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Energy Storage Participation in Wholesale Markets: The Impact of

State-of-Energy Management

Shubhrajit Bhattacharjee, Student Member, IEEE, Ramteen Sioshansi, Fellow, IEEE,

and Hamidreza Zareipour, Fellow, IEEE

Wholesale electricity markets are undergoing reforms to allow greater participation of energy storage. These reforms raise
questions regarding the roles of market operators in energy-storage management and the design of market-participation models and
offer parameters for energy storage. This paper examines the market implications of energy-storage participation models and state-
of-energy (SOE) management. To this end, we develop a bi-level stochastic optimization model, wherein the upper level represents
a profit-maximizing energy-storage firm offering into a wholesale market. Lower-level problems represent market clearing under
different uncertain operating conditions. Using complementarity theory and binary expansion, this model is recast as a single-level
mixed-integer linear optimization problem, which can be solved using off-the-shelf software packages. We apply the model to
an illustrative example and a comprehensive case study. We demonstrate that with uncertainty, self scheduling energy storage is
suboptimal for the energy-storage firm. Relying on only the energy-storage firm to manage SOE can yield strategic behavior, whereby
infeasible offers are submitted to affect dispatch and market prices. These findings can guide ongoing market-design reforms.

Index Terms—Energy storage, power system economics, power system markets, state-of-energy management, offer strategy

NOMENCLATURE

Indices and Sets

d index of demands from set, D

g index of generators from set, G

h index of hours from set, H

s index of scenarios from set, S

Parameters

e0 hour-0 state of energy (SOE) of energy storage

(MWh)

Ē energy-carrying capacity of energy storage (MWh)

Os,h,g hour-h offer price of generator g under scenario s

($/MWh)

ps,0,g hour-0 output of generator g under scenario s (MW)

P̄g generating capacity of generator g (MW)

P̄s,h,d hour-h quantity of demand d under scenario s (MW)

P̄ ch charging capacity of energy storage (MW)

P̄ dis discharging capacity of energy storage (MW)

RD
g ramp-down limit of generator g (MW/h)

RU
g ramp-up limit of generator g (MW/h)

Ud,h hour-h utility of demand d ($/MWh)

β round-trip efficiency of energy storage (p.u.)

γ target ending SOE of energy storage (p.u.)

ρ deviation penalty (p.u.)

φs probability with which scenario s occurs

χch charging cost of energy storage ($/MW)
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χdis discharging cost of energy storage ($/MW)

Upper-Level Variables

bs,h equals 1 if energy storage discharges during hour h

of scenario s and equals 0 otherwise

es,h ending actual hour-h energy-storage SOE under sce-

nario s (MWh)

och
h hour-h charging offer price of energy storage ($/MW)

odis
h hour-h discharging offer price of energy storage

($/MW)

p̄chh hour-h charging offer quantity of energy storage

(MW)

p̄dish hour-h discharging offer quantity of energy storage

(MW)

p
ch,a
s,h actual hour-h energy-storage charging under sce-

nario s (MW)

p
dis,a
s,h actual hour-h energy-storage discharging under sce-

nario s (MW)

p
ch,ss
h hour-h self-scheduled charging of energy storage

(MW)

p
dis,ss
h hour-h self-scheduled discharging of energy storage

(MW)

δchs,h hour-h charging deviation of energy storage under

scenario s (MW)

δdiss,h hour-h discharging deviation of energy storage under

scenario s (MW)

Lower-Level Variables

ems,h ending hour-h energy-storage SOE under scenario s

from following the market operator’s dispatch (MWh)

ps,h,d hour-h quantity of demand d that is satisfied under

scenario s (MW)

ps,h,g hour-h dispatch of generator g under scenario s

(MW)

pchs,h hour-h incremental energy-storage-charging dispatch

by the market operator under scenario s (MW)

pdiss,h hour-h incremental energy-storage-discharging dis-

patch by the market operator under scenario s (MW)
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I. INTRODUCTION

ENERGYstorage can provide value to its owner [1] and

society, e.g., through improved reliability [2]–[4] or

renewable-energy integration [5], [6]. As such, energy storage

is seeing increasing deployment, with some projections of its

installed capacity increasing seventeenfold by 2050.1

Despite this outlook, a barrier to energy-storage deployment

is its regulatory, policy, and market treatment [7]. To this

end, reforms that view energy storage equitably vis-à-vis other

technologies are ongoing. One such example is Federal Energy

Regulatory Commission (FERC) Order 841.2 Order 841 re-

quires FERC-jurisdictional market operators (MOs) to develop

market-participation models that treat energy storage equitably

with other resources for the provision of services. A question

that these market reforms raise is the proper role of MOs

in managing the operation of energy storage as opposed

to leaving these decisions to individual agents. Order 841
provides the option for an owner to choose between managing

the state of energy (SOE) of its energy storage individually

or having the MO do so. Regardless of the option that is

chosen, energy-storage SOE must be feasible during all times.

Additionally, Order 841 envisions markets giving owners the

option to self-schedule energy storage or to have it participate

in the market through price-responsive offers. Thus, Order 841
gives MOs flexibility in designing markets to accommodate

the participation of energy storage. As such, the objective

of this paper is to evaluate these design options from the

perspective of market efficiency and the potential for energy-

storage owners to manipulate market outcomes.

The extant literature that analyzes this question can be

classified along two distinguishing assumptions [8]. The first is

the behavioral assumption—whether energy storage is a price-

taker or behaves strategically. The price-taking assumption is

used to analyze energy storage participating in energy [9],

[10] and energy and reserve [11], [12] markets. Examples

of the latter assumption include analyses of self-scheduling

by strategic energy storage that affects market prices [13]–

[16]. Mohsenian-Rad [17], [18] and De Vivero-Serrano et

al. [19] examine strategic energy storage participating in a

market through self-scheduling or other offering mechanisms.

Nasrolahpour et al. [20] model the participation of strategic

energy storage in a wholesale market with ramp-constrained

generators. They assume that energy storage submits price-

responsive bids and offers and that energy storage’s SOE

is managed by its owner. Shafiee et al. [21] present an

algorithm to construct bid and offer curves of price-making

energy storage in a wholesale electricity market. Both of these

works differ from ours, in that they do not consider offer

structures that energy storage could use or SOE management.

The second distinguishing dimension is how energy-storage

SOE is managed. One set of works [9], [10], [12]–[18], [20],

[22], [23] assume that energy storage’s SOE is managed by

its owner. Other works [24], [25] assume MO management

of energy-storage SOE. Singhal and Ela [26] analyze different

proposed approaches for MOs to manage energy-storage SOE.

1https://www.eia.gov/analysis/studies/electricity/batterystorage/
2cf. FERC docket numbers RM16-23-000 and AD16-20-000.

Thus, there is a gap in the literature in that it does not

examine the market-efficiency and price-formation implica-

tions of how an MO and strategic energy storage interact.

Its integration into electricity markets raises questions around

the format of energy-storage offers and SOE management.

Mohsenian-Rad [17], [18] and De Vivero-Serrano et al. [19]

examine the impacts of strategic energy storage participating in

a market using different offering mechanisms. However, these

works do not consider the implications of SOE management

thereupon. Works that examine SOE management [9], [10],

[12]–[18], [22]–[26] do not consider its interaction with the

offering mechanism that is available to the energy storage.
Our paper makes two key contributions towards addressing

this gap. First, we use a stochastic bi-level model to analyze

self-interested behavior by energy storage in an electricity

market. Unlike works that assume price-taking [9]–[12], our

focus is strategic behavior by energy storage. Second, we

use our model to analyze the impacts of energy-storage-SOE

management and the strategic variables that are available to

the energy storage. This distinguishes our work from others

that assume SOE is managed by the asset owner or that

energy storage participates in the market solely through self-

scheduling [12]–[16]. Although different offering mechanisms

are investigated in the literature [17]–[19], interactions be-

tween SOE management and offering mechanisms are not

examined in previous works.
Our work differs from others that optimize energy-storage

sizing and placement [22]–[25]. We assume a fixed energy-

storage size and focus on market participation. As such our

work can be likened to others [27], [28] that examine or

reveal market-design choices that can yield inefficiencies in the

presence of strategic behavior. In particular, this similar body

of work examines strategic behavior of market participants and

its impact on market designs due to asymmetric information.

Our use of a computational model, which allows us to study

detailed technical constraints, SOE-management options, and

offer structures, is a distinguishing characteristic vis-à-vis this

literature. These works [27], [28] use highly stylized models

that are amenable to analytic solutions but are limited in

representing technical details.
The remainder of this paper is organized as follows. Sec-

tions II and III provide model formulations and our solution

methodology, respectively. Sections IV and V summarize an

illustrative example and comprehensive case study, respec-

tively. Our two key findings are that being restricted to

self-scheduling only is suboptimal for energy storage in the

presence of uncertainty and that relying on energy storage only

to manage SOE can yield infeasible dispatch schedules. There

are no specific market designs that restrict energy storage to

self-schedule only. We analyze a case with such a restriction

to understand how it would impact market behavior and out-

comes. If the MO does not manage its SOE, strategic energy

storage can use an infeasible schedule to increase its profit

through price and quantity impacts. Section VI concludes.

II. MODEL FORMULATIONS

We model existing energy storage that participates in an

energy market by submitting a combination of self schedules

https://www.eia.gov/analysis/studies/electricity/batterystorage/
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and price-responsive offers for charging and discharging. Once

energy-storage offers are submitted, the MO clears the market

under scenarios with different supply and demand conditions.

Energy-storage offers are scenario-invariant.

Thus, we model a stochastic bi-level optimization, with

expected-profit-maximizing energy-storage offers determined

at the upper level and stochastic market clearing at the lower

level. Scenarios can represent price uncertainty from the

perspective of energy storage, e.g., due to stochastic offers

from competing firms or loads. Bi-level modeling is used

widely in the literature [19], [22]–[25] and many works assume

that energy storage participates in the market using scenario-

dependent price-responsive offers. Our goal is to investigate

the interplay between strategic energy storage, offering mecha-

nisms, and SOE management, while accounting for deviations

between actual energy-storage dispatch and quantities that

clear the market. Thus, we restrict energy storage to using

a combination of scenario-invariant self schedules and price-

responsive offers to participate in the market. This assumption

is in-line with that which is used by Mohsenian-Rad [17].

SOE constraints are modeled in the upper-level problem

by the energy storage owner and may be represented in the

MO’s lower-level problems. The difference between these two

sets of SOE constraints is that the latter are based on the

MO’s dispatch of energy storage, which may differ from actual

energy-storage operations, due to possible dispatch deviations.

Most of the extant literature neglects dispatch deviation in

modeling energy-storage SOE.

A. Lower-Level Problems

For all s ∈ S, the MO’s scenario-s problem is:

min
ΩL

s

∑

h∈H





∑

g∈G

Os,h,gps,h,g − och
h pchs,h + odis

h pdiss,h

−
∑

d∈D

Ud,hps,h,d

)

; (1)

s.t. pdiss,h + p
dis,ss
h − pchs,h − p

ch,ss
h +

∑

g∈G

ps,h,g =
∑

d∈D

ps,h,d;

∀h ∈ H ; (λs,h) (2)

0 ≤ ps,h,g ≤ P̄g;

∀h ∈ H, g ∈ G; (µ1,min

s,h,g , µ
1,max

s,h,g ) (3)

−RD
g ≤ ps,h,g − ps,h−1,g ≤ RU

g ;

∀h ∈ H, g ∈ G; (µ2,min

s,h,g , µ
2,max

s,h,g ) (4)

0 ≤ ps,h,d ≤ P̄s,h,d;

∀h ∈ H, d ∈ D; (µ3,min

s,h,d , µ
3,max

s,h,d ) (5)

0 ≤ pchs,h ≤ p̄chh ; ∀h ∈ H ; (µ4,min

s,h , µ
4,max

s,h ) (6)

0 ≤ pdiss,h ≤ p̄dish ; ∀h ∈ H ; (µ5,min

s,h , µ
5,max

s,h ) (7)

0 ≤ ems,h ≤ Ē; ∀h ∈ H ; (µ6,min

s,h , µ
6,max

s,h ) (8)

ems,h = ems,h−1 − pdiss,h − p
dis,ss
h + β ·

(

pchs,h + p
ch,ss
h

)

;

∀h ∈ H ; (µ7
s,h) (9)

ems,|H| = γe0; (µ8
s) (10)

where the Lagrange multiplier that is associated with each

constraint is in parentheses to its right and:

ΩL
s = {ps,h,d, ∀h ∈ H, d ∈ D; ps,h,g, ∀h ∈ H, g ∈ G;

ems,h, p
ch
s,h, p

dis
s,h, ∀h ∈ H

}

.

Objective function (1), which is in equivalent minimiza-

tion form, maximizes the social welfare that is engendered

by the market. Constraints (2) enforce hourly load balance,

taking account of self-scheduled energy-storage charging and

discharging as well as the MO’s energy-storage-dispatch in-

structions. Constraints (3)–(4) enforce generator-capacity and

-ramping limits, respectively. Constraints (5) limit the amount

of load that is served based on the quantity of demand. Con-

straints (6)–(7) enforce power limits on energy storage. Con-

straints (8) enforce limits on energy-storage SOE, if energy

storage follows the MO’s dispatch. Constraints (9) give the

inter-hour evolution of energy-storage SOE. Constraint (10)

restricts the ending energy-storage SOE, which is a heuristic

approach to avoid myopic energy-storage dispatch [29].

B. Upper-Level Problem

The energy storage’s problem is:

max
ΩU∪ΩL

∑

s∈S,h∈H

φs ·
[

p
dis,a
s,h ·

(

λs,h − χdis
)

− p
ch,a
s,h ·

(

λs,h

+χch
)

− (1 + ρ)λs,h ·
(

δchs,h + δdiss,h

)

]

; (11)

s.t. 0 ≤ p
ch,a
s,h ≤ P̄ ch · (1− bs,h); ∀s ∈ S, h ∈ H ; (12)

0 ≤ p
dis,a
s,h ≤ P̄ disbs,h; ∀s ∈ S, h ∈ H ; (13)

pchs,h + p
ch,ss
h = p

ch,a
s,h + δchs,h; ∀s ∈ S, h ∈ H ; (14)

pdiss,h + p
dis,ss
h = p

dis,a
s,h + δdiss,h; ∀s ∈ S, h ∈ H ; (15)

0 ≤ es,h ≤ Ē; ∀s ∈ S, h ∈ H ; (16)

es,h = es,h−1 − p
dis,a
s,h + βp

ch,a
s,h ; ∀s ∈ S, h ∈ H ; (17)

es,|H| = γe0; ∀s ∈ S; (18)

δchs,h, δ
dis
s,h ≥ 0; ∀s ∈ S, h ∈ H ; (19)

p̄chh , p̄dish , p
ch,ss
h , p

dis,ss
h ≥ 0; ∀h ∈ H ; (20)

bs,h ∈ {0, 1}; ∀s ∈ S, h ∈ H ; (21)

(1)–(10); ∀s ∈ S; (22)

where:

ΩU =
{

bs,h, es,h, p
ch,a
s,h , p

dis,a
s,h , δchs,h, δ

dis
s,h, ∀s ∈ S, h ∈ H ;

och
h , o

dis
h , p̄chh , p̄dish , p

ch,ss
h , p

dis,ss
h , ∀h ∈ H

}

;

and:

ΩL =
⋃

s∈S

ΩL
s .

Objective function (11) maximizes expected energy-storage

profit and consists of three terms in the brackets. The first

two terms represent operating profit from actual energy-storage

charging and discharging. For all s ∈ S, h ∈ H , λs,h is the

hour-h market-clearing price under scenario s. The costs of

discharging and charging energy storage, which appear in these
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first two terms, could reflect degradation that is associated

with energy-storage use. The third term in (11) represents a

penalty, which is proportional to the prevailing price, for the

energy storage deviating from the dispatch that clears one of

the corresponding lower-level problems.

Constraints (12)–(13) impose power limits on energy-

storage charging and discharging, respectively, and allow en-

ergy storage to operate only in one of charging or discharging

mode during each hour of each scenario. Constraints (14)–(15)

define actual energy-storage charging and discharging and de-

viations. Constraints (16)–(18) pertain to energy-storage SOE.

Constraints (16) impose SOE bounds, (17) define hourly SOE

evolution, and (18) restrict the ending SOE. Constraints (19)–

(20) and (21) impose, respectively, non-negativity and inte-

grality restrictions on variables. Constraints (22) embed the

MO’s problems into that of the energy storage.

III. SOLUTION METHODOLOGY

Model (11)–(22) is a bi-level optimization with nonlinear-

ities. We address the inherent computational difficulties as

follows.

A. Conversion from Bi-Level to Single-Level Problem

For all s ∈ S, (1)–(10) is linear and satisfies the Slater

condition. Thus, ∀s ∈ S, an optimal solution to (1)–(10) can

be characterized by its necessary and sufficient Karush-Kuhn-

Tucker conditions [30], which are (2), (9)–(10), and:

Os,h,g − λs,h − µ
1,min

s,h,g + µ
1,max

s,h,g − µ
2,min

s,h,g + µ
2,max

s,h,g

+ µ
2,min

s,h+1,g − µ
2,max

s,h+1,g = 0; ∀h ∈ H, g ∈ G; (23)

− Ud,h + λs,h − µ
3,min

s,h,d + µ
3,max

s,h,d = 0;

∀h ∈ H, d ∈ D; (24)

− och
h + λs,h − µ

4,min

s,h + µ
4,max

s,h − βµ7
s,h = 0;

∀h ∈ H ; (25)

odis
h − λs,h − µ

5,min

s,h + µ
5,max

s,h + µ7
s,h = 0; ∀h ∈ H ; (26)

− µ
6,min

s,h + µ
6,max

s,h + µ7
s,h − µ7

s,h+1 = 0; ∀h ∈ H ; (27)

0 ≤ ps,h,g ⊥ µ
1,min

s,h,g ≥ 0; ∀h ∈ H, g ∈ G; (28)

ps,h,g ≤ P̄g ⊥ µ
1,max

s,h,g ≥ 0; ∀h ∈ H, g ∈ G; (29)

−RD
g ≤ ps,h,g − ps,h−1,g ⊥ µ

2,min

s,h,g ≥ 0;

∀h ∈ H, g ∈ G; (30)

ps,h,g − ps,h−1,g ≤ RU
g ⊥ µ

2,max

s,h,g ≥ 0; ∀h ∈ H, g ∈ G; (31)

0 ≤ ps,h,d ⊥ µ
3,min

s,h,d ≥ 0; ∀h ∈ H, d ∈ D; (32)

ps,h,d ≤ P̄s,h,d ⊥ µ
3,max

s,h,d ≥ 0; ∀h ∈ H, d ∈ D; (33)

0 ≤ pchs,h ⊥ µ
4,min

s,h ≥ 0; ∀h ∈ H ; (34)

pchs,h ≤ p̄chh ⊥ µ
4,max

s,h ≥ 0; ∀h ∈ H ; (35)

0 ≤ pdiss,h ⊥ µ
5,min

s,h ≥ 0; ∀h ∈ H ; (36)

pdiss,h ≤ p̄dish ⊥ µ
5,max

s,h ≥ 0; ∀h ∈ H ; (37)

0 ≤ ems,h ⊥ µ
6,min

s,h ≥ 0; ∀h ∈ H ; (38)

ems,h ≤ Ē ⊥ µ
6,max

s,h ≥ 0; ∀h ∈ H. (39)

Ramping restrictions (4) introduce a time dynamic in the

MO’s problem. Thus, there is a time dynamic in (23). Con-

straints (23) that correspond to hour h = |H | have the same

form that appears in (23), however the µ
2,min

s,h+1,g and µ
2,max

s,h+1,g

terms vanish, because these Lagrange multipliers do not exist.

Constraints (9), which give the inter-hour evolution of energy-

storage SOE, introduce a similar time dynamic in the MO’s

problem and in (27). Constraints (27) that correspond to hour

h = |H | do not have a µ7
s,h+1

term.
Using these conditions, (11)–(22) can be converted to a

single-level optimization problem by replacing (22) with (2),

(9)–(10), and (23)–(39), ∀s ∈ S, and expanding the variable

set to include all of the Lagrange multipliers of (1)–(10).

B. Linearizing Complementary-Slackness Conditions

Complementary-slackness conditions (28)–(39) are nonlin-

ear. This is because a condition of the form:

f(x) ≤ 0 ⊥ ζ ≥ 0; (40)

is equivalent to:

f(x) ≤ 0;

ζ ≥ 0;

f(x)ζ = 0;

which is nonlinear in x and ζ. Complementary-slackness

condition (40) can be linearized by introducing an auxiliary

binary variable, which we denote as ξ, and replacing (40) with:

−Mξ ≤ f(x) ≤ 0;

M · (1− ξ) ≥ ζ ≥ 0;

so long as M is sufficiently large [31]. We employ this

linearization, which requires one auxiliary binary variable be

added to the variable set for each of (28)–(39).
Selecting suitable values for M can be challenging. If M

is too small, the model can become infeasible, whereas large

values of M can result in poor computational performance.

We select large starting values for M and reduce the values

iteratively until we obtain the tightest value for which the

complementary-slackness conditions hold [20].

C. Linearizing Objective Function (11)

Objective function (11) contains bilinear terms in which

λs,h multiplies one of p
ch,a
s,h , p

dis,a
s,h , δchs,h, or δdiss,h. We linearize

these using binary expansion [32], which is an approximation

(unlike the linearization approaches that we discuss in Sec-

tions III-A–III-B). The approximation error can be controlled

by the choice of the discrete values that pch,as,h , pdis,as,h , δchs,h, and

δdiss,h are assumed to take in the binary expansions.

D. Model Solution

Employing the linearizations that are outlined in Sec-

tions III-A–III-C yields a single-level stochastic mixed-integer

linear optimization problem. This problem can be solved using

an off-the-shelf optimization package and, due to the use of

binary expansion, gives an approximate solution to (11)–(22).

As a post-processing step, we verify that a solution to the

linearized model satisfies original complementary-slackness

conditions (28)–(39).
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IV. EXAMPLE

This section uses seven variants of a three-hour, four-

generator example to illustrate our proposed model and to

demonstrate the impact of market-design choices on market

efficiency and energy-storage behavior and profit. Table I sum-

marizes the offer and constraint parameters of the generators.

Unless stated otherwise, these parameters are assumed to be

constant across time and scenarios and we assume that e0 = 0,

P̄ ch = 15, P̄ dis = 20, Ē = 100, β = 1.0, χch = χdis = 0,

and ρ = 0.5.

TABLE I
GENERATOR DATA FOR EXAMPLE

g P̄g Os,h,g RD
g = RU

g

1 100 12 15

2 75 20 20

3 50 50 25

4 50 300 50

The model is programmed using GAMS version 34.3.0
and solved with Gurobi version 9.1.1 using the cloud-

based NEOS Sever for Optimization [33]. The examples take

between 2 s and 10 s to solve. Memory requirements and

computation times can increase rapidly if more operational

periods or units are considered, especially because of the need

to use binary expansion to provide a reasonable approximation

of the bilinear terms in (11). The results in this section

demonstrate that three operating periods is sufficient for our

goal of understanding through simple examples how market-

design choices impact energy-storage behavior.

A. Case 1 : No Uncertainty or Ramping Constraints

Our first case relaxes generator-ramping constraints and

assumes no uncertainty. The hourly loads, which have arbi-

trarily high utilities, are 120 MW, 240 MW, and 130 MW,

respectively. Because there is no uncertainty, the energy stor-

age self-schedules 15 MW of charging during hour 1 and

the stored energy is discharged during hour 2 (i.e., price-

responsive offers are unnecessary). There are no deviations

by the energy storage and ∀s ∈ S, h ∈ H the energy-storage

SOE levels that are given by es,h and ems,h are identical.

We investigate energy-storage behavior further by exam-

ining two other market conditions. First, if we fix p
ch,ss
h =

p
dis,ss
h = 0, ∀h ∈ H , energy storage submits price-responsive

offers that result in the same dispatch that is self-scheduled

absent the restriction. Second, if (8)–(10) are relaxed in the

MO’s problem, energy storage operates in the same way as

when the MO manages energy-storage SOE. Thus, this case

shows that absent uncertainty, the structure of energy-storage

offers (i.e., having the ability to self-schedule or not) and the

MO managing energy-storage SOE have no bearing on energy-

storage participation in or efficiency of the market.

B. Case 2 : Capacity Withholding

This case retains the assumptions of no uncertainty and

relaxed generator-ramping constraints that are considered in

case 1 but the hourly loads are changed to 120 MW, 210 MW,

and 240 MW, respectively. As such, absent energy-storage

operation, the energy price increases successively from one

hour to the next. One may expect energy storage to charge

15 MW and 5 MW during the first two hours and to discharge

20 MW during hour 3. However, optimized energy-storage of-

fers entail self-scheduling 15 MW of charging and discharging

during hours 1 and 3, respectively, and no hour-2 charging.

This operational profile is optimal because if energy storage

discharges 15 MW during hour 3, generator 4 is marginal

during hour 3 and sets the hour-3 energy price equal to

$300/MWh. Conversely, if energy storage discharges 20 MW

during hour 3, generator 3 becomes marginal and sets the hour-

3 energy price equal to $50/MWh. Thus, capacity withholding

increases energy-storage profit by about 38% relative to energy

storage behaving as a price taker. This benefit of capacity

withholding is consistent with other analyses [9].

Restricting energy storage to price-responsive offers or self-

scheduling only and the MO managing SOE or not have no

impacts on the market outcome. As with case 1, this result is

due to the lack of uncertainty.

C. Case 3 : Uncertainty

This case assumes load uncertainty through two equiproba-

ble scenarios and no generator-ramping constraints. The hourly

scenario-1 and -2 loads are 240 MW, 120 MW, and 240 MW

and 120 MW, 240 MW, and 120 MW, respectively. The load

and price patterns differ between the two scenarios. Thus, it

is suboptimal for the energy storage to rely solely on self-

schedules and it uses price-responsive offers to yield different

operational patterns under the two scenarios. Under scenario 1,

15 MW are charged and discharged during hours 2 and 3,

respectively, whereas charging and discharging occur during

hours 1 and 2, respectively, under scenario 2. Expected prices,

loads, and generators’ profits are not impacted by energy

storage. However, generation cost decreases 30% (relative to

having no energy storage), meaning that there are productive-

efficiency gains that translate into energy-storage profit.

If we fix p̄chh = p̄dish = 0, ∀h ∈ H and restrict the energy

storage to self-scheduling only, it earns zero expected profit.

Energy storage earns zero expected profit because any revenue

that is earned under one scenario from a self schedule yields

an exact countervailing loss under the other scenario, which

is consistent with other analyses [17].

D. Case 4 : Self-Scheduled Deviation

This case assumes no generator-ramping constraints, two

equiprobable load scenarios, and p̄chh = p̄dish = 0, ∀h ∈ H .

The hourly scenario-1 and -2 loads are 170 MW, 200 MW, and

240 MW and 170 MW, 230 MW, and 140 MW, respectively.

We contrast cases in which (8)–(10) are enforced and relaxed

in the MO’s problem.

If the MO’s problem includes (8)–(10), energy storage

self-schedules 15 MW of charging during hour 1, which is

followed by 5 MW and 10 MW of discharging during hours 2
and 3, respectively. The hour-1 price is $50/MWh, the hour-

2 prices are $50/MWh and $300/MWh under scenarios 1
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and 2, respectively, and the hour-3 prices are $300/MWh

and $20/MWh under scenarios 1 and 2, respectively. It is

suboptimal for energy storage to increase hour-2 discharging,

as doing so would make generator 3 marginal under scenario 2
and reduce the hour-2 price to be equal to $50/MWh.

If (8)–(10) are relaxed in the MO’s problem, the energy stor-

age self-schedules 15 MW of charging and 10 MW of simulta-

neous discharging during hour 1, which is followed by 5 MW

and 15 MW of discharging during hours 2–3. The energy

storage deviates from the 10 MW of hour-1 discharging, which

yields a penalty. However, this self schedule is beneficial to the

energy storage because its 10 MW of scheduled discharging

suppresses the hour-1 price 60% relative to not self-scheduling

the discharging. Under each of scenarios 1 and 2 there is a 5-

MW discharging deviation during hours 2 and 3, respectively.

The timing of these deviations are scenario-dependent because

the deviation penalty is proportional to the energy price—the

hour-2 price and deviation penalty are lower than their hour-3
counterparts under scenario 1 and vice versa.

The profit loss that results from the deviation penalty during

hours 2–3 under one scenario is offset by a countervailing

profit increase under the other. Overall, expected energy-

storage profit increases 30% if (8)–(10) are relaxed relative

to if they are enforced. This increase in energy-storage profit

comes with an 8% decrease in expected generator profit and a

3% increase in expected consumer welfare. These calculations

do not account for possible changes in real-time prices that

may impact remuneration (e.g., when the MO must clear the

real-time imbalance market due to the dispatch deviations).

E. Case 5 : Price-Responsive Deviation

This case assumes no generator-ramping constraints and two

equiprobable load scenarios with 120-MW, 230-MW, and 200-

MW and 170-MW, 240-MW, and 120-MW hourly loads under

the two scenarios, respectively. Both with and without (8)–

(10) enforced in the MO’s problem, the energy storage charges

15 MW during hour 1 under both scenarios. Under scenario 1,

it discharges 5 MW and 10 MW during hours 2 and 3. Under

scenario 2, it discharges 15 MW during hour 2. Energy storage

does not discharge the full 15 MW during hour 2 under

scenario 1, because doing so would suppress the hour-2 price

by making generator 3 marginal.

Although energy-storage operations are identical with and

without (8)–(10) enforced, the offers and MO’s dispatch differ

between the two cases. Specifically, if (8)–(10) are relaxed,

the energy storage structures its offers so it is dispatched to

discharge 10 MW simultaneously (to the 15 MW charged)

during hour 1 under scenario 2. The energy storage deviates

from this 10 MW of discharging, incurring a penalty. How-

ever, its discharging dispatch prevents generator 3 from being

dispatched during hour 1 under scenario 2, which reduces the

hour-1/scenario-2 price from $25/MWh with (8)–(10) enforced

to $20/MWh with (8)–(10) relaxed.

Relaxing (8)–(10) increases expected energy-storage profits

by 3% relative to enforcing the constraints. This profit increase

comes with a 4% decrease in expected prices and generator

profits and a 2% increase in expected consumer welfare.

F. Case 6 : Ramping Constraints

This case assumes no uncertainty and enforces generator-

ramping constraints using the limits that are reported in

Table I. The hourly loads are 170 MW, 150 MW, and 194 MW

and generators 1 and 2, respectively, have 100-MW and 15-

MW initial production levels. If (8)–(10) are enforced in the

MO’s problem, it is optimal for energy storage to charge and

discharge 5 MW during hours 2 and 3, respectively. It is

suboptimal for the energy storage to shift more than 5 MW

between hours 2 and 3, because doing so would increase the

hour-2 price of charging energy.

Actual energy-storage operations are identical if (8)–(10)

are enforced or relaxed in the MO’s problem. However, with

the constraints relaxed, energy storage schedules 20 MW of

discharging during hour 2 simultaneously with the 5 MW

of charging. The energy storage deviates from the scheduled

discharging, for which it incurs a deviation penalty. This

scheduled discharging is beneficial to the energy storage

because it reduces the hour-2 dispatch of generator 2, which

forces the dispatch of generator 4 during hour 3 (due to all

of generators 1–3 having binding ramping constraints). The

resultant spike in the hour-4 price increases expected energy-

storage and generator profits by 1300% and 90%, respectively,

relative to if (8)–(10) are enforced in the MO’s problem.

Expected consumer welfare decreases by 29% if (8)–(10) are

relaxed, relative to a case in which they are enforced.

G. Case 7 : Uncertainty and Ramping Constraints

This case enforces generator-ramping constraints and as-

sumes load uncertainty with two equiprobable scenarios. The

hourly scenario-1 and -2 loads are 170 MW, 190 MW, and

230 MW and 170 MW, 240 MW, and 190 MW, respectively.

The generators have the same hour-0 generation levels as under

case 6. Both with and without (8)–(10) enforced in the MO’s

problem, the energy storage relies on price-responsive offers

for market participation. Self-scheduling only is suboptimal in

this case because any revenue that a self-schedule earns under

one scenario is offset by losses under the other scenario [17].

If (8)–(10) are enforced in the MO’s problem, optimal

energy-storage operations entail charging and discharging dur-

ing hours 2 and 3, respectively, under scenario 1. Although

the hour-2 load is greater than hour-1 load, the hour-2 price

is lower than the hour-1 price, due to the impact of a binding

generator-ramping constraint. Energy storage does not operate

under scenario 2 in this case, because the hourly energy

prices are $300/MWh, $300/MWh, and $20/MWh, respec-

tively, which does not yield a profitable operating profile.

If (8)–(10) are relaxed in the MO’s problem, scenario-1
energy-storage operations are identical to the case in which the

constraints are enforced. Scenario-2 operations differ with the

constraints relaxed. Specifically, energy storage is dispatched

to discharge 20 MW and charge 10 MW simultaneously during

hour 1 and to discharge 10 MW during hour 2. The simul-

taneous energy-storage discharging and charging reduces the

hour-1/scenario-2 price to be equal to $20/MW, which creates

a profit opportunity for the energy storage despite its paying a

deviation penalty for not discharging during hour 1. Relative
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to a case in which (8)–(10) are enforced, relaxing these

constraints increases expected energy-storage profit 78% and

decreases expected generators’ profits 19%. Generator-profit

losses stem from the hour-1/scenario-2 price decreasing 83%.

In addition, relaxing (8)–(10) reduces expected generation cost

14% and load-weighted energy prices 20%.

Restricting energy storage to using price-responsive offers

only has no impact on its operation or expected profit. How-

ever, if energy storage is restricted to self-scheduling only

and (8)–(10) are enforced, it earns zero expected profits. Re-

stricting energy storage to self-schedule only and relaxing (8)–

(10) reduces expected energy-storage profit 94% and increases

expected consumer welfare 13% relative to allowing price-

responsive offers with (8)–(10) relaxed.

V. CASE STUDY

This section summarizes the results of a case study, which

is based on year-2015 data for the wholesale electricity market

that operates in Alberta, Canada. The average, minimum, and

maximum year-2015 system loads are 9 162 MW, 7 203 MW,

and 11 229 MW, respectively. Following the model formu-

lations that are presented in Section II, we assume that

the market employs a single-bus model. This assumption is

consistent with the policy goal of the government of Alberta

to have a congestion-free electricity system.3 We assume that

Ē = 200, P̄ ch = P̄ dis = 40, β = 0.9, χch = χdis = 0,

and ρ = 0.5. The case study illustrates that the energy

storage is sufficiently large to impact market prices. Thus,

we perform a comparison to a perfectly competitive case,

wherein the operation of energy storage is optimized by the

MO based on its true operating costs and characteristics. We

construct three equiprobable load scenarios by using load data

that correspond to three consecutive days. Alberta’s electricity

system has about 200 generators, which are represented in our

case study using 14 archetypal generators [34]. Data regarding

the modeled generator fleet can be found in the work of

Nasrolahpour et al. [34]. The case study is implemented using

the computational platform that is used for the examples. The

case studies take between 16 s and 6 min. to solve.

Table II summarizes the breakdown of expected social

welfare that is engendered in cases with (8)–(10) enforced

or relaxed and with or without the energy storage being

restricted to self-scheduling only (as opposed to being able to

submit self schedules and price-responsive offers). Following

the results that are presented in Section IV, relaxing (8)–

(10) and relying only upon energy storage to manage its SOE

increases expected energy-storage profit by about 5% relative

to enforcing (8)–(10). Expected energy-storage profit increases

with (8)–(10) relaxed because the energy storage can schedule

charging or discharging that it does not deliver but which

change generator dispatch and prices. Although the energy

storage must pay for replacement energy and a 50% deviation

penalty, such a strategy is beneficial.

As is observed in cases 3–5 and 7 of our example, load

uncertainty implies that energy storage must rely upon price-

responsive offers so its operational profile can be adapted to

3cf. decision number 22942-D02-2019 of Alberta Utilities Commission.

TABLE II
BREAKDOWN OF EXPECTED SOCIAL WELFARE ENGENDERED IN CASE

STUDY WITH OPTIMIZED ENERGY-STORAGE OFFERS

Constraints Only Self Expected Welfare ($ thousand)
(8)–(10) Schedules Energy Storage Generator Consumer

Enforced No 3.366 17 060 39 880

Relaxed No 3.523 16 750 40 190

Enforced Yes 1.227 16 720 40 220

Relaxed Yes 1.227 16 720 40 220

individual scenarios. Indeed, restricting energy storage to using

price-responsive offers and not allowing it to self-schedule

yields solutions that are identical to those that are summarized

in the first two rows of Table II, which correspond to cases

in which the energy storage can use price-responsive offers

and self schedules. Expected energy-storage profit decreases

by 64% if energy storage is restricted to self-scheduling

only. This profit decrease stems from a self schedule that is

profitable under one scenario yielding a revenue loss under

another. If energy storage is restricted to self-scheduling only,

relaxing (8)–(10) do not yield profit increases.

Fig. 1 shows expected profit that is earned by energy stor-

age with different power capacities and market-participation

models. The five sets of bars on the left correspond to cases

in which energy storage is restricted to self-scheduling only

whereas the bars on the right remove this restriction. The

bottom of each stacked bar summarizes expected energy-

storage profit if (8)–(10) is enforced in the MO’s problem. The

top of each stacked bar shows incremental expected profit that

energy storage earns if these constraints are relaxed.

Fig. 1. Expected energy-storage profit in case study with different power
capacities and market-participation models.

Expected energy-storage profit is increasing in energy-

storage capacity and restricting energy storage to be able to

self-schedule only yields significant profit losses compared to

its using price-responsive offers. Enforcing or relaxing (8)–

(10) has no impact on energy-storage profit if energy storage

is restricted to self-scheduling only. There is no profit impact

in this case because with self schedules only, there is limited
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opportunity for energy storage to manipulate prices through

infeasible offers.
Finally, we compare the results that are summarized in

Table II to two additional cases, which are summarized in

Table III. The first case that is summarized in Table III assumes

that energy storage behaves perfectly competitively. Under

such an assumption, energy storage offers the amounts of

charging and discharging of which it is physically capable

into the market at cost. The second case that is summarized in

the table assumes no energy storage, meaning that the market

clears load against generation resources only.

TABLE III
BREAKDOWN OF EXPECTED SOCIAL WELFARE ENGENDERED IN CASE

STUDY WITH PERFECTLY COMPETITIVE AND NO ENERGY STORAGE

Expected Welfare ($ thousand)
Case Energy Storage Generator Consumer

Perfectly Competitive 0.857 4 862 52 089

No storage n/a 4 896 52 052

Contrasting the first case in Table III to the cases that are

summarized in Table II shows that except for a case in which

the MO does not enforce (8)–(10) and the energy storage is not

restricted to self scheduling only, strategic behavior by energy

storage has limited effects on social welfare. Conversely, the

second case that is summarized in Table II yields close to 18%

social-welfare losses compared to the perfectly competitive

case. Thus, (relative to perfect competition) the price manip-

ulation that is possible if (8)–(10) are relaxed allows energy

storage to increase its profit by about $3 000, but at a nearly

$10 million consumer-welfare loss. This finding suggests that

the price manipulations that are possible if (8)–(10) are relaxed

can be detrimental to consumers.
The final case in Table III shows that (relative to perfect

competition) social-welfare losses without energy storage are

on-par with social welfare losses under the first and last two

cases that are summarized in Table II. Thus, our results should

be cautionary for market designers and policymakers. Energy-

storage development should be encouraged so long as sound

designs for integrating energy storage into wholesale markets

are employed [35]–[38].

VI. CONCLUSION

This paper adds to the literature that examines the integra-

tion of energy storage into electricity markets. Unlike much of

the literature, we relax the price-taking assumption and focus

on strategic behavior by energy storage that can influence

prices. We use our modeling framework to examine the trade-

offs that are inherent in how energy storage participates in the

market. We demonstrate that it is suboptimal to have energy

storage self-schedule only if there is uncertainty, because

its operational profile cannot be tailored to real-time system

conditions. This finding is consistent with other analyses [17]

and important, as there are cases in which MOs or regulators

object to MOs controlling the dispatch of energy storage [39].
We show that relying on energy storage to manage its

SOE can result in infeasible dispatch schedules that are prof-

itable to the energy storage. This profitability arises from the

price impacts of energy-storage operations and the examples

in Section IV demonstrate the underlying mechanisms. An

infeasible schedule can yield lower-price charging energy

or higher-price discharging energy. Generator-ramping con-

straints exacerbate energy storage’s incentives to manipulate

energy prices in this manner. This finding regarding ramping

constraints is consistent with other analyses that demonstrate

profitable manipulation of ramping constraints [40]. The prof-

itable infeasible energy-storage dispatch schedules that we find

are reminiscent of market participants exploiting congestion-

management schemes profitably [41]. Thus, market designers

and policymakers should pay attention to the incentive prop-

erties of market designs, insomuch as they may mitigate or

exacerbate these perverse incentives. Our modeling approach

can be used to this end. Our results show that the impact

of infeasible dispatch schedules on other market participants

varies. Depending on whether energy storage manipulates

the cost of charging or discharging energy, generators and

consumers may benefit or lose relative to enforcing (8)–(10).

FERC Order 841 provides flexibility in how markets are

designed, structured, and reformed to allow the participation of

energy-storage resources. This includes flexibility surrounding

the structure of offers into the market and SOE management.

Our work shows that restricting energy storage to self schedul-

ing is suboptimal for an owner to maximize potential energy-

storage value. Contemporaneously, we find that relying upon

owners to manage energy-storage SOE can result in price

manipulation through infeasible schedules. The breakdown to

generators and consumers of the resultant welfare effects of

these price manipulations depends on whether the price of

charging or discharging energy is manipulated. However, our

case study that is based on real-world data shows a pronounced

impact on consumers. Therefore, as markets are reformed in

response to FERC Order 841 (or similar market reforms are

undertaken in other jurisdictions), policymakers and market

designers should be cognizant of the need to mitigate such

perverse market outcomes.

Other areas for future research including examining the

provision of other market services, e.g., ancillary services and

capacity. In addition, the literature proposes other market-

participation models for energy storage [26], which could be

examined using our modeling framework. Another area of

study is to examine strategic behavior by multiple energy-

storage firms, energy storage and generators, or other mixes

of strategic market participants.
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