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Market Equilibria with Energy Storage as Flexibility Resources

Weiying Gu and Ramteen Sioshansi, Fellow, IEEE

Uncertain and variable real-time availability of renewable generation can increase the need for supply-side flexibility in power
systems. Energy storage is a potential source of such flexibility. This paper examines the participation of multiple competing strategic
profit-maximizing energy storage in a spot electricity market and its impact on consumers, producers, and market equilibria. To
this end, we develop a two-stage stochastic bi-level model that has each energy-storage firm determine its market offers at the upper
level to maximize its expected profit. The lower level represents market clearing under scenarios with different flexibility needs. We
recast the bi-level model as a single-level optimization. A small illustrative example and larger case study show that energy storage
can increase market efficiency and reduce renewable-energy curtailment. We show that energy-storage firms neglecting uncertainty
in optimizing their market offers can yield profit losses.

Index Terms—Energy storage, power-system economics, power-system markets, power-system operations

NOMENCLATURE

Indices and Sets

b index of demand, generator, and energy-storage

blocks from set, B
p index of firms from set, P
t index of hours from set, T
x index of generators and energy storage from set, X
∆S

p set of energy storage that are owned by firm p
ω index of scenarios from set, Ω

Parameters

D̄ω,t,b hour-t quantity of demand block b under scenario ω
(MW)

Ex,0 hour-0 state of energy (SOE) of energy storage x
(MWh)

Ēω,x energy-carrying capacity of energy storage x under

scenario ω (MWh)

Gx,0,b hour-0 dispatch of block b of generator x (MW)

Ḡω,x,t,b hour-t available capacity from block b of genera-

tor x under scenario ω (MW)

OG
x,t,b hour-t offer price for block b of generator x into

day-ahead market ($/MWh)

OG,−
x,t,b hour-t decremental offer price for block b of gen-

erator x into real-time market ($/MWh)

OG,+
x,t,b hour-t incremental offer price for block b of gener-

ator x into real-time market ($/MWh)

RD
x ramp-down limit of generator x (MW/h)

RU
x ramp-up limit of generator x (MW/h)

S̄C
ω,x,b capacity of charging block b of energy storage x

under scenario ω (MW)

S̄H
ω,x,b capacity of discharging block b of energy storage x

under scenario ω (MW)

Uω,t,b hour-t utility of demand block b under scenario ω
($/MW)
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ηx round-trip efficiency of energy storage x (p.u.)

πω probability of scenario ω occurring

Decision Variables

Dω,t,b hour-t quantity of demand block b that is satisfied

under scenario ω (MW)

Eω,x,t ending hour-t SOE of energy storage x under sce-

nario ω (MWh)

Gx,t,b hour-t day-ahead dispatch of block b of generator x
(MW)

G−
ω,x,t,b hour-t decremental real-time dispatch of block b of

generator x under scenario ω (MW)

G+

ω,x,t,b hour-t incremental real-time dispatch of block b of

generator x under scenario ω (MW)

OC
x,t,b hour-t offer price for charging block b of energy

storage x ($/MWh)

OH
x,t,b hour-t offer price for discharging block b of energy

storage x ($/MWh)

SC
ω,x,t,b hour-t dispatch of charging block b of energy-

storage x under scenario ω (MW)

SH
ω,x,t,b hour-t dispatch of discharging block b of energy-

storage x under scenario ω (MW)

I. INTRODUCTION

VARIABLE and uncertain real-time availability of renew-

able energy can increase the need for operational flexibil-

ity of power systems, which can be provided by energy storage

[1]–[4]. Denholm et al. [5] outline the role of energy storage

in power systems with high renewable-energy penetrations.

Evans et al. [6] assess the suitability of different energy-

storage technologies for these roles.

There are different approaches to assessing the renewable-

integration benefits of energy storage vis-à-vis operational

flexibility [7]. One approach takes the perspective of a central

planner to determine flexibility and energy-storage needs to

achieve high renewable-energy penetrations. Such an analy-

sis can use statistical- [8] or optimization-based approaches

[9]–[12] that capture varying levels of technical detail [13].

Bruninx et al. [14] propose a framework for a central planner

or market operator (MO) to dispatch flexible resources.

Another approach examines these synergies from the per-

spective of the private owner of a generator, energy storage,
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or a hybrid (e.g., of energy storage and generation) resource

[15]–[23]. These works assume that the private firm is a price-

taker (i.e., its does not account for the effect of its decisions on

prices) and optimizes the operation of its assets to maximize

profit or another objective.

Martinek et al. [24] compare these two approaches and

find that they give similar operating profiles. This finding is

expected, because central planning and self-interested behavior

are equivalent in a perfectly competitive market [25], [26].

Thus, a natural question, which we examine in this paper, is

how energy storage participates in a market vis-à-vis the provi-

sion of flexibility services absent the price-taking assumption.

There are few works that analyze energy storage without

the price-taking assumption, i.e., assume price-making en-

ergy storage. This paucity stems from difficulty computing

market equilibria that involve energy storage—tracking the

state of energy (SOE) of energy storage couples operating

periods. Stylized models [27] or heuristics [28] can simplify

equilibrium computation. Complementarity models are another

approach to studying price-making energy storage [29]–[34].

This includes bi-level complementarity models, whereby the

problem is formulated as a mathematical program with equi-

librium constraints [29], [30], [32], [34].

We know of three works [31], [33], [35] that model price-

making energy storage with a focus on operational flexibility.

Our contribution is to address some limitations of these works.

All of these works model a single-stage deterministic spot

energy market. Thus, they model energy storage competing

against ramp-constrained generation to provide energy. Our

work assumes a stochastic two-stage spot market to consider

uncertain demand and generation (e.g., from wind resources).

The MO clears a day-ahead market against expected system

conditions. The day-ahead market is followed by a real-time

imbalance market that clears against actual system conditions.

Our model structure allows us to examine, in detail, how

energy storage behaves in a market based on operational-

flexibility needs.

Thus, the key contribution of our paper relative to other

complementarity models of price-making energy storage [29]–

[34] is that we consider uncertainty explicitly. Structurally,

uncertainty impacts both sides of the market. The MO must

clear the market day ahead anticipating that it may have to

take costly real-time decisions to redeploy demand or supply.

Contemporaneously, energy storage must structure its offers

not knowing with certainty demands or the supply offers of

its rivals. Our model allows us to understand how uncertainty

impacts both sides of the market.

The remainder of this paper is organized as follows. Sec-

tion II provides our model formulations and describes the

characteristics of market equilibria. The appendix details our

equilibrium-computation method. Section III provides data and

computational results for an illustrative example. Section IV

does the same for a larger case study. Our example and

case study show that adding energy storage can be welfare-

enhancing, but that welfare gains can be lost if energy-storage

owners behave strategically. We demonstrate also that energy-

storage owners neglecting uncertainty can be deleterious to

them. Section V concludes.

II. MODEL FORMULATIONS

There is a set, P , of strategic energy-storage firms that

determine offers, which is followed by the MO clearing a

two-stage stochastic spot market. The market proceeds by

having firms submit offers into the market before uncertain

demand and supply conditions are realized. Market clearing

consists of a two-step process. First, the MO determines

hourly day-ahead dispatch of the generators without knowing

actual real-time supply and demand. Then, after supply and

demand uncertainty are realized, the MO determines hourly

real-time incremental and decremental dispatch of the gener-

ators, as well as energy-storage dispatch and demand served.

Hourly real-time prices are determined from this real-time

market-clearing process. We allow different costs for day-

ahead and real-time generator dispatch, which could arise

from mechanical strains of generator ramping [36] or real-time

fuel-supply adjustments [37]. Our model employs a bi-level

structure, because the dispatch decisions and prices depend

upon the supply offers, which are optimized in the upper level.

Stochasticity in the model can include uncertainty around

demand and rival firms’ supply.

A. Lower-Level Model

The MO’s two-stage spot-market model is formulated as:

min
∑

ω∈Ω,t∈T,b∈B

πω ·

[

∑

x∈X

(

OG
x,t,bGx,t,b +OG,−

x,t,bG
−
ω,x,t,b

+OG,+
x,t,bG

+

ω,x,t,b −OC
x,t,bS

C
ω,x,t,b +OH

x,t,bS
H
ω,x,t,b

)

− Uω,t,bDω,t,b

]

(1)

∑

x∈X,b∈B

(

Gx,t,b +G+
ω,x,t,b −G−

ω,x,t,b − SC
ω,x,t,b

+ SH
ω,x,t,b

)

=
∑

b∈B

Dω,t,b;

∀ω ∈ Ω, t ∈ T (ψω,t) (2)

0 ≤ Dω,t,b ≤ D̄ω,t,b;

∀ω ∈ Ω, t ∈ T, b ∈ B (θD,−
ω,t,b, θ

D,+
ω,t,b) (3)

0 ≤ Gx,t,b −G−
ω,x,t,b +G+

ω,x,t,b ≤ Ḡω,x,t,b; ∀ω ∈ Ω,

t ∈ T, x ∈ X, b ∈ B (θ
G,

∑
,−

ω,t,x,b , θ
G,

∑
,+

ω,t,x,b ) (4)

0 ≤ G−
ω,x,t,b;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (θG,−
ω,t,x,b) (5)

0 ≤ G+
ω,x,t,b;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (θG,+
ω,t,x,b) (6)

−RD
x ≤

∑

b∈B

(Gx,t,b −Gx,t−1,b) ≤ RU
x ; ∀t ∈ T, x ∈ X

(θR,−
t,x , θR,+

t,x ) (7)

−RD
x ≤

∑

b∈B

(

Gx,t,b −G−
ω,x,t,b +G+

ω,x,t,b −Gx,t−1,b

+G−
ω,x,t−1,b −G+

ω,x,t−1,b

)

≤ RU
x ; ∀ω ∈ Ω, t ∈ T,
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x ∈ X (θ
R,

∑
,−

ω,t,x , θ
R,

∑
,+

ω,t,x ) (8)

0 ≤ SC
ω,x,t,b ≤ S̄C

ω,x,b; ∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B

(θC,−
ω,t,x,b, θ

C,+
ω,t,x,b) (9)

0 ≤ SH
ω,x,t,b ≤ S̄H

ω,x,b; ∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B

(θH,−
ω,t,x,b, θ

H,+
ω,t,x,b) (10)

0 ≤ Eω,x,t ≤ Ēω,x;

∀ω ∈ Ω, t ∈ T, x ∈ X (θE,−
ω,t,x, θ

E,+
ω,t,x) (11)

Eω,x,t = Eω,x,t−1 +
∑

b∈B

(

ηxS
C
ω,x,t,b − SH

ω,x,t,b

)

;

∀ω ∈ Ω, t ∈ T, x ∈ X (θEω,t,x) (12)

Ex,0 = Eω,x,|T |; ∀ω ∈ Ω, x ∈ X (θE,0
ω,x ); (13)

where the dual variable that is associated with each constraint

is in parentheses to its right. The decision variables of (1)–

(13) are Dω,t,b, ∀ω ∈ Ω, t ∈ T, b ∈ B; Eω,x,t, ∀ω ∈ Ω, x ∈
X, t ∈ T ; Gx,t,b, ∀x ∈ X, t ∈ T, b ∈ B; and G−

ω,x,t,b, G
+
ω,x,t,b,

SC
ω,x,t,b, and SH

ω,x,t,b, ∀ω ∈ Ω, x ∈ X, t ∈ T, b ∈ B.

Objective function (1), which is expressed in minimization

form, maximizes expected social welfare and contains six

terms. The first is the cost of day-ahead generator dispatch

and the following two terms give the added expected cost

from incremental and decremental real-time adjustments to the

day-ahead dispatch. The next two terms give the expected cost

of dispatching the energy storage. These terms depend upon

the supply offers, OC
x,t,b and OH

x,t,b, ∀p ∈ P, x ∈ ∆S
p , t ∈

T, b ∈ B, which are determined in the upper-level problem

and provide a linkage between the two model levels. The final

term in (1) is the expected utility from serving load.

Constraint set (2) ensures hourly load balance under each

scenario. Constraint set (3) limits the satisfied quantity of

each demand block to be no greater than the volume of de-

mand. Constraint set (4) imposes generator-production limits,

accounting for day-ahead and real-time dispatch. Time-variant

generator capacities capture supply uncertainty. Constraint

sets (5)–(6) ensure non-negative decremental and incremental

dispatch, respectively. Constraint sets (7)–(8) enforce, respec-

tively, day-ahead and real-time generator ramping limits.

The MO’s model excludes unit-commitment decisions,

which some but not all markets consider [38]. Our neglecting

unit commitment is a very standard assumption in the exist-

ing literature that uses complementarity techniques to model

market equilibria [31], [33], [35], [39]–[43]. This assumption

is taken because modeling multi-level problems with binary

variables in the lower level is computationally challenging

[44], [45].

Constraint sets (9)–(11) are, respectively, energy-storage-

charging, -discharging, and -SOE limits. Constraint set (12)

gives the evolution of energy-storage SOE. We model only en-

ergy losses on energy-storage charging, but could include en-

ergy losses on energy-storage discharging or a self-discharging

rate. Constraint set (13) requires the same ending and begin-

ning SOEs, which is a heuristic approach to avoid myopic

energy-storage operations [46].

Some models include binary variables to prevent simultane-

ous energy-storage charging and discharging [7]. The necessity

of such variables depends upon model structure. If the model

can create conditions whereby ‘wasting energy’ is beneficial

(e.g., negative prices or oversupply conditions), such variables

may be needed [47]. Otherwise, simultaneous charging and

discharging is suboptimal, because of the cost of cycling

energy through energy storage, cf. the fourth and fifth terms

in (1), and associated energy losses, cf. (12). Indeed, neither

our example nor our case study yields results wherein energy

storage is charged and discharged simultaneously. Given this

property of simultaneous energy-storage charging and dis-

charging, there are many works in the literature that exclude

binary variables to prevent it [31], [33], [35], [42], [48]–[54].

B. Upper-Level Problems

Each firm, p ∈ P , solves the problem:

min
∑

ω∈Ω,t∈T,x∈∆S
p ,b∈B

πωψω,t ·
(

SC
ω,x,t,b − SH

ω,x,t,b

)

(14)

s.t. OC
x,t,b ≥ OC

x,t,b−1;

∀t ∈ T, x ∈ ∆S
p , b ∈ B (δCp,t,x,b) (15)

OH
x,t,b ≥ OH

x,t,b−1;

∀t ∈ T, x ∈ ∆S
p , b ∈ B (δHp,t,x,b) (16)

(1)–(13); (17)

where Lagrange multipliers that are associated with (15)–(16)

are in parentheses to their right. The decision variables of (14)–

(17) are the variables of (1)–(13) and OC
x,t,b and OH

x,t,b, ∀x ∈

∆S
p , t ∈ T, b ∈ B.

Objective function (14), which is given in minimization

form, maximizes firm p’s expected profit. We assume that

∀ω ∈ Ω, t ∈ T , ψω,t is the scenario-ω/hour-t energy price.

These prices and energy-storage dispatch are determined in the

MO’s lower-level model, which links the models further. This

is why (17) embeds the lower-level spot-market model into

firm p’s upper-level problem. Constraint sets (15)–(16) ensure

monotone offers, which is a common market requirement.

C. Model Structure and Nash Equilibrium

The MO’s model is embedded as the lower level of each

firm’s problem. The model is embedded in this manner,

because the MO’s model determines dispatch and prices, based

on the upper-level offer decisions, which yields an interdepen-

dency between the upper- and lower-level models. The overall

goal of our model is to compute a Nash equilibrium. A Nash

equilibrium has the property that each firm, p ∈ P , determines

optimal offers, OC
x,t,b and OH

x,t,b, ∀x ∈ ∆S
p , t ∈ T, b ∈ B,

given the offers of its rival firms. The appendix details the

approach that we take to compute such equilibria.

III. EXAMPLE

A. Example Data

We begin illustrating our model with an eight-hour example

with three equiprobable scenarios, three conventional and one

wind generators, and three firms, each of which owns one

energy storage. Eight hours is adequate for our purposes, as
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we need a sufficient number of operating periods for energy

storage to cycle energy. Tables I–II summarize scenario-

invariant data for the conventional units, each of which has a

10-MW starting output level. Adjusting the real-time output

of units 1 and 3 incurs $55/MWh and $60/MWh costs,

respectively. Unit 2 has the same offers for day-ahead and

real-time dispatch. Table III summarizes data for each energy

storage, each of which has a 2-MWh starting SOE and an

85% round-trip efficiency. Fig. 1 summarizes hourly wind

availability and demand for each scenario. Wind production

is costless. Each hour’s demand is divided into two blocks,

the second of which is 30 MW greater than the first, with

marginal utilities of $60/MWh and $55/MWh, respectively.

TABLE I
CONVENTIONAL-GENERATOR-CONSTRAINT PARAMETERS FOR EXAMPLE

x

1 2 3

Ḡω,x,t,1 25 25 20

Ḡω,x,t,2 30 30 25

RD
x = RU

x 10 15 10

TABLE II
CONVENTIONAL-GENERATOR OFFERS FOR EXAMPLE

x = 1 x = 2 x = 3

t b = 1 b = 2 b = 1 b = 2 b = 1 b = 2

1 20 21 27 28 23 25

2 18 19 25 27 22 23

3 17 18 24 26 20 21

4 18 19 25 27 21 22

5 19 20 26 28 23 26

6 20 21 27 29 24 27

7 19 21 26 27 22 26

8 18 20 25 26 20 23

TABLE III
ENERGY-STORAGE DATA FOR EXAMPLE

p

1 2 3

Ēω,x 8 20 8

S̄C
ω,x,b

= S̄H
ω,x,b

6 20 6

We analyze equilibria in eight cases with and without wind,

with and without energy storage that behaves as a price-

taker or -maker, and with or relaxed ramping limits. Price-

taking energy storage assumes that OC
x,t,b = OH

x,t,b = 0,

∀x ∈ ∆S
p , t ∈ T, b ∈ B and (1)–(13) is solved to determine a

market outcome. Price-making energy storage is modeled as is

outlined in the appendix. Relaxed ramping limits are modeled

by relaxing (7)–(8) and adjusting the subsequent derivations.

We consider another four cases, which are modeled using a

two-step process, with price-making firms that neglect uncer-

tainty. First, the technique that is outlined in the appendix is

Fig. 1. Hourly wind available and maximum demand under each scenario for
example.

applied assuming a single scenario with demand and available

generation equal to their expected values, which are:
∑

ω∈Ω

πωD̄ω,t,b; ∀t ∈ T, b ∈ B; (18)

and:
∑

ω∈Ω

πωḠω,x,t,b; ∀x ∈ X, t ∈ T, b ∈ B; (19)

respectively. This step optimizes values of OC
x,t,b, O

H
x,t,b, and

Gx,t,b, ∀x ∈ X, t ∈ T, b ∈ B with uncertainty ignored. These

values are fixed according to the solution from the first step

and the technique that is outlined in the appendix is used with

uncertainty represented to model system dispatch.

All four of these cases include wind and strategic energy

storage and have or relax ramping limits. Two of the cases use

the same scenarios that are summarized in Fig. 1. The other

cases use scenarios that are more similar to one another but

have the same expected values as are shown in Fig. 1. Specif-

ically, one scenario has demands and available generation set

equal to the values that are given by (18)–(19). The other

scenarios set these values to be 1% higher and 1% lower than

the values that are given by (18)–(19). Contrasting these cases

shows the impact of uncertainty on equilibrium behavior.

The example, which has up to 33 157 variables, up to 14 533
of which are binary, and 40 573 equations, is modeled and

solved with GAMS v. 33 and Gurobi, using default settings.

Finding a candidate equilibrium takes up to 18 minutes. Veri-

fying that a candidate is an equilibrium takes up to 12 minutes.

B. Example Results

Table IV summarizes metrics for the equilibria for the eight

cases that capture uncertainty in determining offers. The cases

with neither wind nor energy storage yield the lowest expected

social welfare. Case 2 yields 8% higher expected generator,

consumer, and social welfare compared to Case 1, because re-

laxed ramping constraints allow more energy consumption and

production. Relaxed ramping constraints have similar impacts
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in the presence of wind or energy storage—expected demand

served and expected conventional-generator, consumer, and

social welfare increase.

Contrasting Cases 3–4 to 1–2 shows that wind generation in-

creases significantly expected satisfied demand and consumer

and social welfare. Wind increases total producer welfare,

at a loss to conventional generators, because costless wind

generation displaces units 1–3. Relaxing ramping constraints

increases conventional-generator production to serve more

demand, which translates into higher profits from Case 3
to 4. Wind production increases from Case 3 to 4—1.3%

of available wind is curtailed in Case 3 as opposed to no

curtailment in the remaining seven cases. Wind-generator

profit decreases from Case 3 to 4 because relaxing the ramping

constraints suppresses energy prices [55].

Price-taking energy storage under Cases 5–6, which is akin

to having energy storage centrally operated or in a perfectly

competitive market, yields higher expected producer and social

welfare but lower consumer welfare compared to Cases 3–4.

These welfare impacts stem from price and quantity effects

of energy storage. Energy storage suppresses and increases

on- and off-peak energy prices, which increases and decreases

on- and off-peak consumption. Energy storage increases the

load-weighted-average energy price and energy consumption

by 8.58% and 0.90%, respectively, from Case 3 to 5. These

increases are 2.93% and 0.98%, respectively, from Case 4 to 6.

Consumer welfare is increasing in consumption but decreasing

in prices and the price effect outweighs the quantity impact.

Generators benefit from energy storage because they sell more

energy at a higher average price.

Cases 7–8 show that price-making energy storage see total

expected profit increase by 81% and 59%, respectively, relative

to Cases 5–6. The equilibria for Cases 7–8 are asymmetric

between firms 1 and 3, which are identical. There may be other

equilibria that yield different profit distributions between the

three firms.

Relative to Cases 5–6, increased expected energy-storage

profits under Cases 7–8 yield higher expected consumer wel-

fare, lower expected generator welfare, and lower expected

social welfare. The consumer- and generator-welfare changes

are keeping with other analyses [27], [56]–[58]. Energy storage

tends to be charged and discharged during low- and high-load

periods, respectively, which has price and quantity impacts

on producers and consumers. This energy-storage use tends

to increase and decrease energy prices during low- and high-

load periods, respectively, due to merit-order effects. Typically,

these price changes yield a consumer-welfare gain because

the price decrease during the high-load period applies to a

larger quantity of consumption than that to which the price

increase applies. Generators produce more at a higher price

during low-load periods. However, this positive profit impact

is outweighed typically by decreased production and prices

during high-load periods. These combined welfare changes

can yield social-welfare decreases between price-taking and

-making cases, as happens between Cases 5–6 and 7–8.

Fig. 2 summarizes price variability among the eight cases

by showing probability-weighted standard deviations (across

the three scenarios) of hourly energy prices in each case. For

a given case, the scenario-ω standard deviation of the hourly

energy prices, σω , is:

σω =

√

∑

t∈T

(

ψω,t − ψ̄ω

)2
/|T |; ∀ω ∈ Ω;

where:

ψ̄ω =
∑

t∈T

ψω,t/|T |; ∀ω ∈ Ω.

The values that are reported in Fig. 2 are:
∑

ω∈Ω

πωσω .

Fig. 2. Probability-weighted standard deviations (across the three scenarios)
of hourly energy prices in each case for example with uncertainty captured
in determining offers.

The figure shows four price-dispersion properties among

the eight cases. First, ramping constraints increase price vari-

ability, which is keeping with other analyses [55]. Second,

wind generation increases price variability relative to a no-

wind case. Price variability increases because wind uncer-

tainty requires real-time dispatch adjustments to maintain

supply/demand balance. Third, price-taking or -making energy

storage reduces price variability, as there is less need for real-

time adjustments to conventional-generator output. Fourth,

price variability is higher with price-making as opposed to

-taking energy storage. This effect is due to strategic energy

storage structuring its offers to maintain larger hourly price

differences, which increases energy-storage profit.

Table V summarizes key metrics for the final four cases with

price-making energy storage that neglects uncertainty in deter-

mining offers. Expected energy-storage profits are negative in

Cases 9–10, because energy-storage offers neglect the signif-

icant price and revenue variability under the three scenarios.

Conversely, expected energy-storage profits are positive under

Cases 11–12, because the scenarios are sufficiently similar that

neglecting uncertainty has muted impacts on firms’ profits.

Expected energy-storage profits are lower under Cases 11–12
relative to Cases 7–8 because there is less price variability

under the former pair of cases.
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TABLE IV
SUMMARY OF RESULTS FOR EXAMPLE WITH UNCERTAINTY CAPTURED IN DETERMINING OFFERS

Case Expected Welfare ($)

Energy Expected Demand Conventional Wind
# Wind Storage Ramping Served (%) Generators Generators Firm 1 Firm 2 Firm 3 Consumers Social

1 No No Yes 48.5 25 745 n/a n/a n/a n/a 24 939 50 684

2 No No No 52.2 27 702 n/a n/a n/a n/a 26 879 54 581

3 Yes No Yes 88.2 19 392 15 322 n/a n/a n/a 75 508 110 222

4 Yes No No 91.5 20 556 15 012 n/a n/a n/a 78 326 113 894

5 Yes Price-taker Yes 89.0 21 169 17 053 95 204 95 72 520 111 137

6 Yes Price-taker No 92.4 21 235 15 516 78 192 78 77 359 114 458

7 Yes Strategic Yes 88.7 20 398 16 243 69 437 206 73 109 110 462

8 Yes Strategic No 92.4 20 811 15 034 125 309 115 77 927 114 321

TABLE V
SUMMARY OF RESULTS FOR EXAMPLE WITHOUT UNCERTAINTY CAPTURED IN DETERMINING OFFERS

Case Expected Welfare ($)

Expected Demand Conventional Wind
# Scenarios Ramping Served (%) Generators Generators Firm 1 Firm 2 Firm 3 Consumers Social

9 Different Yes 86.0 67 775 56 122 −396 −3 453 −981 13 882 111 674

10 Different No 90.0 71 787 54 618 −352 −3 512 −968 16 791 115 278

11 Similar Yes 90.0 68 421 56 879 127 51 107 12 574 111 566

12 Similar No 93.4 74 129 56 879 51 140 197 12 574 115 212

Expected social welfare is similar between Cases 7–12,

however generators and consumers see expected welfare gains

and losses, respectively, under Cases 9–12 relative to Cases 7–

8. These differences in the distributions of expected welfare

are due to strategic energy storage optimizing offers against

expected demand and supply conditions, which yield higher

energy prices overall. Case 10 results in 2.08% of available

wind energy being curtailed, which yields lower expected

wind-generator profits compared to Cases 9 and 11–12, which

see no wind curtailment.

IV. CASE STUDY

A. Case-Study Data

We summarize data for a 24-hour case study with two

equiprobable scenarios, two conventional generators, one wind

unit, and two firms, each of which owns one energy stor-

age. Tables VI–VII summarize scenario-invariant data for the

conventional generators, each of which has a 30-MW starting

output level. Adjusting the real-time output of unit 1 incurs

a $55/MWh cost. Unit 2 has the same offers for day-ahead

and real-time dispatch (cf. Table VII). Table VIII summarizes

data for each firm’s energy storage, each of which has a 10-

MWh starting SOE and an 85% round-trip efficiency. Fig. 3

summarizes hourly wind availability and demand for each of

the two scenarios. Wind production is costless. The marginal

utilities of demand for each scenario are $60/MWh.

We analyze equilibria for our case study in the same cases

that are summarized in Tables IV and V. The case study, which

has up to 19 549 variables, of which up to 8 496 are binary,

and 23 917 equations, is modeled using the same software that

is used for the example. Finding a candidate equilibrium takes

up to 31 minutes. Verifying that a candidate is an equilibrium

takes up to five minutes.

TABLE VI
CONVENTIONAL-GENERATOR-CONSTRAINT PARAMETERS FOR CASE

STUDY

x

1 2

Ḡω,x,t,b 60 60

RD
x = RU

x 20 30

TABLE VII
CONVENTIONAL-GENERATOR OFFERS FOR CASE STUDY

x x x

t 1 2 t 1 2 t 1 2

1 20 27 9 20 27 17 20 27

2 18 25 10 18 25 18 18 25

3 17 24 11 17 24 19 17 24

4 18 25 12 18 25 20 18 25

5 19 26 13 19 26 21 19 26

6 20 27 14 20 27 22 20 27

7 19 26 15 19 26 23 19 26

8 18 25 16 18 25 24 18 25

B. Case-Study Results

Table IX summarizes metrics for the equilibria that we

find in the eight cases that capture uncertainty in determining

offers. The changes in social welfare and energy-storage profit

between the cases are keeping with the results from our exam-

ple that are summarized in Section III-B. Specifically, relaxed

ramping constraints yield higher expected social welfare and

lower energy-storage profit. Strategic energy storage earns

higher profit than price-taking energy storage does.

One key difference between the example and case study
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TABLE IX
SUMMARY OF RESULTS FOR CASE STUDY WITH UNCERTAINTY CAPTURED IN DETERMINING OFFERS

Case Expected Welfare ($)

Energy Expected Demand Conventional Wind
# Wind Storage Ramping Served (%) Generators Generators Firm 1 Firm 2 Consumers Social

1 No No Yes 87.3 73 230 n/a n/a n/a 34 910 108 140

2 No No No 87.6 73 530 n/a n/a n/a 35 010 108 540

3 Yes No Yes 99.3 35 103 12 897 n/a n/a 96 554 144 554

4 Yes No No 99.3 35 996 13 475 n/a n/a 95 259 144 729

5 Yes Price-taker Yes 100.0 31 445 11905 0 0 101 937 145 287

6 Yes Price-taker No 100.0 31 573 11 988 0 0 101 810 145 372

7 Yes Strategic Yes 100.0 35 457 12 897 244 489 95 468 144 554

8 Yes Strategic No 100.0 36 394 13 475 194 449 94 244 144 756

TABLE VIII
ENERGY-STORAGE DATA FOR CASE STUDY

p

1 2

Ēω,x 20 30

S̄C
ω,x,b

= S̄H
ω,x,b

10 20

Fig. 3. Hourly wind available and maximum demand under each scenario for
case study.

is that in the latter, price-taking energy storage yields higher

expected producer and consumer welfare but lower expected

conventional and wind-generator welfare compared to a case

without energy storage. These welfare changes in the case

study are due to price-taking energy storage decreasing the

load-weighted-average energy price by 12.6% and 9.9%, re-

spectively, between Cases 3 to 5 and Cases 4 to 6 while

increasing conventional generation slightly. Although gener-

ator welfare is increasing in production, the price impact of

energy storage outweighs this impact, which yields an overall

profit decrease. Conversely, consumers benefit from decreased

prices, which yields the expected consumer-welfare increase

with price-taking energy storage. Another key difference be-

tween the example and case study is that in the latter strategic

energy storage yields expected consumer-welfare losses rela-

tive to price-taking energy storage. This welfare effect is due to

strategic energy storage structuring its offers to maintain larger

hourly price differences, which increases the load-weighted-

average energy price by 11.0% and 8.9%, respectively, from

Case 5 to 7 and from Case 6 to 8.

Fig. 4 summarizes price variability among the eight cases

by showing probability-weighted standard deviations of hourly

energy prices in each case. The figure shows that wind, energy

storage, and ramping constraints have similar impacts on price

variability in the case study as they do in the example.

Fig. 4. Probability-weighted standard deviations (across the three scenarios)
of hourly energy prices in each case for case study with uncertainty captured
in determining offers.

Table X summarizes key metrics for the final four cases,

with price-making energy storage that neglects uncertainty in

determining offers. As is summarized in Table V, expected

energy-storage profits are negative in Cases 9–10, in which

the scenarios are very different from one another. Expected

energy-storage profits are positive in Case 11–12 but lower

than profits that are earned in Cases 7–8.

V. CONCLUSIONS

This paper presents a framework to analyze the role of

energy storage in integrating renewable energy into power

systems vis-à-vis operational flexibility. Our focus is on the

impact of strategic energy-storage firms on market efficiency

and operations. Thus, our model is structured to represent



OAJPE-00038-2022 8

TABLE X
SUMMARY OF RESULTS FOR CASE STUDY WITHOUT UNCERTAINTY CAPTURED IN DETERMINING OFFERS

Case Expected Welfare ($)

Expected Demand Conventional Wind
# Scenarios Ramping Served (%) Generators Generators Firm 1 Firm 2 Consumers Social

9 Different Yes 98.3 71 041 25 994 −504 −3754 51 872 144 649

10 Different No 100 71 676 26 217 −8 −370 47 100 144 615

11 Similar Yes 100 70 962 25 994 171 140 47 381 144 649

12 Similar No 100 72 788 26 949 214 429 44 350 144 729

strategic energy-storage firms. The model could be generalized

to capture strategic generators or consumers, which would

entail changes to the model structure but the same solution

approach that is outlined in the appendix.

Our example demonstrates using the model for drawing

market-design and energy-policy conclusions. We find that

small amounts of energy storage can yield non-trivial effi-

ciency gains. Our example has 32 MW of energy storage

with about 1.1 hours of discharging capacity, which is small

relative to 155 MW of conventional-generation capacity, up to

175 MW of wind availability, and up to 2.2 GWh of expected

demand served. Energy storage can yield up to 2% expected

social-welfare gains relative to not having energy storage.

Some works [27], [57]–[59] find social-welfare losses with

strategic energy storage (relative to a no-energy-storage case),

which we do not find. Our finding may be specific to our

numerical examples and assumed model structure. Having

strategic generators or consumers could change the welfare

impacts of energy storage. Our modeling framework could

be used by policymakers and regulators to explore cases in

which strategic energy storage can yield social-welfare losses,

to forestall those types of inefficiencies.

Our model is large-scale and computationally challenging.

As such, it is well suited for policy, market, or regulatory

analysis. There is a growing literature that applies data-

driven approaches to market modeling [60]–[67]. Such an

approach may be beneficial to our problem. However, data-

driven models may not have optimality guarantees and may

not be guaranteed to yield Nash equilibria. Nevertheless, such

an approach could be of great value for real-time decision

support for a market participant.

APPENDIX

In our model, a Nash equilibrium has the property that each

firm determines offers that are individually profit-maximizing,

while holding the offers of its rival firms fixed. We can

compute such an equilibrium by solving (14)–(17), ∀p ∈ P
simultaneously, which we do as follows.

A. Conversion of (14)–(17) to a Single-Level Problem

Problem (1)–(13) is a linear optimization. Thus, (17) can

be replaced with the necessary and sufficient primal/dual-

optimality conditions [68]:
∑

x∈X,b∈B

(

Gx,t,b +G+
ω,x,t,b −G−

ω,x,t,b − SC
ω,x,t,b

+ SH
ω,x,t,b

)

=
∑

b∈B

Dω,t,b;

∀ω ∈ Ω, t ∈ T (φp,ω,t) (20)

0 ≤ Dω,t,b ≤ D̄ω,t,b;

∀ω ∈ Ω, t ∈ T, b ∈ B (ϑD,−
p,ω,t,b, ϑ

D,+
p,ω,t,b) (21)

0 ≤ Gx,t,b −G−
ω,x,t,b +G+

ω,x,t,b ≤ Ḡω,x,t,b; ∀ω ∈ Ω,

t ∈ T, x ∈ X, b ∈ B (ϑ
G,

∑
,−

p,ω,t,x,b, ϑ
G,

∑
,+

p,ω,t,x,b) (22)

0 ≤ G−
ω,x,t,b;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (ϑG,−
p,ω,t,x,b) (23)

0 ≤ G+

ω,x,t,b;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (ϑG,+
p,ω,t,x,b) (24)

−RD
x ≤

∑

b∈B

(Gx,t,b −Gx,t−1,b) ≤ RU
x ; ∀t ∈ T, x ∈ X

(ϑR,−
p,t,x, ϑ

R,+
p,t,x) (25)

−RD
x ≤

∑

b∈B

(

Gx,t,b −G−
ω,x,t,b +G+

ω,x,t,b −Gx,t−1,b

+G−
ω,x,t−1,b −G+

ω,x,t−1,b

)

≤ RU
x ; ∀ω ∈ Ω, t ∈ T,

x ∈ X (ϑ
R,

∑
,−

p,ω,t,x , ϑ
R,

∑
,+

p,ω,t,x ) (26)

0 ≤ SC
ω,x,t,b ≤ S̄C

ω,x,b; ∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B

(ϑC,−
p,ω,t,x,b, ϑ

C,+
p,ω,t,x,b) (27)

0 ≤ SH
ω,x,t,b ≤ S̄H

ω,x,b; ∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B

(ϑH,−
p,ω,t,x,b, ϑ

H,+
p,ω,t,x,b) (28)

0 ≤ Eω,x,t ≤ Ēω,x;

∀ω ∈ Ω, t ∈ T, x ∈ X (ϑE,−
p,ω,t,x, ϑ

E,+
p,ω,t,x) (29)

Eω,x,t = Eω,x,t−1 +
∑

b∈B

(

ηxS
C
ω,x,t,b − SH

ω,x,t,b

)

;

∀ω ∈ Ω, t ∈ T, x ∈ X (ϑEp,ω,t,x) (30)

Ex,0 = Eω,x,|T |; ∀ω ∈ Ω, x ∈ X (ϑE,0
p,ω,x) (31)

πωUω,t,b − ψω,t + θD,−
ω,t,b − θD,+

ω,t,b = 0;

∀ω ∈ Ω, t ∈ T, b ∈ B (ξDp,ω,t,b) (32)

−OG
x,t,b + θR,−

t,x − θR,−
t+1,x − θR,+

t,x + θR,+
t+1,x +

∑

ω∈Ω

(

ψω,t

+ θ
G,

∑
,−

ω,t,x,b − θ
G,

∑
,+

ω,t,x,b + θ
R,

∑
,−

ω,t,x − θ
R,

∑
,−

ω,t+1,x − θ
R,

∑
,+

ω,t,x

+θ
R,

∑
,+

ω,t+1,x

)

= 0; ∀t ∈ T, x ∈ X, b ∈ B (ξGp,t,x,b) (33)

− πωO
G,−
x,t,b − ψω,t − θ

G,
∑

,−
ω,t,x,b + θ

G,
∑

,+

ω,t,x,b + θG,−
ω,t,x,b − θ

R,
∑

,−
ω,t,x
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+ θ
R,

∑
,−

ω,t+1,x + θ
R,

∑
,+

ω,t,x − θ
R,

∑
,+

ω,t+1,x = 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (ξG,−
p,ω,t,x,b) (34)

− πωO
G,+
x,t,b + ψω,t + θ

G,
∑

,−
ω,t,x,b − θ

G,
∑

,+

ω,t,x,b + θG,+
ω,t,x,b + θ

R,
∑

,−
ω,t,x

− θ
R,

∑
,−

ω,t+1,x − θ
R,

∑
,+

ω,t,x + θ
R,

∑
,+

ω,t+1,x = 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (ξG,+
p,ω,t,x,b) (35)

πωO
C
x,t,b − ψω,t + θC,−

ω,t,x,b − θC,+
ω,t,x,b − ηxθ

E
ω,t,x = 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (ξCp,ω,t,x,b) (36)

− πωO
H
x,t,b + ψω,t + θH,−

ω,t,x,b − θH,+
ω,t,x,b + θEω,t,x = 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (ξHp,ω,t,x,b) (37)

θE,−
ω,t,x − θE,+

ω,t,x + θEω,t,x − θEω,t+1,x = 0;

∀ω ∈ Ω, t ∈ T, t < |T |, x ∈ X (ξEp,ω,t,x) (38)

θE,−
ω,|T |,x − θE,+

ω,|T |,x + θEω,t,x − θE,0
ω,x = 0;

∀ω ∈ Ω, x ∈ X (ξEp,ω,|T |,x) (39)

θD,−
ω,t,b, θ

D,+
ω,t,b ≥ 0;

∀ω ∈ Ω, t ∈ T, b ∈ B (µD,−
p,ω,t,b, µ

D,+
p,ω,t,b) (40)

θ
G,

∑
,−

ω,t,x,b , θ
G,

∑
,+

ω,t,x,b ≥ 0; ∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B

(µ
G,

∑
,−

p,ω,t,x,b, µ
G,

∑
,+

p,ω,t,x,b) (41)

θG,−
ω,t,x,b, θ

G,+
ω,t,x,b ≥ 0; ∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B

(µG,−
p,ω,t,x,b, µ

G,+
p,ω,t,x,b) (42)

θR,−
t,x , θR,+

t,x ≥ 0; ∀t ∈ T, x ∈ X (µR,−
p,t,x, µ

R,+
p,t,x) (43)

θ
R,

∑
,−

ω,t,x , θ
R,

∑
,+

ω,t,x ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X (µ
R,

∑
,−

p,ω,t,x , µ
R,

∑
,+

p,ω,t,x ) (44)

θC,−
ω,t,x,b, θ

C,+
ω,t,x,b ≥ 0; ∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B

(µC,−
p,ω,t,x,b, µ

C,+
p,ω,t,x,b) (45)

θH,−
ω,t,x,b, θ

H,+
ω,t,x,b ≥ 0; ∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B

(µH,−
p,ω,t,x,b, µ

H,+
p,ω,t,x,b) (46)

θE,−
ω,t,x, θ

E,+
ω,t,x ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X (µE,−
p,ω,t,x, µ

E,+
p,ω,t,x) (47)

∑

ω∈Ω,t∈T,b∈B

πω ·

[

∑

x∈X

(

OG
x,t,bGx,t,b +OG,−

x,t,bG
−
ω,x,t,b

+OG,+
x,t,bG

+
ω,x,t,b −OC

x,t,bS
C
ω,x,t,b +OH

x,t,bS
H
ω,x,t,b

)

− Uω,t,bDω,t,b



 = −
∑

ω∈Ω,t∈T,b∈B

[

D̄ω,t,bθ
D,+
ω,t,b

+
∑

x∈X

(

Ḡω,x,t,bθ
G,

∑
,+

ω,t,x,b + S̄C
ω,x,bθ

C,+
ω,t,x,b+

S̄H
ω,x,bθ

H,+
ω,t,x,b

)

]

−
∑

t∈T,x∈X

[

RD
x θ

R,−
t,x +RU

x θ
R,+
t,x

+
∑

ω∈Ω

(

RD
x θ

R,
∑

,−
ω,t,x +RU

x θ
R,

∑
,+

ω,t,x + Ēω,xθ
E,+
ω,t,x

)

]

+
∑

x∈X,b∈B

[

Gx,0,b ·

(

θR,−
1,x − θR,+

1,x +
∑

ω∈Ω

(

θ
R,

∑
,−

ω,1,x

−θ
R,

∑
,+

ω,1,x

)

)]

+
∑

ω∈Ω,x∈X

Ex,0 ·
(

θEω,1,x

+θE,0
ω,x

)

. (ζp) (48)

The variable set of (14)–(16), (20)–(48) is expanded to include

the dual variables of (1)–(13). The Lagrange multiplier that is

associated with each of (20)–(48) is in parentheses to its right.

B. Candidate Equilibria

A market equilibrium solves (14)–(16), (20)–(48), ∀p ∈ P
simultaneously. We find candidate equilibria by solving simul-

taneously the Karush-Kuhn-Tucker (KKT) conditions of (14)–

(16), (20)–(48), ∀p ∈ P , which are:

− δCp,t,x,b + δCp,t,x,b+1 +
∑

ω∈Ω

πω ·
(

ξCp,ω,t,x,b − SC
ω,x,t,bζp

)

= 0; ∀t ∈ T, x ∈ ∆S
p , b ∈ B (49)

− δHp,t,x,b + δHp,t,x,b+1 −
∑

ω∈Ω

πω ·
(

ξHp,ω,t,x,b − SH
ω,x,t,bζp

)

= 0; ∀t ∈ T, x ∈ ∆S
p , b ∈ B (50)

− φp,ω,t − ϑD,−
p,ω,t,b + ϑD,+

p,ω,t,b − πωUω,t,bζp = 0;

∀ω ∈ Ω, t ∈ T, b ∈ B (51)
∑

ω∈Ω

(

φp,ω,t − ϑ
G,

∑
,−

p,ω,t,x,b + ϑ
G,

∑
,+

p,ω,t,x,b − ϑ
R,

∑
,−

p,ω,t,x + ϑ
R,

∑
,−

p,ω,t+1,x

+ϑ
R,

∑
,+

p,ω,t,x − ϑ
R,

∑
,+

p,ω,t+1,x

)

− ϑR,−
p,t,x + ϑR,−

p,t+1,x + ϑR,+
p,t,x

− ϑR,+
p,t+1,x +OG

x,t,bζp = 0; ∀t ∈ T, x ∈ X, b ∈ B (52)

− φp,ω,t + ϑ
G,

∑
,−

p,ω,t,x,b − ϑ
G,

∑
,+

p,ω,t,x,b − ϑG,−
p,ω,t,x,b + ϑ

R,
∑

,−
p,ω,t,x

− ϑ
R,

∑
,−

p,ω,t+1,x − ϑ
R,

∑
,+

p,ω,t,x + ϑ
R,

∑
,+

p,ω,t+1,x + πωO
G,−
x,t,bζp = 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (53)

φp,ω,t − ϑ
G,

∑
,−

p,ω,t,x,b + ϑ
G,

∑
,+

p,ω,t,x,b − ϑG,+
p,ω,t,x,b − ϑ

R,
∑

,−
p,ω,t,x

+ ϑ
R,

∑
,−

p,ω,t+1,x + ϑ
R,

∑
,+

p,ω,t,x − ϑ
R,

∑
,+

p,ω,t+1,x + πωO
G,+
x,t,bζp = 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (54)

πωψω,t − φp,ω,t − ϑC,−
p,ω,t,x,b + ϑC,+

p,ω,t,x,b − ηxϑ
E
p,ω,t,x

− πωO
C
x,t,bζp = 0; ∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (55)

− πωψω,t + φp,ω,t − ϑH,−
p,ω,t,x,b + ϑH,+

p,ω,t,x,b + ϑEp,ω,t,x

+ πωO
H
x,t,bζp = 0; ∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (56)

− ϑE,−
p,ω,t,x + ϑE,+

p,ω,t,x + ϑEp,ω,t,x − ϑEp,ω,t+1,x = 0;

∀ω ∈ Ω, t ∈ T, t < |T |, x ∈ X, b ∈ B (57)

− ϑE,−
p,ω,|T |,x + ϑE,+

p,ω,|T |,x + ϑEp,ω,|T |,x − ϑE,0
p,ω,x = 0;

∀ω ∈ Ω, x ∈ X, b ∈ B (58)

∑

b∈B

{

−ξDp,ω,t,b +
∑

x∈X

[

πω ·
(

SC
ω,x,t,b − SH

ω,x,t,b

)

+ ξGp,t,x,b

− ξG,−
p,ω,t,x,b + ξG,+

p,ω,t,x,b − ξCp,ω,t,x,b + ξHp,ω,t,x,b

]}

= 0;

∀ω ∈ Ω, t ∈ T (59)

ξDp,ω,t,b − µD,−
p,ω,t,b = 0; ∀ω ∈ Ω, t ∈ T, b ∈ B (60)

− ξDp,ω,t,b − µD,+
p,ω,t,b + D̄ω,t,bζp = 0;
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∀ω ∈ Ω, t ∈ T, b ∈ B (61)

ξGp,t,x,b − ξG,−
p,ω,t,x,b + ξG,+

p,ω,t,x,b − µ
G,

∑
,−

p,ω,t,x,b = 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (62)

− ξGp,t,x,b + ξG,−
p,ω,t,x,b − ξG,+

p,ω,t,x,b − µ
G,

∑
,+

p,ω,t,x,b + Ḡω,x,t,bζp

= 0; ∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (63)

ξG,−
p,ω,t,x,b − µG,−

p,ω,t,x,b = 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (64)

ξG,+
p,ω,t,x,b − µG,+

p,ω,t,x,b = 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (65)
∑

b∈B

(

ξGp,t,x,b − ξGp,t−1,x,b

)

− µR,−
p,t,x +RD

x ζp = 0;

∀t ∈ T, t > 1, x ∈ X (66)
∑

b∈B

(

ξGp,1,x,b −Gx,0,bζp
)

− µR,−
p,1,x +RD

x ζp = 0;

∀x ∈ X (67)
∑

b∈B

(

ξGp,t−1,x,b − ξGp,t,x,b
)

− µR,+
p,t,x +RU

x ζp = 0;

∀t ∈ T, t > 1, x ∈ X (68)
∑

b∈B

(

Gx,0,bζp − ξGp,1,x,b
)

− µR,+
p,1,x +RU

x ζp = 0;

∀x ∈ X (69)
∑

b∈B

(

ξGp,t,x,b − ξGp,t−1,x,b − ξG,−
p,ω,t,x,b + ξG,−

p,ω,t−1,x,b

+ξG,+
p,ω,t,x,b − ξG,+

p,ω,t−1,x,b

)

− µ
R,

∑
,−

p,ω,t,x +RD
x ζp = 0;

∀ω ∈ Ω, t ∈ T, t > 1, x ∈ X (70)
∑

b∈B

(

ξGp,1,x,b − ξG,−
p,ω,1,x,b + ξG,+

p,ω,1,x,b −Gx,0,bζp

)

− µ
R,

∑
,−

p,ω,1,x

+RD
x ζp = 0; ∀ω ∈ Ω, x ∈ X (71)

∑

b∈B

(

ξGp,t−1,x,b − ξGp,t,x,b − ξG,−
p,ω,t−1,x,b + ξG,−

p,ω,t,x,b

+ξG,+
p,ω,t−1,x,b − ξG,+

p,ω,t,x,b

)

− µ
R,

∑
,+

p,ω,t,x +RU
x ζp = 0;

∀ω ∈ Ω, t ∈ T, t > 1, x ∈ X (72)
∑

b∈B

(

Gx,0,bζp − ξGp,1,x,b + ξG,−
p,ω,1,x,b − ξG,+

p,ω,1,x,b

)

− µ
R,

∑
,+

p,ω,1,x

+RU
x ζp = 0; ∀ω ∈ Ω, x ∈ X (73)

ξCp,ω,t,x,b − µC,−
p,ω,t,x,b = 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (74)

− ξCp,ω,t,x,b − µC,+
p,ω,t,x,b + S̄C

ω,x,bζp = 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (75)

ξHp,ω,t,x,b − µH,−
p,ω,t,x,b = 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (76)

− ξHp,ω,t,x,b − µH,+
p,ω,t,x,b + S̄H

ω,x,bζp = 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (77)

ξEp,ω,t,x − µE,−
p,ω,t,x = 0; ∀ω ∈ Ω, t ∈ T, x ∈ X (78)

− ξEp,ω,t,x − µE,+
p,ω,t,x + Ēω,xζp = 0;

∀ω ∈ Ω, t ∈ T, x ∈ X (79)

− ηxξ
C
p,ω,t,x,b + ξHp,ω,t,x,b + ξEp,ω,t,x − ξEp,ω,t−1,x = 0;

∀ω ∈ Ω, t ∈ T, t > 1, x ∈ X (80)

− ηxξ
C
p,ω,1,x,b + ξHp,ω,1,x,b + ξEp,ω,1,x − Ex,0ζp = 0;

∀ω ∈ Ω, x ∈ X (81)

− ξEp,ω,|T |,x − Ex,0ζp = 0; ∀ω ∈ Ω, x ∈ X (82)

(20), (30)–(39), (48) (83)

OC
x,t,b ≥ OC

x,t,b−1 ⊥ δCp,t,x,b ≥ 0;

∀t ∈ T, x ∈ ∆S
p , b ∈ B (84)

OH
x,t,b ≥ OH

x,t,b−1 ⊥ δHp,t,x,b ≥ 0;

∀t ∈ T, x ∈ ∆S
p , b ∈ B (85)

0 ≤ Dω,t,b ⊥ ϑD,−
p,ω,t,b ≥ 0; ∀ω ∈ Ω, t ∈ T, b ∈ B (86)

Dω,t,b ≤ D̄ω,t,b ⊥ ϑD,+
p,ω,t,b ≥ 0; ∀ω ∈ Ω, t ∈ T, b ∈ B (87)

0 ≤ Gx,t,b −G−
ω,x,t,b +G+

ω,x,t,b ⊥ ϑ
G,

∑
,−

p,ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (88)

Gx,t,b −G−
ω,x,t,b +G+

ω,x,t,b ≤ Ḡω,x,t,b ⊥ ϑ
G,

∑
,+

p,ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (89)

0 ≤ G−
ω,x,t,b ⊥ ϑG,−

p,ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (90)

0 ≤ G+
ω,x,t,b ⊥ ϑG,+

p,ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (91)

−RD
x ≤

∑

b∈B

(Gx,t,b −Gx,t−1,b) ⊥ ϑR,−
p,t,x ≥ 0;

∀t ∈ T, x ∈ X (92)
∑

b∈B

(Gx,t,b −Gx,t−1,b) ≤ RU
x ⊥ ϑR,+

p,t,x ≥ 0;

∀t ∈ T, x ∈ X (93)

−RD
x ≤

∑

b∈B

(

Gx,t,b −G−
ω,x,t,b +G+

ω,x,t,b −Gx,t−1,b

+G−
ω,x,t−1,b −G+

ω,x,t−1,b

)

⊥ ϑ
R,

∑
,−

p,ω,t,x ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X (94)
∑

b∈B

(

Gx,t,b −G−
ω,x,t,b +G+

ω,x,t,b −Gx,t−1,b

+G−
ω,x,t−1,b −G+

ω,x,t−1,b

)

≤ RU
x ⊥ ϑ

R,
∑

,+
p,ω,t,x ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X (95)

0 ≤ SC
ω,x,t,b ⊥ ϑC,−

p,ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (96)

SC
ω,x,t,b ≤ S̄C

ω,x,b ⊥ ϑC,+
p,ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (97)

0 ≤ SH
ω,x,t,b ⊥ ϑH,−

p,ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (98)

SH
ω,x,t,b ≤ S̄H

ω,x,b ⊥ ϑH,+
p,ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (99)

0 ≤ Eω,x,t ⊥ ϑE,−
p,ω,t,x ≥ 0; ∀ω ∈ Ω, t ∈ T, x ∈ X (100)
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Eω,x,t ≤ Ēω,x ⊥ ϑE,+
p,ω,t,x ≥ 0; ∀ω ∈ Ω, t ∈ T, x ∈ X (101)

θD,−
ω,t,b ≥ 0 ⊥ µD,−

p,ω,t,b ≥ 0; ∀ω ∈ Ω, t ∈ T, b ∈ B (102)

θD,+
ω,t,b ≥ 0 ⊥ µD,+

p,ω,t,b ≥ 0; ∀ω ∈ Ω, t ∈ T, b ∈ B (103)

θ
G,

∑
,−

ω,t,x,b ≥ 0 ⊥ µ
G,

∑
,−

p,ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (104)

θ
G,

∑
,+

ω,t,x,b ≥ 0 ⊥ µ
G,

∑
,+

p,ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (105)

θG,−
ω,t,x,b ≥ 0 ⊥ µG,−

p,ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (106)

θG,+
ω,t,x,b ≥ 0 ⊥ µG,+

p,ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (107)

θR,−
t,x ≥ 0 ⊥ µR,−

p,t,x ≥ 0; ∀t ∈ T, x ∈ X (108)

θR,+
t,x ≥ 0 ⊥ µR,+

p,t,x ≥ 0; ∀t ∈ T, x ∈ X (109)

θ
R,

∑
,−

ω,t,x ≥ 0 ⊥ µ
R,

∑
,−

p,ω,t,x ≥ 0; ∀ω ∈ Ω, t ∈ T, x ∈ X (110)

θ
R,

∑
,+

ω,t,x ≥ 0 ⊥ µ
R,

∑
,+

p,ω,t,x ≥ 0; ∀ω ∈ Ω, t ∈ T, x ∈ X (111)

θC,−
ω,t,x,b ≥ 0 ⊥ µC,−

p,ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (112)

θC,+
ω,t,x,b ≥ 0 ⊥ µC,+

p,ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (113)

θH,−
ω,t,x,b ≥ 0 ⊥ µH,−

p,ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (114)

θH,+
ω,t,x,b ≥ 0 ⊥ µH,+

p,ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (115)

θE,−
ω,t,x ≥ 0 ⊥ µE,−

p,ω,t,x ≥ 0; ∀ω ∈ Ω, t ∈ T, x ∈ X (116)

θE,+
ω,t,x ≥ 0 ⊥ µE,+

p,ω,t,x ≥ 0; ∀ω ∈ Ω, t ∈ T, x ∈ X ; (117)

where the decision variables are all of the primal and dual

variables of (1)–(13) and all of the primal variables and

Lagrange multipliers of (14)–(16), (20)–(48).

C. Linearizing KKT Conditions

KKT conditions (49)–(117) have nonlinearities, which com-

plicate their solution. We address this difficulty as follows.

1) Bi-linear Terms in (48)

Equality (48) contains bi-linear terms. Because (1)–(13)

is linear, (48) can be replaced in (83) by the equivalent

complementary-slackness conditions [40], [69]:

0 ≤ Dω,t,b ⊥ θD,−
ω,t,b ≥ 0; ∀ω ∈ Ω, t ∈ T, b ∈ B (118)

Dω,t,b ≤ D̄ω,t,b ⊥ θD,+
ω,t,b ≥ 0; ∀ω ∈ Ω, t ∈ T, b ∈ B (119)

0 ≤ Gx,t,b −G−
ω,x,t,b +G+

ω,x,t,b ⊥ θ
G,

∑
,−

ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (120)

Gx,t,b −G−
ω,x,t,b +G+

ω,x,t,b ≤ Ḡω,x,t,b ⊥ θ
G,

∑
,+

ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (121)

0 ≤ G−
ω,x,t,b ⊥ θG,−

ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (122)

0 ≤ G+

ω,x,t,b ⊥ θG,+
ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (123)

−RD
x ≤

∑

b∈B

(Gx,t,b −Gx,t−1,b) ⊥ θR,−
t,x ≥ 0;

∀t ∈ T, x ∈ X (124)
∑

b∈B

(Gx,t,b −Gx,t−1,b) ≤ RU
x ⊥ θR,+

t,x ≥ 0;

∀t ∈ T, x ∈ X (125)

−RD
x ≤

∑

b∈B

(

Gx,t,b −G−
ω,x,t,b +G+

ω,x,t,b −Gx,t−1,b

+G−
ω,x,t−1,b −G+

ω,x,t−1,b

)

⊥ θ
R,

∑
,−

ω,t,x ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X (126)
∑

b∈B

(

Gx,t,b −G−
ω,x,t,b +G+

ω,x,t,b −Gx,t−1,b +G−
ω,x,t−1,b

−G+
ω,x,t−1,b

)

≤ RU
x ⊥ θ

R,
∑

,+
ω,t,x ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X (127)

0 ≤ SC
ω,x,t,b ⊥ θC,−

ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (128)

SC
ω,x,t,b ≤ S̄C

ω,x,b ⊥ θC,+
ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (129)

0 ≤ SH
ω,x,t,b ⊥ θH,−

ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (130)

SH
ω,x,t,b ≤ S̄H

ω,x,b ⊥ θH,+
ω,t,x,b ≥ 0;

∀ω ∈ Ω, t ∈ T, x ∈ X, b ∈ B (131)

0 ≤ Eω,x,t ⊥ θE,−
ω,t,x ≥ 0; ∀ω ∈ Ω, t ∈ T, x ∈ X (132)

Eω,x,t ≤ Ēω,x ⊥ θE,+
ω,t,x ≥ 0; ∀ω ∈ Ω, t ∈ T, x ∈ X. (133)

2) Other Bi-linear Terms

Conditions (49)–(50) and (55)–(56) contain bi-linear terms,

in which ζp multiplies another variable. We address this non-

linearity by parameterizing and fixing the value of ζp, which

is a standard approach that is used in the literature [33], [35],

[70].

3) Complementary Slackness

Conditions (84)–(133) are non-linear, because a generic

complementary-slackness condition of the form:

h(y) ≤ 0 ⊥ ρ ≥ 0; (134)

is equivalent to:

h(y) ≤ 0 (135)

ρ ≥ 0 (136)

h(y)ρ = 0. (137)

We address this non-linearity using the technique of Fortuny-

Amat and McCarl [71], which requires the introduction of

an auxiliary binary or special-ordered-set variable, which we

denote as β, and an arbitrarily large constant, which we denote

as M . With this auxiliary variable and constant, (134), or,

equivalently, (135)–(137), is equivalent to:

−Mβ ≤ h(y) ≤ 0

M · (1− β) ≥ ρ ≥ 0.
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We linearize each of (84)–(133) using this technique, which

requires introducing one auxiliary variable for each condition

that is linearized.

D. Verifying Nash Equilibria

If ζp is fixed and (84)–(133) are linearized, (20), (30)–

(39), (49)–(82), (84)–(133), ∀p ∈ P is a mixed-integer linear

program (MILP). An MILP solution is a candidate Nash

equilibrium because KKT conditions (49)–(117) are necessary

but not sufficient for an optimum of each firm’s expected-profit

maximization (each firm’s problem satisfies Slater conditions

[72]). ∀p ∈ P we let Λ̄p denote the value of (14) for firm p
from the MILP solution.

We verify that an MILP solution is a Nash equilibrium using

diagonalization, which is a standard approach [33], [35], [40].

Diagonalization involves solving (14)–(16), (20)–(48), ∀p ∈ P
while holding the offers of all firms except for p equal to the

MILP solution and letting Λ̃p equal the value of (14) for firm p.

If Λ̃p ≤ Λ̄p, ∀p ∈ P , then the MILP solution has the Nash

property of no firm having a profitable deviation. Otherwise,

the MILP solution is not a Nash equilibrium.
In the course of examining our example and case study we

do not find any MILP solutions that fail the diagonalization

test. However, such an outcome can occur. In such a case, one

could re-solve the MILP by providing the solver a different

starting solution (i.e., the MILP may have multiple optimal

solutions) or by changing the value of ζp, ∀p ∈ P . Subject

to some mild assumptions, all economic games, such as the

one that we model, are guaranteed to have at least one Nash

equilibrium [73]. Thus, we know that the MILP should yield a

Nash equilibrium. Without much stronger assumptions, there

is no guarantee that a Nash equilibrium is unique [7]. Thus,

it is possible that our example and case study may have other

equilibria that yield different market and welfare outcomes.
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