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Using In-Home Energy Storage to Improve the Resilience of

Residential Electricity Supply

Rachel Hunter-Rinderle, Matthew Y. Fong, Baihua Yang, Haoshu Xian, and Ramteen Sioshansi Fellow, IEEE

Electricity-supply interruptions can be costly and disruptive. Electricity-supply reliability and resilience can be enhanced by
customers having on-site energy storage, which supplements electricity-system supply. This paper proposes a two-stage stochastic
optimization model that can be used in a rolling-horizon fashion to schedule such use of energy storage. We demonstrate the model
with a case study that combines electricity-supply-reliability data for a real-world electric utility, survey data regarding residential
customers’ willingnesses to pay for backup energy during electricity-supply disruptions, and a highly resolved Markov chain model
of building-occupant behavior and associated electricity use that is calibrated to census data. We find that the low probability
of an electricity-supply disruption occurring during any given time-step limits the charging of the energy storage in anticipation
of possible disruptions. We demonstrate two approaches to reduce this myopic use of energy storage. Our case study shows that
penalty parameters can be used to control the conservatism of the model in using as opposed to retaining stored energy during
an electricity-supply disruption. Overall, we show the viability of on-site energy storage to enhance electricity-supply reliability and
resilience and the feasibility of our model and algorithm for real-time control of energy storage for such a real-world application.
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NOMENCLATURE

Sets and Indices

a activity index

A activity set

t time index

T ordered set, T = {tst, . . . , ten}, of time periods of

the optimization horizon

ω index of scenarios

Ω set of scenarios

Parameters

Cω,t retail electricity price during time t of scenario ω
($/kWh)

Dω,t,a activity-a power demand during time t of scenario ω
(kW)

Ē energy capacity of energy storage (kWh)

Est starting state of energy (SOE) of energy storage

(kWh)
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P̄ power capacity of energy storage (kW)

∆ time-step duration (h)

η round-trip efficiency of energy storage (p.u.)

κω,t,a penalty for curtailing activity-a energy demand dur-

ing time t of scenario ω ($/kWh)

πω probability of scenario ω occurring

σω,t equals 1 if electricity-system supply is available

during time t of scenario ω and equals 0 otherwise

Variables

Eω,t beginning time-t SOE of energy storage under sce-

nario ω (kWh)

sEω,t,a energy-storage-supplied power to serve activity a
during time t of scenario ω (kW)

sGω,t,a electricity-system-supplied power to serve activity a
during time t of scenario ω (kW)

ιω,t power charged into energy storage during time t of

scenario ω (kW)

I. INTRODUCTION

ELECTRICITY-SUPPLY resilience is a growing concern

for customers, regulators, and policymakers. For exam-

ple, an electricity-supply disruption in Texas during Febru-

ary 2021 claimed at least 111 lives and had a disproportionate

impact on socioeconomically vulnerable populations [1]. An

analysis by LaCommare and Eto [2] estimates that electricity-

supply disruptions in United States of America (US) impose

an annual national social cost of $30 billion–$130 billion.

Another analysis finds that the utility sector having a 1%

inoperability rate could yield an annual expected GDP loss

of $11.6 billion, measured with 2019 dollars [3].

One approach to mitigate the impact of electricity-supply

disruptions is through infrastructure investment and hardening

[4]. This approach depends upon having proper regulatory

structures to incentivize long-term planning by electricity-

sector actors [5]. Another approach, which is our focus, is
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to use distributed energy storage to provide end customers

with energy that supplements bulk-electricity-system supply

[6]. The extant literature that examines such uses of energy

storage can be divided into two categories [7].

One set of works [8]–[29] examines the impact of energy

storage on bulk-electricity-system reliability. These works take

different approaches to estimate or approximate the impact of

energy storage on electricity-system reliability [30], [31]. One

approach uses planning-reserve margins [8]–[10]. A second

approach uses probabilistic or analytic methods [32], whereby

the impact of energy storage on the likelihood of an electricity-

system reliability event is estimated directly [11]–[14]. A third

option is to employ Monte Carlo simulation [15]–[20]. Among

other factors, this literature shows that operational represen-

tation and information revelation [21], [22], the resource mix

[10], [23]–[26], load patterns [12], and resource hybridization

[27], [28] impacts this use of energy storage.

A second body of work [33]–[39] examines the use of en-

ergy storage by individual or groups of consumers to manage

electricity-supply disruptions. These works differ in analytical

scope. Some works consider energy storage alone [33]–[36],

hybridized energy storage [37], [38], or energy storage that is

part of a system with multiple energy carriers [39].

These two sets of works differ in their foci vis-à-vis

reliability and resilience benefits of energy storage. As is

common of resource-adequacy modeling, the former [8]–[29]

focuses on generator failures and capacity availability on the

ability of the bulk electricity system to serve load reliably.

The reliability of end-customer electricity service often is im-

pacted by transmission- or distribution-infrastructure failures

hindering energy deliverability. Thus, the latter body of work

[33]–[39] may focus on different failure mechanisms. Another

distinction between these two sets of work is that the latter may

examine load prioritization. For instance, during a hot summer

day, food refrigeration may be more valuable to a customer

than building lighting is. For the most part, reliability analyses

of bulk electricity systems do not distinguish the consumer

values of different end uses of energy.

This paper adds to the second body of work [33]–[39]. We

present a two-stage stochastic optimization model to operate

energy storage to mitigate electricity-supply disruptions. We

demonstrate the performance of the model using a case

study that is calibrated to real-world data. The model uses

arbitrary time-steps, which are taken to be ten-minutes-long

in our case study. The two-stage structure assumes that the

current time-step is stage 1, for which there is no uncertainty.

Stage 2 corresponds to the remaining time-steps, during which

time electricity supply from the bulk electricity system and

electricity demands are uncertain. The model can be used in

a rolling-horizon fashion to schedule energy-storage use as

uncertainties are revealed.

Our case-study calibration accounts for actual supply-

disruption rates for residential customers and the relative value

of different energy activities. Our results show a trade-off in

energy-storage use that stems from these relative values. If the

values of energy activities are relatively different, it is optimal

to curtail energy use for low-priority activities during a supply

disruption. By doing so, more stored energy is available to

serve higher-priority activities during subsequent time-steps

(e.g., in the event that an electricity-supply disruption is

prolonged). We find that the relatively low probabilities of

electricity-supply disruptions yields myopic behavior, whereby

the energy storage may not be charged in anticipation of

possible disruptions. We examine two approaches to address

this undesirable model behavior. In addition, we conduct

analyses that demonstrate the sensitivity of energy-storage use

to different model and case-study assumptions and parameters.

Taken together, our work makes four primary contributions

to the extant literature. The model that we present is com-

putationally efficient and could be used to operate energy

storage in this manner in a real-world setting. This potential for

real-world use stems from the model being solvable quickly

using standard hardware and software that could be deployed

in a distributed building energy-management system. Second,

we examine the model and energy-storage use with a case

study that is calibrated to real-world data, especially residential

electricity demands. This can be contrasted with other works

that use stylized examples and case studies [33], [35], [37],

[38]. Third, we demonstrate two approaches to mitigate my-

opic model behavior. Finally, we examine the use of penalty

parameters to control the conservatism of the model in using

as opposed to retaining stored energy during an electricity-

supply disruption. To our knowledge, the existing literature

neglects these final two issues.

The remainder of this paper is organized as follows. Sec-

tion II provides our model formulation. Section III summarizes

case-study data and calibration and model implementation.

Section IV summarizes case-study results and sensitivity anal-

yses. Section V concludes.

II. OPTIMIZATION MODEL

Our model is a two-stage stochastic optimization, with an

horizon that consists of an ordered set, T = {tst, . . . , ten}, of

time-steps. The first stage is the first time-step, tst, and the

second stage is the remaining time-steps, tst + 1, . . . , ten. We

model a set, Ω, of second-stage scenarios. During each time-

step, the building has electricity demands to fulfill a set, A,

of different activities. For all ω ∈ Ω, t ∈ T , a ∈ A, we let

Dω,t,a denote the building’s demand for electricity to fulfill

activity a during time-step t of scenario ω. For all ω ∈ Ω,

t ∈ T , a ∈ A, if the building’s electricity demand for activity a
during time-step t of scenario ω is unfulfilled (e.g., during an

electricity-supply disruption), there is a p.u. penalty, which is

denoted by κω,t,a. The penalty could reflect an actual cost

(e.g., inability to operate a refrigerator causing food spoilage)

or an inconvenience (e.g., a building occupant is unable to

undertake a desired activity).

The state of the system during stage 1, which is the first

time-step, is known and deterministic. This state information

includes demand information, Dω,tst,a, ∀ω ∈ Ω, a ∈ A; the

starting energy-storage SOE, Est; and the binary parameters,

σω,tst , ∀ω ∈ Ω, which equals 1 if electricity-system supply

is available during time-step tst of scenario ω and equals 0
otherwise. Although these data are deterministic, we index

them by scenario, which allows us to write and program the
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model compactly. The first-stage decisions that the model

optimizes are sEω,tst,a
and sGω,tst,a

, ∀ω ∈ Ω, a ∈ A, which

denote the electricity from energy storage and the electricity

system, respectively, that is supplied to fulfill activity a during

time-step tst of scenario ω and ιω,tst , ∀ω ∈ Ω, which denotes

electricity that is charged into energy storage during time-

step tst of scenario ω. These decisions are deterministic,

but are indexed by scenario to provide a compact model

formulation with non-anticipativity constraints [40].
The remaining stage-2 time-steps, tst + 1, . . . , ten, involve

the same sets of state information and decision variables. The

key difference is that the state information and decisions can

vary between scenarios (i.e., there are no non-anticipativity

restrictions on the stage-2 decisions). Intuitively, this model

structure means that the decisions that are made during time-

step tst cannot be based on any knowledge of which scenario

occurs. Conversely, decisions that are made during subsequent

time-steps can be contingent upon the realized scenario.
Our model formulation is:

min
∑

ω∈Ω,t∈T

πω∆ ·

{

Cω,tιω,t +
∑

a∈A

[

Cω,ts
G
ω,t,a (1)

+κω,t,a ·
(

Dω,t,a − sEω,t,a − sGω,t,a

)]

}

s.t. Eω,t+1 = Eω,t +∆ ·

(

ηιω,t −
∑

a∈A

sEω,t,a

)

; (2)

∀ω ∈ Ω, t ∈ T

sEω,t,a + sGω,t,a ≤ Dω,t,a; ∀ω ∈ Ω, t ∈ T , a ∈ A (3)

0 ≤ ιω,t ≤ P̄ σω,t; ∀ω ∈ Ω, t ∈ T (4)

0 ≤ sEω,t,a ≤ Dω,t,a; ∀ω ∈ Ω, t ∈ T , a ∈ A (5)

0 ≤
∑

a∈A

sEω,t,a ≤ P̄ ; ∀ω ∈ Ω, t ∈ T (6)

0 ≤ sGω,t,a ≤ Dω,t,aσω,t; ∀ω ∈ Ω, t ∈ T , a ∈ A (7)

0 ≤ Eω,t ≤ Ē; ∀ω ∈ Ω, t ∈ T (8)

Eω,tst = Est; ∀ω ∈ Ω (9)

sGω,tst,a
= sGω′,tst,a

; ∀ω, ω′ ∈ Ω, a ∈ A (10)

ιω,tst = ιω′,tst ; ∀ω, ω
′ ∈ Ω (11)

sEω,tst,a
= sEω′,tst,a

; ∀ω, ω′ ∈ Ω, a ∈ A. (12)

Objective function (1) minimizes expected cost over the op-

timization horizon, T , and considers two types of costs. The

terms, Cω,tιω,t and Cω,ts
G
ω,t,a, are the costs of charging the

energy storage and serving demands using electricity-system-

supplied energy, respectively. The term:

κω,t,a ·
(

Dω,t,a − sEω,t,a − sGω,t,a

)

;

is the cost of curtailing electricity demand.
Constraint set (2) is a set of linear energy-balance equalities,

which give the evolution of energy-storage SOE from one

time-step to the next. Constraint set (3) ensures that energy de-

mands are not oversupplied. Charging limits on energy storage

are imposed by (4), which ensure also that no charging occurs

during an electricity-supply disruption. Constraint sets (5)–

(6) impose per-activity and aggregate limits, respectively, on

energy-storage discharging. Constraint set (7) imposes per-

activity limits on power that is drawn from the electricity

system and ensure that no power is drawn during a supply

disruption. Constraint set (8) impose energy limits on the SOE

of energy storage.

Non-anticipativity restrictions (9)–(12) encode the two-stage

scenario tree that underlies the problem [40]. Specifically,

these constraints force all decision variables during stage 1
(i.e., time-step tst), to be equal across all of the scenarios. This

restriction means that stage-1 decisions cannot depend upon

the scenario, ω, that occurs actually. Conversely, all decisions

for subsequent time-step can vary across scenarios. Constraint

set (9) fixes the starting SOE of the energy storage as of the

beginning of the optimization horizon.

III. CASE-STUDY DATA, CALIBRATION, AND

IMPLEMENTATION

We apply our model to a year-long case study that is

calibrated using data that correspond to Central Ohio. In

particular, we focus on data for Ohio Power Company (AEP

Ohio), which is the largest investor-owned electric utility in the

study region. Our optimization model assumes a ten-minute

time-step duration.

The energy storage is a lithium-ion battery that has a 2.5-

kWh energy capacity and a round-trip efficiency of η = 0.9801
and is discharged fully as of the beginning of the case-

study year [35]. The battery is connected to a 1.92-kW

standard household electric circuit, which gives its charging

and discharging capacities. Based on AEP Ohio’s residential

tariffs in Central Ohio, we assume a $0.12/kWh retail price

for all electricity-system-supplied energy.

A. Rolling-Horizon Algorithm

The case study is implemented by solving (1)–(12) in an

iterative fashion one time-step at a time. Algorithm 1 provides

pseudocode that outlines the steps of the rolling-horizon

process. Line 1 inputs three parameters. E0 is the starting

SOE of the battery as of the beginning of the case study.

H is the number of number of time-steps that are modeled,

which we take to be 52536 ten-minute time-steps for all but the

final day of the modeled year. δ is the time horizon of each

optimization model. We study cases with δ = 144 and 72,

which correspond to 24- and 12-hour optimization horizons,

respectively. By comparing these cases we examine the trade-

offs between computational cost and the model having greater

foresight. Line 2 initializes the algorithm by setting Est equal

to E0 and setting Ξ, which measures actual incurred cost

during the modeled year, equal to nil.

Lines 3–9 is the loop, which iterates through each time-

step within the case-study horizon. Line 4 updates the starting

and ending time-steps of (1)–(12) and 5 updates model data.

Details on how πω, ∀ω ∈ Ω, σω,t, ∀ω ∈ Ω, t ∈ T , and

Dω,t,a, κω,t,a, ∀ω ∈ Ω, t ∈ T , a ∈ A are updated are provided

in Sections III-D and III-E. Model (1)–(12) is solved on Line 6,

the value of Ξ is updated on Line 7, and the starting SOE of

the battery for the next time-step is updated on Line 8.
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Algorithm 1 Rolling-Horizon Algorithm

1: input: E0, H, δ
2: initialize: Est ← E0, Ξ← 0
3: for τ ← 1 to H do

4: tst ← τ , ten ← τ + δ
5: update πω, ∀ω ∈ Ω; Cω,t, σω,t, ∀ω ∈ Ω, t ∈ T ;

Dω,t,a, κω,t,a, ∀ω ∈ Ω, t ∈ T , a ∈ A
6: min (1) s.t. (2)–(12)

7: Ξ← Ξ+∆·{C1,tstι1,tst+
∑

a∈A
[C1,tsts

G
1,tst,a

+κ1,tst,a ·
(D1,tst,a − sE1,tst,a − sG1,tst,a)]}

8: Est ← E1,tst+1

9: end for

B. Demand Modeling

Power demands are modeled using the approach of Muratori

et al. [41], which assumes that household electricity demand

consists of five components. These components are power

that is used by (1) cold appliances (e.g., refrigerators), (2)

residential lighting, (3) appliances that are in standby mode,

(4) appliances that are being used actively, and (5) the heating,

ventilation, and air-conditioning (HVAC) system.

We exclude HVAC power demand from our case study,

because the requisite battery size to meet these demands

would be very high (e.g., air-conditioning loads can be very

high). Power demands for appliances that are being used

are computed by simulating the behavior of the building

occupants using a Markov chain, which represents each build-

ing occupant as conducting one of eight possible activities

during each ten-minute time-step. The eight activities are (1)

sleeping, (2) no-power activity (e.g., reading), (3) cleaning,

(4) laundry, (5) cooking, (6) dishwashing, (7) leisure (e.g.,

watching television), and (8) being away from the building.

Sleeping, no-power activity, and being away from the building

do not entail any power demand. The power demands of the

other activities, which are obtained from the work of Muratori

et al. [41], are given in Table I. The power demands for

cleaning, cooking, and leisure are instantaneous (e.g., if a

building occupant is cleaning during time-step t and switches

to a different activity ten minutes later, the 1250-W demand

occurs during time-step t only). Power demands for laundry

and dishwashing are continuous (e.g., if a building occupant

begin dishwashing during time-step t the 1800-W demand

is sustained for 90 consecutive minutes while the activity is

completed). Cold-appliance demands occur randomly based on

typical cycling profiles for residential refrigerators. Lighting

and standby-appliance demands do not depend upon building-

occupant activities. Standby-appliance demands are constant

across time-steps whereas lighting demands differ between

daytime and nighttime time-steps.

Because sleeping, no-power activity, and being away from

the building do not entail any power demand, we do not

include these activities in the set, A. Instead, the set, A,

consists of (1) cleaning, (2) laundry, (3) cooking, (4) dish-

washing, (5) leisure, (6) cold appliance, (7) standby-appliance,

and (8) lighting. We include sleeping, no-power activity, and

being away from the building in simulating the Markov chain,

TABLE I
POWER DEMAND OF BUILDING-OCCUPANT ACTIVITIES [41]

Activity Power Consumption (W)

Cleaning 1250

Laundry 425 (30 minutes) + 3400 (60 minutes)
Cooking 1225

Dishwashing 1800 (90 minutes)
Leisure 200

as these activities are needed to represent occupant behavior

properly. We assume that the desired activities of the building

occupants (and the associated electricity demands) remain the

same if the building does or does not experience an electricity-

supply disruption. The Markov chain that is used to simulate

building-occupant behavior is calibrated and validated using

data from American Time Use Survey and metered residential

electricity-demand data [41], [42].

C. Electricity-System-Outage Modeling

We model electricity-system outages using a discrete-time

two-state Markov chain. Assuming that electricity-supply dis-

ruptions and restorations are Markovian is reasonable because

if failure and restoration times have exponential distributions,

the process is memoryless.
Most electric utilities, including AEP Ohio, are required

by pertinent regulatory authorities to record and report annual

measures of the reliability of electricity service.1 We make

use of three key metrics to calibrate the Markov chain that

is used to simulate electricity-system outages. The first is

system average interruption frequency index (SAIFI), which

is defined as the ratio between the total number of sustained

outages that customers experience and the total number of

customers that are served. Thus, SAIFI represents the average

number of supply disruptions that a customer experiences per

annum. The second metric is customer average interruption

duration index (CAIDI), which is defined as the ratio between

the total duration of sustained outages and the total number

of sustained outages. Thus, CAIDI represents the average

time duration of an electricity-supply disruption. The third

metric is system average interruption duration index (SAIDI),

which measures the average total amount of time per annum

that a customer experiences an electricity-supply disruption.

By definition, CAIDI is given by SAIDI divided by SAIFI.

The electricity industry uses IEEE Standard 1366-2003, which

defines a sustained outage as an electricity-supply disruption

that is at least five-minutes of duration.
Table II summarizes the reported year-2019 values of these

three reliability metrics for AEP Ohio, which we use to

calibrate the state-transition probabilities of our Markov chain.

Assuming ten-minute time-steps, the probability of transition-

ing from a non-outage state to an outage state from one time-

step to the next is 0.0000228384. The probability of the reserve

transition is 0.0705882353.

We validate these probability estimates using Monte Carlo

simulation. Specifically, we generate 10000 year-long sample

1https://codes.ohio.gov/oac/4901:1-10-10

https://codes.ohio.gov/oac/4901:1-10-10
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TABLE II
REPORTED YEAR-2019 RELIABILITY METRICS FOR AEP OHIO

Metric Value

SAIFI 1.2 outages
CAIDI 140.98 minutes
SAIDI 169.176 minutes

paths of electricity-supply disruptions. The average (among

the generated sample paths) amount of time that the system

is in an outage state is 170.057 minutes, with a 95% confi-

dence interval of between 165.87 and 174.25 minutes, which

contains the reported year-2019 SAIDI value for AEP Ohio.

The average number of electricity-supply disruptions among

the sample paths is 1.197 and a 95% confidence interval is

between 1.18 and 1.22, which contains the reported SAIFI

value. Thus, we conclude that the calibrated Markov chain

yields the desired statistical properties that are reflected in the

reported reliability data.

D. Electricity-Demand-Curtailment Penalties

Lee and Akar [43] describe their use of survey techniques to

study the priorities of residential electricity customers and their

willingnesses to pay for energy to serve different activities

during an electricity-supply disruption. The preliminary survey

results are confidential, which limits our ability to share their

key findings, which are used in constructing our case study.

Specifically, we cannot disclose the relative priorities of differ-

ent activities (e.g., importance of lighting as opposed to cold

appliances). Based on communications with Lee and Akar,

we classify the eight energy activities that we model as high-

and low-priority activities. We assume that ∀ω ∈ Ω, t ∈ T ,

κω,t,a = 1× 106 for low-priority activities and consider cases

with κω,t,a = 2× 106, 5× 106, and 1× 107 for high-priority

activities ∀ω ∈ Ω, t ∈ T .
So long as they are sufficiently large, the specific values

of κω,t,a, ∀ω ∈ Ω, t ∈ T , a ∈ A are unimportant. Rather,

the relative scale of these penalties between high- and low-

priority activities is important in how stored energy is used

during an electricity-supply disruption. If the penalties differ in

scale between high- and low-priority activities, stored energy

is used for high-priority activities. As such, energy use for

low-priority activities is curtailed to retain stored energy for

high-priority activities in the event that an electricity-supply

disruption has a long duration. This conservative behavior can

result in low-priority activities being curtailed unnecessarily

during an electricity-supply disruption that is short in duration.

Conversely, if all of the penalties are similar in scale, more

stored energy will be used to serve low-priority activities. This

behavior can result in high-priority activities being curtailed

during a long-duration electricity-supply disruption. Compar-

ing cases with different values of κω,t,a, ∀ω ∈ Ω, t ∈ T for

high-priority activities allows us to examine these behaviors.

E. Scenario Generation

Line 5 of Algorithm 1 requires updating πω, ∀ω ∈ Ω, σω,t,

∀ω ∈ Ω, t ∈ T , and Dω,t,a, ∀ω ∈ Ω, t ∈ T , a ∈ A. The

values of Cω,t, ∀ω ∈ Ω, t ∈ T and κω,t,a, ∀ω ∈ Ω, t ∈
T , a ∈ A are constant across each time-step that is simulated

by Algorithm 1. The data that are used for this updating are

generated and stored in an offline fashion, so that different

cases (i.e., with different values of δ or κω,t,a, ∀ω ∈ Ω, t ∈
T , a ∈ A) use the same underlying data and can be compared

to one another directly.

First, we simulate a single sample path of the Markov chains

to generate actual electricity-supply-disruption and electricity-

demand data (cf. Sections III-B and III-C). This sample path

represents the demands and electricity-supply disruptions that

the residential building is modeled as experiencing actually

during the 52536 ten-minute time-steps of the case study.

Next, for each time-step of the year, we use the Markov

chains to generate |Ω| = 100 equiprobable scenarios (e.g.,

we have πω = 1/|Ω|, ∀ω ∈ Ω) of forecasted electricity-

supply disruptions and demand data during the following

144 ten-minute time-steps. Because demands and electricity-

supply disruptions are Markovian, we use the actual demands

and electricity-supply disruptions from the first step of the

simulation process in generating these scenarios. These sample

paths represent probabilistic scenarios that are used by the two-

stage stochastic optimization model that is solved in Line 6 of

Algorithm 1.

With these two sets of sample paths, the updating in

Line 5 of Algorithm 1 is conducted as follows. The values

of σω,tst , ∀ω ∈ Ω and Dω,tst,a, ∀ω ∈ Ω, a ∈ A are set

equal to corresponding values from the first sample path.

The values of σω,t, ∀ω ∈ Ω, t ∈ T , t > tst, and Dω,t,a,

∀ω ∈ Ω, t ∈ T , t > tst, a ∈ A are set equal to corresponding

values from the second set of sample paths.

F. Myopic Energy-Storage Use

Our model can exhibit myopic behavior, in that energy

storage may not be charged in anticipation of a possible future

electricity-supply disruption. The reason for this behavior is

that with the small probability of an electricity-supply disrup-

tion occurring during any given time-step (cf. Section III-C),

it is unlikely that any of the |Ω| = 100 scenarios in (1)–

(12) predict an electricity-supply disruption. We examine two

approaches to mitigate this undesirable myopic behavior.

Under the first approach, which we term scenario augmen-

tation, we select one scenario, ω′ ∈ Ω, and fix σω′,t = 0,

∀t ∈ T , t > tst. We set the value of πω′ to the appropriate

value, based on the state-transition probabilities of the Markov

chain that governs electricity-supply disruptions. The values of

πω, ∀ω ∈ Ω, ω 6= ω′ are fixed equal to:

1− πω′

|Ω| − 1
.

Scenario augmentation yields a scenario that predicts a long-

duration electricity-supply disruption (i.e., its duration is the

full δ-time-step optimization horizon) that begins during the

next time-step. Although the probability of this scenario is

minuscule, the high values of κω,t,a, ∀ω ∈ Ω, t ∈ T , a ∈ A
drive the model to maintain a high energy-storage SOE.
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We refer to our second approach to mitigating this myopic

behavior as unpreparedness penalization. Under unprepared-

ness penalization, we add the term:
∑

ω∈Ω,t∈T

πω∆K ·
(

Ē − Eω,t

)

; (13)

to (1), where K is a fixed penalty value. The term (13)

imposes a penalty on having the energy-storage SOE below

its maximum value. As such, (13) provides a strong incentive

to maintain a high energy-storage SOE. The specific value

of K is unimportant, so long as it is large relative to Cω,t,

∀ω ∈ Ω, t ∈ T (otherwise, the cost of charging energy is

higher than the penalty for not having a high energy-storage

SOE) and small relative to κω,t,a, ∀ω ∈ Ω, t ∈ T , a ∈ A
(otherwise, stored energy would not be used to mitigate an

actual electricity-supply disruption).

Myopic behavior is a common challenge with energy-

storage modeling [7]. In its most common form, myopic

behavior manifests as energy storage being discharged fully

as of the end of the optimization horizon. This behavior arises

because with a fixed time horizon, an optimization model

does not associate value with keeping stored energy beyond

the model horizon. The myopic behavior that we observe

manifests differently, but is caused by a similar phenomenon

that the model does not ascribe value to having stored energy.

There are two commonly used approaches in the literature

to address energy storage being discharged fully as of the

end of a model horizon. The first is to assign a value to

stored energy [44], the second is to constrain the ending SOE

of energy storage [45]. The approaches that we examine—

scenario augmentation and unpreparedness penalization—can

be likened to assigning a value to stored energy.

G. Computational Platform

Our case study is programmed in Python 3.9.1 and uses

the PuLP linear-optimization package on a computer with

an eight-core 3.80 GHz Intel Core i7-10700k processor and

32 GB of memory. With δ = 144, each instance of (1)–

(12) that must be solved in Line 6 of Algorithm 1 has about

259 200 variables and 711 200 constraints. Instances of (1)–

(12) with δ = 72 have about half as many variables and

constraints.

IV. CASE-STUDY RESULTS

The sample path that gives actual power demands and

electricity-supply disruptions (cf. Section III-E) simulates two

disruptions during the course of the year—the first one begins

during the second day and the second during the 97th day of

the year. We focus our analysis on energy-storage operation

before and during the first electricity-supply disruption, which

begins during time-step 263 (during 19:40 of 2 January)

and ends during time-step 295 (during 1:00 of 3 January).

Energy-storage operation is substantively similar during the

two electricity-supply disruptions. Energy-storage operation

after an electricity-supply disruption is uninteresting, because

the important question is whether energy storage is recharged

in anticipation of possible future electricity-supply disruptions.

Examining operational behavior before the first electricity-

supply disruption is indicative of such behavior.

A. Myopic Behavior

Fig. 1 shows actual energy-storage SOE during the first

24 hours of the case study under different variants of the

model. The base case includes neither scenario augmentation

nor unpreparedness penalties, assumes κω,t,a = 5 × 106,

∀ω ∈ Ω, t ∈ T for high-priority activities (model behavior

is the same for other penalty values), and illustrates the

aforementioned myopic behavior. The myopic behavior is

exhibited by very little energy-storage charging under the base

case. This behavior is because during most time-steps, the

|Ω| = 100 scenarios in (1)–(12) do not predict an electricity-

supply disruption or they predict electricity-supply disruptions

far into the future. For instance, when (1)–(12) is solved

during time-step 4, four of the scenarios predict electricity-

supply disruptions that begin during time-steps 31, 35, 49,

and 115. However, the model does not undertake any energy-

storage charging during time-step 4, because it anticipates

subsequent energy-storage charging before these electricity-

supply disruptions occur.

Fig. 1. Ending actual energy-storage SOE during first 24 hours of case study
with different model variants.

Fig. 1 shows that under the base case the energy storage

is charged slightly during time-step 32 and that this charged

energy is retained until time-step 35 (there is similar behavior

between time-steps 59 and 62). The reason for this behavior

is that during time-step 32, one of the scenarios predicts

an electricity-supply disruption during time-step 33, which

engenders energy-storage charging. Although there are no

electricity-supply disruptions during time-steps 33 and 34,

the scenario trees during those time-steps predict electricity-

supply disruptions during time-steps 34 and 35, respectively.

Thus, the model retains the stored energy. The scenario tree

during time-step 35 does not predict an electricity-supply

disruption during time-step 36. As such, the stored energy is

discharged during time-step 35 (to reduce the cost of serving
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building energy demand). Overall, the base case that is shown

in Fig. 1 shows minimal energy-storage use, due to very few

scenarios predicting an electricity-supply disruption during any

single time-step.

The remaining cases that are summarized in Fig. 1 corre-

spond to our two approaches to mitigate the myopic behavior

that the base case exhibits. We focus first on model perfor-

mance with scenario augmentation. Energy-storage charging

with scenario augmentation depends upon the values of κω,t,a,

∀ω ∈ Ω, t ∈ T , a ∈ A. Scenario augmentation with low

penalties (κω,t,a = 2 × 106, ∀ω ∈ Ω, t ∈ T for high-

priority activities) yields some, but limited energy-storage

charging. The reason for this behavior is that the small

probability of the augmented scenario outweighs the relatively

low penalties for unserved demand. Scenario augmentation

with high penalties (κω,t,a = 5 × 106, ∀ω ∈ Ω, t ∈ T for

high-priority activities, although energy-storage charging is

identical for higher penalty values) yields nearly immediate

energy-storage charging. The final case that is summarized

in Fig. 1 assumes unpreparedness penalties and yields the

same immediate energy-storage charging that is observed with

scenario augmentation with high penalties. Thus, so long as

the values of κω,t,a, ∀ω ∈ Ω, t ∈ T , a ∈ A are sufficiently

high, scenario augmentation yields the same behavior between

electricity-supply disruptions that unpreparedness penalties do.

B. Energy Use During an Electricity-Supply Disruption

Fig. 2 shows actual energy-storage SOE during the course

of the electricity-supply disruption that begins as of 19:40
during 2 January, with different penalty values for high-priority

activities and using scenario augmentation or unpreparedness

penalties. Fig. 3 shows corresponding cumulative curtailment

of energy for low-priority activities. Figs. 2 and 3 show that

setting higher penalty values for high-priority activities tends

to yield more conservative energy-storage use, as does the

unpreparedness penalty. The fundamental trade-off during an

electricity-supply disruption is how much energy to use during

the current time-step as opposed to how much to retain for

future energy needs, especially if the disruption is realized as

having a prolonged duration.

If the penalty values for high- and low-priority activities are

close to one another, there is relatively little benefit in storing

energy for future energy needs. As such, energy tends to

be used earlier during an electricity-supply disruption, which

reduces the energy-storage SOE and may yield subsequent

curtailment of high-priority activities if the electricity-supply

disruption has a long duration. This exact outcome is shown in

Figs. 2 and 3. The low-penalty cases result in the battery being

depleted of energy before the electricity-supply disruption ends

(this is exacerbated with scenario augmentation, because as

Fig. 1 shows, the battery is not charged fully before the

disruption begins). As such, there is less curtailment of low-

priority activities (relative to the high-penalty cases) under the

low-penalty case with unpreparedness penalties early during

the electricity-supply disruption. However, this aggressive use

of stored energy results in 1.2 kWh of energy demand for high-

priority activities being curtailed under the low-penalty case

Fig. 2. Ending actual energy-storage SOE during electricity-supply disruption
with different penalty values for high-priority activities and using scenario
augmentation or unpreparedness penalties.

Fig. 3. Cumulative energy curtailment for low-priority activities during
electricity-supply disruption with different penalty values for high-priority
activities and using scenario augmentation or unpreparedness penalties.

with unpreparedness penalties. Conversely, no high-priority

activities are curtailed under the high-penalty cases.
The high-penalty case yields much more conservative en-

ergy use compared to the low-penalty cases. There is some

stored energy in the battery as of the end of the electricity-

supply disruption under the high-penalty cases. Thus, for this

particular electricity-supply disruption, the behavior under the

high-penalty case is ‘too conservative’ insomuch as some

stored energy could have been used (with hindsight) to reduce

earlier curtailment of low-penalty activities.

C. Optimization Horizon

Fig. 4 shows cumulative energy curtailment with scenario

augmentation, κω,t,a = 5 × 106, ∀ω ∈ Ω, t ∈ T for high-

priority activities, and δ = 144 or 72 in Algorithm 1. The
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results are qualitatively similar with unpreparedness penalties.

Having δ = 72 as opposed to δ = 144 reduces the size of (1)–

(12) roughly in half, which cuts solution time from about 30 s

with δ = 144 to about 10 s with δ = 72. Algorithm 1 requires

solving (1)–(12) 52536 times to simulate the operation of the

battery over the course of year. Thus, total time to implement

Algorithm 1 across the case-study year is about 438 h with

δ = 144 and 146 h with δ = 72. Moreover, if energy storage

is to be used in this way in practice, a model that is akin

to (1)–(12) must be implemented to optimize energy-storage

charging and discharging. Simplifying (1)–(12) reduces the

requisite hardware and software.

Fig. 4. Cumulative energy curtailment during electricity-supply disruption
with different optimization horizons and scenario augmentation.

Having δ = 144 or 72 yields differences in how energy

storage is used during an electricity-supply disruption. Battery

charging between disruptions is not affected by the value of

δ. Having δ = 72 gives the model a shorter optimization

horizon when determining how to use stored energy (e.g., how

much to use to serve current demands as opposed to save to

serve future demands). The longer optimization horizon with

δ = 144 results in demand for low-priority activities being

curtailed earlier than happens with δ = 72. This curtailed

demand for low-priority activities with δ = 144 means that

demand for high-priority activities are not curtailed during the

electricity-supply disruption. Conversely, with δ = 72, more

low-priority demands are served earlier during the electricity-

supply disruption. As such, eventually demands for both low-

and high-priority activities must be curtailed, once the energy-

storage SOE is sufficiently low.

V. CONCLUSIONS

This paper examines the use of on-site energy storage

to provide electricity service to a residential customer dur-

ing electricity-supply disruptions. The resultant increase in

electricity-service resilience and reliability may be beneficial

if a customer has sensitive electricity demands (e.g., refriger-

ating food) or unacceptably unreliable electricity service. Our

model allows stored energy to be used, considering uncertain

future electricity-supply disruptions (when they occur and their

durations) and power demands. We develop a rolling-horizon

algorithm that can be used to operate the energy storage

in real-time, as system conditions and forecasts of future

system conditions evolve. The algorithm is computationally

efficient using standard computing hardware and off-the-shelf

optimization software. Thus, our model could be used in a

building-energy-management system to manage a battery as

part of a real-world deployment.

We demonstrate the model and algorithm using a case study

that is calibrated to real-world data for AEP Ohio’s Central-

Ohio service territory. We demonstrate that with the low

probability of an energy-service disruption occurring during

any given ten-minute time-step, the small scenario tree that we

use in our model does not incentivize energy-storage charging.

We use scenario augmentation and unpreparedness penalties as

ways to overcome this undesirable myopic behavior. During

an electricity-supply disruption, there is a trade-off between

using stored energy immediately or saving it for subsequent

use. Depending upon the conservatism of the model, which is

controlled by the penalty values, the model may be overly or

under conservative in using stored energy.

We abstract away the physical details of the energy-storage

medium. Our case study assumes implicitly that the energy

storage is a stationary system (a Tesla Powerwall would be

an example of such a commercial product). However, there

may be other options for the energy-storage medium. One

possibility is to use the on-board battery of an electric vehicle

(EV), which would have the cost advantage that it would

not necessitate the purchase of a dedicated battery solely for

backup energy. Using an EV battery in this manner would

require trading-off between using stored energy for building

as opposed to transportation energy demands. Moreover, such

a use of an EV battery can exacerbate cycle-life loss and

damage, which may be detrimental for electromobility. On

the other hand, an EV battery could allow for mobile stored

energy. For instance, an EV can be driven and connect to

another area of the electricity system that has energy supply

and return to the residential building with stored energy. Given

these and other considerations, such uses of EV batteries

represent a vast and interesting area for further study.

Our case study assumes that the desired activities of the

building occupants (and the associated electricity demands)

remain the same when the building experiences an electricity-

supply disruption as they would be in its absence. This is

a reasonable assumption, because Lee and Akar [43] do not

report findings that residential consumers have significantly

different energy-use desires during versus absent an electricity-

supply disruption. However, there could be instances in which

some residential consumers’ energy demands differ with as

opposed to without an electricity-supply disruption. Studying

such a case is beyond the scope of our case study, but our

model and algorithm could be employed to study such a

situation.

Our work focuses solely on the feasibility and resultant

operation of using energy storage to mitigate electricity-supply

disruptions. An important related question is the cost of
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deploying such a solution relative to a residential customer’s

willingness and ability to pay for it. Such an analysis is

beyond the scope of our work. Ultimately, such a cost-

benefit analysis is highly sensitive to consumer willingness

to pay. Unfortunately, the data that are provided to us by Lee

and Akar [43] are limited in being able to answer such a

question. This is because the Lee and Akar study examines the

relative importance of different electricity uses during a supply

disruption. Their study does not provide robust estimates of

the absolute willingess to pay of the survey respondents.

Nonetheless, this is a fruitful area for future research.
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