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Abstract We propose a two-stage stochastic model for
optimizing the operation of energy storage. The model

captures two important features: (i) uncertain real-time

prices when day-ahead operational commitments are

made and (ii) the price impact of charging and discharg-

ing energy storage. We demonstrate that if energy stor-
age has full flexibility to make real-time adjustments

to its day-ahead commitment and market prices do not

respond to charging and discharging decisions, there is

no value in using a stochastic modeling framework (i.e.,
the value of stochastic solution is always zero). This

is because in such a case the energy storage behaves

purely as a financial arbitrageur day ahead, which can

be captured using a deterministic model. We show also

that prices responding to its operation can make it prof-
itable for energy storage to ‘waste’ energy, for instance

by charging and discharging simultaneously, which is

sub-optimal normally. We demonstrate our model and

how to calibrate the price-response functions from his-
torical data with a real-world case study.
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1 Introduction

Energy storage is experiencing a renaissance, which is

driven by a number of developments. These include the

advent of markets that provide price signals for many

of the services that energy storage can provide [1] and
the role that energy storage can play in accommodat-

ing the variable and uncertain real-time availability of

many renewables [2, 3]. As such, there is a diversity of

energy storage technologies that are at varying stages
of development and commercialization [4].

Energy storage can provide many services, such as

generation shifting, transmission and distribution relief
and deferral, and ancillary services [5, 6]. Generation

shifting is among the most studied of these and gener-

ates value by arbitraging wholesale energy prices. Many

works study generation shifting using a deterministic
price-taking approach, wherein prices are assumed to

be fixed and known with certainty a priori [7]. Other

works extend these models. Some consider a stochastic-

optimization framework, wherein market prices are im-

portant sources of uncertainty [8, 9]. Other works relax
the assumption of fixed prices and model price-making

energy storage that can influence the price through its

charging and discharging [10–12].

The operation of energy storage can impact whole-

sale prices numerous ways. One is a direct merit-order

effect—charging or discharging energy storage can re-

sult in the market clearing further up or lower down
the merit order of the generation-dispatch stack [13].

Depending upon where it is located within the trans-

mission network, energy storage also can alleviate or

exacerbate congestion, which can increase or decrease
locational marginal prices. This latter effect can be pro-

nounced for bulk energy-storage technologies, such as

pumped hydroelectric storage (PHS). This is because
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many PHS plants have high power capacities (e.g., GW-

scale) and can be in remote areas of the transmission

network (due to geological requirements). Thus, oper-

ating a PHS plant can congest or decongest a radial

transmission line that connects it to the power system.

Given these operational properties, we propose and

examine the use of a two-stage stochastic model for op-

timizing the operation of energy storage. The model
accounts for price impacts of operating energy storage

in a relatively simple manner that captures merit-order

effects and transmission congestion. Other works in the

literature [14–16] represent the market-price impact of
energy storage in more sophisticated ways. Although we

could employ such techniques, we believe that a linear

relationship between wholesale energy prices and the

operation of energy storage provides a reasonable bal-

ance between model fidelity and tractability. The two
model stages correspond to scheduling day-ahead and

real-time charging and discharging. Under our stylized

assumptions of a price-making storage operator and a

linear relationship between prices and net loads, we find
that the benefits of using a two-stage stochastic model

are related critically to two important market-design

assumptions. Under a case in which prices are insen-

sitive to the operation of energy storage and in which

energy storage has full flexibility to adjust its real-time
operations relative to its day-ahead schedule, there is

no value to using stochastic optimization. Otherwise, if

either of these assumptions are relaxed, there is value

in employing a stochastic model. We find also that if
wholesale energy prices are sufficiently responsive to its

operation, there can be cases in which it is beneficial for

energy storage to waste energy (e.g., by charging and

discharging simultaneously). This finding is contrary

to other analyses, which observe simultaneous charging
and discharging of energy storage only in the presence

of negative prices or transmission congestion.

The remainder of this paper is organized as follows.

Section 2 details our model formulations. Sections 3

and 4 illustrate the models using a simple example and

a comprehensive case study, respectively. Section 5 con-

cludes. Appendix A details how historical data can be
used to calibrate the function that is used to represent

the impact of energy storage on market prices.

2 Model Formulation

This section provides detailed model formulations. Sec-

tion 2.1 overviews the assumed market and model struc-
tures. Model notation is defined in Section 2.2. Sec-

tions 2.3 and 2.4 provide two-stage stochastic and deter-

ministic model formulations, respectively. Section 2.5

details the computation of the value of stochastic solu-

tion (VSS).

2.1 Market and Model Structures

We model energy storage that participates in day-ahead

and real-time markets. Day-ahead charging and dis-

charging are scheduled first knowing day-ahead prices

but with incomplete knowledge of real-time prices. Ad-

justments to energy purchases and sales (which deter-
mine the device’s actual net operating profile) can be

made thereafter in reaction to real-time prices.

The market is assumed to employ a two-settlement

system wherein day-ahead and real-time transactions

are settled at the corresponding day-ahead and real-
time prices, respectively. One effect of uncertain real-

time prices that we explore is flexibility in making ad-

justments to day-ahead transactions. We do this by im-

posing constraints that relate real-time adjustments to

the operating schedule and the day-ahead schedule.
Another aspect of energy storage participating in

the energy market that we examine is its impact on

prices. We capture price impacts by assuming that day-

ahead and real-time prices react to day-ahead and real-

time energy transactions that are scheduled by the en-
ergy storage.

2.2 Model Notation

This section defines sets, indices, model parameters,
and decision variables.

2.2.1 Sets, Indices, and Parameters

We define T as the set of operating periods, which in
our case study are assumed to be hour-long time steps.

t ∈ T is defined as the corresponding time index. We de-

fine Ω as a set of second-stage scenarios in the two-stage

model formulation. We define ω ∈ Ω as the correspond-
ing scenario index. We let φω denote the probability

with which scenario ω occurs.

We characterize energy storage through four tech-

nical parameters. Cmax and Dmax represent the de-

vice’s charging and discharging power capacities, re-

spectively, which are measured in MW. Smax represents
the device’s maximum state of charge (SOC) in MWh.

η ∈ (0, 1) is a unitless measure of the device’s round-trip

efficiency. It represents the MWh of energy that can be

discharged from the device per MWh that is charged.
η < 1 implies that there are net energy losses from cy-

cling energy through the device. S0 denotes the device’s

SOC at the beginning of the optimization horizon.
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To capture the price effects of energy storage, we as-

sume that day-ahead and real-time prices have a linear

relationship with the amount of energy that is trans-

acted by the device [17, 18]. Specifically, we have that

the hour-t day-ahead energy price, which is measured in
$/MWh, is given by αt + βtZt, where Zt represents the

net MWh of energy that the energy storage purchases

from the day-ahead market in hour t. Uncertainties in

real-time prices are captured using second-stage scenar-
ios. Thus, we assume that the hour-t real-time price in

scenario ω, which also is measured in $/MWh, is given

by αω
t + βω

t Z
ω
t , where Zω

t represents the net amount

of energy (measured in MWh) that the energy stor-

age purchases from the real-time market in hour t of
scenario ω. Our assumption of a linear relationship be-

tween prices and the operation of energy storage repre-

sents a balance between model tractability and fidelity.

Some of our results stem from this assumption.

The parameter, γ, specifies (on a per-unit basis rel-

ative to Cmax and Dmax) the extent to which the de-

vice’s operation can be adjusted in real time relative to
its day-ahead schedule.

2.2.2 Decision Variables

We define two sets of variables, which correspond to
transactions that are scheduled in the day-ahead and

real-time markets. ct and dt denote, respectively, hour-

t MW that are scheduled to be charged into and dis-

charged from the device in the day-ahead market. We
define ∆cωt and ∆dωt , respectively, as the hour-t incre-

mental changes in MW that are scheduled to be charged

into and discharged from the device in the real-time

market under scenario ω.

We define two sets of SOC-related variables. st de-

notes the MWh of energy that is held in the device at

the end of hour t from following the day-ahead schedule.

We define sωt as the ending hour-t SOC of the device,
measured in MWh, in scenario ω from following the

real-time schedule.

2.3 Two-Stage Stochastic Model

Our two-stage stochastic model is formulated as:

max
∑

t∈T

{

[αt + βt · (ct − dt)](dt − ct) (1)

+
∑

ω∈Ω

φω · [αω

t + βω

t · (ct +∆cωt − dt −∆dωt )]·

(∆dωt −∆cωt )

}

;

s.t. st = st−1 + ηct − dt, ∀t ∈ T ; (2)

0 ≤ ct ≤ Cmax, ∀t ∈ T ; (3)

0 ≤ dt ≤ Dmax, ∀t ∈ T ; (4)

0 ≤ st ≤ Smax, ∀t ∈ T ; (5)

sωt = sωt−1
+ η · (ct +∆cωt )− dt −∆dωt , (6)

∀t ∈ T, ω ∈ Ω;

0 ≤ ct +∆cωt ≤ Cmax, ∀t ∈ T, ω ∈ Ω; (7)

0 ≤ dt +∆dωt ≤ Dmax, ∀t ∈ T, ω ∈ Ω; (8)

0 ≤ sωt ≤ Smax, ∀t ∈ T, ω ∈ Ω; (9)

− γCmax
≤ ∆cωt ≤ γCmax, ∀t ∈ T, ω ∈ Ω; (10)

− γDmax ≤ ∆dωt ≤ γDmax, ∀t ∈ T, ω ∈ Ω. (11)

Objective function (1) gives total expected profit
from energy transactions. There are two terms in (1),

which give profits that are earned in the day-ahead and

real-time markets, respectively. The hour-t energy price

is computed as αt + βt · (ct − dt), thereby taking into
account that (ct−dt) represents the net amount of hour-

t energy that the device purchases from the day-ahead

market. The hour-t real-time price in scenario ω is com-

puted as αω
t +βω

t ·(ct+∆cωt −dt−∆dωt ), which accounts

for net real-time purchases by the device. The device’s
net real-time purchase is equal to purchases that are

scheduled in the day-ahead market, in addition to any

incremental real-time changes. Because of the assumed

two-settlement system, the quantity, (dt − ct), which is
sold day-ahead, is settled financially at the day-ahead

price. Only the incremental net purchases, which are

defined by (∆dωt − ∆cωt ), are settled at the real-time

price.

There are two sets of model constraints. The first,
(2)–(5), pertain to the first stage whereas the remain-

ing pertain to the second stage. Energy-balance equali-

ties (2) define the device’s SOC at the end of each hour

if it follows the day-ahead schedule. Constraints (3)
and (4) impose non-negativity and capacity limits on

charging and discharging, respectively, that are sched-

uled in the day-ahead market. Constraints (5) impose

non-negativity and energy-capacity limits on the de-

vice’s SOC if it follows the day-ahead schedule.

Constraints (6) define the ending SOC of energy

storage in each hour of each scenario from following

the net real-time schedule. Constraints (7)–(9) are ana-

logous to (3)–(5) and impose non-negativity and upper
bounds on net real-time charging and discharging of the

device and the device’s SOC, respectively.

Constraints (10) and (11) impose limits on real-time

charging and discharging deviating from the day-ahead
schedule. If γ = 0, there is no flexibility to adjust real-

time charging and discharging, because ∆cωt and ∆dωt
are fixed equal to zero, ∀t ∈ T, ω ∈ Ω. γ = 1 yields the
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opposite case of complete flexibility to adjust real-time

charging and discharging.

Some energy-storage models have constraints that

bar simultaneous charging and discharging. We do not

include such constraints for two reasons. First, simulta-

neous charging and discharging of energy storage is of-
ten sub-optimal, because energy is wasted [15, 19]. Sec-

ond, many energy storage technologies have the phys-

ical capability to charge and discharge simultaneously.

For instance, a PHS plant can operate its pump and tur-

bine simultaneously. In some instances in which wast-
ing energy is beneficial (e.g., if energy prices are nega-

tive) our model allows such operation. Our model can

be modified to restrict simultaneous charging and dis-

charging by introducing binary variables that represent
whether the device is in charging or discharging mode in

each hour [20–23]. Doing so would impose added com-

putational costs on the model.

2.4 Deterministic Model

To formulate the deterministic model, we define first
the expected values of the αω

t ’s and βω
t ’s as:

ᾱt =
∑

ω∈Ω

φωαω

t , ∀t ∈ T ;

and:

β̄t =
∑

ω∈Ω

φωβω

t , ∀t ∈ T.

We define three additional sets of decision variables.

∆c′t and ∆d′t, respectively, denote hour-t incremental

changes in MW that are scheduled to be charged into

and discharged from the device in the real-time market.

s′t denotes the device’s ending hour-t SOC, measured in
MWh, from following the real-time schedule.

The deterministic model is formulated as:

max
∑

t∈T

{

[αt + βt · (ct − dt)](dt − ct) + (12)

[

ᾱt + β̄t · (ct +∆c′t − dt −∆d′t)
]

(∆d′t −∆c′t)
}

s.t. st = st−1 + ηct − dt, ∀t ∈ T ; (13)

0 ≤ ct ≤ Cmax, ∀t ∈ T ; (14)

0 ≤ dt ≤ Dmax, ∀t ∈ T ; (15)

0 ≤ st ≤ Smax, ∀t ∈ T ; (16)

s′t = s′t−1
+ η · (ct +∆c′t)− dt −∆d′t, (17)

∀t ∈ T ;

0 ≤ ct +∆c′t ≤ Cmax, ∀t ∈ T ; (18)

0 ≤ dt +∆d′t ≤ Dmax, ∀t ∈ T ; (19)

0 ≤ s′t ≤ Smax, ∀t ∈ T ; (20)

− γCmax ≤ ∆c′t ≤ γCmax, ∀t ∈ T ; (21)

− γDmax ≤ ∆d′t ≤ γDmax, ∀t ∈ T. (22)

Objective function (12) computes total profit that is
earned from scheduling energy storage in the day-ahead

and real-time markets. Because this model is determin-

istic, the profit term that corresponds to the real-time

market in (12) does not compute expected profits under
multiple second-stage scenarios. Rather, profits that are

earned in the real-time market are computed under the

expected real-time price.

The constraints are analogous to those that are in

the two-stage stochastic model. The notable difference
is that the constraints in the deterministic model that

correspond to scheduling the energy storage in the real-

time market are not imposed on a per-scenario basis.

Specifically, Constraints (13)–(16) are analogous to (2)–
(5) and (17)–(22) are analogous to (6)–(11).

2.5 Calculation of Value of Stochastic Solution

VSS measures the benefit of using a stochastic model
for decision making [24]. We compute VSS by using

the deterministic model to determine how the energy

storage is scheduled in the day-ahead market without

stochastic optimization. c̃t and d̃t denote the optimal
values of ct and dt, respectively, that are obtained from

solving (12)–(22). Then, we solve (1)–(11), but fix ct =

c̃t and dt = d̃t, ∀t ∈ T . Model (1)–(11) is guaranteed

to be feasible with ct and dt fixed in this way, because

Constraints (2)–(5) and (13)–(16) are the same in the
two models and ∆cωt = ∆dωt = 0, ∀t ∈ T, ω ∈ Ω is

feasible in (6)–(11). Solving (1)–(11) gives an objective-

function value, which we denote as z∗
D
.

We solve also (1)–(11), without fixing any variables.
This gives an objective-function value, which we de-

note as z∗
S
. The normalized difference between these

two objective-function values, (z∗
S
− z∗

D
)/z∗

S
, gives the

VSS. The VSS measures the amount by which the ex-

pected objective-function value increases (i.e., decisions
are made sub-optimally) if a deterministic as opposed

to stochastic model is used for day-ahead scheduling.

3 Example

In this section we use a simple example to explore the

behavior of the two-stage model.

3.1 Example Data

Our example assumes a twenty-hour optimization hori-

zon and ten second-stage scenarios. Figure 1 summa-
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rizes the hourly day-ahead prices and the range of real-

time prices in the second-stage scenarios. Specifically,

the figure shows the value of αt in each hour as well

as the maximum and minimum values (across the sce-

narios) of αω
t . We examine cases with different val-

ues of βt and βω
t , which are assumed to be uniform

across all of the hours and scenarios in each case that

we examine. The scenarios all have equal probabili-

ties (i.e., φω = 1/10). We assume that Smax = 1500,
Cmax = Dmax = 100, η = 0.75, and S0 = 200.

Fig. 1: Values of αt and Range of Values (Across Sce-

narios) of αω
t in the Example in Section 3

3.2 Example Results

Figure 2 summarizes the scheduled operation of the de-

vice in a base case with βt = βω
t = 0, ∀t ∈ T, ω ∈ Ω and

γ = 1. The figure shows hourly day-ahead, expected

real-time, and realized scenario-8 real-time prices. Be-

cause all of the βt’s and βω
t ’s are zero, the day-ahead

and real-time prices in the figure do not respond to the
operation of energy storage. Moreover, because γ = 1,

the device is fully flexible to adjust its real-time opera-

tion.

Under these two conditions, the energy storage be-
haves as a purely financial arbitrageur in the day-ahead

market, in the sense that its day-ahead schedule is di-

vorced from its eventual real-time schedule (cf. hours 1,

3, 13, 14, and 17–20). The day-ahead schedule is de-
termined solely to arbitrage differences between day-

ahead and expected real-time prices. The device dis-

charges (charges) day ahead during hours in which the

Fig. 2: Day-Ahead and Real-Time Scenario-8 Dispatch

of Energy Storage in Base Case of the Example in Sec-

tion 3 With βt = βω
t = 0, ∀t ∈ T, ω ∈ Ω and γ = 1

day-ahead price is greater (less) than the expected real-

time price. This behavior of the energy storage as a
financial arbitrageur stems from our assumptions that

it has full flexibility in adjusting its real-time opera-

tion (i.e., γ = 1) and that the prices are insensitive

to the operation of energy storage (i.e., βt = βω
t = 0,

∀t ∈ T, ω ∈ Ω). Absent either of these assumptions,
the behavior of the energy storage and the VSS would

differ.

This behavior follows from an analysis of the hour-t

terms in (1), which are:

αt · (dt − ct) +
∑

ω∈Ω

φωαω

t · (∆dωt −∆cωt ) =

αt · (dt − ct) + E [αω

t · (∆dωt −∆cωt )] .

This expression shows that when the βt’s and βω
t ’s are

all zero, the profits that are earned in the day-ahead

market are completely independent of how the energy
storage is scheduled in real time. Moreover, because γ =

1, there are no constraints that link the day-ahead and

real-time schedules.

We can see the energy storage behaving as an ar-

bitrageur in the day-ahead market more clearly by re-

laxing (2)–(5). When we relax these constraints, we re-

move any physical restrictions in the day-ahead opera-
tion of the energy storage, so long as all power-capacity

and SOC-limit constraints are observed in its real-time

schedule. When we relax these constraints, the model

consisting of (1), (6)–(9) is unbounded, except in the
knife-edge case in which the day-ahead price equals ex-

actly the expected real-time price in each hour. We do

not advocate relaxing (2)–(5) in operational modeling
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of energy storage. Rather, a model in which these con-

straints are relaxed illustrates further energy storage

behaving as a financial arbitrageur in the day-ahead

market under the assumptions of prices that are insen-

sitive to its operation and full operational flexibility.
Decreasing γ impacts the device’s operation in two

ways. First, when γ < 1 the day-ahead schedule tends

to follow the real-time schedule more closely (relative to

the γ = 1 case). Second, Figure 2 shows that when the
energy storage has complete flexibility in adjusting its

real-time schedule, its day-ahead schedule operates at

the limits that its power- and SOC-capacity constraints

allow. If γ < 1, the day-ahead schedule tends to be

further from these bounds to allow more flexibility in
adjusting its real-time position.

Table 1 summarizes the VSSs that are obtained from

our example with different values of γ and the βt’s and

βω
t ’s. As expected from Fig. 2, the VSS is zero if γ = 1

and the βt’s and βω
t ’s are all zero. This is because in

such a case day-ahead decisions are made purely on

the basis of differences between day-ahead and expected

real-time prices. These differences are captured by (12)

in the deterministic model.

Table 1: Value of stochastic solution [%] for the example

in Section 3 with different values of the βt’s and βω
t ’s

and γ

βt’s and βω
t ’s

γ 0.000 0.010 0.025 0.050

1.00 0.00 0.01 0.01 0.13
0.75 0.02 0.02 0.14 0.48
0.50 0.84 0.71 0.79 0.94
0.25 0.88 0.94 1.10 1.00
0.00 0.00 0.00 0.00 0.00

The VSS becomes non-zero if γ < 1, as the energy
storage no longer has complete flexibility to behave as

a pure financial arbitrageur day ahead. The one excep-

tion to this is if γ = 0, which means that there is no

flexibility to make real-time schedule adjustments. In
such an instance, there is no value to representing the

second stage (in a deterministic or stochastic model).

Table 1 shows that the VSS is non-zero if the βt’s and

βω
t ’s are non-zero, even if γ = 1. This is because if βω

t

is non-zero, the time-step-t/scenario-ω real-time profit
term in (1) is:

φω · [αω

t + βω

t · (ct +∆cωt − dt −∆dωt )](∆dωt −∆cωt );

which shows that the day-ahead schedule affects the

profits that are earned in the real-time market through

its impact on real-time prices.

Having non-zero βt’s and βω
t ’s results in the energy

storage behaving as a monoposonist during hours in

which it charges and as a monopolist when discharg-

ing. Another interesting phenomenon that we observe

with non-zero βt’s and βω
t ’s is energy being ‘wasted’

through simultaneous charging and discharging. Nor-

mally, wasting energy in this manner is observed only

with negative prices, and we observe such behavior in

real-time scenarios with negative prices. In some ex-
treme real-time scenarios with many hours with nega-

tive prices and positive prices that are near zero, the

device may have a strictly positive SOC at the end of

hour 20. This is because the device charges excess en-

ergy (during negative-price hours) that it cannot dis-
charge during subsequent positive-price hours without

suppressing the prices (through the impact of the βω
t ’s)

to become negative. Instead, it is preferable to keep en-

ergy stored at the end of the optimization horizon.

We observe simultaneous charging and discharging

with positive prices as well. Simultaneous charging and

discharging with positive prices occurs when the device

is selling energy in net, if the value of the corresponding

βt or β
ω
t is sufficiently large. This is because simultane-

ous charging and discharging results in the power sys-

tem having to produce more energy (as a result of the

energy that is wasted by the device). This greater elec-

tricity production increases the wholesale energy price,
which, in turn, increases the value of the energy that

the device sells. The extent to which such a strategy

is employed depends on the marginal-price impact of

increasing electricity production, which is measured by

the corresponding value of βt or β
ω
t , relative to the value

of the energy that is wasted, which is given by energy

prices.

As an example, Figure 3 shows this type of be-

havior in the device’s real-time operation in hour 8 of

scenario 2. Scenario 2 has relatively low prices, mean-
ing that the marginal value of stored energy is effec-

tively zero. Hour 8 has a day-ahead energy price that

is low relative to the expected real-time price. As such,

the device schedules 72.69 MW of day-ahead charging
(scheduling more would eliminate, through the impact

of β8, the difference between the day-ahead and ex-

pected real-time prices). In real time, the energy price is

α2

8
+β2

8
·(c8−d8) = 0.82 if there are no real-time adjust-

ments to the day-ahead schedule. Instead, the device
adjusts its real-time schedule to charge 81.12 MW while

discharging 16.69 MW simultaneously, meaning that it

charges 64.43 MW in net. Due to its day-ahead sched-

ule, the device’s real-time schedule results in selling
8.26 MW back to the market in net. The simultaneous

charging and discharging result in the real-time hour-

8 price increasing from −$2.81/MWh to $0.41/MWh,
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which yields the device an operating profit of $3.40

in hour 8. If, on the other hand, the energy storage

sells 8.26 MW back to the market through its real-time

transactions without simultaneously charging and dis-

charging, the hour-8 real-time energy price increases
only to $0.13/MWh, yielding an hour-8 operating profit

of $1.84.

Fig. 3: Day-Ahead and Real-Time Scenario-2 Dispatch

of Energy Storage in the Example in Section 3 With

βt = βω
t = 0.05, ∀t ∈ T, ω ∈ Ω and γ = 1

These findings regarding simultaneous charging and

discharging are driven by the assumption that market

prices depend on the operation of the energy storage.

With our assumption of a linear relationship between
prices and energy-storage operations, the values of the

βt’s and βω
t ’s are critical in determining the profitabil-

ity of such an operational strategy. If there is a more

complex (e.g., nonlinear) relationship between prices

and the operation of energy storage, such phenomena
may be observed still. The profitability of simultane-

ous charging and discharging in such a case would be

governed by the extent to which prices change with the

operation of energy storage.

4 Case Study

This section demonstrates our proposed model using

data that correspond to an actual PHS plant that par-
ticipates in the PJM-operated day-ahead and real-time

energy markets. Our case study data are calibrated us-

ing historical market and system data from PJM.

4.1 Case Study Data

According to Kim and Powell [25], electricity prices
can be highly volatile, non-stationary, and heavy-tailed.

We use a three-step process, which is detailed in Ap-

pendix A, to generate day-ahead and real-time price

data (i.e., values for the αt’s, βt’s, αω
t ’s, and βω

t ’s),
with the aim of giving the prices these properties. Fig-

ure 4 shows the value of αt in each hour as well as the

maximum and minimum values (across the 100 scenar-

ios that are modeled) of αω
t on 15 May, 2012, which is

the one-day period that we focus on in our case study
results. The values that are shown in the figure are

simulated using the technique that is detailed in Ap-

pendix A. The 100 scenarios are assumed to have equal

probabilities (i.e., φω = 1/100) and we assume that
Smax = 1000, Cmax = Dmax = 100, η = 0.75, and

S0 = 200.

Fig. 4: Values of αt and Range of Values (Across Sce-
narios) of αω

t in the Case Study in Section 4

4.2 Case Study Results

Table 2 summarizes the optimized value of (1) and the

VSS for the case study with different values of γ. As
in the example from Section 3, decreasing γ increases

the VSS until some threshold value, at which point de-

creasing γ further results in a lower VSS. The VSS is

non-zero even if γ = 1, due to the impacts of non-zero

βt’s and βω
t ’s, which make (1) nonlinear.

Figure 5 summarizes net charging that is sched-

uled in the day-ahead and real-time markets and the

price impacts of the energy storage. The figure shows
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Table 2: Optimized value of (1) [$] and value of stochas-

tic solution [%] for the case study in Section 4 with

different values of γ

γ Value of (1) VSS

1.00 30960 0.17
0.80 29953 0.84
0.70 29288 1.08
0.50 26672 2.05
0.20 17686 1.53
0.00 9264 0.00

day-ahead and scenario-8 real-time prices being sup-
pressed by up to $1.99/MWh and $4.13/MWh, respec-

tively. The βt’s range between 0.010 and 0.043 while

the βω
t ’s range between 0.002 and 0.056. Figure 5 con-

siders a case with γ = 0.7, meaning that the device is
restricted somewhat in making real-time schedule ad-

justments. For example, in hours 3–5 energy storage

schedules 30 MW of charging day ahead and an addi-

tional 70 MW in real time. This is despite the real-time

price being lower and is due to limited real-time flex-
ibility. The combined effects of reduced flexibility and

non-zero β’s and βω
t ’s yield simultaneous charging and

discharging of energy storage in hours 6–9 and 15–24.

Fig. 5: Day-Ahead and Real-Time Scenario-8 Dispatch

of Energy Storage in the Case Study in Section 4 With
γ = 0.70

The example and case study are programmed us-

ing GAMS version 24.4.6 and solved using IPOPT ver-

sion 3.11.9 on a computer with a 2.5-GHz Intel Core i5
processor and 4 GB of memory. The example and case

study are all solved in less than one minute of wall clock

time.

5 Conclusions

This paper develops a two-stage stochastic model with

which to make operational decisions for energy storage

that can impact market prices through its charging and

discharging. Our model allows for imposing flexibility
constraints, which limit real-time adjustments to the

operating schedule. Such constraints may be imposed

by market operators in practice, so as to have day-ahead

operating schedules that are somewhat reflective of how
the system is operated in real time. We illustrate how

historical market data can be used to calibrate the pa-

rameters that relate energy prices to the operation of

energy storage (cf. Appendix A). The aim of estimat-

ing these price-related parameters (and of our work) is
not to predict the impact of energy storage on prices

in a particular market. Rather, our aim is to examine

how price-making energy storage behaves in a market

in which prices are sensitive to its operations.

We find that using a stochastic model is not valu-

able (i.e., the VSS is zero) if the market prices are fixed

and the energy storage has full flexibility to adjust its
day-ahead position in real time. Under these two as-

sumptions the energy storage behaves as a financial

arbitrageur. The complexity of a stochastic modeling

framework is not needed for such behavior, so long as

expected real-time prices are used to determine the day-
ahead schedule. Otherwise, if there are restrictions on

making real-time adjustments to the day-ahead sched-

ule (e.g., due to γ being less than unity), the VSS can

be non-zero. There may be other market-design and
operational factors that can make the VSS non-zero.

For instance, some markets impose financial costs (e.g.,

imbalance penalties) on market participants that make

sufficiently large changes to their day-ahead positions in

the real-time market. An energy-storage owner that is
risk- or loss-averse (as opposed to our assumption of a

risk-neutral expected-value-maximizer) also may have

a non-zero VSS with full flexibility and fixed energy

prices.

We observe cases with positive prices in which it

is profit-maximizing for energy storage to ‘waste’ en-

ergy by charging and discharging simultaneously. These
cases arise due to our assumption that prices can re-

act to the operation of energy storage and depend on

whether prices are sufficiently responsive to energy stor-

age operation. In such a case, the implicit opportunity

cost of wasting stored energy is outweighed by the pe-
cuniary impact of the wasted energy adjusting the price

at which energy is sold.
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A Price Modeling in Case Study

We employ a three-step process to calibrate the price-related
parameters from historical market and system data. The first
step uses a linear regression model to fit historical day-ahead
and real-time wholesale prices to a number of explanatory
variables, including temperature and load. Next, we fit sea-
sonal autoregressive integrated moving average (SARIMA)
models to historical temperature and load data. Finally, we
use the SARIMA model to simulate different sample paths
of temperatures and loads, which are input to the regression
model to simulate values for the αt’s, βt’s, αω

t ’s, and βω
t ’s. We

detail each of these three steps in turn. The technique that
we employ to calibrate the values of the αt’s, βt’s, αω

t ’s, and
βω
t ’s assumes implicitly that historical data can be used to

predict future price-load relationships.

A.1 Price Linear Regression Model

Our first step is to fit historical day-ahead and real-time price
data from the PJM market to a set of explanatory vari-
ables using a linear regression model. Day-ahead and real-
time price data for the Appalachian Power Company (APCO)
zone (which is a zone within which a number of PHS plants

are located) from between 1 April, 2012 and 30 June, 2012
are used. Specifically, the day-ahead price regression model
regresses the hour-t day-ahead price against:

– a constant,
– hour-t load,
– hour-t heating and cooling degrees, which are defined rel-

ative to 65◦ F,
– hour-t month, weekend, and hour dummy variables, and
– interaction terms between:

– each hour-t month dummy variable and hour-t load,
– each hour-t month dummy variable and hour-t heat-

ing degrees,
– each hour-t month dummy variable and hour-t cooling

degrees,
– each hour-t month dummy variable and each hour-t

weekend dummy variable,
– each hour-t weekend dummy variable and hour-t load,
– each hour-t hour dummy variable and hour-t load,
– each hour-t hour dummy variable and hour-t heating

degrees,
– each hour-t hour dummy variable and hour-t cooling

degrees, and
– each hour-t hour dummy variable and each hour-t

weekend dummy variable.

Historical hourly load data for the APCO zone and hourly
temperature data for Leesville, Virginia (which is located in
the APCO zone) are used to fit the regression model using
ordinary least squares (OLS). A separate regression model
using real-time prices and the same explanatory variables is
estimated also using OLS.

A.2 Temperature and Load Seasonal Autoregressive

Integrated Moving Average Models

SARIMA models are a generalization of autoregressive in-
tegrated moving average (ARIMA) models, which capture
seasonality in time series [26, 27]. ARIMA and other time
series models are used commonly for temperature, load, and
electricity-price modeling [28, 29]. Historical hourly temper-
ature data from between 1 April, 2012 and 30 June, 2012 for
Leesville, Virginia are fit to a (2, 1, 0) × (0, 1, 1)24 SARIMA
model. Hourly load data for the APCO zone from the same
time period are fit to a different (1, 1, 0)×(0, 1, 1)24 SARIMA
model.

A.3 Generating αt’s, βt’s, α
ω
t ’s, and βω

t ’s

The αt’s, βt’s, αω
t ’s, and βω

t ’s represent the day-ahead and
real-time electricity prices as depending on the amount that
the energy storage is charged or discharged. We capture these
impacts by using the coefficients multiplying the hour-t load
in the linear regression models that are described in Sec-
tion A.1. Specifically, we define L as the set of terms on the
right-hand side of the regression model that have load as an
explanatory variable. Load itself appears as an explanatory
variable on the right-hand side of the regression model. How-
ever, there are also terms in which load is interacted with
dummy variables. All of these terms are in the set, L. We
can write each of the regression models (for day-ahead and
real-time prices) as:

yt = lt
∑

i∈L

ζ̂ixi,t +
∑

i6∈L

ζ̂ixi,t + ǫt, (23)
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where yt and lt represent the hour-t price and load, respec-
tively, ζ̂i is the OLS estimate of the coefficient on each term,
and ǫt is the hour-t error term. For terms that are in the set,
L, xi,t is defined as any other right-hand side variable multi-
plying load (e.g., for each of the terms in which each hour-t
month dummy variable is interacted with hour-t load, xi,t

would be defined as the month dummy variable, whereas we
have xi,t = 1 for the term in which hour-t is not interacted).
For terms that are not in the set, L, xi,t is defined as the
right-hand side variable in that term.

Next, we simulate a sample path of hourly prices and
loads using the two SARIMA models that are described in
Section A.2, by simulating randomly the white noise processes
(using the white noise variances, which are obtained when
fitting the two SARIMA models to the historical data). We
let {L̂t}t∈T denote the sample path of loads. Substituting the
sample path of loads into (23) we obtain:

yt = L̂t

∑

i∈L

ζ̂ixi,t +
∑

i6∈L

ζ̂ixi,t +∆Lt

∑

i∈L

ζ̂ixi,t + ǫt, (24)

where ∆Lt is meant to represent any changes in APCO-zone
load that occur from charging or discharging energy storage,
and where we use the sample path of temperatures to fix the
heating and cooling degree right-hand side variables. Based
on (24) we define:

αt = L̂t

∑

i∈L

ζ̂ixi,t +
∑

i6∈L

ζ̂ixi,t,

and:

βt =
∑

i∈L

ζ̂ixi,t,

using the coefficients that are estimated from the model that
uses day-ahead prices, and:

αω
t = L̂t

∑

i∈L

ζ̂ixi,t +
∑

i6∈L

ζ̂ixi,t,

and:

βω
t =

∑

i∈L

ζ̂ixi,t,

using the coefficients that are estimated from the model that
uses real-time prices.

This process allows us to simulate multiple scenarios of
real-time prices by generating multiple sample paths of hourly
loads and prices.

In practice, day-ahead and real-time energy prices often
are correlated, because they are driven by similar underlying
dynamics (e.g., load and temperature). Our regression mod-
els do not account explicitly for such correlations. However,
day-ahead and real-time prices that are generated using our
technique do exhibit implicit correlation. This is because the
loads and temperatures that impact prices in (24) are cor-
related to one another. Thus, our price-simulation technique
provides a balance between model complexity and fidelity.
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