameworks can be considerably more complex than

price-taking counterparts. Simple extensions to price-taking

models that can capture better the impacts of energy storage

https://atb.nrel.gov/
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on market and system outcomes are needed [28].

b) Temporal Resolution and Horizon: The market and

application(s) that are modeled may suggest a natural time

resolution and horizon. However, the frequency of market

clearing may differ from the frequency with which provision

of a service impacts energy storage. For instance, a frequency-

regulation market may clear hourly despite impacting energy

storage on a sub-minute basis. Thus, modeling the provision

of frequency regulation at an hourly time resolution may entail

approximating the resultant operation of energy storage [72].

c) Resource Aggregration: Energy-storage modeling is

considering aggregations with other assets [66], [68], [69],

[77]–[85]. Modeling can be simplified by approximating an

aggregation as a single component that is subject to additional

uncertainties, but refinements are needed. Hybrid systems may

impose additional constraints, e.g., arising from the shared

inverter of a system consisting of energy storage and solar

panels that are coupled on the dc side of the inverter [86].

B. Very-Short-Run Models

Some power-system needs (e.g., arresting frequency ex-

cursions and mitigating transients and harmonics) occur on

extremely short time-scales. The proliferation of renewable

energy and associated loss of synchronous inertia are expected

to change these needs, which energy storage could meet, given

the fast response time of some technologies [87], [88]. Very-

short-run models represent the provision of such services.

1) General Model Description: Very-short-run and price-

taking models have structural similarities. A typical difference

between the two model types is that the latter are optimizations

(e.g., formulated to maximize profit) whereas the former tend

to be simulations (e.g., to ensure that a set of resources can

provide the necessary services). In some instances, very-short-

run models can be formulated as optimizations, for instance to

maximize a performance criterion. The choice between opti-

mization and simulation can be governed by whether particular

services are market-remunerated or not, e.g., there are few

markets that remunerate the provision of primary frequency

reserves, making a financial objective function meaningless

[89]–[91]. Some models assume that energy storage provides

very-short-run services, in conjunction with other services

(e.g., energy or AS) [18]–[21], [37], [92]–[100].

2) State-of-the-Art: A key distinction between price-taking

and very-short-run models is that the latter focus on granular

representation of energy-storage operations (e.g., capturing

transients or dynamics). The operating profile can be ran-

dom (e.g., following a frequency-reserve signal). Thus, SOE

management, energy-storage sizing, and technology selection

are primary concerns [101], [102]. Poor SOE management

could lead to operating-profile non-compliance, profit over-

estimates, or an energy-storage asset being disallowed from

providing such services. Deterministic SOE-estimation, as-

suming a known operating profile, is used frequently [18],

[95], [96], [98], [99], [103], [104], and may have difficulty in

estimating the actual SOE. Some models represent uncertainty

in operating profiles, e.g., through scenarios generated from

historical data or assumed probability distributions, robust op-

timization, Markov-decision processes, or persistence forecasts

[20], [21], [37], [80], [82]–[84], [94], [97], [100], [101].

Models that neglect uncertain operating profiles may not

estimate SOE accurately, requiring adjustments to fulfill com-

mitments. Thus, one may focus on developing operating strate-

gies that avoid non-compliance in providing very-short-run

services. Non-compliance can be avoided by re-establishing

SOE periodically to a set point by transacting energy [18],

[37], [94], [96], [100]. Another approach is to use SOE-

dependent operational profiles, which establish threshold SOE

values, beyond which energy storage provides only one of

discharging and charging [77], [84], [92], [93], [105]. When

SOE is between the thresholds, the energy storage follows

the operating profile normally. Another approach is to offer a

predefined quantity of energy-storage capacity for very-short-

run services [21], [79], [81], [101], [103], [104].

3) Gaps and Research Needs:

a) Non-Compliance Penalties: Poor SOE management

can result in energy storage not following an operating profile

and non-compliance penalties, which is considered in a limited

number of models [82]. Further analysis of penalties and their

impacts on energy-storage operation and profit is needed.

b) SOE Recourse: An important capability that is lacking

is consideration of operational recourse, whereby the actual

SOE is used to adjust the subsequent operational schedule.

Rolling-horizon optimization could allow models to mitigate

SOE uncertainties better. A related capability is to quantify the

reliability of energy-storage providing very-short-run services.

C. Production-Cost Models

PCMs capture operational costs of a power system by

optimizing the dispatch of its resources. This optimization

accommodates technical, economic, regulatory, and policy

factors and constraints. PCMs also can be used to design

and evaluate the performance of future power systems, e.g.,

analyzing high renewable-energy penetrations [106], [107] or

as part of system planning [108].

Incorporating it into a PCM captures the impact of energy

storage on the balance of the power system, thereby relaxing

the price-taking assumption of price-taking models. As such,

the imputed value of energy storage is sensitive to how the

power system is represented [109]. PCMs assess the impact

of energy storage from a ‘system’ perspective (e.g., by a

vertically integrated utility or in a centrally committed market)

[33], [35], [36]. PCMs neglect market and resource-ownership

considerations, although prices and revenues can be examined

[110].

1) General Model Description: Most PCMs have cost-

minimization or welfare-maximization as their objectives. In

principle, a PCM can capture the use of energy storage for

any service that it represents.

A generic welfare-maximizing PCM:

max social welfare (9)

s.t. power-system constraints (10)

asset constraints, (11)

assumes a finite time horizon with discrete time steps.
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2) State-of-the-Art:

a) Objective Function: Incorporating energy storage into

a PCM may not require explicit adjustment of (9), because (9)

accounts for the cost of producing energy that is charged into

energy storage. One case in which (9) requires adjustment

is the treatment of energy-storage degradation, which can be

represented through a cost term.

b) Power-System Constraints: Power-system constraints

that can be captured depend on the mathematical structure of

a PCM. Linear formulations can capture economic-dispatch

decisions and linearized power-flow constraints [35]. Mixed-

integer formulations can represent transmission switching and

other non-convexities. Power flows can be represented using

more complex convex conic relaxations of power-flow con-

straints or non-linear and non-convex formulations of Kirch-

hoff’s Laws [111].

System constraints in a PCM impact energy storage, in-

somuch as they determine the services that energy storage

can be captured as providing. For instance, linearized power-

flow constraints can be limited in capturing energy storage

providing reactive-power and voltage services. Nonlinear or

convexified power-flow constraints may capture these benefits

better [66]. Similarly, the representation of AS and reserves

in a PCM impact whether energy storage’s ability to provide

these services is captured [36].

c) Asset Constraints: Mathematical structure determines

asset constraints that can be captured by a PCM, which impact

energy storage in two ways. One impact is that other power-

system assets may have operational inflexibilities that energy

storage can mitigate. Second, mathematical structures may

differ in their ability to capture energy-storage operations.

Mixed-integer PCMs can represent unit commitments [33],

[35], [36]. Thus, such models can capture benefits of energy

storage reducing generator cycling, which would not appear

in linear formulations [46].

Linear PCMs can capture basic energy-storage features (cf.

Section III-C1), but can overestimate energy-storage value

[15]. Nonlinear convex or mixed-integer refinements can cap-

ture cycling effects on degradation and efficiency losses, but

at greater computational cost [15], [17].

d) Temporal Resolution and Horizon: Often production-

cost modeling entails solving a chronological sequence of

problems with fixed horizons. For instance, a day-long unit-

commitment model with hourly resolution can be solved in a

daily rolling-horizon fashion, as these are the time resolution

and horizon that are common practice [33], [35], [36].

A given time resolution and horizon can yield myopic

decision making and may not capture the time scales at which

the operation of energy storage is impacted. Moreover, energy

storage may have flexibility benefits that may not be captured

in a model with coarse temporal granularity [15].

e) Uncertainty Characterization: Explicit representation

of uncertainty features in some PCMs. Many energy-storage

technologies are operationally flexible and may have an out-

sized role in helping to mitigate these uncertainties, which

may not be captured in deterministic formulations. Hence,

energy storage may benefit from representing uncertainty in

a modeling exercise [35].

3) Gaps and Research Needs:

a) Uncertainty Characterization: Some PCMs that rep-

resent uncertainty overassume the availability of information

in modeling recourse decisions [112], [113]. A common

modeling approach assumes that day-ahead decisions are made

with uncertain real-time conditions, which is followed by a set

of real-time recourse decisions which have all uncertainties

revealed. Such a model structure neglects the gradual revela-

tion of uncertainty. Other important intertemporal dynamics

include the actual deployment of reserves, which influences

energy-storage SOE and its subsequent ability to provide

energy and other services [72]. Development of models that

represent better these types of dynamics would provide more

robust estimates of the flexibility value of energy storage.

b) Spatial Resolution: For tractability, many PCMs use

linearized power-flow constraints to represent only the trans-

mission network. Non-linear power-flow models that capture

voltage and reactive power may reveal additional energy-

storage benefits [66]. The importance of capturing interactions

between transmission and distribution networks is increasing.

Extending PCMs to capture the distribution system may reveal

additional energy-storage benefits that current models do not

show.

c) Computational Considerations: Energy storage can

increase the computational cost of PCMs, making efficient

formulations and solution algorithms important. Much of the

extant work in this vein focuses on efficient uncertainty

representation [33], [35], [36], [38]. Work to model other

features (beyond uncertainty) efficiently is needed.

D. Strategic-Behavior Models

Strategic-behavior models relax two assumptions of price-

taking and production-cost modeling. Strategic-behavior mod-

els do not assume that energy storage has only a marginal im-

pact on market and system conditions, nor do they assume that

a central planner co-optimizes the system. Rather, strategic-

behavior models allow agents to behave in a self-interested or

price-making manner, which may yield decisions that are not

cost-minimizing or welfare-maximizing [114].

A strategic-behavior model could be used by an agent to

determine how to maximize the value of a privately owned

energy-storage asset. However, these models tend to be limited

in representing system and market details tractably. As such,

it is more common to use these models to understand how

strategic behavior may impact market and system outcomes or

to inform policy, regulatory, or market-design decisions. For

instance, energy-storage can be welfare-diminishing in certain

circumstances [53], [55], [115]. This model type is used more

often to study energy-storage operations vis-à-vis investment.

1) General Model Description: Strategic-behavior models

can have a variety of structural features, meaning that there is

no generic formulation, as in (5)–(8) and (9)–(11). A common

feature of strategic-behavior models is that they compute an

equilibrium (e.g., partial, Nash, or generalized Nash). An

equilibrium has the defining feature that the strategic agents

are making decisions that are individually optimal, in light

of decisions that are taken by other strategic agents and the
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operation of the system and market. This defining property

of an equilibrium is important, as it captures self-interested

behavior on the part of market participants.

One approach to model strategic behavior employs a multi-

level structure. For instance, the upper level may represent

profit-maximizing (e.g., investment, operational, or offering)

behavior by market participants whereas the lower level rep-

resents market clearing (e.g., by a welfare-maximizing market

operator) [74], [116]–[120]. Another approach avoids multi-

level modeling by assuming a stylized (e.g., a Nash-Cournot

paradigm) or competitive market-clearing model [53]–[55].

2) State-of-the-Art:

a) Strategic Agents: Which and how many agents are

assumed to behave strategically varies. At one extreme are

models that assume only one strategic player (e.g., an energy-

storage owner) [53], [74], [117], [118]. Such models compute

partial equilibria, insomuch as the strategic player optimizes its

behavior with fixed behavior for the others. This assumption

may overstate strategic behavior, because in practice other

agents can react to the strategic player.

At the other extreme are models that assume multiple

strategic players (including non-energy-storage agents) [54],

[55], [116]. Such models compute Nash or generalized Nash

equilibria, depending on whether the agents’ strategy spaces

are coupled (e.g., through joint constraints).

b) Decision Sequence: Modeling sequential decisions

captures one decision maker responding to another, but can

increase computational complexity. A common approach to

avoiding sequential decisions is to assume a simultaneous-

move interaction, e.g., agents behaving à la Bertrand or Nash-

Cournot models [53], [55]. Simultaneous decisions require

solving multiple optimization problems (i.e., for each strate-

gic agent) simultaneously. Equilibrium computation can be

straightforward if the problems are convex, in which case equi-

libria can be found from necessary and sufficient optimality

conditions of the individual problems.

Sequential interactions, conversely, require modeling multi-

level optimization problems. A common approach to solving

multi-level problems tractably is to replace lower-level prob-

lems with optimality conditions [54], [116]–[120].

3) Gaps and Research Needs:

a) Computational Considerations: Many of the gaps in

strategic-behavior modeling are computational and are not

energy-storage specific. Energy storage and modeling the evo-

lution of its SOE exacerbates these challenges, because time

periods become coupled. Absent energy storage, strategic-

behavior models often can be decomposed across time. Thus,

strategic-behavior models with energy storage are limited in

representing uncertainty, multiple time periods, and a spatial

network [117]. Developing modeling, solution, and decom-

position techniques that can exploit uncertainty, temporal, or

spatial structures to capture these features is needed.

b) Equilibrium Computation: As with many economic

games, strategic-behavior models can have multiple equilibria.

Algorithms that are available today rarely are able to guarantee

that all equilibria can be found [121]. This raises the possi-

bility that a strategic-behavior model that is used for market,

regulatory, and policy analysis does not identify equilibrium

behavior that may occur in practice.

c) Optimality Conditions: Especially if representing se-

quential decisions, strategic-behavior models rely typically on

replacing optimization problems with optimality conditions

[122]. An issue with this solution technique is that optimality

conditions of many classes of optimization problems are non-

convex. This non-convexity can limit the use of this approach

to modeling settings with very few sequential decisions. More-

over, the use of optimality conditions requires model structures

that yield necessary and sufficient optimality conditions, which

restricts constraint types that may be used [123]. Developing

decomposition and parallel-computing techniques for solving

strategic models of energy-storage operation is important.

E. Capacity-Expansion and Portfolio-Planning Models

We classify three types of capacity-expansion and portfolio-

planning models. First, screening tools, which combine a

system’s load-duration curve with technology costs to optimize

a resource mix [124], [125], are excluded from our survey

because they are limited in capturing power-system character-

istics. A second set of approaches includes comparing benefits

and costs of a candidate asset, e.g., as an added step of analysis

after operational modeling of the asset, or employing strategic-

behavior or equilibrium models. The model types that we

survey in Sections V-A–V-D fall into this category. The third

approach that we survey here models capacity expansion from

the perspective of a central planner, by optimizing the resource

mix subject to system-operation and -reliability constraints.

1) General Model Description: Most capacity-expansion

models maximize electricity-sector social welfare or minimize

its cost. Investments and operations are considered together in

such models. A generic cost-minimizing model takes the form:

min
∑

t

[investment costt + operational costt]

s.t. investment constraints (e.g., budget and resource limits)

operating constraints (e.g., load balance, power flow,

generator limits);

and capacity-investment and operational decisions are repre-

sented over mid- to long-term optimization horizons. Differ-

ences in capacity-expansion models include: geographic reso-

lution and scope, temporal resolution and horizon, asset resolu-

tion (e.g., aggregated or individual assets), sectoral resolution

(e.g., electricity only or multiple energy carriers), foresight and

uncertainty representation, perspective (e.g., central planner

or merchant developer), and operational representation (e.g.,

unit commitment, power flow, and operating reserves). We do

not provide a detailed survey of differences and capabilities

of capacity-expansion models, referring interested readers to

other works [126]–[130]. Many of these characteristics of a

capacity-expansion model interact (e.g., operating-reserve rep-

resentation can be interrelated with geographic and temporal

resolution, geographic scope, and transmission representation).

How energy storage is included in system planning depends

on model scale, scope, and application. For example, models

with a broad geographic scope rarely include the distribution
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system. Models that are used for policy analysis may focus

on high-level costs and benefits of energy storage rather than

detailed impacts [131], [132]. Some national-scale models

include diurnal energy storage in only recent releases (e.g.,

2018 was the first year in which battery energy storage was

included in Annual Energy Outlook6).

Depending on the attributes that are emphasized in a

particular model, energy storage can serve three primary

applications: energy, capacity, and AS.7 For example, the value

of energy storage providing energy and AS can depend on the

representation of dispatch and renewable-energy curtailment.

Many capacity-planning models rely on a reduced-form dis-

patch with representative operating periods [127], [130], [131],

[133], [134]. Operating-stage chronology can be limited or

non-existent, which can complicate energy-storage modeling

[135], [136]. To improve tractability, unit commitment is

neglected in many capacity-expansion models [129], [137],

[138]. The capacity value of energy storage in these models is

often static, reflecting the difficulty in estimating dynamically

how capacity values change with the resource mix [139].

Other factors that can affect energy-storage economics are

the representations or assumptions of technology-improvement

rates, resource or siting constraints, and policy (e.g., treatment

of energy storage charging with renewable energy) [140].

More nuanced features, such as battery chemistries or non-

electric energy-storage technologies, are ignored often.

For computational reasons, most capacity-expansion models

are linear [141]–[144]. Mixed-integer formulations can capture

more complex interactions, e.g., profit-driven investment deci-

sions [145], [146] and unit commitments at the operating stage

[147]. There are differences in modeling capacity expansion

with energy storage from the perspectives of system operators

and individual investors [148].

2) State-of-the-Art:

a) Unit Commitment: Energy storage can reduce the on-

and-off cycling of other units, which can be a net benefit

depending on its degradation [46], [149], [150]. Capturing this

benefit depends on the representation of operational decisions

in capacity-expansion models [151], [152].

b) Model Resolution: Some models consider a limited

set of energy-storage technologies (e.g., National Energy

Modeling System considers only diurnal energy storage with

four hours of energy capacity [153]) whereas others allow

for endogenous energy-storage sizing [138]. State-of-the-art

models represent hourly or sub-hourly operating decisions.

Flexibility in model resolution is becoming a more common

feature, which allows for exploration of tradeoffs between

model resolution and tractability [154].

c) Capacity Value: Some capacity-expansion models de-

termine energy-storage capacity value endogenously through

interactions between load patterns, transmission, and re-

source mix [139], [155], [156]. Other models employ out-of-

optimization approaches to make these assessments [129] or

capture capacity needs through load-growth scenarios [157].

6https://www.eia.gov/outlooks/archive/aeo18/
7Transmission deferral is captured to the extent that transmission is mod-

eled. We do not consider transmission deferral to be a separate application
because transmission is used to meet energy, capacity, and AS needs.

d) Transmission: Oftentimes transmission constraints are

represented in capacity-expansion models using pipes-and-

bubbles [40], [158] or linearizations of Kirchhoff’s laws [43],

[157]. The latter may require binary variables to capture

disjunctive power-flow constraints if a line is built or not [159].

e) Renewable-Resource Representation: Energy storage

can mitigate the impacts of uncertain and variable real-time

renewable-energy availability [160] and renewable-energy cur-

tailment [161], [162]. These renewable-energy impacts are

driven by generator, transmission, and demand flexibility

[163]–[166]. Thus, capturing synergies between energy storage

and renewable resources in a capacity-expansion model is

governed by how the balance of the power system is modeled.

f) Distributed and BTM Resources: Distributed and BTM

energy storage often are modeled on an ad hoc basis, by

comparing energy storage to other solutions. Some models

can optimize the use of distributed or BTM energy storage

for multiple applications, including distribution deferral [73],

voltage control [52], service reliability [56], [102], [167],

[168], and customer-tariff management [50].

g) Model Perspective: Existing models capture central

planners’, individual investors’, or co-ordinated perspectives.

Central-planning models can be large-scale, but simple relative

to other perspectives that may yield equilibrium constraints or

problems [146], [169].

3) Gaps and Research Needs:

a) Uncertainty Representation: Many planning models

that represent uncertainty do so using a multi-scale approach

[40]. ‘Strategic’ uncertainties (e.g., long-term load growth

or policy, technology, or fuel-cost changes) are represented

explicitly whereas operational uncertainties (e.g., wind- or

solar-availability or load patterns) are captured using represen-

tative operating periods. This modeling paradigm assumes no

interim uncertainty in the operating stage (e.g., between when

unit commitments are determined and real time) and can be

contrasted with operational models that can capture interim

uncertainty. Thus, this approach to representing uncertainty

may underestimate the flexibility needs of the power system.

b) Unit Commitment: Many models parameterize unit-

commitment decisions for sake of tractability whereas others

are relaxing this, with associated scaling issues [137]. Convex-

ification approaches can be used to represent unit commitment

tractably [42]. Further work is needed to capture the net (of

cycle-life loss and technology degradation) benefits of energy

storage vis-à-vis resource cycling.

c) Capacity Value: There is growing recognition that

increased variable generation and energy-limited resources

require a departure from using planning-reserve margins and

capacity values when evaluating resource adequacy [170]. It

is unclear how well approximations of these requirements in

capacity-expansion models are functioning [156], [171], [172].

Section V-F surveys this topic in greater detail.

d) Transmission: Linearized power-flow equations may

yield infeasible transmission-expansion plans [173]. As such,

computationally efficient means (e.g., second-order conic re-

laxations) of representing power flows with greater fidelity are

needed to capture more accurately the transmission-deferral

benefits of energy storage [174].

https://www.eia.gov/outlooks/archive/aeo18/
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F. Resource-Adequacy Models

Resource-adequacy models estimate the need for capacity

to meet system-reliability targets, by assessing the reliability

impacts of resources [175]. Most of these models focus on the

bulk-power-system but neglect transmission-system reliability.

Distribution-system studies receive less attention.

1) General Model Description: Resource-adequacy metrics

include loss of load probability, loss of load expectation

(LOLE), and expected unserved energy (EUE) [176].8 Metrics

for a resource’s system-reliability contribution (e.g., its capac-

ity value) include effective load carrying capability (ELCC),

equivalent firm power (or capacity), and equivalent conven-

tional power (or capacity). There is an important distinction

between these metrics. LOLE, EUE, etc. measure power-

system resource adequacy whereas ELCC etc. measure the

reliability contribution of an individual resource.

A planning-reserve margin, which requires ascribing ca-

pacity values to resources, is a simple approach to resource-

adequacy assessment. Probabilistic resource-adequacy models

capture random events impacting energy-supply shortages

[177]. Analytic methods, which capture different system states

(e.g., simulating component failures with Bernoulli trials),

are common probabilistic approaches [176]. Analytic methods

require considering an exponential (in the number of com-

ponents) number of system states and capturing chronology

can be intractable. These difficulties motivate the use of

Monte Carlo methods, which approximate analytic methods

by analyzing a randomly simulated set of system states.

Energy storage has two technical characteristics—its depen-

dence on the power system for charging energy and its energy-

limited nature—that complicate its resource-adequacy mod-

eling. The resource-adequacy contribution of energy storage

depends on having stored energy available when the system is

at risk of unserved load [178]. Its operation may leave energy

storage with insufficient stored energy to alleviate a loss-of-

load event or its SOE may be depleted during a prolonged

event. The services that energy storage provides may limit

its resource-adequacy contribution. For example, using energy

storage for frequency reserves may require that it reduces its

SOE so that it has sufficient ‘head room’ to provide downward

reserves. Thus, there are important and random intertemporal

interdependencies in the SOE of energy storage. As such,

methods that cannot represent chronology are of limited value

in resource-adequacy modeling of energy storage.

Needing to charge energy storage can make its resource-

adequacy contribution location-dependent. Energy storage at

a location with a weak or unreliable transmission connection

can be limited in its ability to charge and provide a local

resource-adequacy benefit. Assuming reliable fuel supply, a

generation resource would not raise such concerns.

2) State-of-the-Art:

a) Planning-Reserve Margins: Planning-reserve margins

require ascribing capacity values to resources and techniques

that are used include capacity-factor [179] and load-based

approximations [180]. These approaches are simple and regu-

8Expected unserved energy also is referred to as expected energy not served
(EENS) and expected energy unserved (EEU).

lators and market operators use them or propose their use to

include energy storage in resource-adequacy modeling [139].

b) Analytic Methods: Energy storage can be captured in

analytic methods by adjusting system loads based on assumed

operating patterns. Such an approach neglects possibly dy-

namic or stochastic energy-storage operations (e.g., reacting to

a loss-of-load event). There are works that represent stochastic

or dynamic energy-storage operations, many of which rely

on strong assumptions that may be untenable. One approach

expresses the SOE of energy storage as a function of demand

and its initial SOE, assuming that energy storage has unlimited

energy capacity [181]. Another approach uses dynamic opti-

mization to model energy-storage operations, but assumes that

energy storage is operated to maximize arbitrage value without

considering possible future loss-of-load events [171]. A third

approach uses non-sequential simulation, assuming that energy

storage always can be charged fully overnight [182].

c) Monte Carlo Methods: Sequential and non-sequential

Monte Carlo methods can be applied to resource-adequacy

modeling [177]. The latter are limited in representing the

time evolution of energy-storage SOE, however. Sequential

Monte Carlo simulation is applied to energy-storage case

studies and consider other factors such as renewable resources,

different energy-storage-deployment and -dispatch strategies,

and network reliability [172], [183]–[187].

3) Gaps and Research Needs:

a) Uncertainty Representation: Typically, analytic and

Monte Carlo methods account for uncertain loss-of-load

events. An important research gap is developing tools that

can account explicitly for these and other uncertainties (e.g.,

market prices) on the operation of energy storage, its SOE,

and energy that is available to mitigate a loss-of-load event.

b) Operational Representation: Most resource-adequacy

models neglect operating decisions, which may understate the

operational-flexibility benefits of energy storage [188]. Opera-

tional decisions have added importance for energy storage, as

they impact the SOE and energy that is available to mitigate

a supply shortage. An added consideration is the timing of

when uncertain information is revealed [171]. Another gap is

models that capture multi-use applications [189].

c) Network Representation: The capacity value of energy

storage can be location-dependent. Novel uses of energy stor-

age, especially at the distribution level, can add complexities.

These issues are not examined in the extant literature.

d) Resource and Load Mix: The resource-adequacy

contribution of energy storage depends on the penetration

of energy storage [190]–[192] and other resources [139],

[193], load patterns [171], and whether the energy storage

is hybridized [194], [195]. Methods that can provide robust

resource-adequacy assessments that account for these factors

are needed.

e) Reliability Metrics: Other aspects of power-system

reliability include faults and dynamic-security considerations

[196]. Methodologies that can assess the value of energy

storage in helping to address such reliability issues are needed.
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VI. CONCLUSIONS

Energy-storage modeling presents challenges that may not

apply to other power-system assets. One set of challenges stem

from unique energy-storage characteristics, which can compli-

cate capturing the services that energy storage can provide.

Another complication is that capturing energy-storage value

depends upon other aspects of the power system being mod-

eled with sufficient fidelity. In addition to optimizing energy-

storage operation or investment by an owner or investor, these

models can be used by stakeholders (e.g., policymakers and

regulators) to study the impacts of market and policy choices

on energy storage and its use in power systems.

This paper surveys the state-of-the-art in energy-storage

modeling and suggests directions in which existing models can

be improved. Our aim is to guide future research and model

development. Many of the modeling needs that we discuss do

not pertain directly to energy-storage representation. Rather,

modeling other power-system elements and services better

can have an impact on capturing the full range of energy-

storage benefits. A key takeaway from our work is that there

is not a ‘one-size-fits-all’ approach to modeling energy storage.

Depending upon the technology, decision maker’s perspective,

and questions answered by a particular exercise, the value of

modeling approaches and advances may differ.
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[5] H. Pandžić and V. Bobanac, “An Accurate Charging Model of Battery
Energy Storage,” IEEE Transactions on Power Systems, vol. 34, pp.
1416–1426, March 2019.

[6] N. Xue, W. Du, J. R. R. A. Martins, and W. Shyy, “Lithium-Ion
Batteries: Thermomechanics, Performance, and Design Optimization,”
in Handbook of Clean Energy Systems, L. F. Cabeza, R. Sioshansi, and
J. Yan, Eds. West Sussex, United Kingdom: John Wiley & Sons Ltd,
June 2015, vol. 5, Energy Storage, ch. 26, pp. 2849–2864.

[7] V. Koritarov, T. Veselka, J. Gasper, B. Bethke, A. Botterud, J. Wang,
M. Mahalik, Z. Zhou, C. Milostan, J. Feltes, Y. Kazachov, T. Guo,
G. Liu, B. Trouille, P. Donalek, K. King, E. Ela, B. Kirby, I. Krad,
and V. Gevorgian, “Modeling and Analysis of Value of Advanced
Pumped Storage Hydropower in the United States,” Argonne National
Laboratory, Argonne, IL, Tech. Rep. ANL/DIS-14/7, June 2014.

[8] H. Ding, Z. Hu, and Y. Song, “Stochastic optimization of the daily
operation of wind farm and pumped-hydro-storage plant,” Renewable

Energy, vol. 48, pp. 571–578, December 2012.
[9] B. Homan, G. J. M. Smit, R. P. van Leeuwen, and M. V. ten Kortenaar,

“A comprehensive model for battery State of Charge prediction,” in
2017 IEEE Manchester PowerTech. Manchester, United Kingdom:
Institute of Electrical and Electronics Engineers, 18-22 June 2017.

[10] L. L. Schluter, “Programmer’s Guide for LIFE2’s Rainflow Counting
Algorithm,” Sandia National Laboratories, Albuquerque, NM, Tech.
Rep. SAND90-2260, January 1991.

[11] C. Deline, W. Sekulic, D. Jenket, D. Jordan, N. DiOrio, and K. Smith,
“Field-Aging Test Bed for Behind-the-Meter PV + Energy Storage,”
National Renewable Energy Laboratory, Golden, CO, Tech. Rep.
NREL/CP-5K00-74003, July 2019.

[12] M. A. Ortega-Vazquez, “Optimal scheduling of electric vehicle charg-
ing and vehicle-to-grid services at household level including battery
degradation and price uncertainty,” IET Generation, Transmission &

Distribution, vol. 8, pp. 1007–1016, June 2014.
[13] N. DiOrio, A. Dobos, S. Janzou, A. Nelson, and B. Lundstrom, “Tech-

noeconomic Modeling of Battery Energy Storage in SAM,” National
Renewable Energy Laboratory, Golden, CO, Tech. Rep. NREL/TP-
6A20-64641, September 2015.

[14] A. Cortés, G. Damato, and B. Kaun, “StorageVETTM V1.0 Software
User Guide: User and Technical Documentation for the Storage Value
Estimation Tool,” Electric Power Research Institute, Palo Alto, CA,
Tech. Rep. 3002009357, December 2016.

[15] A. Sakti, K. G. Gallagher, N. Sepulveda, C. Uckun, C. Vergara, F. J. de
Sisternes, D. W. Dees, and A. Botterud, “Enhanced representations of
lithium-ion batteries in power systems models and their effect on the
valuation of energy arbitrage applications,” Journal of Power Sources,
vol. 342, pp. 279–291, 28 February 2017.

[16] B. Xu, J. Zhao, T. Zheng, E. Litvinov, and D. S. Kirschen, “Factoring
the Cycle Aging Cost of Batteries Participating in Electricity Markets,”
IEEE Transactions on Power Systems, vol. 33, pp. 2248–2259, March
2018.

[17] B. Foggo and N. Yu, “Improved Battery Storage Valuation Through
Degradation Reduction,” IEEE Transactions on Smart Grid, vol. 9, pp.
5721–5732, November 2018.

[18] G. He, Q. Chen, C. Kang, P. Pinson, and Q. Xia, “Optimal Bid-
ding Strategy of Battery Storage in Power Markets Considering
Performance-Based Regulation and Battery Cycle Life,” IEEE Trans-

actions on Smart Grid, vol. 7, pp. 2359–2367, September 2016.
[19] D.-I. Stroe, V. Knap, M. Swierczynski, A.-I. Stroe, and R. Teodorescu,

“Operation of a Grid-Connected Lithium-Ion Battery Energy Storage
System for Primary Frequency Regulation: A Battery Lifetime Per-
spective,” IEEE Transactions on Industry Applications, vol. 53, pp.
430–438, January-February 2017.

[20] Y. Shi, B. Xu, D. Wang, and B. Zhang, “Using Battery Storage for Peak
Shaving and Frequency Regulation: Joint Optimization for Superlinear
Gains,” IEEE Transactions on Power Systems, vol. 33, pp. 2882–2894,
May 2018.

[21] M. Kazemi and H. Zareipour, “Long-term Scheduling of Battery Stor-
age Systems in Energy and Regulation Markets Considering Battery’s
Lifespan,” IEEE Transactions on Smart Grid, vol. 9, pp. 6840–6849,
November 2018.

[22] W. Wang, Q. Luo, B. Li, X. Wei, L. Li, and Z. Yang, “Recent
Progress in Redox Flow Battery Research and Development,” Advanced
Functional Materials, vol. 23, pp. 970–986, 25 February 2013.

[23] X. Qiu, T. A. Nguyen, J. D. Guggenberger, M. L. Crow, and A. C.
Elmore, “A Field Validated Model of a Vanadium Redox Flow Battery
for Microgrids,” IEEE Transactions on Smart Grid, vol. 5, pp. 1592–
1601, July 2014.

[24] F. J. de Sisternes, J. D. Jenkins, and A. Botterud, “The value of energy
storage in decarbonizing the electricity sector,” Applied Energy, vol.
175, pp. 368–379, 1 August 2016.

[25] F. Cebulla and T. Fichter, “Merit order or unit-commitment: How does
thermal power plant modeling affect storage demand in energy system
models?” Renewable Energy, vol. 105, pp. 117–132, May 2017.

[26] R. Fernández-Blanco, Y. Dvorkin, B. Xu, Y. Wang, and D. S. Kirschen,
“Optimal Energy Storage Siting and Sizing: A WECC Case Study,”
IEEE Transactions on Sustainable Energy, vol. 8, pp. 733–743, April
2017.
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self-consumption optimization with storage and Active DSM for the
residential sector,” Solar Energy, vol. 85, pp. 2338–2348, September
2011.

[48] D. Parra and M. K. Patel, “Effect of tariffs on the performance and
economic benefits of PV-coupled battery systems,” Applied Energy, vol.
164, pp. 175–187, 15 February 2016.

[49] R. D. Masiello, B. Roberts, and T. Sloan, “Business Models for
Deploying and Operating Energy Storage and Risk Mitigation Aspects,”
Proceedings of the IEEE, vol. 102, pp. 1052–1064, July 2014.

[50] J. Jin and Y. Xu, “Optimal Storage Operation Under Demand Charge,”
IEEE Transactions on Power Systems, vol. 32, pp. 795–808, January
2017.

[51] J. de Joode, D. Kingma, M. Lijesen, M. Mulder, and V. Shestalova,
“Energy Policies and Risks on Energy Markets; A cost-benefit analy-
sis,” Centraal Planbureau, CPB Special Publication 51, March 2004.

[52] Y. Yang, H. Li, A. Aichhorn, J. Zheng, and M. Greenleaf, “Sizing
Strategy of Distributed Battery Storage System With High Penetration
of Photovoltaic for Voltage Regulation and Peak Load Shaving,” IEEE

Transactions on Smart Grid, vol. 5, pp. 982–991, March 2014.

[53] R. Sioshansi, “Welfare Impacts of Electricity Storage and the Implica-
tions of Ownership Structure,” The Energy Journal, vol. 31, pp. 173–
198, 2010.

[54] ——, “Increasing the Value of Wind with Energy Storage,” The Energy

Journal, vol. 32, pp. 1–30, 2011.

[55] ——, “When Energy Storage Reduces Social Welfare,” Energy Eco-

nomics, vol. 41, pp. 106–116, January 2014.

[56] J. Kim and Y. Dvorkin, “Enhancing Distribution System Resilience
with Mobile Energy Storage and Microgrids,” IEEE Transactions on

Smart Grid, vol. 10, pp. 4996–5006, September 2019.

[57] R. Sioshansi, “Using Storage-Capacity Rights to Overcome the Cost-
Recovery Hurdle for Energy Storage,” IEEE Transactions on Power
Systems, vol. 32, pp. 2028–2040, May 2017.

[58] R. Sioshansi, P. Denholm, and T. Jenkin, “Market and Policy Barriers
to Deployment of Energy Storage,” Economics of Energy & Environ-

mental Policy, vol. 1, pp. 47–63, March 2012.

[59] J. A. Taylor, “Financial Storage Rights,” IEEE Transactions on Power

Systems, vol. 30, pp. 997–1005, March 2015.
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