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Abstract

Increases in electricity price volatility have raised interest in electricity storage and its potential arbitrage
value. Large utility-scale electricity storage can decrease the value of energy arbitrage by smoothing differ-
ences in prices on- and off-peak, however this price-smoothing effect can result in significant external welfare
gains by reducing consumer energy costs and generator profits. As such, the incentives of merchant storage
operators, consumers, and generators may not be properly aligned to ensure socially-optimal storage use.
We examine storage use incentives for these different agent types and show that under most reasonable mar-
ket structures a combination of merchant and consumer ownership of storage maximizes potential welfare
gains from storage use.

1. Introduction

The emergence of wholesale electricity markets in many countries and regions of the United States and
increases in electricity price volatility have raised interest in electricity storage. Electricity storage can take
advantage of differences in on- and off-peak electricity prices by buying and storing energy when prices are
low and discharging and reselling it when prices are high. In addition to this energy arbitrage, storage can
provide other value such as capacity and ancillary services. A number of authors have considered these
types of storage applications and have analyzed the potential economic value of investing in energy storage.
This analysis has typically assumed the storage device to be a small ‘price-taker’ relative to the electricity
market as a whole, and used historical price data to estimate the value of storage. Examples of this type of
analysis include Graves et al. (1999); Figueiredo et al. (2006); Walawalkar et al. (2007).

Larger utility-scale storage, which can smooth the load pattern by lowering on-peak and increasing
off-peak generating loads, will tend to result in a similar smoothing of on- and off-peak price patterns and
reduce arbitrage opportunities for a storage device. Despite this effect of reducing the value of arbitrage, this
load smoothing can have significant welfare effects—by reducing energy prices for consumers and profits for
electricity generators. Jenkin and Weiss (2005) suggested this external welfare effect of large-scale storage
and Sioshansi et al. (2009) estimated these effects using data from PJM. Sioshansi et al. (2009) show that
the price-smoothing effect of large-scale storage can reduce the arbitrage value of 1 GW of storage by more
than 20%, compared to the arbitrage value for a price-taker. Their analysis shows, however, that the load
and price shifting can result in annual consumer surplus gains on the order of $16-35 million, and producer
surplus losses in the range of $14-31 million—resulting in massive wealth transfers and net welfare gains. The
analysis in Sioshansi et al. (2009) assumes the storage device is owned by a single merchant storage operator,
though, and they surmise that a merchant storage operator may not necessarily have proper incentives to
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use the storage device in a welfare-maximizing way, since increased use of storage will reduce arbitrage value
and the storage owner will generally not be concerned with the external welfare effects of storage use. Thus,
an unanswered question is what effect ownership structure can have on the use of storage and whether
storage could be used in a more socially beneficial way if it is owned by different market participants, such
as consumers1 or generators.

This paper analyzes and compares the incentives for merchant storage operators, generators, and con-
sumers to use electricity storage. Our analysis shows that merchant storage operators and generators will
generally underuse their storage devices compared to the social optimum, whereas consumers will generally
overuse storage, however storage use by all three agent types will approach the social optimum in a perfectly
competitive market setting. We use market data from the Electric Reliability Council of Texas (ERCOT)
power system to simulate storage use by the three agent types and demonstrate that merchant ownership of
storage will generally be socially preferred compared to generator or consumer storage. We then demonstrate
that if storage assets can be divided between agent types, doing so may be more beneficial than having all
the storage owned by merchants. The remainder of this paper is organized as follows: section 2 describes
the model used in our analysis and section 3 presents the main theoretical results of our paper, section 4
discusses the results of our numerical analysis and section 5 considers a case with storage assets owned by
multiple agent types. Section 6 concludes.

2. Model

We assume that electricity prices respond to generating loads based on a linear relationship given by
p(l) = c0 + c1l, with c0 ≥ 0 and c1 > 0. The market includes a storage device with roundtrip efficiency,
η, which captures the energy losses that occur when energy is taken through the storage cycle. Thus, if x
MWh of energy is put into storage then at most ηx MWh can be taken out. We assume that 0 < η < 1,
which reflects the fact that there are some energy losses in the storage cycle. We assume that the storage
device has a discharge capacity of δ MW, and that its total charging capacity is δ/η MW, which allows one
hour of charging at full capacity to provide enough energy to discharge at full capacity for one hour.2

We assume that the electricity market operates in two hour-long periods, and we let l1 and l2 denote the
loads in an off-peak (period 1) and on-peak (period 2) hour. These loads are assumed to be price-inelastic
because consumers face a time-invariant retail rate of electricity, which is the case in most every power
system. In period 1, δ/η MWh of energy can be put into the storage device and in period 2, δ MWh of
energy can be discharged, where 0 ≤ δ ≤ δ. Although consumer loads will be independent of storage use,
energy prices will increase and decrease in periods 1 and 2, respectively, due to changes in generating loads.
Figure 1 illustrates this effect in which the price in period 1 increases from p(l1) to p(l1 + δ/η), and the
price in period 2 decreases from p(l2) to p(l2 − δ). Similarly, the price of energy sales will change in the two
periods, which will affect the producer surplus of generators, and generators will produce more energy in
period 1 and less energy in period 2.

These changes in electricity prices and the amount of energy generated in periods 1 and 2 will result in
welfare changes for consumers and generators, in addition to the profits earned by the owner of the storage
device. Because consumer demand does not change in either period, the change in consumer welfare is
driven entirely by the change in the price of electricity, which is:

∆CS(δ) = l1[p(l1) − p(l1 + φδ)] + l2[p(l2) − p(l2 − δ)]

= δc1(l2 − φl1),

1Although it may currently be impractical for individual electricity consumers to own energy storage devices, the term
‘consumers’ and our analysis of consumer use of storage can be generalized to a load-serving entity that seeks to minimize the
cost of energy consumed by its customers.

2Greenblatt et al. (2007) note that many modern storage devices, such as batteries and compressed-air energy storage, can
easily be designed with different charging and discharging capacities, as we assume.
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Figure 1: Price-load relationship and the price- and load-shifting effect of storage use in periods 1 and 2.

where we define φ = 1/η.3 This change in consumer surplus is given by the sum of the areas labeled ‘D’
and ‘E’ in figure 1 minus the area labeled ‘A.’ Because the amount of energy generated and energy prices
change in both periods, the change in producer surplus is given by:

∆PS(δ) =

∫ p(l1+φδ)

p(l1)

l(p)dp +

∫ p(l2−δ)

p(l2)

l(p)dp

= δc1(−l2 + φl1) +
1

2
δ2c1(1 + φ2).

The change in producer surplus is given by the sum of the areas labeled ‘A’ and ‘B’ in figure 1 minus the
area labeled ‘D.’ Finally, the total net profit of the owner(s) of the storage devices will be given by:

Πarb(δ) = δp(l2 − δ) − φδp(l1 + φδ)

= δ[c0(1 − φ) + c1(l2 − φl1)] − δ2c1(1 + φ2).

The arbitrage value is given by the area labeled ‘F’ in figure 1 minus the sum of the areas labeled ‘B’ and
‘C.’ Adding these three terms, the social welfare change resulting from usage of the storage device is given
by:4

∆W (δ) = ∆CS(δ) + ∆PS(δ) + Πarb(δ) (1)

= δ[c0(1 − φ) + c1(l2 − φl1)] −
1

2
δ2c1(1 + φ2).

3This computation of consumer surplus change may seem confusing, since we assume demand is price-inelastic. Indeed,
with a truly price-inelastic demand, consumer surplus is infinite. We assume, however, that there is some fixed upper-bound
on the value of electricity, such as a value of lost load (VOLL). As Anderson (1972); Kirschen et al. (2003) discuss, VOLL is
commonly used for capacity and reliability planning purposes to capture the fact that consumers would not want to pay an
inordinately high price for energy, but cannot express these preferences due to time-invariant rates. Because VOLL is typically
assumed to be much higher than marginal generation costs (empirical studies place VOLL in the thousands to ten of thousands
of dollars per MWh), demand is effectively inelastic but consumer surplus is bounded and finite.

4It may seem counter-intuitive to include arbitrage value in the calculation of social welfare, since arbitrage value may
be thought of as a wealth transfer. This view is incorrect, however, because the use of storage provides social value in that
higher-cost on-peak generation is replaced with lower-cost off-peak generation, and arbitrage value represents the social value
of this load-shifting.
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We can find the social-welfare maximizing use of the storage device by maximizing equation 1 subject
to the constraint that 0 ≤ δ ≤ δ. The first-order necessary condition (FONC) for a maximum5 is given by:

δW = 0, if ∆W ′(0) < 0;

δW = δ, if ∆W ′(δ) > 0;
∆W ′(δW ) = 0, otherwise;

which yields the following optimum:

δW =







0, if c0(1 − φ) + c1(l2 − φl1) < 0;

δ, if c0(1 − φ) + c1(l2 − φl1) − δc1(1 + φ2) > 0;
c0(1−φ)+c1(l2−φl1)

c1(1+φ2) , otherwise.
(2)

Thus, δW gives the welfare-maximizing use of storage, which is dependent upon the loads in the two
periods (which determine the difference in prices in the two periods). We can intuitively tell from figure 1
that the welfare-maximizing use of storage will tend to result in a net consumer surplus gain and a producer
surplus loss. The increase in consumer surplus is due to the decrease in prices during the on-peak period,
which reduces the amount consumers must pay for energy. Although there is an increase in prices during
the off-peak period, this price increase is applied to a smaller load than that in the on-peak period, and
as such there is a net surplus gain. Conversely, generators have an increase in profits during the off-peak
period due to increased sales and prices, but a decrease in surplus during the on-peak period. Because the
price reduction in the on-peak period is applied to a larger volume of sales than the price increase in the
off-peak period, there is a net surplus loss. The following proposition, the proof of which is given in the
appendix, shows this result holds generally.

Proposition 1. ∆CS(δW ) ≥ 0 and ∆PS(δW ) ≤ 0.

Proof. See appendix.

3. Storage Use Incentives

We now examine the incentives for the three different agent types—merchant storage operators, con-
sumers, and generators—to use storage devices, and compare their use of storage to the social optimum.
Proposition 1, which shows that welfare-maximizing storage use benefits consumers while reducing producer
profits, will result in consumers and producers having vastly different incentives to use storage from one
another and from merchant storage owners. This is because the three different agent types will use storage
to maximize their net payoffs. In the case of consumers this would consist of the sum of arbitrage value and
consumer surplus change, whereas producers would maximize the sum of generation and arbitrage profits.
Merchant storage operators, on the other hand, will maximize arbitrage profits only. Because consumer
surplus is enhanced by welfare-maximizing storage use, and since consumers that own storage would not
consider the impact of storage use on generator profits, they will tend to have an incentive to overuse stor-
age. Conversely, because storage use reduces producer profits, generators will have an incentive to underuse
storage.

The propositions in this section, the proofs of which are given in the appendix, formalize these arguments
by analyzing the three cases of merchant-, consumer-, and generator-ownership of storage separately. This
analysis assumes that the storage assets are divided evenly between N symmetric agents, each of which owns
a storage device with roundtrip efficiency η and discharge capacity δ/N . We also assume that the agents are
competing in a non-cooperative setting and follow pure-strategy Nash equilibrium strategies. The following
propositions show that in an oligopoly setting (when N is finite), the incentives of all three agent types are
to either overuse or underuse their storage devices relative to the social optimum.

5Note that ∆W ′′(δ) = −c1
`

1 + φ2
´

. Because we assume that c1 > 0 we will have ∆W ′′(δ) < 0, meaning the social-welfare
maximization problem is strictly convex and the FONC is sufficient for the unique maximum.
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Proposition 2. If the storage assets are owned by N ≥ 1 symmetric merchant storage operators, which are
not consumers and do not own generating assets, storage will be underused compared to the social optimum.

Proof. See appendix.

Proposition 3. If the storage assets are owned by N ≥ 1 symmetric generating firms that own all the
generating assets, storage will only be used if there are at least two firms, in which case storage will be
underused compared to the social optimum.

Proof. See appendix.

Proposition 4. If the storage assets are owned by N ≥ 1 symmetric consumers, storage will be overused
compared to the social optimum.

Proof. See appendix.

The three propositions show that if the storage assets are owned by merchant storage operators or
generators, then storage will be underused compared to the social optimum. Merchant storage operators
underuse storage because they do not internalize the net external welfare gain that results from storage
use and are ‘overly sensitive’ to reducing the price spread between periods 1 and 2—since this price spread
yields arbitrage profits. As discussed above, generators similarly underuse storage due to the reduction
in producer surplus from storage use. Because of this reduction in generation profits, generators only use
storage if the differences in on- and off-peak prices are sufficiently high for arbitrage profits to outweigh the
producer surplus loss. The final proposition shows that consumers will generally overuse storage, since they
do not internalize the producer surplus loss that results from storage use.

We next show, as a corollary, that in a perfectly competitive setting in which the storage assets are
owned by competitive merchant storage operators, generators without market power, or consumers without
monopsony power, the socially optimal use of storage will result. This result is driven by the standard
competitive argument that as the number of agents increases, the impact that each individual agent has
on increasing consumer surplus, decreasing producer surplus, and reducing arbitrage value will become
negligible, and each agent will behave as a price-taker.

Corollary 1. A perfectly competitive market with all the storage assets owned by either symmetric mer-
chant storage operators, consumers, or generators will yield the social welfare-maximizing usage of storage.

Proof. See appendix.

4. Numerical Simulation of Welfare Losses from Suboptimal Storage Use

The results of section 3 show how storage use by the three agent types compares to the social optimum.
Although these agents will overuse or underuse storage compared to the social optimum, a more important
issue is the extent of social welfare losses from these suboptimal uses of storage. This type of analysis could
help to inform policy-makers or regulatory bodies—which may provide incentives for investment in storage
technologies—what types of agents those incentives should be targeted towards.

In order to estimate the social welfare impacts of storage being owned by the different agent types,
we numerically simulate storage use under different ownership structures using empirical market data from
ERCOT in 2005. The generation market in ERCOT was roughly a symmetric duopoly in 2005 with two
large generating firms, TXU and Texas Genco. The remaining firms owned substantially less generation
and previous analyses of the ERCOT market, such as Sioshansi and Oren (2007), suggest these firms do not
behave strategically. As such we model the generation sector as a symmetric duopoly. On the retail side,
ERCOT was served by two dominant firms, Reliant Energy Retail Services and TXU Energy Retail. Thus
we model the retail sector as having two symmetric consumers.

Storage use is simulated for each day of the year separately. For each day the loads in the two periods, l1
and l2, are set to the minimum and maximum hourly load for that day, respectively. We estimate the linear
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price-load relationship by assuming a competitive generation sector and using linearized marginal generating
costs to derive the aggregate supply function. Generating costs are calculated using standard engineering
methods—multiplying generator heat rates by spot fuel prices and adding the costs of SO2 permit prices
and variable operations and maintenance costs.

Figure 2 shows the average daily welfare-maximizing use of 1000 MW of storage, and contrasts it with
how storage would be used if the assets are owned by two symmetric merchant storage operators, generators,
or consumers. The figure shows storage use with device efficiencies above 0.60—below which storage is not
used in any of the four cases. The storage use shown is the average total amount of energy discharged each
day (i.e. the value reported is the average value of δ, and an average of δ/η MWh of energy is put into
storage each day). Figure 2 highlights the results of section 3 by showing that merchant storage operators
and generators underuse and consumers overuse storage relative to the social optimum.
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Figure 2: Average total daily use of 1000 MW of storage by a welfare-maximizer and symmetric duopoly merchant storage
operators, consumers, and generators. Storage use is given in terms of average energy discharged per day.

Figures 3 through 5 show social welfare losses under merchant, generator, and consumer ownership of
storage, respectively, for a range of device capacities and efficiencies. The welfare losses are reported as the
percentage of the social welfare gains that are achieved with socially-optimal use of storage. For most device
efficiencies social welfare losses are minimized when storage is owned by merchant operators. Moreover,
ASCE (1993); Denholm and Kulcinski (2004) note that many utility-scale storage technologies, such as flow
batteries and pumped-hydroelectric storage, have efficiencies in the 0.65 to 0.85 range, over which merchant
ownership of storage minimizes social welfare losses.

Welfare losses with merchant ownership are also relatively insensitive to device size and efficiency, since
losses are always below 12% for the range examined, whereas consumer and generator ownership result in
a much wider range of losses. With higher device efficiencies welfare losses from consumer and generator
ownership are reduced, for example welfare losses under consumer ownership is less than that under merchant
ownership above a device efficiency of 0.92, although these cases are beyond the capabilities of modern storage
devices available today. For more realistic device efficiencies, for instance below 0.75, generator ownership
of storage results in 100% welfare losses, since the generating firms never use the storage device, however
the welfare losses are reduced with higher device efficiencies since generators make some use of storage. We
see that efficiency losses from generator ownership are smaller with less than 2 GW of total storage capacity
as there is a smaller difference between the socially-optimal use of storage and the generators’ underuse
with these lower device capacities. Consumer ownership of storage shows similar sensitivity to efficiency
and capacity. With an efficiency of 0.74 consumers’ overuse of storage results in an average net reduction
in total social welfare compared to if storage is not used, since producer surplus losses outweigh consumer
welfare gains. These welfare losses can be tapered to some extent by storage capacity—with less than 2000
MW of storage, for instance, the capacity of the storage devices will limit the extent to which consumers
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Figure 3: Social welfare losses from suboptimal use of storage by symmetric duopoly merchant storage operators. Welfare
losses are given as a percentage of social welfare gains from optimal use of storage.
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Figure 4: Social welfare losses from suboptimal use of storage by symmetric duopoly generators. Welfare losses are given as a
percentage of social welfare gains from optimal use of storage.

can overuse the devices and limit social welfare losses.

5. Welfare Losses with Multiple Agent Types

The analysis of section 4 considered market structures in which storage is owned by either merchants,
generators, or consumers only, without allowing for ownership by multiple agent types. We saw that amongst
those alternatives, merchant ownership of storage is generally socially preferable to generator or consumer
ownership for reasonable device efficiencies. In this section we expand our analysis to allow for ownership
of storage by all three agent types simultaneously, to determine if distributing storage assets between the
agent types can improve upon storage owned by a single agent type.

5.1. Derivation of Equilibrium with Multiple Agent Types

We begin by expanding our model to allow for all three agent types to simultaneously own and use
storage. We assume that the market will have M generators, Z merchants, and N consumers, and that the

total capacity of storage owned by the three agent types is δ
G

, δ
S
, and δ

C
. We assume that the generators,

merchants, and consumers are symmetric, meaning that each own δ
G
/M , δ

S
/Z, and δ

C
/N MW of storage

capacity and that they simultaneously decide on storage use to maximize their respective profit functions
and solve for a Nash equilibrium.
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Figure 5: Social welfare losses from suboptimal use of storage by symmetric duopoly consumers. Welfare losses are given as a
percentage of social welfare gains from optimal use of storage.

We define δG
i , δS

j , and δC
k to be the amount of storage used by generator i, merchant j, and consumer

k; δG
−i, δS

−j , and δC
−k to be the total amount of storage used by everyone except for generator i, merchant j,

and consumer k; δG, δS , and δC to be the total amount of storage used by all generators, merchants, and
consumers; and δT to be the total amount of storage used. We can then formulate and analyze each agent
type’s maximization problem in turn:

5.1.1. Generators’ Optimization Problem

Generators will once again use storage to maximize the sum of arbitrage value and consumer surplus
gains. We can write generator i’s optimization problem as:

max
δG

i
∈[0,δ

G
/M ]

πG(δG
i , δG

−i) = δG
i (c0 + c1(l2 − δG

i − δG
−i)) − φδG

i (c0 + c1(l1 + φδG
i + φδG

−i))

+
1

M
∆PS(δG

i + δG
−i)

= δG
i (c0 + c1(l2 − δG

i − δG
−i)) − φδG

i (c0 + c1(l1 + φδG
i + φδG

−i))

+
1

M

(

(δG
i + δG

−i)c1(−l2 + φl1) +
1

2
(δG

i + δG
−i)

2c1(1 + φ2)

)

.

If we let λG
i ≥ 0 and µG

i ≥ 0 be the Lagrange multipliers associated with generator i’s lower- and
upper-bound constraints, respectively, the FONC6 for an optimum is given by:

−c1(1 + φ2)δG
i + c0 + c1(l2 − δT )− φ(c0 + c1(l1 + φδT )) +

1

M
[c1(−l2 + φl1) + δT c1(1 + φ2)] + λG

i − µG
i = 0,

Again, it is straightforward to apply the same approach in the proof of Proposition 2 to show that in an
equilibrium generators will all use storage identically. Due to this symmetry, the FONC can be rewritten
as:

c0(1 − φ) + 1
M (δS + δC)c1(1 + φ2) + M−1

M c1(l2 − φl1) − c1δ
T (1 + φ2) + λG − µG = 0

λG ≥ 0 ⊥ δG ≥ 0 (3)

µG ≥ 0 ⊥ δG ≤ δ
G

.

6Note that π′′

G
= (1/M − 2)c1(1 + φ2). Because M ≥ 1 and c1 > 0, we have π′′

G
< 0, meaning the maximization problem is

strictly convex and the FONC is sufficient for the unique maximum.

8



5.1.2. Merchants’ Optimization Problem

Merchants will maximize arbitrage value. We can write merchant j’s optimization problem as:

max
δS

j
∈[0,δ

S
/Z]

πS(δS
j , δS

−j) = δS
j (c0 + c1(l2 − δS

j − δS
−j)) − φδS

j (c0 + c1(l1 + φδS
j + φδS

−j)).

If we let λS
j ≥ 0 and µS

j ≥ 0 be the Lagrange multipliers associated with merchant j’s lower- and

upper-bound constraints, respectively, the FONC7 for an optimum is given by:

−c1(1 + φ2)δS
j + c0 + c1(l2 − δT ) − φ(c0 + c1(l1 + φδT )) + λS

j − µS
j = 0.

We can again use the approach in the proof of Proposition 2 to show that in an equilibrium merchants
will all use storage identically, in which case the FONC can be rewritten as:

c0(1 − φ) − (δG + δC)c1(1 + φ2) + c1(l2 − φl1) −
Z+1

Z c1δ
S(1 + φ2) + λS − µS = 0

λS ≥ 0 ⊥ δS ≥ 0 (4)

µS ≥ 0 ⊥ δS ≤ δ
S
.

5.1.3. Consumers’ Optimization Problem

Consumers will use storage to maximize the sum of arbitrage value and the change in consumer surplus.
We can write consumer k’s optimization problem as:

max
δC

k
∈[0,δ

C
/N ]

πC(δC
k , δC

−k) = δC
k (c0 + c1(l2 − δC

k − δC
−k)) − φδC

k (c0 + c1(l1 + φδC
k + φδC

−k))

+
1

N
∆CS(δC

k + δC
−k)

= δC
k (c0 + c1(l2 − δC

k − δC
−k)) − φδC

k (c0 + c1(l1 + φδC
k + φδC

−k))

+
1

N
(δC

k + δC
−k)c1(l2 − φl1).

If we let λC
k ≥ 0 and µC

k ≥ 0 be the Lagrange multipliers associated with consumer k’s lower- and
upper-bound constraints, respectively, the FONC8 for an optimum is given by:

−c1(1 + φ2)δC
k + c0 + c1(l2 − δT ) − φ(c0 + c1(l1 + φδT )) +

1

N
c1(l2 − φl1) + λC

k − µC
k = 0.

We can again use the approach in the proof of Proposition 2 to show that in an equilibrium consumers
will all use storage identically, in which case the FONC can be rewritten as:

c0(1 − φ) − (δG + δS)c1(1 + φ2) + N+1
N c1(l2 − φl1) −

N+1
N c1δ

C(1 + φ2) + λC − µC = 0

λC ≥ 0 ⊥ δC ≥ 0 (5)

µC ≥ 0 ⊥ δC ≤ δ
C

.

5.2. Numerical Simulation with Multiple Agent Types

A Nash equilibrium will consist of a set of storage use variables, δG, δM , and δC , which simultaneously
solve the equilibrium conditions given in equations 3 through 5. These conditions define a complementarity
problem, which we solved using the PATH solver developed by Dirkse and Ferris (1995). Figure 6 shows wel-
fare losses with 1000 MW of storage with an efficiency of 0.89 being divided between generators, merchants,

7Again, π′′

S
= −2c1(1 + φ2). Because c1 > 0, this gives π′′

S
< 0, meaning the profit-maximization problem is strictly convex

and the FONC is sufficient for the unique maximum.
8π′′

C
= −2c1(1 + φ2). Because c1 > 0, π′′

C
< 0, meaning the maximization problem is strictly convex and the FONC is

sufficient for the unique maximum.
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and consumers. The figure assumes the same market structure as before with two symmetric generators,
merchants, and consumers in the market. The total capacity of the generators’ storage can be deduced from
the figure, since the 1000 MW are distributed amongst the three agent types. Contrasting figure 6 with
the results of section 4 shows that when multiple agent types can own storage simultaneously, consumer
ownership of storage can be beneficial since the overuse of storage by consumers can compensate for the
underuse of storage by merchants. In fact, in this example welfare losses are minimized when 865 MW of
storage are owned by the two merchants and the remaining 135 MW are owned by the two consumers.
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Figure 6: Social welfare losses from suboptimal use of 1000 MW of storage with efficiency of 0.89 divided between symmetric
duopoly merchant storage operators, generators, and consumers. Welfare losses are given as a percentage of social welfare gains
from optimal use of storage.

Figure 7 summarizes the welfare-maximizing distribution of 1000 MW storage between merchants, gen-
erators, and consumers for a range of different device efficiencies. It once again assumes the market has
two symmetric merchants, generators, and consumers. The figure shows that for most device efficiencies,
merchant ownership is welfare maximizing, however for higher device efficiencies some consumer ownership is
also beneficial. Figure 8 considers a more competitive market that consists of five symmetric generators, five
symmetric consumers, and two symmetric storage merchants. In this more competitive setting we see that
consumer ownership of storage is even more beneficial—with more storage being allocated to consumers and
with lower device efficiencies—but that generator ownership of storage is still suboptimal, since generators
still significantly underuse storage even with five generators in the market.

6. Conclusions

We have examined incentives for the use of energy storage by different agents in an electricity market. We
found that consumers will generally overuse storage compared to the social optimum, whereas merchants
and generators will tend to underuse their assets. As the market becomes increasingly competitive with
more agents, storage use will approach the social optimum, however with a finite number of agents welfare
losses can be substantial. Our numerical example showed that for most reasonable storage device efficiencies
merchant ownership of storage is welfare-maximizing compared to the alternatives of consumer or generator
ownership. This result is due to generators underusing storage significantly because of the resulting producer
surplus losses and consumers overusing storage since they neglect the producer surplus losses associated with
their storage use. When storage assets can be divided amongst agent types the socially optimal allocation of
storage favors merchants, although some consumer ownership of storage can be beneficial since their overuse
of storage can compensate for underuse by merchants. Importantly, our results suggest that regulatory and
government authorities should be wary of encouraging consumer or generator investment in storage, since
merchant storage tends to minimize welfare losses.
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Figure 7: Welfare-maximizing distribution of 1000 MW of storage with different device efficiencies between symmetric duopoly
merchant storage operators, generators, and consumers.

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9
0

100

200

300

400

500

600

700

800

900

1000

Device Efficiency

S
to

ra
ge

 C
ap

ac
ity

 (
M

W
)

 

 

Merchant Storage Capacity
Consumer Storage Capacity

Figure 8: Welfare-maximizing distribution of 1000 MW of storage with different device efficiencies between symmetric duopoly
merchant storage operators, and five symmetric generators and consumers.

The inclusion of other agent types can change our results regarding optimal storage ownership structure,
since these agents would ostensibly have different incentives to use storage than the three cases considered
here. Storage owned by a municipality, cooperative, or integrated utility, which owns generation assets and
serves native loads, may result in more socially optimal storage use since these entities would be concerned
with both producer and consumer surplus changes. As an extreme case, a perfectly-regulated integrated
utility may be expected to duplicate the optimum, since such an entity will be charged with maximizing
welfare. Similarly, the design of market mechanisms or contracts that compensate storage owners for the
external effects of their storage use could also improve storage use incentives relative to the cases analyzed
here.

It is worth noting that our analysis is illustrative since prices and loads may not have a linear relationship.
This is due to non-convex generation costs, such as startups, and the use of different generating technologies.
These cost structures can result in non-linearities and steps in the price-load relationship. While our model
is a simplification of actual power system operations, our results are nonetheless illustrative of the incentives
that different agent types will generally have in using storage and the resulting welfare implications.

11



References

Anderson, D., Spring 1972. Models for determining least-cost investments in electricity supply. The Bell Journal of Economics
and Management Science 3, 267–299.

ASCE, 1993. Compendium of pumped storage plants in the united states. Task Committee on Pumped Storage of the Hy-
dropower Committee of the Energy Division of the American Society of Civil Engineers.

Denholm, P., Kulcinski, G. L., August 2004. Life cycle energy requirements and greenhouse gas emissions from large scale
energy storage systems. Energy Conversion and Management 45, 2153–2172.

Dirkse, S. P., Ferris, M. C., 1995. The path solver: A non-monotone stabilization scheme for mixed complimentarity problems.
Optimization Methods and Software 5, 123–156.

Figueiredo, F. C., Flynn, P. C., Cabral, E. A., 2006. The economics of energy storage in 14 deregulated power markets. Energy
Studies Review 14, 131–152.

Graves, F., Jenkin, T., Murphy, D., October 1999. Opportunities for electricity storage in deregulating markets. The Electricity
Journal 12, 46–56.

Greenblatt, J. B., Succar, S., Denkenberger, D. C., Williams, R. H., Socolow, R. H., March 2007. Baseload wind energy:
modeling the competition between gas turbines and compressed air energy storage for supplemental generation. Energy
Policy 35, 1474–1492.

Jenkin, T., Weiss, J., October 2005. Estimating the value of electricity storage: Some size, location and market structure issues.
In: Electrical Energy Storage Applications and Technologies Conference. San Francisco, CA.

Kirschen, D. S., Bell, K. R. W., Nedic, D. P., Jayaweera, D., Allan, R. N., November 2003. Computing the value of security.
IEE Proceedings–Generation, Transmission, and Distribution 150, 673–678.

Sioshansi, R., Denholm, P., Jenkin, T., Weiss, J., March 2009. Estimating the value of electricity storage in PJM: Arbitrage
and some welfare effects. Energy Economics 31, 269–277.

Sioshansi, R., Oren, S., February 2007. How good are supply function equilibrium models: an empicial analysis of the ercot
balancing market. Journal of Regulatory Economics 31, 1–35.

Walawalkar, R., Apt, J., Mancini, R., April 2007. Economics of electric energy storage for energy arbitrage and regulation in
new york. Energy Policy 35, 2558–2568.

A. Proof of Propositions

We present the proofs of the propositions in the paper.

Proposition 1. ∆CS(δW ) ≥ 0 and ∆PS(δW ) ≤ 0.

Proof. It should be clear that when δW = 0 the change in consumer and producer surplus are zero, thus we
only analyze the case in which δW > 0.

Note that from equation 2 if δW > 0 then we must have c0(1 − φ) + c1(l2 − φl1) ≥ 0, which can be
rewritten c1(l2 − φl1) ≥ −c0(1 − φ). The change in consumer surplus is given by ∆CS(δ) = δc1(l2 − φl1).
Combining these two gives:

∆CS(δ) ≥ −δc0(1 − φ),

which is non-negative, since c0(1 − φ) < 0.
To show that the producer surplus is always non-positive, first note that the change in producer surplus

can be written as:

∆PS(δ) = −δ

[

c1(l2 − φl1) −
1

2
δc1(1 + φ2)

]

.

If the bound constraints on δW are non-binding, then substituting in for the welfare-maximizing use of
storage, δW , gives:

∆PS(δ) = −
1

2
δ[c1(l2 − φl1) − c0(1 − φ)].

From above, we know that c0(1 − φ) < 0 and that we must have c1(l2 − φl1) ≥ −c0(1 − φ) > 0 for the
non-negativity constraint to be non-binding. Thus, we must have ∆PS(δ) ≤ 0.

Similarly, if δW = δ then we must have c0(1 − φ) + c1(l2 − φl1) > δc1(1 + φ2), which gives:

∆PS(δ) = −δ

[

c1(l2 − φl1) −
1

2
δc1(1 + φ2)

]

< −
1

2
δ[c1(l2 − φl1) − c0(1 − φ)],

which was shown to be non-positive above.
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Proposition 2. If the storage assets are owned by N ≥ 1 symmetric merchant storage operators, which are
not consumers and do not own generating assets, storage will be underused compared to the social optimum.

Proof. Because the firms are merchant storage owners, they are concerned solely with maximizing the
arbitrage value of their storage devices. Moreover, because the firms are symmetric we can express firm i’s
use of its storage device, δi, in terms of the total use of its rival firms, δ−i:

max
δi∈[0,δ/N ]

πS(δi, δ−i) = δi(c0 + c1(l2 − δi − δ−i)) − φδi(c0 + c1(l1 + φδi + φδ−i)).

If we let λi ≥ 0 and µi ≥ 0 be the Lagrange multipliers associated with firm i’s lower- and upper-bound
constraints, respectively, the FONC9 for an optimum is given by:

−c1(1 + φ2)δi + c0 + c1(l2 − δS) − φ(c0 + c1(l1 + φδS)) + λi − µi = 0, (6)

where δS =
∑N

n=1 δn, is the total usage of storage devices by all the firms.
We next show that a Nash equilibrium must be symmetric by subtracting firm j’s equation 6 from that

of firm i, which gives:
(1 + φ2)c1(δj − δi) + λi − λj − µi + µj = 0. (7)

We can now examine the following three cases to show that δi = δj in an equilibrium:

• Case 1: If δi = 0 then λi ≥ 0 and µi = 0. In this case equation 7 becomes:

(1 + φ2)c1δj + λi − λj + µj = 0.

Clearly we cannot have δj > 0 because then this equation becomes:

(1 + φ2)c1δj + λi + µj = 0,

which cannot hold.

• Case 2: If 0 < δi < δ/N then λi = 0 and µi = 0. In this case equation 7 becomes:

(1 + φ2)c1(δj − δi) − λj + µj = 0.

If δj = 0 then this equation becomes:

−(1 + φ2)c1δi − λj = 0,

which cannot hold, and similarly if δj = δ/N this equation becomes:

(1 + φ2)c1(δ/N − δi) + µj = 0,

which cannot hold either. Thus we must have λj = µj = 0 in which case equation 7 becomes:

(1 + φ2)c1(δj − δi) = 0,

which requires δj = δi.

• Case 3: If δi = δ/N then λi = 0 and µi ≥ 0. In this case equation 7 becomes:

(1 + φ2)c1(δj − δ/N) − λj − µi + µj = 0.

If δj < δ/N then this equation becomes:

(1 + φ2)c1(δj − δ/N) − λj − µi = 0,

which cannot hold.

9Again, because c1 > 0, π′′

S
= −2c1(1+φ2) < 0, meaning the profit-maximization problem is strictly convex and the FONC

is sufficient for the unique maximum.
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Since we know the equilibrium is symmetric, we can rewrite the FONC as:

−c1(1 + φ2)δS/N + c0 + c1(l2 − δS) − φ(c0 + c1(l1 + φδS)) + λ − µ = 0,

which yields the following equilibrium:

δS =







0, if c0(1 − φ) + c1(l2 − φl1) < 0;

δ, if c0(1 − φ) + c1(l2 − φl1) −
N+1

N δc1(1 + φ2) > 0;
N

N+1
c0(1−φ)+c1(l2−φl1)

c1(1+φ2) , otherwise.
(8)

Comparing the terms in equations 2 and 8 we see that δS = 0 whenever δW = 0 and that δS = N
N+1δW

whenever the bound constraints are not binding. Moreover, because:

−δc1(1 + φ2) > −
N + 1

N
δc1(1 + φ2),

there are values of l1 and l2 for which δS < δ while δW = δ. Thus δS is always less than or equal to δW .

Proposition 3. If the storage assets are owned by N ≥ 1 symmetric generating firms that own all the
generating assets, storage will only be used if there are at least two firms, in which case storage will be
underused compared to the social optimum.

Proof. Because the storage owners are also generators, they will use the storage device to maximize the sum
of arbitrage value and the change in their producer surplus. Moreover, because the firms are symmetric we
can express generator i’s use of its storage device, δi, in terms of the total use of its rival generators, δ−i:

max
δi∈[0,δ/N ]

πG(δi, δ−i) = δi(c0 + c1(l2 − δi − δ−i)) − φδi(c0 + c1(l1 + φδi + φδ−i)) +
1

N
∆PS(δi + δ−i)

= δi(c0 + c1(l2 − δi − δ−i)) − φδi(c0 + c1(l1 + φδi + φδ−i))

+
1

N

(

(δi + δ−i)c1(−l2 + φl1) +
1

2
(δi + δ−i)

2c1(1 + φ2)

)

.

If we let λi ≥ 0 and µi ≥ 0 be the Lagrange multipliers associated with generator i’s lower- and upper-
bound constraints, respectively, the FONC10 for an optimum is given by:

−c1(1 + φ2)δi + c0 + c1(l2 − δG) − φ(c0 + c1(l1 + φδG)) +
1

N
[c1(−l2 + φl1) + δGc1(1 + φ2)] + λi − µi = 0,

where δG =
∑N

n=1 δn, is the total usage of storage devices by all of the generating firms. It is straightforward
to show that the equilibrium is symmetric using the same approach in Proposition 2, which we do not repeat
for brevity. Since the equilibrium is symmetric, we can rewrite the FONC as:

−c1(1 + φ2)δG/N + c0 + c1(l2 − δG)− φ(c0 + c1(l1 + φδG)) +
1

N
[c1(−l2 + φl1) + δGc1(1 + φ2)] + λ − µ = 0,

which yields the following equilibrium:

δG =











0, if c0(1 − φ) + N−1
N c1(l2 − φl1) < 0;

δ, if c0(1 − φ) + N−1
N c1(l2 − φl1) − δc1(1 + φ2) > 0;

c0(1−φ)+ N−1

N
c1(l2−φl1)

c1(1+φ2) , otherwise.

(9)

Note that if N = 1, then the first condition in equation 9 becomes c0(1 − φ) < 0, which is necessarily
true since c0 > 0 and φ > 1. Thus, with N = 1 the storage device is never used. If N ≥ 2 then we can
compare the following three cases:

10Because N ≥ 1 and c1 > 0, π′′

G
= (1/N − 2)c1(1 + φ2) < 0, meaning the maximization problem is strictly convex and the

FONC is sufficient for the unique maximum.
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• Case 1: If δG = 0 then we must have N−1
N c1(l2 − φl1) < −c0(1 − φ). If N−1

N c1(l2 − φl1) ≤ 0 then

c1(l2 − φl1) ≤ 0 and δW = 0. If N−1
N c1(l2 − φl1) > 0, however, c1(l2 − φl1) might be greater than

−c0(1 − φ) in which case we would have δW > 0 while δG = 0.

• Case 2: If δW = δ then we must have:

c1(l2 − φl1) > δc1(1 + φ2) − c0(1 − φ).

For us to have δG = δ we must have:

N − 1

N
c1(l2 − φl1) > δc1(1 + φ2) − c0(1 − φ).

Note that because δc1(1+φ2)− c0(1−φ) > 0 there are values of l1 and l2 for which the first condition
holds, but the second does not. In such a case, we would have δG < δ while δW = δ.

• Remaining Case: If the bound constraints on δW and δG are non-binding, then:

δW
− δG =

l2 − φl1
N(1 + φ2)

.

We know from above that for the non-negativity constraint to be non-binding we must have l2−φl1 > 0,
thus the difference δW − δG is positive.

Thus, we have shown that when N ≥ 2, δG is always less than or equal to δW .

Proposition 4. If the storage assets are owned by N ≥ 1 symmetric consumers, storage will be overused
compared to the social optimum.

Proof. Consumers will be concerned with maximizing the sum of arbitrage value and the change in their
consumer surplus. Because consumers are symmetric we can express consumer i’s use of its storage device,
δi, in terms of the total use by other consumers, δ−i:

max
δi∈[0,δ/N ]

πC(δi, δ−i) = δi(c0 + c1(l2 − δi − δ−i)) − φδi(c0 + c1(l1 + φδi + φδ−i)) +
1

N
∆CS(δi + δ−i)

= δi(c0 + c1(l2 − δi − δ−i)) − φδi(c0 + c1(l1 + φδi + φδ−i))

+
1

N
(δi + δ−i)c1(l2 − φl1).

If we let λi ≥ 0 and µi ≥ 0 be the Lagrange multipliers associated with consumer i’s lower- and upper-
bound constraints, respectively, the FONC11 for an optimum is given by:

−c1(1 + φ2)δi + c0 + c1(l2 − δC) − φ(c0 + c1(l1 + φδC)) +
1

N
c1(l2 − φl1) + λi − µi = 0,

where δC =
∑N

n=1 δn, is the total usage of storage devices by all consumers. It is straightforward to show
that the equilibrium is symmetric using the same approach in Proposition 2, which we do not repeat. Since
the equilibrium is symmetric, we can rewrite the FONC as:

−c1(1 + φ2)δC/N + c0 + c1(l2 − δC) − φ(c0 + c1(l1 + φδC)) +
1

N
c1(l2 − φl1) + λ − µ = 0,

which yields the following equilibrium:

δC =











0, if c0(1 − φ) + N+1
N c1(l2 − φl1) < 0;

δ, if c0(1 − φ) + N+1
N c1(l2 − φl1) −

N+1
N δc1(1 + φ2) > 0;

N
N+1

c0(1−φ)+c1(l2−φl1)

c1(1+φ2) , otherwise.

(10)

We now examine the three possible cases for δW and δC separately.

11Because c1 > 0, π′′

C
= −2c1(1 + φ2) < 0, meaning the maximization problem is strictly convex and the FONC is sufficient

for the unique maximum.
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• Case 1: If δW = 0 then we must have c1(l2−φl1) < −c0(1−φ). If c1(l2−φl1) ≤ 0 then N+1
N c1(l2−φl1) ≤

0 and δC = 0. If c1(l2 − φl1) > 0 then N+1
N c1(l2 − φl1) might greater than −c0(1 − φ) in which case

δC > 0 while δW = 0.

• Case 2: If δC = δ then we must have:

N + 1

N
c1(l2 − φl1) −

N + 1

N
δc1(1 + φ2) > −c0(1 − φ).

For us to have δW = δ we must have:

c1(l2 − φl1) − δc1(1 + φ2) > −c0(1 − φ).

Note that because −c0(1 − φ) > 0 there are values of l1 and l2 for which the first condition holds but
the second does not, in which case we would have δW < δ while δC = δ.

• Remaining case: If the bound constraints on δW and δC are not binding, then:

δW
− δC =

c0(1 − φ)

(N + 1)c1(1 + φ2)
< 0.

Thus, the usage of the storage device by consumers will always be weakly greater than the social optimum.

Corollary 1. A perfectly competitive market with all the storage assets owned by either symmetric mer-
chant storage operators, consumers, or generators will yield the social welfare-maximizing usage of storage.

Proof. A perfectly competitive storage market will be a storage market in which there are an infinite number
of infinitesimally small storage operators (i.e. in which N → +∞). From equations 8, 9, and 10 we see that
δS , δG and δC → δW as N → +∞.
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