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abstract

There is a debate about which entity should have the authority to dispatch energy stor-

age that participates in restructured wholesale electricity markets. Some stakeholders raise

concerns that market operators’ independence can be threatened if they make operational

decisions for energy storage. The rationale that underlies this concern is that operating en-

ergy storage can affect the balance of the system and price formation. We demonstrate that

having market operators make operational decisions for energy storage does not change the

fundamental nature of the optimal-power-flow problem. Using duality theory, we show that

if market operators co-optimize the operation of energy storage with that of generators and

transmission, the optimal-power-flow problem yields short-run dispatch support and incen-

tive compatibility and long-run efficiency. These findings are analogous to those for having

market operators co-optimize transmission use with generator dispatch. Our work suggests

that concerns around giving market operators the authority to dispatch energy storage are

misplaced.
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1. INTRODUCTION

An issue that is raised by integrating energy storage into electricity systems with competitive whole-

sale markets is the role of market operators (MOs) in determining energy-storage dispatch. Much

of the extant literature, which Castillo and Gayme (2014); Sioshansi et al. (2022) survey, focuses on

optimizing energy-storage operations from the perspective of the asset owner. However, there are

benefits to having the operations of energy storage and other assets co-optimized. Pozo et al. (2014)

assess the value of incorporating energy storage into a unit-commitment model, whereby a single

entity co-optimizes energy-storage and generator operations. Weibelzahl and Märtz (2018) examine

the impacts on zonal pricing of incorporating energy-storage-operations decisions into MOs’ market-

clearing models. Despite these benefits of co-optimizing the operation of energy storage with other

power-system assets, there is a concern that MOs’ independence can be threatened if they make

energy-storage-operations decisions. Sioshansi et al. (2012); Sioshansi (2017) note that a primary

rationale behind this concern is that the operation of energy storage can affect the balance of the

power system and wholesale-price formation.

An example of this concern involves Lake Elsinore Advanced Pumping Station (LEAPS).

LEAPS’s developer, Nevada Hydro Corporation, proposed building the plant to relieve congestion in

Southern California. Because of its transmission benefits, Nevada Hydro Corporation sought in its
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filing to Federal Energy Regulatory Commission (FERC) an arrangement whereby California ISO

(CAISO) dispatches LEAPS to maximize its transmission-relief benefits.1 In its decision, FERC

concludes that having CAISO dispatch LEAPS is akin to CAISO owning and operating generation,

which could threaten the independence that is required of MOs by impacting wholesale-price for-

mation. Indeed, market independence is an explicit objection that CAISO raises in its filings in

the LEAPS case.2 This conclusion stems, in part, from CAISO making financially binding unit-

commitment and dispatch decisions for generating units. Sioshansi et al. (2010) contrast the roles of

MOs in making these decisions between different markets.

This debate is reminiscent of questions raised during the 1990s around the proper role of

MOs optimize use of transmission networks. Hogan (1992); Ruff (1994); Oren (1997) provide for-

mative analyses of this aspect of electricity-market design. There are several benefits to having MOs

optimize transmission-network use. First, Hogan (1992) demonstrates that having MOs determine

transmission use to maximize social welfare is equivalent to minimizing economic rents on transmis-

sion networks. This equivalence means that market solutions yield short-run efficiency, dispatch sup-

port, and incentive compatibility in power-system operations. Second, Pérez-Arriaga et al. (1995)

analyze the congestion rents that are generated by market models that give control of transmission-

network use. They show that when considering a fixed time span, these rents are equal to the cost of

transmission investment if the dynamic capacity-expansion plan is optimal over the time span and

there are neither economies of scale nor lumpiness in transmission investment. This finding means

that MOs determining the use of transmission networks is consistent with social-welfare maximiza-

tion and long-run efficiency in transmission investment.

In this paper, we examine the incentive and efficiency implications of giving MOs opera-

tional control of energy storage. We study this question by adapting and extending the approaches

that are taken by Hogan (1992); Pérez-Arriaga et al. (1995) to analyze MOs optimizing transmission-

network use. We take a two-prong approach to our analysis, which yields two policy-relevant market-

design findings.

First, we examine optimal-power-flow (OPF) models with and without energy-storage-

operational decisions embedded within them. Comparing the dual problems of these two OPF

models shows that incorporating energy storage into market-clearing models does not change fun-

damentally the price-formation process. So long as the market model maximizes social welfare or

minimizes system cost, energy storage factors into market clearing and price formation analogously

to an energy producer when it discharges and analogously to an energy consumer when it charges.

Analysis of the dual problem of the OPF model with embedded energy storage shows that the market

price is dispatch-supporting and incentive-compatible in the sense that energy storage is incentivized

to comply with the market solution. This result stems from the convexity of the OPF model and

means that MOs having operational control of energy storage provides the same short-run-efficiency

properties that Hogan (1992) demonstrates for MOs determining the use of transmission networks.

Second, we examine a stylized energy-storage-investment model and compare the cost

of energy-storage investment to energy-storage rents that are engendered by the solution of an

OPF model that has energy-storage-operational decisions embedded within it. We show that if a

power system has a socially optimal amount of energy-storage capacity, marginal energy-storage

rents equal marginal energy-storage-investment costs. This result means that MOs having oper-

ational control of energy storage yields the same long-run investment-efficiency properties that

Pérez-Arriaga et al. (1995) demonstrate for MOs determining the use of transmission.

Taken together, our work shows that giving MOs operational control of energy storage pro-

1cf. FERC docket numbers ER06-278-000 through ER06-278-006 for all of the filings and decisions in this case.
2cf. page 7 of FERC’s Order on Rate Incentives and Compliance Filings in this case in which FERC directs CAISO to

address ‘whether CAISO can effectively operate [LEAPS] in the context of being an independent system operator.’ Pages 24

and 25 provide CAISO’s response, in which ‘CAISO submits that, based on stakeholder input and its own evaluation of
the issues . . . CAISO should not assume operational control of [LEAPS and] that any transfer of control analyzed in [the]

proceeding would compromise CAISO’s independence as envisioned in [FERC] Order No. 2000.’
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vides the same short-run properties (e.g., efficiency, dispatch support, and incentive compatibility)

and long-run efficiency that MOs determining the use of transmission provides. On the basis of our

findings, we argue that the price-formation and market-independence concerns that are raised in the

case of LEAPS and similar proposed energy-storage projects are unwarranted. Indeed, we find that

giving MOs operational control of energy storage raises no new market-design issues as compared

to MOs determining the use of transmission or making operational decisions for generating units.

The remainder of this paper is organized as follows. Section 2 provides the formulation

of the stylized OPF model that we analyze and its dual problem. Section 3 provides our theoretical

results. Sections 4 and 5 demonstrate the properties of the stylized OPF model using a simple

example and real-world case study, respectively. Section 6 concludes and provides a discussion of

the market-design implications of our work.

2. MODEL FORMULATION

This section presents the formulation of a multi-period OPF model, which is assumed to have hourly

time-steps, and its dual problem. The model is multi-period because energy storage couples de-

cisions between hours. This model and its dual underlie our analysis of MOs having operational

control of energy storage. The model is an idealized example of a perfect market, which is known to

be efficient. Mas-Colell et al. (1995) provide a detailed treatment of these efficiency results, which

we paraphrase. According to the first fundamental theorem of welfare economics, if preferences

are locally non-satiated, then a competitive equilibrium is Pareto optimal. Furthermore, the second

fundamental theorem of welfare economics states that if each consumer has convex preferences and

each firm has a convex production set, then there is a price vector that gives a competitive equilibrium

to support any Pareto-optimal allocation. These theorems have two technical requirements, which

underlie our model. First, there must not be any information asymmetry. Second, economic agents

must be price-taking. In the context of our work, the OPF model provides a competitive equilibrium

in which supply equals demand. The dual problem allows us to demonstrate the dispatch-support

and incentive-compatibility properties of the prices that are given by a competitive equilibrium.

We begin our model formulation by defining the following notation.

2.1 Indices, Sets, and Parameters

B set of transmission buses

Bg transmission bus at which generator g is located

Bi transmission bus at which energy storage i is located

bn willingness-to-pay for energy of transmission-bus-n customers ($/MWh)

cg operating cost of generator g ($/MWh)

Dmax
n ,t maximum hour-t demand at transmission bus n (MW)

Fmax
l

capacity of transmission line l (MW)

g generator index

G set of generators

Gn set of generators that are connected to transmission bus n

Hi energy-carrying capacity of energy storage i (h)

i energy storage index

I set of energy-storage devices

Kmax
g production capacity of generator g (MW)

l transmission-line index

L set of transmission lines

m, n transmission-bus indices

Pmax
i

power capacity of energy storage i (MW)
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Sn set of energy-storage devices that are connected to transmission bus n

t time index

T set of hours within model horizon

ηi round-trip efficiency of energy storage i (p.u.)

πn ,l transmission-bus-n/transmission-line-l shift factor (p.u.)

2.2 Decision Variables

en ,t hour-t net injection of power from transmission bus n into the transmission network (MW)

hi ,t hour-t discharging rate of energy storage i (MW)

Ln ,t hour-t load at transmission bus n that is served (MW)

ri ,t hour-t charging rate of energy storage i (MW)

si ,t ending hour-t state of energy (SOE) of energy storage i (MWh)

xg ,t hour-t power output of generator g (MW)

2.3 OPF Model

The OPF model is formulated as:

max
∑

t∈T

















∑

n∈B

bnLn ,t −
∑

g∈G

cgxg ,t

















(1)

s.t.
∑

g∈Gn

xg ,t − en ,t +
∑

i∈Sn

(hi ,t − ri ,t ) = Ln ,t ;∀n ∈ B, t ∈ T (λn ,t ) (2)

∑

n∈B

en ,t = 0;∀t ∈ T (µt ) (3)

0 ≤ xg ,t ≤ Kmax
g ;∀g ∈ G, t ∈ T (α−g ,t , α

+
g ,t ) (4)

−Fmax
l
≤
∑

n∈B

πn ,len ,t ≤ Fmax
l

;∀l ∈ L, t ∈ T (β−l ,t , β
+
l ,t ) (5)

0 ≤ Ln ,t ≤ Dmax
n ,t ;∀n ∈ B, t ∈ T (γ−n ,t , γ

+
n ,t ) (6)

si ,t = si ,t−1 + ηiri ,t − hi ,t ;∀i ∈ S, t ∈ T (ωi ,t ) (7)

0 ≤ hi ,t ≤ Pmax
i ;∀i ∈ S, t ∈ T (τ−i ,t , τ

+
i ,t ) (8)

0 ≤ ri ,t ≤ Pmax
i ;∀i ∈ S, t ∈ T (φ−i ,t , φ

+
i ,t ) (9)

0 ≤ si ,t ≤ HiP
max
i ;∀i ∈ S, t ∈ T (ν−i ,t , ν

+
i ,t ); (10)

where the dual variable that is associated with each constraint is given in parentheses to its right.

Objective function (1) maximizes social welfare, which is defined as the difference between

customers’ willingness to pay for energy that they consume and the cost of energy production. Con-

straints (2) and (3) enforce bus-level and system-wide load balance, respectively. Constraints (4)

enforce generator-capacity limits. Constraints (5) impose flow limits on the transmission lines. Con-

straints (6) limit the amount of load that is served at each bus based on maximum consumer demand.

The remaining constraints pertain to the operation of energy storage. Constraints (7) define

the ending hourly SOE of energy storage. These constraints couple operational decisions between

hours, which necessitates the use of a multi-period OPF model. Without loss of generality, we

assume that the beginning hour-0 SOE of each energy storage is zero. Non-zero starting SOEs

would not change our fundamental results. Rather, they would impact boundary conditions in the

dual of (1)–(10). Constraints (8) and (9) impose non-negativity and power limits on energy-storage

discharging and charging, respectively. Constraints (10) impose SOE bounds on energy storage.

We do not impose a constraint on the ending SOE of energy storage. Graves et al. (1999) use such

Copyright c© 2018 by the IAEE. All rights reserved.



5 / The Energy Journal

constraints as a heuristic to ascribe value to having stored energy as of the end of the optimization

horizon. Including such constraints would not change our fundamental results. Rather, a constraint

on ending energy-storage SOEs would impact boundary conditions in the dual of (1)–(10). Unless

stored energy has a negative value (e.g., due to over-generation or unit-commitment constraints), the

lack of constraints on the ending SOE of energy storage yields solutions typically wherein energy-

storage SOE is nil as of the end of the optimization horizon.

The dual of (1)–(10) is:

min
∑

t∈T

















∑

g∈G

Kmax
g α+g ,t +

∑

l∈L

Fmax
l
· (β+l ,t + β

−
l ,t ) +

∑

n∈B

Dmax
n ,t γ

+
n ,t (11)

+
∑

i∈S

Pmax
i · (τ+i ,t + φ

+
i ,t + Hiν

+
i ,t )















s.t. α+g ,t ≥ λBg ,t − cg ;∀g ∈ G, t ∈ T (12)

λn ,t = µt −
∑

l∈L

πn ,l · (β
+
l ,t − β

−
l ,t );∀n ∈ B, t ∈ T (13)

γ+n ,t ≥ bn − λn ,t ;∀n ∈ B, t ∈ T (14)

τ+i ,t ≥ λBi ,t − ωi ,t ;∀i ∈ S, t ∈ T (15)

φ+i ,t ≥ ηiωi ,t − λBi ,t ;∀i ∈ S, t ∈ T (16)

ν+i ,t ≥ ωi ,t+1 − ωi ,t ;∀i ∈ S, t ∈ T (17)

α+g ,t ≥ 0;∀g ∈ G, t ∈ T (18)

β−l ,t , β
+
l ,t ≥ 0;∀l ∈ L, t ∈ T (19)

γ+n ,t ≥ 0;∀n ∈ B, t ∈ T (20)

τ+i ,t , φ
+
i ,t , ν

+
i ,t ≥ 0;∀i ∈ S, t ∈ T. (21)

3. PROPERTIES OF GIVING MOS OPERATIONAL CONTROL OF ENERGY STORAGE

We analyze the properties of giving MOs operational control of energy storage in two ways. First,

we examine operational decisions and the dispatch-supporting and incentive-compatible nature of

prices, by analyzing dual problem (11)–(21). Second, we examine long-run efficiency, by demon-

strating that energy-storage rents incentivize a socially optimal amount of energy storage to be built.

3.1 Short-Run Efficiency, Incentive-Compatibility, and Dispatch-Support of Giving MOs Op-

erational Control of Energy Storage

To explore short-run properties, we begin by interpreting the dual variables in (11)–(21), focusing

first on a case in which there is no energy storage. Without energy storage, (7)–(10) are eliminated

from the OPF problem and the only dual variables are those that are associated with (2)–(6). λn ,t is

the transmission-bus-n/hour-t locational marginal price (LMP) and µt is the hour-t system marginal

price of energy. α+g ,t represents the hour-t p.u. rent that is paid to generator g. β−
l ,t

and β+
l ,t

give the

hour-t p.u. rents that are paid to transmission line l. γ+n ,t is the hour-t p.u. rent that is paid to load at

transmission bus n.

Based on these interpretations, without energy storage, (11) minimizes the total rents that

are paid to generators, transmission-line owners, and loads. This interpretation of (11) stems from

its first three terms corresponding to these three rents, respectively, whereas the final term in (11)

vanishes because the dual variables, τ+
i ,t

, φ+
i ,t

, and ν+
i ,t

, do not exist if there is no energy storage. This

interpretation of (11) without energy storage is exactly in-line with the analysis of Hogan (1992),

with three differences that are related to the assumptions that underlie our OPF model differing
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from those that underlie the model that Hogan (1992) examines. Hogan (1992) analyzes a lossy

transmission model that includes real and reactive power, whereas we analyze a lossless model with

real power only. These two differences yield additional transmission-rent terms in the model that

Hogan (1992) analyzes, which correspond to losses and reactive-power flows, which do not appear

in (11). The other difference is that we assume an upper-limit on demand with an explicit willingness-

to-pay, which gives rise to the third term in (11). Hogan (1992) assumes a generic benefit function

from energy consumption with no explicit demand limit, which results in consumer rents being

defined implicitly in his analysis.

Constraints (12) and (14) are incentive-compatibility restrictions, which require that the

rents that are paid to each generator and to each load, respectively, be at least as large as what they

can earn by bypassing the MO and transacting bilaterally in the market. For instance, if α+g ,t is

less than λBg ,t − cg for some g ∈ G, t ∈ T , generator g can earn greater rents during hour t by

selling energy directly to customers at the prevailing LMP, which is given by λBg ,t . Constraints (13)

give the standard relationship that LMPs are equal to the sum of system marginal price of energy

and congestion cost. Constraints (18)–(20) ensure that generator, transmission, and demand rents,

respectively, are non-negative. Without energy storage, (15)–(17) and (21) vanish from the dual

problem, because they are associated with energy-storage-operational variables in (11)–(21).

We turn our attention now to analyzing problems (1)–(10) and (11)–(21) with energy stor-

age. To do so, we begin by interpreting the dual variables that are associated with (7)–(10) as rents

that are paid to energy storage. Because energy storage has constraints on its discharging, charging,

and SOE, energy-storage rents have three components. Specifically, τ+
i ,t

, φ+
i ,t

, and ν+
i ,t

represent

hour-t p.u. rents that are paid to energy storage i for its discharging, charging, and energy-carrying

capacities, respectively. ωi ,t represents the marginal value of having an additional MWh of energy

held in energy storage i as of the end of hour t.

With these definitions, the final term in (11) has an analogous interpretation to the first three

terms. Specifically, (11) minimizes total rents that are paid to generators, transmission-line owners,

and load, which are the first three terms in (11), and to energy storage, which is the fourth term.

Constraints (15)–(17) impose incentive compatibility on energy-storage rents. The perti-

nent incentive-compatibility constraint depends on whether energy storage charges or discharges.

For instance, (15) ensures that when it discharges the discharging rent that energy storage i receives

during hour t is at least what the energy storage could earn by bypassing the MO. If energy storage i

bypasses the MO during hour t, discharged energy could be sold at the prevailing LMP, λBi ,t , at an

opportunity cost of ωi ,t . Constraints (16) have an analogous interpretation for determining charging

rents. If energy storage i bypasses the MO during hour t, charged energy can be purchased at the

prevailing LMP, λBi ,t , and provides a net (of energy lost that is through the energy-storage process)

opportunity benefit of ηiωi ,t . Thus, (15) and (16) treat energy-storage rents in a manner that is anal-

ogous to generators when energy storage discharges and analogous to demand when energy storage

charges. Constraints (17) determine the rents that are paid for carrying energy from one hour to

the next. The difference, ωi ,t+1 − ωi ,t , is the opportunity cost of doing so and (17) imposes the

incentive-compatibility requirement that energy storage i be paid at least this amount to carry energy

from hour t to t + 1.

Thus, we draw three key conclusions regarding the short-run properties of giving MOs

operational control of energy storage. First, the dispatch schedule is short-run efficient, by virtue of

the fact that (1) maximizes social welfare. Second, (11) ensures that prices that are obtained from

the dispatch schedule minimize rents to the market participants. Third, (12), (14)–(17) ensure that

prices support the dispatch, insomuch as generators, consumers, and energy storage do not have

incentives to deviate from the dispatch schedule.

We conclude our analysis of (1)–(10) and (11)–(21) by appealing to an alternative inter-

pretation of these problems. Hogan (1992) notes that by solving the OPF problem to optimality,

an MO maximizes the value of the transmission network that it operates. This maximization is
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due to the MO operating the network to extract all spatial price differences, which yields an op-

erating point from which no feasible power-flow deviation can improve power-system operations.

Incorporating energy storage into (1)–(10) maximizes the value of the transmission network and

energy-storage assets. This value maximization is achieved by operating transmission and energy

storage to extract all spatial and intertemporal price differences, net of losses. In doing so, the MO

attains an operating point from which no feasible power-flow or energy-storage deviation can im-

prove power-system operations. Because we assume a lossless transmission network, a transmission

network with sufficient capacity would result in no spatial price differences during any given hour.

Conversely, we do model energy-storage losses in (7). As such, even with unlimited energy-storage

capacity, there may be intertemporal price differences, if a price difference is too small to yield a non-

negative marginal social-welfare/energy-storage-rent change. Section 4 illustrates the elimination of

intertemporal price differences net of energy-storage losses.

3.2 Investment Efficiency of Giving MOs Operational Control of Energy Storage

To analyze the investment incentives that (1)–(10) induce, first we prove the following lemma that

relates energy-storage rents, as defined in (11), to operating revenues that energy storage earns if its

charging and discharging are remunerated with LMPs.

Lemma 1 For each i ∈ S we have:

∑

t∈T

Pmax
i · (τ+∗i ,t + φ

+∗
i ,t + Hiν

+∗
i ,t ) =

∑

t∈T

λ∗Bi ,t
· (h∗

i ,t − r∗i ,t ); (22)

where the asterisk superscript indicates primal- and dual-optimal variable values.

Proof. Problem (1)–(10) is linear. Thus, as is discussed by Bertsekas (1995); Sioshansi and Conejo

(2017), its Karush-Kuhn-Tucker conditions, which are:

−bn + λ
∗
n ,t − γ

−∗
n ,t + γ

+∗
n ,t = 0;∀n ∈ B, t ∈ T (23)

cg − λ
∗
Bg ,t
− α−∗

g ,t + α
+∗
g ,t = 0;∀g ∈ G, t ∈ T (24)

λ∗n ,t − µ
∗
t +
∑

l∈L

πn ,l · (β
+∗
l ,t − β

−∗
l ,t ) = 0;∀n ∈ B, t ∈ T (25)

ω∗
i ,t − ω

∗
i ,t+1 − ν

−∗
i ,t + ν

+∗
i ,t = 0;∀i ∈ S, t ∈ T (26)

−λ∗Bi ,t
+ω∗

i ,t − τ
−∗
i ,t + τ

+∗
i ,t = 0;∀i ∈ S, t ∈ T (27)

λ∗Bi ,t
− ηiω

∗
i ,t − φ

−∗
i ,t + φ

+∗
i ,t = 0;∀i ∈ S, t ∈ T (28)

0 ≤ x∗g ,t ⊥ α
−∗
g ,t ≥ 0;∀g ∈ G, t ∈ T (29)

x∗g ,t ≤ Kmax
g ⊥ α+∗g ,t ≥ 0;∀g ∈ G, t ∈ T (30)

−Fmax
l ≤

∑

n∈B

πn ,le
∗
n ,t ⊥ β

−∗
l ,t ≥ 0;∀l ∈ L, t ∈ T (31)

∑

n∈B

πn ,le
∗
n ,t ≤ Fmax

l
⊥ β+∗l ,t ≥ 0;∀l ∈ L, t ∈ T (32)

0 ≤ L∗
n ,t ⊥ γ

−∗
n ,t ≥ 0;∀n ∈ B, t ∈ T (33)

L∗
n ,t ≤ Dmax

n ,t ⊥ γ
+∗
n ,t ≥ 0;∀n ∈ B, t ∈ T (34)

0 ≤ h∗
i ,t ⊥ τ

−∗
i ,t ≥ 0;∀i ∈ S, t ∈ T (35)

h∗
i ,t ≤ Pmax

i ⊥ τ+∗i ,t ≥ 0;∀i ∈ S, t ∈ T (36)

0 ≤ r∗i ,t ⊥ φ
−∗
i ,t ≥ 0;∀i ∈ S, t ∈ T (37)

r∗i ,t ≤ Pmax
i ⊥ φ+∗i ,t ≥ 0;∀i ∈ S, t ∈ T (38)

0 ≤ s∗i ,t ⊥ ν
−∗
i ,t ≥ 0;∀i ∈ S, t ∈ T (39)
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s∗i ,t ≤ HiP
max
i ⊥ ν+∗i ,t ≥ 0;∀i ∈ S, t ∈ T (40)

(2), (3), (7); (41)

are necessary and sufficient for a global optimum. From (36), (38), and (40) we have ∀i ∈ S:

∑

t∈T

Pmax
i · (τ+∗i ,t + φ

+∗
i ,t + Hiν

+∗
i ,t ) =

∑

t∈T

(h∗
i ,t τ
+∗
i ,t + r∗i ,tφ

+∗
i ,t + s∗i ,t ν

+∗
i ,t ). (42)

Substituting (26)–(28) into (42) gives:

∑

t∈T

Pmax
i · (τ+∗i ,t + φ

+∗
i ,t + Hiν

+∗
i ,t ) =

∑

t∈T

[

h∗
i ,t · (λ

∗
Bi ,t
− ω∗

i ,t + τ
−∗
i ,t ) (43)

+r∗i ,t · (−λ
∗
Bi ,t
+ ηiω

∗
i ,t + φ

−∗
i ,t ) + s∗i ,t · (−ω

∗
i ,t +ω

∗
i ,t+1 + ν

−∗
i ,t )
]

;

which simplifies to:

∑

t∈T

Pmax
i · (τ+∗i ,t + φ

+∗
i ,t + Hiν

+∗
i ,t ) = (44)

∑

t∈T

[

λ∗Bi ,t
· (h∗

i ,t − r∗i ,t ) − ω
∗
i ,t h∗

i ,t + ηiω
∗
i ,t r

∗
i ,t + s∗i ,t · (−ω

∗
i ,t + ω

∗
i ,t+1)

]

;

due to (35), (37), and (39). Substituting (7) into (44) gives:

∑

t∈T

Pmax
i · (τ+∗i ,t + φ

+∗
i ,t + Hiν

+∗
i ,t ) =

∑

t∈T

[

λ∗Bi ,t
· (h∗

i ,t − r∗i ,t ) − ω
∗
i ,t s∗i ,t−1 +ω

∗
i ,t+1s∗i ,t

]

; (45)

which simplifies to (22), because we assume that s∗
i ,0
= 0 and ω∗

i , |T |+1
does not exist. �

We show now that energy-storage rents (which, by Lemma 1, are equivalent to operating

revenues) provide the correct incentives for energy-storage investment. Our argument follows the

approach that Pérez-Arriaga et al. (1995) use to show a similar result for transmission-network in-

vestment. To show our result, we make three simplifying assumptions without loss of generality

(i.e., relaxing these assumptions complicates our derivations, which would hold still, and notation

without any additional insights).

First, we consider investment in a single energy storage with a p.u. round-trip efficiency of η.

We let S denote the total energy-carrying capacity of the energy storage, which is being determined

by the investor. We let κ(S) denote the convex continuously differentiable function that represents

energy-storage-investment cost. Because κ(S) is convex and continuously differentiable, we assume

implicitly that there are neither economies of scale nor non-convexities in energy-storage investment.

This assumption is reasonable for some energy-storage technologies, e.g., electrochemical batteries,

but may be more tenuous for others, e.g., pumped-hydroelectric energy storage (PHS).

Second, we assume that energy storage operates for a single charging and discharging cycle

during off- and on-peak periods. The off-peak period begins at time 0 and ends at time t2. During

this time the marginal generating unit, which has generating capacity, Kmax
off

, and marginal cost, coff ,

sets the LMP. Energy storage charges during the off-peak period and we let Poff (t) denote the time-t

charging of energy storage. For notational ease, we assume that energy storage charges between

times t1 and t1 + Hoff (Poff (t)), where 0 ≤ t1 < t1 + Hoff (Poff (t)) ≤ t2. Having the duration of the

charging window depend on Poff (t) reflects its being related to the charging rate. The on-peak period

begins as of time t2 and continues until time T . During this time the marginal generating unit that

sets the LMP has marginal cost, con, with coff < con. Energy storage discharges during the on-peak

period and we let Pon(t) denote the time-t discharging of energy storage. Again, for notational ease,

we assume that energy storage discharges between times t3 and t3 + Hon(Pon(t)), where t2 ≤ t3 <

t3 + Hon(Pon(t)) ≤ T . Our assumption that coff and con are fixed implies that the energy storage

behaves as a price-taker and that the energy-storage technology allows for infinitesimal capacity
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additions. We let L(t) denote time-t load. One could allow for multiple charging and discharging

cycles, in which case all of the time, charging, discharging, and cost parameters would need to

be indexed by the charging and discharging cycle to which they correspond, which is notationally

cumbersome.

Finally, we assume that the capacity of energy storage is binding. This means that:

∫ t1+Hoff (Poff (t ))

t1

Poff (t)dt = S; (46)

or that the full S-MWh energy-carrying capacity of energy storage is exhausted when it charges

during the off-peak period. Similarly, we have that:

∫ t3+Hon(Pon (t ))

t3

Pon(t)dt = ηS; (47)

or that all of the charged energy (net of energy that is lost) is discharged during the on-peak period. If

the capacity constraints of the energy storage are not exhausted, the dual variables that define energy-

storage rents are zero. Such a case yields a trivial and uninteresting result, in which energy-storage

rents are zero because there is no marginal benefit to additional energy-storage capacity.

Theorem 1 Energy-storage rents, as defined in (11), induce a profit-maximizing investor to build a

socially optimal amount of energy-storage capacity.

Proof. The cost of operating the power system between times 0 and T is:

O(S) =

∫ t1

0

coffL(t)dt +

∫ t1+Hoff (Poff (t ))

t1

coff · [L(t) + Poff (t)]dt (48)

+

∫ t2

t1+Hoff

coffL(t)dt +

∫ t3

t2

{

coffKmax
off + con ·

[

L(t) − Kmax
off

]}

dt

+

∫ t3+Hon(Pon (t ))

t3

{

coffKmax
off + con ·

[

L(t) − Kmax
off − Pon(t)

]}

dt

+

∫ T

t3+Hon

{

coffKmax
off + con ·

[

L(t) − Kmax
off

] }

dt.

The first three terms on the right-hand side of (48) give the operating cost during the off-peak period,

during which time the generating unit with cost, coff , is marginal. Energy storage is charged between

times t1 and t1 + Hoff . An additional Poff (t) MW must be produced during time t, which is reflected

in the second term on the right-hand side of (48). The final three terms on the right-hand side of (48)

give the operating cost during the on-peak period, during which time the lower-cost generating unit

operates at its capacity and the higher-cost unit serves the residual demand. As a result of energy

storage being discharged, the output of this higher-cost unit is reduced between times t3 and t3+Hon.

This reduced generation is reflected in the fifth term on the right-hand side of (48). Substituting (46)

and (47) into (48) gives:

O(S) =

∫ t2

0

coffL(t)dt + coffS +

∫ T

t2

{

coffKmax
off + con ·

[

L(t) − Kmax
off

]}

dt − conηS. (49)

Because O(·) is convex in S, a necessary and sufficient condition for socially optimal

energy-storage investment is O′(S) = −κ′(S). From (49), we have that O′(S) = coff − conη. Thus, a

profit-maximizing investor undertakes socially optimal energy-storage investment if marginal (with

respect to S) energy-storage rent is equal to conη − coff . Energy storage earns S · (conη − coff ) in rev-

enue, which by Lemma 1 is equal to energy-storage rent, as defined by (11). Thus, marginal (with
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respect to S) energy-storage rent is equal to conη − coff , which gives the desired result regarding

energy-storage capacity that is built by a profit-maximizing investor. �

4. ILLUSTRATIVE EXAMPLE

This section uses a stylized example to illustrate the impact of co-optimizing the dispatch of gen-

eration and energy storage. We assume |B | = 4, |L | = 5, |T | = 5, and that there are two 50-MW

generators at transmission buses 1 and 2 with costs c1 = 4 and c2 = 8, respectively. There are

loads at three of the four transmission buses, each of which is co-located with energy storage with

ηi = 0.8, Hi = 1.5, and pmax
i
= 5. We label the energy storage so i = n,∀i ∈ S. The example is

programmed in GAMS and solved using Gurobi. We run our model on NEOS Server, which is a

cloud-based optimization platform that is described by Czyzyk et al. (1998).

Table 1 summarizes the values of a subset of primal- and dual-optimal variable values that

are associated with the energy storage that is located at transmission bus 4. We focus on transmission

bus 4 because many of the variables are non-zero, allowing us to draw insights into how primal- and

dual-optimal variable values are related to one another. τ∗
4,4
= 5 means that the optimal value of (1)

increases by $5 if one more MW could be discharged during hour 4 from the energy storage that

is located at transmission bus 4. Specifically, there is a $5 difference between the hour-4 LMP,

λ∗
4,4
= 25, and the hour-4 marginal value of stored energy, ω∗

4,4
= 20. Constraint (15) for i = 4

and t = 4 requires that the rent on energy-storage discharging be at least as great as this difference.

Thus, the rent on energy-storage discharging reflects the social-welfare improvement that having

additional discharging capacity would provide.

Table 1: Bus-4 Primal- and Dual-Optimal Variable Values in Example from Section 4

t

Variable 1 2 3 4 5

h∗
4,t

0.000 0.000 2.500 5.000 0.000

r∗
4,t

5.000 4.375 0.000 0.000 0.000

s∗
4,t

4.000 7.500 5.000 0.000 0.000

τ∗
4,t

0.000 0.000 0.000 5.000 0.000

φ∗
4,t

4.000 0.000 0.000 0.000 0.000

ν∗
4,t

0.000 5.000 0.000 0.000 0.000

λ∗
4,t

8.000 12.000 20.000 25.000 10.000

ω∗
4,t

15.000 15.000 20.000 20.000 10.000

Similarly, φ∗
4,1
= 4 reflects a $4 p.u. increase in the optimal value of (1) from the energy

storage that is located at transmission bus 4 having additional charging capacity during hour 1. This

welfare improvement arises because added charging capacity would allow energy to be stored at a

p.u. cost of λ∗
4,1
= 8, which yields a (net of losses that are associated with energy-storage use) p.u.

benefit of η4ω
∗
4,1
= 12. Constraint (16) for i = 4 and t = 1 requires that the charging rent be at

least as great as the social-welfare gain that is given by this difference. s∗
4,2
= 7.5, meaning that

the energy storage that is located at transmission bus 4 reaches its energy-carrying capacity during

hour 2. This gives ν∗
4,2
= 5 a nonzero value, which is defined as the difference between ω∗

4,3
= 20

and ω∗
4,2
= 15, as is required by (17). The intuition behind setting ν∗

4,2
in this way is that having

energy in storage as of the end of hour 3 is more valuable than having it in storage as of the end of

hour 2. ν∗
4,2

ascribes this value to stored energy through the third component of the energy-storage

rent in (11).

Table 2 summarizes LMPs for transmission bus 4 with different values of Pmax
4

, assuming

unlimited transmission-line capacities, which yields an uncongested transmission network. The ta-

ble shows (cf. Section 3.1) that energy storage reduces intertemporal price differences. This impact
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of energy storage is analogous to transmission reducing spatial price differences, and yields our con-

clusion that energy storage’s social value can be maximized by giving MOs operational control of it.

With Pmax
4
= 30, energy storage eliminates all economically valuable intertemporal price differences,

because with η4 = 0.8 there are no marginal social-welfare/energy-storage-rent gains from having

additional energy-storage capacity. To see that there are no gains from additional energy-storage ca-

pacity with Pmax
4
= 30, consider charging an incremental ∆ MW of energy during either of hours 1

or 2 and discharging that incremental stored energy during either of hours 3 or 4. Doing so would

yield a marginal social-welfare/energy-storage-rent change of:

∆ · (12η4 − 9.6) = 0;

showing that there is no value to incremental energy-storage capacity. This case of Pmax
4
= 30 is

analogous to a situation in which there is no transmission congestion, in which case all spatial price

differences are eliminated.

Table 2: λ∗
4,t

in Example from Section 4 with Different Values of Pmax
4

and a Transmission

Network with Unlimited Capacity

t

Pmax
4

1 2 3 4 5

5 8.0 8.0 20.0 25.0 10.0

10 8.0 8.0 10.0 25.0 10.0

15 8.0 8.0 10.0 12.0 10.0

20 8.0 9.6 12.0 12.0 10.0

30 9.6 9.6 12.0 12.0 10.0

5. CASE STUDY

We examine a larger 283-transmission-bus, 276-generator, 31-day case study that is based on data

for ISO New England (ISONE) from August, 2005. Loads are assigned to the eight zones that are in

ISONE’s market model. We assume that the eight zones have identical energy storage with ηi = 0.8,

Pmax
i
= Pmax, and Hi = H , ∀i ∈ S, where Pmax and H are varied. The case study is implemented

using the same computational resources that are used for the example that is presented in Section 4.

Figure 1 summarizes the total social-welfare improvements in our case study relative to

$984.95 million of social welfare without energy storage. The bars provide absolute welfare im-

provements and the lines report improvements normalized by the energy-carrying capacity of each

energy storage. Figure 1 shows that incremental energy-storage additions deliver social-welfare

gains (up until a point at which all intertemporal price differences are eliminated, which occurs if

Pmax and H are sufficiently high). Figure 1 shows also that the normalized value of energy storage

is diminishing in its capacity. The first increment of energy-storage capacity is used to shift loads

between periods with large marginal-welfare differences. As more energy storage is added, the in-

cremental capacity is used to shift loads between periods with smaller marginal-welfare differences,

giving diminishing marginal-welfare gains.

Figure 2 shows the operation during 30 August, 2005 with H = 1.5 and Pmax = 5 of energy

storage that is located in Western/Central Massachusetts zone, as well as corresponding dual-variable

values. The operating pattern that is shown is typical of most days, with energy being stored during

the morning and discharged during the afternoon. The dual variables, φ+∗
i ,4

and τ+∗
i ,14

, are non-zero

during this day, which reflects the hour-4-charging and hour-14-discharging constraints being bind-

ing. These constraints are binding during these two hours because they have the lowest and highest

LMPs, respectively. Thus, to the extent possible, the MO seeks to charge energy during hour 4,

which is discharged during hour 14 to alleviate the use of a higher-cost generator. Increasing Pmax

Copyright c© 2018 by the IAEE. All rights reserved.



What Duality Theory Tells Us About Giving Market Operators the Authority to Dispatch Energy Storage / 12

Figure 1: Social-welfare improvement relative to no-energy-storage case (bars are absolute

improvements and lines are normalized by the energy-carrying capacity of each energy storage) in case

study from Section 5.

to 10 and 20 drives φ+∗
i ,4

and τ+∗
i ,14

, respectively, to zero, as the power-capacity constraints become

slack. Increasing Pmax to 20 decreases the hour-14 LMP to the same value as during hours 11–13

and 15–18.

Figure 2: Operation during 30 August, 2005 with H = 1.5 and Pmax = 5 of energy storage in

Western/Central Massachusetts load zone and corresponding values of ωi ,t and LMPs in case study

from Section 5.

Tables 3 and 4 summarize the breakdown of rents to generators, loads, transmission, and

energy storage with different values of Pmax and for H equal to 1.5 and 3.0, respectively. The ta-
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ble shows that adding energy storage increases total rents, but that the breakdown of rents between

the agent types is not monotone. These findings are consistent with the findings of Sioshansi (2010,

2014b). For relatively low values of Pmax, energy storage profits from high price differences between

when it discharges and charges. As Pmax increases these price differences decrease because of energy

storage’s merit-order effect. An alternative interpretation of the rent decrease is that if energy-storage

capacity is sufficiently large, energy-storage-capacity constraints become non-binding and their asso-

ciated dual variables become zero. These dual-variable-value decreases outweigh the countervailing

energy-storage-capacity increases. Tables 3 and 4 show that for our case study, Pmax = 2000 and

Pmax = 1000 with H = 1.5 and H = 3.0, respectively, are the thresholds beyond which energy-

storage rents decrease. Increasing energy-storage capacity beyond the levels that are summarized

in Tables 3 and 4 can lead to further energy-storage-rent decreases with the rent becoming zero in

extremis.

Table 3: Breakdown of Rents ($ million) in Case Study from Section 5 with H = 1.5

Pmax Generator Load Transmission Energy Storage Total

0 505.6 453.8 25.6 0.0 984.9

250 502.9 456.6 25.7 1.0 986.2

500 501.7 460.6 23.3 1.3 986.9

750 500.0 463.3 22.7 1.5 987.5

1000 498.9 465.9 21.5 1.7 988.0

2000 496.9 470.7 19.8 1.8 989.2

3000 494.8 474.8 19.1 1.1 989.8

4000 495.4 476.5 17.1 1.0 990.1

5000 493.2 479.0 17.3 0.8 990.3

6000 494.4 477.9 17.4 0.8 990.4

Table 4: Breakdown of Rents ($ million) in Case Study from Section 5 with H = 3.0

Pmax Generator Load Transmission Energy Storage Total

0 505.6 453.8 25.6 0.0 984.9

250 501.7 460.6 23.3 1.3 986.9

500 498.9 465.9 21.5 1.7 988.0

750 497.2 469.2 20.6 1.7 988.7

1000 496.9 470.7 19.8 1.8 989.2

2000 495.4 476.5 17.1 1.0 990.1

3000 494.4 477.9 17.4 0.8 990.4

4000 493.1 478.8 18.1 0.7 990.7

5000 492.2 479.7 18.2 0.7 990.8

6000 493.0 477.1 20.3 0.5 990.9

Tables 3 and 4 show also that increasing energy-storage capacity tends to decrease gen-

erator rents, increase load rents, and decrease transmission-network congestion and rents. Thus,

the addition of energy storage to a power system impacts generation- and transmission-investment

incentives.

We conclude our analysis of our case study by examining energy-storage-cost recovery and

Theorem 1 using a two-step process. First, we solve the following auxiliary problem:

max
∑

t∈T

















∑

n∈B

bnLn ,t −
∑

g∈G

cg xg ,t

















−
∑

i∈S

ξiHiP
max
i (50)

s.t. (2)–(10) (51)

Pmax
i ≥ 0;∀i ∈ S; (52)
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where Hi is held fixed, Pmax
i

is a decision variable, and ξi is the per-MWh investment cost of en-

ergy storage i. Problem (50)–(52) determines a socially optimal amount of energy storage to build,

given the tradeoff between its investment cost and increased operating-stage welfare. Next, given an

optimal set of capacities, Pmax
i

∗ ,∀i ∈ S, we solve (1)–(10) with different values of Hi and compare

energy-storage rents to the associated investment costs.

We conduct this analysis in two cases, assuming a single energy storage in the Connecticut

zone with η = 0.8 and a per-MWh investment cost of $100. We solve (50)–(52) with H = 2.00

and H = 4.25. In the former case, Pmax = 3498 is optimal and in the latter we have Pmax =

1646 as optimal. Figure 3 summarizes marginal energy-storage rents and marginal energy-storage-

investment costs if we fix Pmax to these two values and vary H . As expected from Theorem 1, if

Pmax = 3498 we have that marginal energy-storage rent and marginal investment cost co-incide

with H = 2.00. If H is lower than 2.00, marginal energy-storage rent is greater than marginal

investment cost and the excess marginal rent incentivizes added energy-storage investment. We

have the opposite result if H is greater than 2.00. The case wherein we fix Pmax = 1646 gives an

analogous result, except that H = 4.25 is the threshold value at which marginal rent and investment

cost are equal.

Figure 3: Marginal energy-storage rents and marginal energy-storage-investment costs as a function of

H in case study from Section 5 with Pmax = 3498 MW and Pmax = 1646 MW.

Finally, we use the case with Pmax = 1646 and H = 4.25 to elucidate some nuances

of the price-taking and convexity assumptions that underlie Theorem 1. Theorem 1 assumes that

the marginal costs of energy during the on- and off-peak periods, which are denoted con and coff ,

respectively, are fixed. This assumption does not mean that marginal costs and LMPs are not affected

by the amount of energy storage that is built or how energy storage is operated. For instance, Table 2

shows the LMPs for transmission bus 4 changing with Pmax
4

. Rather, the assumption that con and

coff are fixed means that energy storage behaves as a price-taker and does not behave strategically

vis-à-vis its investment decision to manipulate prices and increase its energy-storage rent. Instead,

energy storage invests so long as marginal energy-storage rent outweighs marginal energy-storage-

investment cost. For instance, without any energy storage added, the load-weighted average LMP

for Connecticut zone between hours 11 and 22 of 1 August, 2005 is $68.23/MWh whereas the

load-weighted average LMP for the remaining hours of the day is $51.21/MWh. Thus, during this
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day, there is a load-weighted-average difference of $17.02/MWh between energy prices during on-

peak midday hours and the remaining off-peak hours. If energy storage with Pmax = 1646 and

H = 4.25 is added to Connecticut zone, the load-weighted average price between hours 11 and 22

decreases to $66.59/MWh and the average price for the remaining hours increases to $52.64/MWh.

As expected, adding energy storage diminishes the load-weighted-average difference between on-

and off-peak prices to $13.95/MWh, which reduces energy-storage rent. Pmax = 1646 and H = 4.25

is a threshold at which marginal energy-storage rent and marginal energy-storage investment equal

one another, which co-incides with socially optimal energy-storage investment.

Next, we consider the potential impact of relaxing the assumption of convex energy-storage

investment. For our case study, social welfare increases from $984.95 million without energy storage

to $986.94 million if energy storage with Pmax = 1646 and H = 4.25 is added to Connecticut zone,

which is a $1.99 million welfare increase. If we fix Pmax = 1646 and assume that infinitesimal

investments are possible with a per-MWh cost of $100, marginal energy-storage-investment cost is

$164 600/h. Figure 3 shows that if H = 4.25, marginal energy-storage rent is $164 600/h and equal

to marginal energy-storage-investment cost. Thus, under the assumptions of our case study, the total

cost of building energy storage with Pmax = 1646 and H = 4.25 is $699 550, which is equal to total

revenue/energy-storage rent.

Now, consider a case in which energy-storage investment is a binary or lumpy decision

whereby either no energy storage or energy storage with Pmax = 1646 and H = 4.25 must be built.

In this case, investment incentives can be misaligned between a social planner and a private investor.

Specifically, if the cost of building the energy storage is less than or equal to $699 550 or greater than

$1.99 million, their incentives are aligned (energy storage is built by both entities in the former case

and not built in the latter). However, if the cost of building the energy storage is between $699 550

and $1.99 million, a social planner would opt to build the energy storage (the social-welfare gain

outweighs the investment cost) whereas a private investor would not (investment cost outweighs

energy-storage rent).3 Joskow and Tirole (2005) demonstrate an analogous result for the case of

lumpy transmission investment.

6. CONCLUSION, DISCUSSION, AND MARKET-DESIGN IMPLICATIONS

Policymakers, regulators, and industry participants increasingly are interested in the use and de-

ployment of energy storage. This interest raises concerns regarding how energy storage should be

incorporated into power-system operations. Some stakeholders claim that MOs’ independence is

harmed if they make energy-storage-operations decisions, because these decisions can affect other

units and price formation. These concerns are raised explicitly by CAISO in regards to LEAPS and

are a determining factor in FERC’s ultimate decision regarding the regulatory treatment of LEAPS.

We demonstrate that the concerns surrounding MO independence are unfounded. We find

that giving MOs operational control over energy storage raises no novel market-design issues com-

pared to their making operational decisions for generators and transmission networks. Our work ex-

tends the analyses of Hogan (1992); Pérez-Arriaga et al. (1995), which show that allowing MOs to

determine transmission-network is consistent with social-network maximization and efficient trans-

mission investment. Analogous results apply if MOs are given operational authority over energy

storage. Thus, market designers and policymakers should not be concerned about the purported is-

sues of MO independence that are raised in cases that involve energy storage. We show that energy

storage impacts price formation in a manner that is analogous to generation and demand when it is

discharged and charged, respectively. Moreover, MOs maximize the social value of energy storage

3A potentially important nuance in comparing the incentives of a social planner and a private investor is the cost of

capital, especially for the former. Laffont and Tirole (1993) discuss cases in which a social planner may not undertake a

socially beneficial project if the shadow cost or deadweight loss that is associated with raising the necessary funds outweigh
the social benefits of the project. Such considerations are beyond the scope of our work, but worth noting when contrasting

incentives for energy-storage investment.
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by using it to minimize intertemporal LMP differences. This is analogous to the finding of Hogan

(1992) that MOs maximize the social value of transmission by using it to minimize spatial LMP

differences.

We focus on the use of energy storage for energy shifting. Sioshansi et al. (2012) discuss

the use of energy storage for the provision of ancillary services. Kim et al. (2022) discuss the evo-

lution of capacity markets to use energy storage for resource-adequacy purposes. So long as market

models for the provision of these and other services are convex, our results regarding the short- and

long-run properties of giving MOs control of energy storage should extend to the provision of these

services.

Problem (1)–(10) treats energy storage as a public or shared asset. This treatment of energy

storage stems from the MO having flexibility to operate energy storage and there not being direct

costs on energy-storage use in (1). Rather, the implicit cost of energy-storage use is based on the

cost of charging energy. Such treatment of energy storage is akin to the treatment of transmission

in most restructured markets today, i.e., there is no direct cost on using the network in (1). This

treatment of energy storage differs from current practice in some markets, which assume that energy

storage is a private asset. Indeed, some stakeholders advocate for a market-participation model that

sees energy storage self-scheduling or submitting price-responsive charging and discharging offers

into the wholesale market. We do not advocate for one model over another. Rather, our aim in

this paper is to dispel misconceptions regarding MOs having operational control of energy storage.

In doing so, we give market designers and policymakers a broader range of options for designing

efficient market-participation models for energy storage.

Model (1)–(10) is stylized in a number of ways. However, our main results regarding

the properties of MO control of energy storage are not dependent on our simplifying assumptions,

which are made to ease notation and the analysis. We employ a lossless linearized power-flow

model, whereas Hogan (1992) uses a convex power-flow model that accounts for transmission

losses. Linearized power-flow models are relatively common in market models that are used by

MOs. We could incorporate transmission losses into our model and Rau (2003); Stott et al. (2009);

Frank and Rebennack (2016) survey the modeling of transmission losses. We exclude transmission

losses from our model to simplify our analysis of the dual problem and the rent terms in (11) in

particular. Nevertheless, there may be interesting insights that would be gleaned from a model that

includes transmission losses. For instance, Bustos et al. (2018) find that, depending upon power-

system configuration, energy storage can act as a substitute or complement to transmission.

Another simplifying assumption is constant marginal-generation costs and consumer will-

ingnesses to pay. These assumptions yield a linear objective function, which allows for an explicit

derivation of the dual problem. These assumption could be relaxed to allow for more general convex

generation-cost or concave willingness-to-pay functions and the efficiency properties would hold

still. However, with general cost and willingness-to-pay functions we would need to define the rents

in the dual objective function implicitly. A reasonable compromise could be to approximate convex

generation-cost and concave willingness-to-pay functions as convex and concave piecewise-linear

functions. Doing so would maintain the same basic structures of (1) and (11). However, such a

model would be more notationally cumbersome, as the costs and willingnesses to pay must be in-

dexed by the segments of the piecewise-linear functions.

We assume an energy-storage technology without any direct operating cost. As such, there

is no cost on energy-storage use in (1). Some technologies have operating costs, however, e.g.,

diabatic compressed-air energy storage combusts natural gas in the discharging cycle and electro-

chemical batteries suffer cycle-life degradation. These and other types of costs could be incorporated

into (1) without impacting the properties that we show. Barnes et al. (2015); Xi and Sioshansi (2016)

propose approaches to modeling such costs. Such costs would impact energy-storage operation by

requiring a larger difference between the marginal-welfare impact of discharging and charging en-

ergy, just as the efficiency factors, ηi , do (cf. Table 2). Thus, these costs would impact the operation
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of energy storage much as transmission losses do in a lossy OPF model.

We assume also a constant efficiency factor and power and energy constraints and a linear

relationship between SOE, charging, and discharging of energy storage. These assumptions are stan-

dard for market-modeling of energy storage. The works of Walawalkar et al. (2007); Sioshansi et al.

(2009); Kazemi et al. (2017) are among numerous examples that employ such assumptions. Never-

theless, non-linearities can apply to modeling energy-storage technologies, and Wang et al. (2013);

Qiu et al. (2014); Ortega-Vazquez (2014); Pandžić and Bobanac (2019); Padmanabhan et al. (2020);

Sioshansi et al. (2022) survey examples of these. So long as they are represented in a manner that

maintains convexity of (1)–(10), such non-linearities can be incorporated in an energy-storage model

and our results remain.

On the other hand, some energy-storage technologies do exhibit important non-convexities,

which can impact our results. Larsen and Sauma (2021) examine energy-storage investment in Chile

by a central planner. They find different incentives to invest in electrochemical batteries compared

to PHS. Indeed, a technology such as PHS can raise two important types of non-convexities. One

is that the operation of PHS may yield non-convexities that are akin to unit-commitment constraints

(i.e., there may be binary decisions of whether the turbine or pump is operated and they may have

non-zero minimum-load requirements). There is a vast literature, which includes the works of Scarf

(1990, 1994); Pérez-Arriaga and Meseguer (1997); O’Neill et al. (2005); Sioshansi (2014a), that ex-

amines the impact of these types of constraints on producing prices that are incentive-compatible

and dispatch-supporting. Another complication is that PHS is an energy-storage technology that

may exhibit economies of scale or lumpiness in its investment (e.g., economies of scale in building

a dam once a suitable site for a PHS plant is selected). Thus, the misaligned incentives between a

social planner and a private investor that are discussed in Section 5 may arise. As such, our results

should be viewed through the same lens that is applied to other works that examine the properties

of spot markets for electricity services. We demonstrate desirable results in a stylized case, but pol-

icymakers, market designers, and other stakeholders should be cognizant of the limitations of the

stylized model.
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