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Abstract

Rising penetrations of variable renewable generation in electric power systems can raise operational chal-
lenges. One is that renewables can increase the need for dispatchable generation with fast-ramping capabili-
ties. This can be costly, because in many instances flexible generators can be more expensive than baseload
units that have slower ramping capabilities. If ramping capacity is not available, renewable curtailment may
be needed. An alternate solution to this need for ramping is to use energy storage.

A question that this raises is how renewable and conventional generators and energy storage would inter-
act in a market environment, and whether certain asset-ownership structures would result in more efficient
coordination. To this end, this paper presents a multi-period market-equilibrium model of interactions
between these different types of market agents. The impacts on renewable integration of conventional gen-
erators having limited ramping capabilities are studied through an illustrative case study. We also examine
a variety of structures for the participation of energy storage in the market. We find that co-ownership and
co-operation of renewable generators and energy storage brings about the best results from the perspective
of alleviating market inefficiencies. Having energy storage directly controlled by the market operator or
participating as an independent profit-maximizing firm is less efficient.

Keywords: Electricity market, wind power, generator ramping, energy storage, equilibrium problem with
equilibrium constraints

1. Introduction

The rising penetration of variable renewable generation sources is putting operational strains on elec-
tric power systems. As one example, there is a growing need for flexible dispatchable generation with
fast-ramping capabilities to accommodate the variable and uncertain nature of real-time renewable-energy
availability. Otherwise, renewable generation may be curtailed. This can be a costly proposition, however,
because flexible generation units may have higher operating costs than less-flexible baseload units.

The literature studies numerous ways of mitigating the cost of ramping needs imposed by renewable
generators. Three commonly studied approaches are to better predict and manage the cost of generator
ramping needs [1–4], use demand response to engender demand-side flexibility [5–7], or use energy storage
to meet ramping needs [8–13].

Analyses of the first approach includes the work of Kubik et al. [2], which examines the benefits of steps,
such as fuel switching in conventional generators, to improve a power system’s ramping capabilities and
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accommodate more renewable generation. Edmunds et al. [3] investigate the critical and growing role of
natural gas-fired generation units in providing ramping capability to the British power system with increasing
variable renewable generation. Zha et al. [4] propose a new approach to predicting the ramping needs of
wind generation.

Studies of demand response include the work of Heydarian-Forushani et al. [5], which presents a stochastic
network-constrained unit commitment model with demand response. Their model schedules both generating
units and responsive loads in systems with high wind penetrations. Salpakari et al. [6] study the optimal
control of electric heating systems as a source of flexible demand for renewable integration. Alahaivala et
al. [7] also study flexible heating loads for wind integration and ramp mitigation. Their work suggests that
heating loads could be utilized to reduce ramp rates, wind curtailment, and operational costs associated
with severe ramps in wind availability.

Energy storage is a third option for increasing a power system’s flexibility and ramping capability. There
do remain, however, some challenges in adopting energy storage and in accommodating them within existing
market designs. This reality has attracted studies focusing on the conflict between the technical benefits
and the economic challenges in compensating energy storage for their services under current market designs
[8, 14–16]. Despite this issue, a number of works examine the benefits of energy storage in accommodating
renewables. O’Dwyer and Flynn [10] use a sub-hourly analysis to explore the role of energy storage in
reducing operating costs and enhancing system efficiency and flexibility with high renewable penetrations.
Khodayar et al. [11] propose an approach to determine the multi-period ramping capabilities of dispatchable
generation resources. They further integrate energy storage to serve the ramping requirements imposed in
the day-ahead electricity market by renewable generators. Heydarian-Forushani et al. [9] develop a robust
optimization framework to optimize unit commitment decisions in systems with high penetrations of wind
power. Their model incorporates demand response and bulk energy storage in co-optimized energy and
reserve markets. Safaei et al. [17] introduce a novel compressed-air energy storage (CAES) system, wherein
the waste heat of compression is reused for different heating demands through distributed compressors.
They also compare the economics of their proposed distributed CAES to a traditional CAES system in a
restructured electricity market, in which storage co-operates with wind generators. This co-operation allows
the joint wind and CAES plants to participate like conventional dispatchable generators [18]. Hittinger et
al. [19] propose a model in which a gas turbine, a wind generator, and fast-ramping energy storage are co-
located and co-operating with each other to provide near-constant baseload power. Their proposed model is
mostly suitable for isolated grids, due to the high energy-supply cost of their proposed hybrid energy system.
Their method allows using significant amounts of wind generation, while reducing supply fluctuations to a
small deadband.

These works leave some unanswered questions regarding the role of energy storage in mitigating ramping-
related challenges surrounding renewable integration. The first are the potential interactions between strate-
gic profit-maximizing behavior by renewable or conventional generators and supply-side flexibility. The
second is the role of energy storage in mitigating flexibility issues. The third is the effect of market and
asset-ownership structure on market efficiency and the ability of energy storage to mitigate ramping and
flexibility issues. Answers to these questions would allow policy makers, market designers, and regulators to
change market rules and structures to more efficiently accommodate high penetrations of renewable energy
into electric power systems.

To this end, this paper presents a bi-level multi-period model of a spot-market equilibrium, which includes
conventional and renewable generators and energy storage. The lower level of the problem represents the spot
market being cleared by a market operator (MO). The MO’s problem includes ramping constraints, which
reflect generator flexibility. The upper level of the problem represents the decisions of the profit-maximizing
generator and energy-storage firms in offering capacity to the market. The resulting bi-level problem is solved
by first replacing the lower-level problem with its necessary and sufficient primal-dual optimality conditions.
This gives a mathematical program with equilibrium constraints (MPEC) for each profit-maximizing firm.
An equilibrium program with equilibrium constraints (EPEC) is obtained by combining all of the firms’
MPECs. We employ a series of linearization techniques to recast the EPEC as a mixed-integer linear
program (MILP). Solving this MILP gives candidate solutions that may be market equilibria. We use
a diagonalization technique to determine which EPEC solutions are market equilibria, which are closely
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analyzed.
We demonstrate the proposed model using an illustrative case study. The case study also allows us

to examine market interactions between conventional and renewable generators and energy storage under
different asset-ownership and market structures. Specifically, we examine cases in which different firms
behave as price-makers or price-takers. A price-taking firm is one that does not account for the impact of
its offering behavior on market prices and dispatch levels. Thus, a price taker behaves competitively. A
price-making firm, conversely, does take into account the impacts of its offers on market prices and dispatch.
Thus, a price maker may opt to offer its generation strategically at a price that differs from marginal cost to
impact its sales of energy or the price at which it is paid. We show that with strategic price-making firms,
a market structure in which renewable generation and energy storage are co-owned is the most efficient in
terms of accommodating renewable energy. Conversely, having energy storage directly controlled by the MO
or participating as an independent profit-maximizing firm is less efficient.

This paper makes a number of contributions to the existing literature. First, we develop a multi-
period bi-level market equilibrium model that can fully capture generator-ramping constraints and energy
storage. Second, we convert the bi-level problem into an EPEC and recast it as an MILP, which can
be tractably solved. Finally, we demonstrate the value of our model in being able to examine market
interactions between conventional and renewable generation and energy storage under different market and
asset-ownership structures. Our model can also examine different strategic behavior on the part of the
participating firms.

The remainder of this paper is organized as follows. Section 2 provides more background on market-
equilibrium, MPEC, and EPEC modeling. Section 3 provides an overview of our bi-level model. The
appendices provide details on the steps that are taken to convert the bi-level model into a tractable MILP.
Section 4 introduces our numerical case study and Section 5 summarizes our case study results. Section 6
concludes.

2. Market-Equilibrium, MPEC, and EPEC Modeling

This paper takes a complementarity-based approach to study market interactions between conventional
and renewable generation and energy storage. Complementarity models are a powerful tool for modeling
market interactions. The power of complementarity modeling lays in its ability to model the simultaneous
optimization of multiple firms competing in a market [20]. In doing so, complementarity models allow com-
puting market equilibria. For instance, Virasjoki et al. [12] use a Nash-Cournot model to analyze the effects
of energy storage on ramping cost and congestion in a power system with renewable generators. Their analy-
sis concludes that in a perfectly competitive market, energy storage helps to reduce congestion and ramping
costs while potentially increasing greenhouse gas emissions from conventional generators. Conversely, they
find that energy storage is less effective in mitigating congestion and ramping constraints in a market in
which firms behave strategically. On the other hand, energy storage does not have the same negative impact
on greenhouse gas emissions in a strategic setting.

An MPEC is an extension of a simple complementarity model that contains complementarity conditions
in its constraint set. As such, an MPEC can represent more complex market interactions than a simple
complementarity model can. Nasrolahpour et al. [13] propose an MPEC to make optimal operating decisions
of price-making energy storage in a market. Their model considers uncertain output from wind generators
and conventional generators that have limited ramping capabilities. Wang et al. [21] also employ an MPEC
for optimizing the offering strategy of a merchant energy storage firm. Their analysis considers a ramp-
constrained power system with high penetrations of renewable energy. Their model includes an additional
day beyond the operating period being optimized, which attaches carryover value to energy stored at the
end of the day [22, 23]. Because MPECs can model leader-follower games with only a single leader, the
analyses of Nasrolahpour et al. [13] Wang et al. [21] assume that only energy storage behaves as a strategic
profit-maximizer.

EPECs are a further and more complex extension of MPECs that are able to model leader-follower
games with multiple leaders that are simultaneously behaving strategically (e.g., maximizing profit). For
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example, Yaghooti et al. [24] use an EPEC to analyze the impacts of ramping limits on the strategic profit-
maximizing behavior of multiple conventional-generator firms in an oligopolistic electricity market. Because
the resulting EPECs are non-convex and non-linear equilibrium problems, Yaghooti et al. [24] employ a
heuristic algorithm to solve the model. Moreover, their analysis does not consider renewable generation or
energy storage. Moiseeva et al. [1] model the effects of ramping limits on strategic behavior in a market
with wind generation. Their work employs a bi-level optimization problem, in which the ramp-constrained
economic dispatch is the lower-level problem and the strategic generators’ profit-maximizations are the
upper-level problems. This yields an EPEC. Their work does not consider the impacts of energy storage,
however.

A question raised in analyzing electricity markets is whether a model that captures strategic behavior
is necessary. If an electricity market is relatively competitive, it is typically much easier from modeling and
computational perspectives to assume perfect competition. Although electricity markets are subject to some
oversight and mitigation, a number of empirical studies suggest that firms are able to behave strategically
and exercise market power to varying degrees. Borenstein et al. [25] examine wholesale electricity price
data from the early years of the California market. They show that over half of the increase in the cost of
wholesale energy between the summers of 1999 and 2000 is attributable to the exercise of market power by
generating firms. Sioshansi and Oren [26] and Hortaçsu and Puller [27] analyze the behavior of generating
firms in the Texas market. They find evidence of strategic behavior whereby firms submit generation
offers that are above cost to increase prices and profits. Willems et al. [28] conduct a similar analysis of
the German wholesale electricity market, demonstrating the exercise of market power. In light of these and
other findings, a modeling framework that captures strategic firm behavior is reasonable in analyzing market
outcomes. Nevertheless, as discussed in Section 3.4, we examine a bounding range of market equilibria that
vary between being highly competitive and highly uncompetitive. In doing so, we are able to show the extent
to which the exercise of market power impacts the efficient use of energy storage in a market environment.

3. Modeling and Formulation of Market-Equilibrium Problem

Our model supposes that the market consists of a collection of firms, each of which may own some
combination of conventional and renewable generators and energy storage. These firms may also behave
strategically, whereby they simultaneously and independently optimize their offers into the market to max-
imize their profits. These offers are then used by the MO to determine the dispatch of the various units
and market prices. The MO uses a multi-period market model, which captures intertemporal storage and
generator-ramping constraints. A Nash equilibrium consists of a set of offers, and resulting prices and
dispatch levels, from which no firm has a profitable unilateral deviation.

To maintain a tractable model we use a deterministic model that does not include transmission con-
straints. Linearized dc load-flow constraints could, however, be incorporated into our model, because they
maintain linearity of the lower-level market model. Doing so would entail a computational cost, however.

We proceed in this section by first introducing model notation in Section 3.1. We then formulate the
lower-level market model and the bi-level profit-maximization of the competing firms in Sections 3.2 and 3.3,
respectively. We then discuss, in Section 3.4, the Nash equilibrium concept that is used in our analysis of
market equilibria.

We defer all of the technical details of how the market-equilibrium problem is formulated and solved
to the appendices. More specifically, Appendix A discusses the steps that are taken to convert each firm’s
bi-level profit-maximization problem into an MPEC. Appendix B and Appendix C show the steps that are
taken to combine the MPECs of all of the firms to obtain an EPEC, which can be used to find candidate
Nash equilibria. Appendix D details the steps that we take to linearize the EPEC. Finally, Appendix E
discusses how we verify whether an EPEC solution is indeed a Nash equilibrium.

3.1. Nomenclature

The notation that is used in the proposed model is as follows:
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3.1.1. Sets and Indices
B number of blocks for demand, generation, and storage bids and offers.
P set of firms.
T number of hours in model horizon.
∆G

p set of conventional units that are owned by firm p.
∆S

p set of storage units that are owned by firm p.
∆W

p set of renewable units that are owned by firm p.

3.1.2. Parameters
Cx,b marginal cost of generation block b of conventional unit x.
D̄t,b hour-t maximum demand in demand block b.
Ēx maximum storage capacity of storage unit x.
Ḡx,b capacity of generation block b of conventional unit x.
RU

x ramp-up limit of conventional unit x.
RD

x ramp-down limit of conventional unit x.
S̄C
x,b charging capacity of block b of storage unit x.

S̄H
x,b discharging capacity of block b of storage unit x.

Ut,b marginal utility of demand block b in hour t.
W̄t,x,b hour-t available generation from block b of renewable unit x.
ηCx charging efficiency of storage unit x.
ηHx discharging efficiency of storage unit x.

3.1.3. Lower-Level Variables
Dt,b hour-t demand of demand block b that is satisfied.
Et,x ending hour-t storage level of storage unit x.
Gt,x,b hour-t dispatch of block b of conventional unit x.
SC
t,x,b hour-t energy charged in block b of storage unit x.

SH
t,x,b hour-t energy discharged from block b of storage unit x.

Wt,x,b hour-t dispatch of block b of renewable unit x.

3.1.4. Upper-Level Variables
OC

t,x,b hour-t bid price for charging block b of storage unit x.

OH
t,x,b hour-t offer price for discharging block b of storage unit x.

OG
t,x,b hour-t offer price for block b of conventional unit x.

OW
t,x,b hour-t offer price for block b of renewable unit x.

3.2. Market Operator’s Market Model

The MO’s market model takes the offers of the firms as fixed and determines how to dispatch the various
units to maximize social welfare (the model is formulated as a minimization problem, thus the objective
function is negative social welfare). In the course of solving the market model, the MO determines both
dispatch levels and market prices.
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The MO’s problem is formulated as:

min
∑

t,x,b

(

OG
t,x,bGt,x,b +OW

t,x,bWt,x,b +OH
t,x,bS

H
t,x,b −OC

t,x,bS
C
t,x,b

)

−
∑

t,b

Ut,bDt,b (1)

s.t.
∑

x,b

(

Gt,x,b +Wt,x,b + SH
t,x,b − SC

t,x,b

)

=
∑

b

Dt,b, ∀t (ψt) (2)

0 ≤ Gt,x,b ≤ Ḡx,b, ∀t, x, b (θG,−
t,x,b, θ

G,+
t,x,b) (3)

0 ≤Wt,x,b ≤ W̄t,x,b, ∀t, x, b (θW,−
t,x,b, θ

W,+
t,x,b) (4)

0 ≤ Dt,b ≤ D̄t,b, ∀t, b (θD,−
t,b , θD,+

t,b ) (5)

−RD
x ≤

∑

b

(Gt,x,b −Gt−1,x,b) ≤ RU
x , ∀t, x (θR,−

t,x , θR,+
t,x ) (6)

0 ≤ SC
t,x,b ≤ S̄C

x,b, ∀t, x, b (θC,−
t,x,b, θ

C,+
t,x,b) (7)

0 ≤ SH
t,x,b ≤ S̄H

x,b, ∀t, x, b (θH,−
t,x,b, θ

H,+
t,x,b) (8)

0 ≤ Et,x ≤ Ēx, ∀t, x (θE,−
t,x , θE,+

t,x ) (9)

Et,x = Et−1,x +
∑

b

(

ηCx S
C
t,x,b − SH

t,x,b/η
H
x

)

, ∀t, x (θEt,x) (10)

ET,x = E0,x, ∀x (θE,0
x ) (11)

where the dual variable associated with each constraint appears in parentheses to its right. The decision
variables of the MO’s problems are all of the dispatch-related variables—Gt,x,b, Wt,x,b, S

H
t,x,b, S

C
t,x,b, Et,x,

and Dt,b.
Objective function (1) of the lower-level problem maximizes social welfare (as noted before, the MO

problem is formulated as a minimization, thus the objective function measures negative social welfare).
Constraints (2) impose hourly balance between supply and demand. The dual variables, ψt, associated with
these constraints give hourly market-clearing prices for energy. Constraints (3) and (4) limit the dispatched
output from each block of each conventional and renewable generator, respectively. Likewise, constraints (5)
limit the cleared demand in each block based on maximum demand. Constraints (6) impose ramping limits
on conventional generators.

Constraints (7)–(9) enforce limits on charging power, discharging power, and state of charge, respectively,
of storage units. Constraints (10) impose state-of-charge balance for the storage units. Constraints (11)
require storage units to have the same level of stored energy at the end of the operating horizon as they
begin with. Without such constraints, each storage unit would be left fully discharged at the end of the
operating horizon. Thus, these constraints ascribe carryover value to energy that is left in storage at the
end of the operating horizon [22, 23].

3.3. Firm Profit-Maximization Bi-Level Problem

Each firm, which may own some combination of conventional and renewable generation and energy
storage, determines its offers (i.e., values of OC

t,x,b, O
H
t,x,b, O

G
t,x,b, and O

W
t,x,b for the assets that it owns) to

maximize its profits. This profit maximization is formulated as a bi-level problem, because it includes the
MO’s market model as a lower-level problem. The profit-maximization problem of firm p is formulated as:

min
∑

t,x∈∆G
p ,b

(Cx,b − ψt)Gt,x,b −
∑

t,x∈∆W
p ,b

ψtWt,x,b −
∑

t,x∈∆S
p ,b

ψt ·
(

SH
t,x,b − SC

t,x,b

)

(12)

s.t. OG
t,x,b ≥ OG

t,x,b−1, ∀t, x ∈ ∆G
p , b > 1 (ΦG

p,t,x,b) (13)

OW
t,x,b ≥ OW

t,x,b−1, ∀t, x ∈ ∆W
p , b > 1 (ΦW

p,t,x,b) (14)

OC
t,x,b ≥ OC

t,x,b−1, ∀t, x ∈ ∆S
p , b > 1 (ΦC

p,t,x,b) (15)
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OH
t,x,b ≥ OH

t,x,b−1, ∀t, x ∈ ∆S
p , b > 1 (ΦH

p,t,x,b) (16)

(1)–(11), (17)

where the Lagrange multiplier associated with each constraint appears in parentheses to its right.
Objective function (12) maximizes firm p’s profits (as with the MO’s problem, the objective is given

in minimization form). Firm revenues are defined as the product of net energy sales (taking into account
energy charged into and discharged from energy storage) and the wholesale energy price. As noted in
Section 3.2, the hour-t wholesale energy price is given by the dual variable, ψt. For sake of simplicity,
renewable generation and energy storage are both assumed to have zero marginal operating costs.

Constraints (13)–(16) impose monotonicity on the offers, which is a typical market rule. Constraint (17)
embeds the MO’s market model as the lower-level problem. This constraint is needed to determine the effect
of firm p’s offers on its dispatch (i.e., the values of Gt,x,b, Wt,x,b, S

H
t,x,b, and S

C
t,x,b) and energy prices, ψt.

This constraint results in the profit-maximization problem being bi-level.

3.4. Market Equilibrium

Figure 1 illustrates the bilevel nature of our proposed model. The bottom of the figure represents the
MO’s market-clearing problem. This problem takes as inputs supply offers from the firms and determines
how each firm’s generation and storage units are dispatched. The MO also determines market-clearing prices
for energy in each hour. At the upper level, each firm solves a profit-maximization problem to determine
how to offer the units that it owns to maximize its individual profit.

Firm |P|�s Problem

Firm 2's Problem

Firm 1's Problem

Objective Function: 
         max Firm 1's Profit
s.t.:  Offering / Bidding 
         Constraints of 
         Different Units of
         Firm 1  

Conventional 
Units

Wind Units Storage Units

U
pper-Level P

roblem
s

Market Operator �s Problem: Market Clearing

Objective Function: max Social Welfare
s.t.: 

✁ Load Balance
✂ Capacity Constraints of Generation and Demand Blocks
✂ Ramp Rate Constraints of Conventional Units
✂ Charge, Discharge, and Energy Limits of Storage Units
✂ State-of-Charge and Energy-Balance Constraints of Storage Units

Price-
Responsive 

Demand 
Blocks

Low
er-Level P

roblem

Bilevel 
Problems

Price/Quantity 
Offers

Price/Quantity 
Offers

Price/Quantity 
Bids and Offers

Marginal 
Utilities

Market-Clearing 
Quantities and Prices

Figure 1: Schematic of Bilevel Model Structure and Market Equilibrium

The market equilibrium comes about because the firms simultaneously solve these profit maximization
problems. Thus, each firm takes into account the profit-maximizing behavior of its rival firms and the
impacts of these offer decisions (i.e., its own and those of its rivals) on the dispatch levels and prices that
are determined by the lower-level market model. We analyze the market by examining Nash equilibria. A
Nash equilibrium is a set of offer decisions for the firms and dispatch levels and market-clearing prices that
are simultaneously optimal in each firm’s profit-maximization problem and the MO’s market model. That
is, no firm should have a profitable unilateral deviation from its strategies that are prescribed by the Nash
equilibrium [29].
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One difficulty in examining strategic games, such as the one that we propose, is that there may be
multiple (or an infinite number of) Nash equilibria. We overcome this issue by examining a bounding range
of Nash equilibria. These equilibria are obtained by imposing different objective functions on the EPEC
that is used to find Nash equilibria. The first objective function:

min
∑

t,x,b

[

Cx,bGt,x,b − ψt · (Gt,x,b +Wt,x,b + SH
t,x,b − SC

t,x,b)
]

,

maximizes total firm profits (keeping with the other model formulations, the objective function is written
in minimization form). This objective function yields highly non-competitive equilibria, which we herein
term ‘collusive equilibria.’ Although we term such equilibria ‘collusive,’ they do not represent truly collusive
outcomes. A collusive outcome is typically not a Nash equilibrium, because players typically have incentives
to unilaterally deviate from the set of strategies which maximize the joint profits of all of the firms.

The second objective function:

min
∑

t,x,b

Cx,bGt,x,b −
∑

t,b

Ut,bDt,b,

which is also written in minimization form, maximizes social welfare. This objective function yields highly
competitive equilibria, which we herein refer to as ‘quasi-competitive equilibria.’ By using these two objective
functions, we are able to examine extreme opposite cases in which the market outcome is highly competitive
or non-competitive. Equilibria that occur in practice will likely lie between these two extremes. Thus, our
analysis can be seen as illustrating the worst- and best-case scenarios, from a market-efficiency perspective.

Further details on how the market-equilibrium model is converted into a computationally tractable MILP
are given in the appendices.

4. Case-Study Data

We demonstrate the use of our proposed model with an illustrative case study. The case study assumes
a system with up to one wind generator, one storage device, and two conventional units. The wind and
conventional generators are assumed to be owned by three independent profit-maximizing firms that compete
with one another in the market. We examine cases in which storage is owned by an independent price-taking
firm, an independent profit-maximizing firm, and the wind-generation firm.

To manage the computational complexity of the resulting EPEC, we consider eight operating hours in the
case study. This is mainly because our analysis considers a number of cases with different asset-ownership
and market structures. Given the volume of cases that we examine, having a case study with relatively
short computational times is important. The eight-hours cases that we examine require up to 15 hours to
solve. For purposes of comparison, we examine a small subset of 24-hour cases studies. In some instances,
these cases require up to 70 hours of computation time. This testing shows that 24-hour case studies could
be employed, however with some computational cost. Indeed, if one is examining the efficiency impacts of
energy storage in a particular market setting, a more detailed analysis using a 24-hour case study may be
prudent. On the other hand, our examination of 24-hour case studies reveal that the ‘qualitative’ properties
of the market equilibria that we derive from the eight-hour cases all carry over to the 24-hour case studies.
This suggests that our case-study results are robust to the duration of the operating period. It also suggests
that additional insights may not be gleaned from 24-hour case studies. It is, finally, worth noting that use
of a high-performance computing environment (to which we do not have access) would easily accommodate
a larger model size. We, conversely, conduct our simulations using a laptop with limited memory and
processing power.

Table 1 summarizes the characteristics of the two conventional units, each of which is assumed to have
two generation blocks with different marginal costs. Generating unit 1 is relatively low-cost (compared
to unit 2), but has a low ramping limit. As such, this generator represents an inflexible baseload unit.
Conversely, generating unit 2 is relatively high-cost but has a high ramping limit, representing a flexible
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peaking plant. The storage unit is assumed to have 100 MW and 100 MWh power and energy capacities,
respectively, an 85% round-trip efficiency, and an initial storage level of 50 MWh (which, per constraint (11),
must also be the ending storage level).

Table 1: Conventional-Generator Characteristics

Unit Ḡx,1 Ḡx,2 RD
x RU

x Cx,1 Cx,2 G0,x

1 150 MW 150 MW 40 MW/h 50 MW/h $20/MWh $30/MWh 170 MW
2 75 MW 75 MW 80 MW/h 100 MW/h $50/MWh $60/MWh 70 MW

Figure 2 summarizes demand-related data. As the figure shows, the demand is assumed to be bid in
three blocks. The bars in the figure represent the prices at which the three blocks are bid. The first block
is offered at a relatively high price (meaning that this load is almost always served), while the other blocks
have comparably lower bid prices. The hour-t maximum potential demand is defined as:

∑

b

D̄t,b.

The figure shows that the maximum potential demand follows a cycle that would normally be observed over
the course of several hours, with off- and on-peak periods. The prices of the demand blocks are positively
associated with maximum potential demand, reflecting the reality that willingness-to-pay for energy is
typically higher during on-peak periods.
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Figure 2: Prices Bid for Demand Blocks and Maximum Potential Demand in Each Hour

Figure 3 summarizes wind availability in each hour. With a peak availability of 120 MW, wind penetra-
tion is relatively high in this system when contrasted with the load data that are shown in Figure 2. Wind
availability varies considerably from hour to hour, meaning that system flexibility is needed to maintain
real-time balance between demand and supply. Moreover, wind availability is negatively correlated with
demand, which is common in many power systems.

Table 2 summarizes the 18 cases that we examine. The cases differ in terms of how wind, energy storage,
and conventional generators participate in the market. Case 1 assumes that there is no wind generation, while
Cases 2–5 and 6–9 assume that there is a price-taking and price-making wind-generation firm, respectively.
In the price-taking cases the generator offers its capacity into the market at its true marginal cost, which
is assumed to be zero for the wind generator. In the price-making cases the wind generator can offer its
supply at a different price than its true marginal cost (with the aim of maximizing its profits).

Cases 1, 2, and 6 assume that there is no energy storage in the system. Cases 3 and 7 assume that
there is a standalone price-taking firm that owns the energy storage. In these cases, the energy storage is
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Figure 3: Wind Generation Available in Each Hour

Table 2: Cases Examined

Case Wind Storage Generator-Ramping Constraints

1-NR None None Relaxed
1-R None None Enforced
2-NR Price-Taking None Relaxed
2-R Price-Taking None Enforced
3-NR Price-Taking Price-Taking Relaxed
3-R Price-Taking Price-Taking Enforced
4-NR Price-Taking Price-Making Relaxed
4-R Price-Taking Price-Making Enforced
5-NR Price-Taking Wind-Operated Relaxed
5-R Price-Taking Wind-Operated Enforced
6-NR Price-Making None Relaxed
6-R Price-Making None Enforced
7-NR Price-Making Price-Taking Relaxed
7-R Price-Making Price-Taking Enforced
8-NR Price-Making Price-Making Relaxed
8-R Price-Making Price-Making Enforced
9-NR Price-Making Wind-Operated Relaxed
9-R Price-Making Wind-Operated Enforced

offered into the market with zero charging and discharging costs. As a result, the MO operates the storage
to minimize system operation costs. Cases 4 and 8 assume that there is a standalone price-making firm that
owns the energy storage. In these cases, the energy-storage firm can offer at non-zero prices to maximize
firm profits. The remaining two cases assume that the energy storage is co-owned and -operated by the
wind-generation firm to maximize joint profits from wind and energy storage.

Conventional generation is assumed to be price-making in all of the cases. The cases that have an ‘-NR’
suffix relax the ramping constraints on the conventional generators, whereas the cases that have an ‘-R’
suffix enforce the constraints.

By contrasting results between the cases that are listed in Table 2, we are able to examine all interactions
and impacts of different technologies and market structures. We analyze the impacts that the exercise of
market power can have by comparing price-taking and -making cases. We can also examine interactions
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between technologies by comparing cases with and without wind and energy storage. Finally, comparing
cases with the ramping constraints of conventional generators enforced and relaxed allows us to understand
the impacts of these constraints on system operations.

5. Case-Study Results

Table 3 summarizes the results of the quasi-competitive market equilibria that are found in the 18 cases
that are listed in Table 2. These equilibria are found by having the objective function of the EPEC maximize
social welfare. Case 1-R, which has only two ramp-constrained conventional generators competing with one
another, sees all of the load served by conventional unit 1, which is the lower-cost but less flexible generator.
Case 2-R, in which the wind generator is added to the system as a price taker but there is no energy storage,
has 5% of available wind energy and 2.5% of potential demand curtailed. Moreover, conventional unit 2,
which is the higher-cost and more flexible generator, is dispatched. These changes are due to the limited
ramping capability of conventional unit 1 and the greater variability in the net-load profile (i.e., the profile
given by the difference between load and available wind production). We demonstrate this impact of the
limited ramping capability of conventional unit 1 by examining Case 2-NR, in which the ramping constraints
are relaxed. There are no load or wind curtailments nor is conventional unit 2 dispatched in Case 2-NR.
Hence, the combination of variable wind availability and limited ramping capabilities of conventional units
results in higher-cost generation being dispatched, as well as wind and load curtailments.

Table 3: Results of Quasi-Competitive Market Equilibria

Firm Profits [$]

Social Demand Wind Conventional Conventional
Case Welfare [$] Met [%] Spillage [%] Unit 1 Unit 2 Wind Storage

1-NR 100220 100.0 n/a 51510 0 n/a n/a
1-R 100220 100.0 n/a 51510 0 n/a n/a
2-NR 117420 100.0 0.0 36740 0 24950 n/a
2-R 114650 98.5 5.0 30720 1120 21760 n/a
3-NR 117860 100.0 0.0 34648 0 25423 1000
3-R 117772 100.0 0.0 28862 0 23009 700
4-NR 117860 100.0 0.0 30274 0 23671 700
4-R 117772 100.0 0.0 30062 0 23489 700
5-NR 117860 100.0 0.0 34602 0 26720 98
5-R 117772 100.0 0.0 32987 0 25707 93
6-NR 117420 100.0 0.0 35520 0 26190 n/a
6-R 114650 98.5 8.3 38560 780 24800 n/a
7-NR 117860 100.0 0.0 34648 0 25423 1000
7-R 117772 100.0 0.0 28862 0 23009 700
8-NR 117860 100.0 0.0 30274 0 23671 700
8-R 117772 100.0 0.0 30062 0 23489 700
9-NR 117860 100.0 0.0 34602 0 26720 98
9-R 117772 100.0 0.0 32987 0 25707 93

Cases 3–5 examine the benefits of energy storage in mitigating the inefficiencies caused by limited ramping
capabilities of the conventional generation units. Contrasting these cases with Case 2 shows that energy
storage is able to alleviate wind and demand curtailment and the need to dispatch conventional unit 2,
regardless of how the energy storage participates in the market (i.e., as a price-taker, price-maker, or co-
owned by the wind generator). This demonstrates the value of energy storage in allowing for more efficient
wind integration when faced with generator-ramping constraints.
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Among the cases in which the wind generator behaves as a price-maker (i.e., Cases 6–9), only Case 6
has different results compared to the corresponding cases in which the wind generator behaves as a price-
taker. In Case 6-R the wind generator’s exercise of market power increases wind curtailment from 5% in
Case 2-R to 8.3%. Consequently, the average energy price increases from about $43/MWh in Case 2-R
to about $49/MWh in Case 6-R. There are corresponding increases in overall firm profits resulting from
this wind curtailment. However, conventional unit 2 sees lower profits in Case 6-R compared to Case 2-R.
Interestingly, the wind generator is unable to exercise market power in Cases 7–9, due to the presence of the
energy storage. Hence, there are no wind or load curtailments in these cases and the equilibria are identical
to the corresponding cases in which the wind generator behaves as a price-taker (i.e., Cases 3–5).

As one might expect, the wind generator benefits overall from co-owning the energy storage (compared
to cases in which storage is operated by an independent firm). Having energy storage co-owned by the wind
generator also results in maximized total profits across all of the firms. We can also contrast equilibria in
which the ramping constraints are relaxed and enforced. As expected, relaxing the ramping constraints in-
creases social welfare, eliminates wind and load curtailments, and alleviates the need to dispatch conventional
unit 2. Relaxing the ramping constraints also increases the profits of the wind generator.

Table 4 summarizes the results of the collusive market equilibria, which are obtained by maximizing total
firm profits in the EPEC. As expected, these equilibria are not as competitive as those that are summarized
in Table 3 are. The collusive equilibria see lower social welfare and higher firm profits compared to the
quasi-competitive ones. For instance, in Case 1-R, which has only two ramp-constrained conventional units,
only 73.4% of demand is served. Moreover, some of this load is served by conventional unit 2, as a result
of conventional unit 1 withholding capacity to increase market prices. As such, the average energy price
increases from about $50/MWh in the quasi-competitive equilibrium in Case 1-R to about $73/MWh in the
collusive equilibrium. In Case 2-R, in which a price-taking wind generator is added, 5% of potential wind
generation is curtailed, 81.8% of load served, and conventional unit 2 is further dispatched (compared to
Case 1-R) because of the limited ramping capability of conventional unit 1.

Table 4: Results of Collusive Market Equilibria

Firm Profits [$]

Social Demand Wind Conventional Conventional
Case Welfare [$] Met [%] Spillage [%] Unit 1 Unit 2 Wind Storage

1-NR 87710 75.9 n/a 80160 0 n/a n/a
1-R 83160 73.4 n/a 71720 1850 n/a n/a
2-NR 102610 75.9 0.0 52020 0 43040 n/a
2-R 101440 81.8 5.0 40665 4145 33860 n/a
3-NR 102595 75.4 0.0 49837 0 42682 2041
3-R 101445 79.4 0.0 43905 1275 38300 3335
4-NR 102155 74.4 0.0 50244 0 43040 1321
4-R 102945 77.9 0.0 49184 0 38568 2045
5-NR 100972 73.7 0.0 50850 0 43040 −468
5-R 102082 77.2 0.0 49620 0 38840 972
6-NR 102610 75.9 0.0 52020 0 43040 n/a
6-R 100040 78.3 21.7 56780 0 30610 n/a
7-NR 102595 75.4 0.0 49837 0 42682 2041
7-R 100431 77.5 5.0 46711 850 36710 3335
8-NR 102155 74.4 0.0 50950 0 43040 615
8-R 98722 73.0 13.5 53410 0 37205 556
9-NR 100972 73.7 0.0 50850 0 43040 −468
9-R 102625 77.0 0.0 48860 0 38840 2275

Contrasting Case 2 to Cases 3–5 shows that in collusive equilibria energy storage has the same types
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of benefits as in quasi-competitive equilibria. This includes alleviating wind curtailment and reducing the
dispatch of conventional unit 2. Although conventional unit 2 is dispatched if storage is price-taking, this
unit is not dispatched if storage is price-making or co-owned by the wind generator.

Case 6-R sees higher wind curtailment rates compared to Case 2-R, as a result of the price-making
wind generator exercising market power. As a result, the average energy price increases from $63/MWh in
Case 2-R to $70/MWh in Case 6-R. Firm profits increase and social welfare decrease in Case 6-R (relative to
Case 2-R). Interestingly, conventional unit 2 is not dispatched in Case 6-R, as a result of the wind generator’s
withholding of generation and the resulting reduced variability in the net-load profile. Among the three cases
with energy storage and a price-making wind generator, the case in which storage is co-owned by the wind
generator results in no wind curtailment and conventional unit 2 not being dispatched. Moreover, social
welfare and the wind generator’s profits are also maximized in Case 9-R, in which energy storage is co-owned
by the wind generator.

Contrasting cases in which the ramping constraints are relaxed to those in which they are enforced shows
that enforcing the ramping constraints results in lower overall profits for the firms. Moreover, there is no
wind curtailment and conventional unit 2 is not dispatched in any of the cases in which ramping constraints
are relaxed. This indicates that without ramping constraints, the wind generator is not able to profitably
withhold supply from the market. Figure 4 further demonstrates the benefits of energy storage in reducing
average energy-generation costs. The figure shows that the cases in which energy storage is co-owned by
the wind generator (i.e., Cases 5-R and 9-R) also have the lowest average energy-generation cost among all
of the cases that are examined. Thus, co-ownership of wind and energy storage is beneficial in alleviating
wind-integration and flexibility-related issues.
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Figure 4: Average Generation Cost in Different Cases and Equilibria

All of the cases are formulated using GAMS version 24.2.1 and solved with Gurobi version 5.6.2 on a
computer with a 2.26 GHz Intel Core 2 Duo processor and 2 GB of memory. The solution times of the
quasi-competitive EPECs range between one and 63 minutes. The collusive EPECs take between one and
927 minutes to solve. The diagonalization process, which is used to verify that a given solution is indeed a
Nash equilibrium (cf. Appendix E) also takes an additional one to five minutes of computing time.

6. Conclusion

This paper provides a framework to analyze market inefficiencies due to the integration of renewable
generation in an electric power system. Our analysis specifically focuses on the impacts of ramping limits of
conventional generators and the variability of wind production. We examine the use of energy storage as a
means to address these inefficiencies. Importantly, the proposed model allows us to examine the interactions
between these technologies within a market framework, and the potential for inefficiencies created by the
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exercise of market power or other strategic behavior on the part of generation or storage firms. The proposed
model is an EPEC in which all firms can behave strategically to maximize their profits. The EPEC model
is linearized (cf. the appendices), which yields a computationally tractable MILP.

We demonstrate the use of the proposed model with a simple illustrative case study. Within this case
study we examine a variety of asset-ownership and market-participation structures. We also analyze in
detail the effects of generator-ramping constraints on market outcomes. Our results show that variability
in wind availability leads to system inefficiencies, including the dispatch of more expensive generation and
load and wind curtailments. Energy storage is able to mitigate these inefficiencies, under a variety of
asset-ownership structures. Our results show that co-ownership and -operation of energy storage by the
wind generator yields the best results in terms of minimizing generation costs, maximizing wind-generation
profits, minimizing wind curtailment, and minimizing the use of the high-cost peaking generator. This
result may seem counter-intuitive, because one would assume that a price-taking energy storage firm would
maximize market efficiency. However, this finding is consistent with other analyses of the welfare impacts
of energy storage under imperfect competition [30, 31].

Our analysis does not consider the capital costs of energy storage devices and only examines short-
run operational impacts. Comparing the capital costs of energy storage to the types of benefits that are
examined in our work is an important consideration in long-run capacity planning. However, our proposed
model is useful for understanding how conventional and renewable generators and energy storage interact
and compete with one another under different market structures. For this reason, our proposed model is an
important tool for policy makers, market designers, and regulators to examine market rules and structures.
Our model can be employed to refine market designs with the aim of maximizing the efficient use of wind
resources.
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Appendix A. Converting Firm Profit-Maximization Bi-Level Problem Into a Mathematical

Program with Equilibrium Constraints

We can convert bi-level profit-maximization problem (12)–(17) into an MPEC. We do this by noting
that the offer variables (i.e., OC

t,x,b, O
H
t,x,b, O

G
t,x,b, and O

W
t,x,b) are parameters in the lower-level market model.

Moreover, the market model is linear, continuous, and convex. Hence, an optimal solution to the lower-level
problem can be characterized by its primal/dual optimality conditions [32, 33], which are:

∑

x,b

(

Gt,x,b +Wt,x,b + SH
t,x,b − SC

t,x,b

)

=
∑

b

Dt,b, ∀t (Ψp,t) (A.1)

0 ≤ Dt,b ≤ D̄t,b, ∀t, b (ΘD,−
p,t,b,Θ

D,+
p,t,b) (A.2)

0 ≤ Gt,x,b ≤ Ḡx,b, ∀t, x, b (ΘG,−
p,t,x,b,Θ

G,+
p,t,x,b) (A.3)

−RD
x ≤

∑

b

(Gt,x,b −Gt−1,x,b) ≤ RU
x , ∀t, x (ΘR,−

p,t,x,Θ
R,+
p,t,x) (A.4)

0 ≤Wt,x,b ≤ W̄t,x,b, ∀t, x, b (ΘW,−
p,t,x,b,Θ

W,+
p,t,x,b) (A.5)

0 ≤ SC
t,x,b ≤ S̄C

x,b, ∀t, x, b (ΘC,−
p,t,x,b,Θ

C,+
p,t,x,b) (A.6)

0 ≤ SH
t,x,b ≤ S̄H

x,b, ∀t, x, b (ΘH,−
p,t,x,b,Θ

H,+
p,t,x,b) (A.7)

Et,x = Et−1,x +
∑

b

(

ηCx S
C
t,x,b − SH

t,x,b/η
H
x

)

, ∀t, x (ΘE
p,t,x) (A.8)
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0 ≤ Et,x ≤ Ēx, ∀t, x (ΘE,−
p,t,x,Θ

E,+
p,t,x) (A.9)

ET,x = E0,x, ∀x (ΘE,0
p,x ) (A.10)

Ut,b − ψt + θD,−
t,b − θD,+

t,b = 0, ∀t, b (ωD
p,t,b) (A.11)

−OG
t,x,b + ψt + θG,−

t,x,b − θG,+
t,x,b + θR,−

t,x − θR,−
t+1,x − θR,+

t,x + θR,+
t+1,x = 0, ∀t < T, x, b (ωG

p,t,x,b) (A.12)

−OG
T,x,b + ψT + θG,−

T,x,b − θG,+
T,x,b + θR,−

T,x − θR,+
T,x = 0, ∀x, b (ωG

p,T,x,b) (A.13)

−OW
t,x,b + ψt + θW,−

t,x,b − θW,+
t,x,b = 0, ∀t, x, b (ωW

p,t,x,b) (A.14)

OC
t,x,b − ψt + θC,−

t,x,b − θC,+
t,x,b − ηCx θ

E
t,x = 0, ∀t, x, b (ωC

p,t,x,b) (A.15)

−OH
t,x,b + ψt + θH,−

t,x,b − θh,+t,x,b + θEt,x/η
H
x = 0, ∀t, x, b (ωH

p,t,x,b) (A.16)

θEt,x − θEt+1,x + θE,−
t,x − θE,+

t,x = 0, ∀t < T, x (ωE
p,t,x) (A.17)

θET,x + θE,−
T,x − θE,+

T,x + θE,0
x = 0, ∀x (ωE,0

p,x ) (A.18)

θD,−
t,b , θD,+

t,b ≥ 0, ∀t, b (ΩD,−
p,t,b,Ω

D,+
p,t,b) (A.19)

θG,−
t,x,b, θ

G,+
t,x,b ≥ 0, ∀t, x, b (ΩG,−

p,t,x,b,Ω
G,+
p,t,x,b) (A.20)

θR,−
t,x , θR,+

t,x ≥ 0, ∀t, x (ΩR,−
p,t,x,Ω

R,+
p,t,x) (A.21)

θW,−
t,x,b, θ

W,+
t,x,b ≥ 0, ∀t, x, b (ΩW,−

p,t,x,b,Ω
W,+
p,t,x,b) (A.22)

θC,−
t,x,b, θ

C,+
t,x,b ≥ 0, ∀t, x, b (ΩC,−

p,t,x,b,Ω
C,+
p,t,x,b) (A.23)

θH,−
t,x,b, θ

H,+
t,x,b ≥ 0, ∀t, x, b (ΩH,−

p,t,x,b,Ω
H,+
p,t,x,b) (A.24)

θE,−
t,x , θE,+

t,x ≥ 0, ∀t, x (ΩE,−
p,t,x,Ω

E,+
p,t,x) (A.25)

∑

t,x,b

(

OG
t,x,bGt,x,b +OW

t,x,bWt,x,b +OH
t,x,bS

H
t,x,b −OC

t,x,bS
C
t,x,b

)

−
∑

t,b

Ut,bDt,b (A.26)

= −
∑

t,b

D̄t,bθ
D,+
t,b −

∑

t,x,b

(

Ḡx,bθ
G,+
t,x,b +RD

x θ
R,−
t,x +RU

x θ
R,+
t,x + W̄t,x,bθ

W,+
t,x,b

)

+
∑

x,b

G0,x,b ·
(

θR,−
1,x − θR,+

1,x

)

−
∑

t,x,b

(

S̄C
x,bθ

C,+
t,x,b + S̄H

x,bθ
H,+
t,x,b

)

+
∑

x

(

E0,x ·
(

θE1,x + θE,0
x

)

−
∑

t

Ēxθ
E,+
t,x

)

, (ΩSD
p )

where the Lagrange multiplier associated with each constraint appears in parentheses to its right.
Conditions (A.1)–(A.10) are the primal constraints of the MO’s problem, i.e., they are the same as

constraints (2)–(11). Conditions (A.11)–(A.25) are the constraints of the dual problem to the market model.
Finally, (A.26) is the strong-duality condition, which ensures that the primal and dual objective functions
are equal.

Thus, we convert firm p’s bi-level profit-maximization problem into an MPEC by minimizing objective
function (12) subject to constraints (13)–(16) and (A.1)–(A.26). That is, we replace the lower-level market
model with its primal/dual optimality conditions.

Appendix B. Multi-Firm Nash Equilibrium

Our goal is to find Nash equilibrium offers for the firms, which satisfy the property that no firm has a
profitable unilateral deviation. Another way of characterizing the no-unilateral-deviation property is that
the offers must be simultaneously optimal in each firm’s MPEC, which is given by (12)–(16) and (A.1)–
(A.26). Thus, one way of finding Nash equilibria is by simultaneously solving the firms’ MPECs. Because
simultaneously solving these MPECs is intractable, we instead characterize potential optimal solutions to
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each firm’s profit-maximization problem using the Karush-Kuhn-Tucker (KKT) conditions for the firm’s
MPEC. We can then find potential Nash equilibria by simultaneously solving the KKT conditions of all of
the firms’ MPECs.

The KKT conditions of firm p’s MPEC are:

− ΦG
p,t,x,b +ΦG

p,t,x,b+1 +ΩSD
p Gt,x,b − ωG

p,t,x,b = 0, ∀t, x ∈ ∆G
p , b < B (B.1)

− ΦG
p,t,x,B +ΩSD

p Gt,x,B − ωG
p,t,x,B = 0, ∀t, x ∈ ∆G

p (B.2)

− ΦW
p,t,x,b +ΦW

p,t,x,b+1 +ΩSD
p Wt,x,b − ωW

p,t,x,b = 0, ∀t, x ∈ ∆W
p , b < B (B.3)

− ΦW
p,t,x,B +ΩSD

p Wt,x,B − ωW
p,t,x,B = 0, ∀t, x ∈ ∆W

p (B.4)

− ΦC
p,t,x,b +ΦC

p,t,x,b+1 − ΩSD
p SC

t,x,b + ωC
p,t,x,b = 0, ∀t, x ∈ ∆S

p , b < B (B.5)

− ΦC
p,t,x,B − ΩSD

p SC
t,x,B + ωC

p,t,x,B = 0, ∀t, x ∈ ∆S
p (B.6)

− ΦH
p,t,x,b +ΦH

p,t,x,b+1 +ΩSD
p SH

t,x,b − ωH
p,t,x,b = 0, ∀t, x ∈ ∆S

p , b < B (B.7)

− ΦH
p,t,x,B +ΩSD

p SH
t,x,B − ωH

p,t,x,B = 0, ∀t, x ∈ ∆S
p (B.8)

−Ψp,t +ΘD,+
p,t,b −ΘD,−

p,t,b − ΩSD
p Ut,b = 0, ∀t, b (B.9)

Cx,b − ψt +Ψp,t +ΘG,+
p,t,x,b −ΘG,−

p,t,x,b +ΘR,+
p,t,x −ΘR,+

p,t+1,x −ΘR,−
p,t,x +ΘR,−

p,t+1,x +ΩSD
p OG

t,x,b = 0, (B.10)

∀t < T, x ∈ ∆G
p , b

Cx,b − ψT +Ψp,T +ΘG,+
p,T,x,b −ΘG,−

p,T,x,b +ΘR,+
p,T,x −ΘR,−

p,T,x +ΩSD
p OG

T,x,b = 0, ∀x ∈ ∆G
p , b (B.11)

Ψp′,t +ΘG,+
p′,t,x,b −ΘG,−

p′,t,x,b +ΘR,+
p′,t,x −ΘR,+

p′,t+1,x −ΘR,−
p′,t,x +ΘR,−

p′,t+1,x + ΩSD
p′ OG

t,x,b = 0, (B.12)

∀p′ 6= p, t < T, x ∈ ∆G
p′ , b

Ψp′,T +ΘG,+
p′,T,x,b −ΘG,−

p′,T,x,b +ΘR,+
p′,T,x −ΘR,−

p′,T,x +ΩSD
p′ OG

T,x,b = 0, ∀p′ 6= p, x ∈ ∆G
p′ , b (B.13)

− ψt +Ψp,t +ΘW,+
p,t,x,b −ΘW,−

p,t,x,b +ΩSD
p OW

t,x,b = 0, ∀t, x ∈ ∆W
p , b (B.14)

Ψp′,t +ΘW,+
p′,t,x,b −ΘW,−

p′,t,x,b +ΩSD
p′ OW

t,x,b = 0, ∀p′ 6= p, t, x ∈ ∆W
p′ , b (B.15)

ψt −Ψp,t −ΘC,−
p,t,x,b +ΘC,+

p,t,x,b − ηCx Θ
E
p,t,x − ΩSD

p OC
t,x,b = 0, ∀t, x ∈ ∆S

p , b (B.16)

−Ψp′,t −ΘC,−
p′,t,x,b +ΘC,+

p′,t,x,b − ηCx Θ
E
p′,t,x − ΩSD

p′ OC
t,x,b = 0, ∀p′ 6= p, t, x ∈ ∆S

p′ , b (B.17)

− ψt +Ψp,t −ΘH,−
p,t,x,b +ΘH,+

p,t,x,b +ΘE
p,t,x/η

H
x +ΩSD

p OH
t,x,b = 0, ∀t, x ∈ ∆S

p , b (B.18)

Ψp′,t −ΘH,−
p′,t,x,b +ΘH,+

p′,t,x,b +ΘE
p′,t,x/η

H
x +ΩSD

p′ OH
t,x,b = 0, ∀p′ 6= p, t, x ∈ ∆S

p′ , b (B.19)

ΘE
p,t,x −ΘE

p,t+1,x −ΘE,−
p,t,x +ΘE,+

p,t,x = 0, ∀t < T, x (B.20)

ΘE
p,T,x −ΘE,−

p,T,x +ΘE,+
p,T,x +ΘE,0

p,x = 0, ∀x (B.21)

− E0,xΩ
SD
p +

∑

b

(

ωH
p,1,x,b/η

H
x − ηCx ω

C
p,1,x,b

)

+ ωE
p,1,x = 0, ∀x (B.22)

∑

b

(

ωH
p,t,x,b/η

H
x − ηCx ω

C
p,t,x,b

)

+ ωE
p,t,x − ωE

p,t−1,x = 0, ∀t ∈ {2, . . . , T − 1}, x (B.23)

∑

b

(

ωH
p,T,x,b/η

H
x − ηCx ω

C
p,T,x,b

)

+ ωE,0
p,x − ωE

p,T−1,x = 0, ∀x (B.24)

− E0,xΩ
SD
p + ωE,0

p,x = 0, ∀x (B.25)

−
∑

x∈∆G
p ,b

Gt,x,b −
∑

x∈∆W
p ,b

Wt,x,b −
∑

x∈∆S
p ,b

(

SH
t,x,b − SC

t,x,b

)

−
∑

b

ωD
p,t,b (B.26)

+
∑

x,b

(

ωG
p,t,x,b + ωW

p,t,x,b + ωH
p,t,x,b − ωC

p,t,x,b

)

= 0, ∀t
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ωD
p,t,b − ΩD,−

p,t,b = 0, ∀t, b (B.27)

D̄t,bΩ
SD
p − ωD

p,t,b − ΩD,+
p,t,b = 0, ∀t, b (B.28)

ωG
p,t,x,b − ΩG,−

p,t,x,b = 0, ∀t, x, b (B.29)

Ḡx,bΩ
SD
p − ωG

p,t,x,b − ΩG,+
p,t,x,b = 0, ∀t, x, b (B.30)

ωW
p,t,x,b − ΩW,−

p,t,x,b = 0, ∀t, x, b (B.31)

W̄t,x,bΩ
SD
p − ωW

p,t,x,b − ΩW,+
p,t,x,b = 0, ∀t, x, b (B.32)

RD
x ΩSD

p −
∑

b

(

G0,x,bΩ
SD
p − ωG

p,1,x,b

)

− ΩR,−
p,1,x = 0, ∀x (B.33)

RD
x ΩSD

p +
∑

b

(

ωG
p,t,x,b − ωG

p,t−1,x,b

)

− ΩR,−
p,t,x = 0, ∀t > 1, x (B.34)

RU
x Ω

SD
p +

∑

b

(

G0,x,bΩ
SD
p − ωG

p,1,x,b

)

− ΩR,+
p,1,x = 0, ∀x (B.35)

RU
x Ω

SD
p −

∑

b

(

ωG
p,t,x,b − ωG

p,t−1,x,b

)

− ΩR,+
p,t,x = 0, ∀t > 1, x (B.36)

ωC
p,t,x,b − ΩC,−

p,t,x,b = 0, ∀t, x, b (B.37)

S̄C
x,bΩ

SD
p − ωC

p,t,x,b − ΩC,+
p,t,x,b = 0, ∀t, x, b (B.38)

ωH
p,t,x,b − ΩH,−

p,t,x,b = 0, ∀t, x, b (B.39)

S̄H
x,bΩ

SD
p − ωH

p,t,x,b − ΩH,+
p,t,x,b = 0, ∀t, x, b (B.40)

ωE
p,t,x − ΩE,−

p,t,x = 0, ∀t < T, x, b (B.41)

ωE,0
p,x − ΩE,−

p,T,x = 0, ∀x, b (B.42)

ĒxΩ
SD
p − ωE

p,t,x − ΩE,+
p,t,x = 0, ∀t < T, x, b (B.43)

ĒxΩ
SD
p − ωE,0

p,x − ΩE,+
p,T,x = 0, ∀x, b (B.44)

(A.1), (A.8), (A.10)–(A.18), (A.26) (B.45)

0 ≤ OG
t,x,b −OG

t,x,b−1 ⊥ ΦG
p,t,x,b ≥ 0, ∀y, x ∈ ∆G

p , b > 1 (B.46)

0 ≤ OW
t,x,b −OW

t,x,b−1 ⊥ ΦW
p,t,x,b ≥ 0, ∀y, x ∈ ∆W

p , b > 1 (B.47)

0 ≤ OC
t,x,b −OC

t,x,b−1 ⊥ ΦC
p,t,x,b ≥ 0, ∀y, x ∈ ∆S

p , b > 1 (B.48)

0 ≤ OH
t,x,b −OH

t,x,b−1 ⊥ ΦH
p,t,x,b ≥ 0, ∀y, x ∈ ∆S

p , b > 1 (B.49)

0 ≤ Dt,b ⊥ ΘD,−
p,t,b ≥ 0, ∀t, b (B.50)

0 ≤ D̄t,b −Dt,b ⊥ ΘD,+
p,t,b ≥ 0, ∀t, b (B.51)

0 ≤ Gt,x,b ⊥ ΘG,−
p,t,x,b ≥ 0, ∀t, x, b (B.52)

0 ≤ Ḡx,b −Gt,x,b ⊥ ΘG,+
p,t,x,b ≥ 0, ∀t, x, b (B.53)

0 ≤
∑

b

(Gt,x,b −Gt−1,x,b) +RD
x ⊥ ΘR,−

p,t,x ≥ 0, ∀t, x (B.54)

0 ≤ RU
x −

∑

b

(Gt,x,b −Gt−1,x,b) ⊥ ΘR,+
p,t,x ≥ 0, ∀t, x (B.55)

0 ≤Wt,x,b ⊥ ΘW,−
p,t,x,b ≥ 0, ∀t, x, b (B.56)

0 ≤ W̄t,x,b −Wt,x,b ⊥ ΘW,+
p,t,x,b ≥ 0, ∀t, x, b (B.57)

0 ≤ SC
t,x,b ⊥ ΘC,−

p,t,x,b ≥ 0, ∀t, x, b (B.58)
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0 ≤ S̄C
x,b − SC

t,x,b ⊥ ΘC,+
p,t,x,b ≥ 0, ∀t, x, b (B.59)

0 ≤ SH
t,x,b ⊥ ΘH,−

p,t,x,b ≥ 0, ∀t, x, b (B.60)

0 ≤ S̄H
t,x,b − SH

t,x,b ⊥ ΘH,+
p,t,x,b ≥ 0, ∀t, x, b (B.61)

0 ≤ Et,x ⊥ ΘE,−
p,t,x ≥ 0, ∀t, x (B.62)

0 ≤ Ēx − Et,x ⊥ ΘE,+
p,t,x ≥ 0, ∀t, x (B.63)

0 ≤ θD,−
t,b ⊥ ΩD,−

p,t,b ≥ 0, ∀t, b (B.64)

0 ≤ θD,+
t,b ⊥ ΩD,+

p,t,b ≥ 0, ∀t, b (B.65)

0 ≤ θG,−
t,x,b ⊥ ΩG,−

p,t,x,b ≥ 0, ∀t, x, b (B.66)

0 ≤ θG,+
t,x,b ⊥ ΩG,+

p,t,x,b ≥ 0, ∀t, x, b (B.67)

0 ≤ θR,−
t,x ⊥ ΩR,−

p,t,x ≥ 0, ∀t, x (B.68)

0 ≤ θR,+
t,x ⊥ ΩR,+

p,t,x ≥ 0, ∀t, x (B.69)

0 ≤ θW,−
t,x,b ⊥ ΩW,−

p,t,x,b ≥ 0, ∀t, x, b (B.70)

0 ≤ θW,+
t,x,b ⊥ ΩW,+

p,t,x,b ≥ 0, ∀t, x, b (B.71)

0 ≤ θC,−
t,x,b ⊥ ΩC,−

p,t,x,b ≥ 0, ∀t, x, b (B.72)

0 ≤ θC,+
t,x,b ⊥ ΩC,+

p,t,x,b ≥ 0, ∀t, x, b (B.73)

0 ≤ θH,−
t,x,b ⊥ ΩH,−

p,t,x,b ≥ 0, ∀t, x, b (B.74)

0 ≤ θH,+
t,x,b ⊥ ΩH,+

p,t,x,b ≥ 0, ∀t, x, b (B.75)

0 ≤ θE,−
t,x ⊥ ΩE,−

p,t,x ≥ 0, ∀t, x (B.76)

0 ≤ θE,+
t,x ⊥ ΩE,+

p,t,x ≥ 0, ∀t, x (B.77)

where ‘⊥’ denotes complementary slackness between an inequality constraint in firm p’s MPEC and the
non-negativity constraint on the corresponding Lagrange multiplier.

Conditions (B.1)–(B.44) are derived from the stationarity conditions for firm p’s MPEC. These station-
arity conditions involve both firm p’s upper-level offer variables, as well as all primal and dual variables of
the lower-level market model. Condition (B.45) is the strong-duality equality from firm p’s MPEC. Condi-
tions (B.46)–(B.77) impose the inequality constraints and complementary-slackness conditions for firm p’s
MPEC.

Combining conditions (B.1)–(B.77) for all of the firms yields an EPEC.

Appendix C. Objective Function of EPEC

Under relatively mild conditions, non-co-operative games, such as the one that we study, are guaranteed
to have at least one Nash equilibrium. Indeed, one difficulty in game theory is that a non-co-operative game
may have multiple or an infinite number of equilibria. We address this issue by using two different objective
functions in the EPEC. These objective functions allow us to obtain a ‘bounding range’ of equilibria [32].

The first objective function:

min
∑

t,x,b

[

Cx,bGt,x,b − ψt · (Gt,x,b +Wt,x,b + SH
t,x,b − SC

t,x,b)
]

, (C.1)

maximizes total profits of the competing firms (keeping with the other model formulations, the objective
function is written in minimization form). This objective function yields highly non-competitive equilibria,
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which we herein term ‘collusive equilibria.’ The second objective function (also written in minimization
form):

min
∑

t,x,b

Cx,bGt,x,b −
∑

t,b

Ut,bDt,b,

maximizes social welfare. This objective function yields highly competitive equilibria, which we herein refer
to as ‘quasi-competitive equilibria.’

By using these two objective functions, we are able to examine extreme opposite cases in which the
market outcome is highly competitive or non-competitive. Equilibria that occur in practice will likely lie
between these two extremes. Thus, our analysis can be thought of as illustrating the worst- and best-case
scenarios, from a market-efficiency perspective.

Appendix D. Linearizing the EPEC

Constraints (B.1)–(B.77) of the EPEC include a number of non-linearities, which complicate its solution.
Moreover, objective function (C.1) is also non-linear in the variables of the EPEC. Thus, we take the following
steps, which are outlined in this section, to linearize these non-linearities. By doing so, we obtain a tractable
EPEC.

Appendix D.1. Bilinear Terms with ΩSD
p

A number of bilinear terms appear in constraints (B.1)–(B.8) and (B.10)–(B.19) in which the dual
variable, ΩSD

p , is multiplied by a primal dispatch or offer variable. Because the variable, ΩSD
p , is common in

all of these terms, we parameterize the EPEC by fixing the values of ΩSD
p to different quantities. We then

vary the value of ΩSD
p until obtaining solutions to the EPEC, which are guaranteed to be Nash equilibria

(cf. Appendix E for details on how we verify that a EPEC solution is a Nash equilibrium). This approach
to linearizing a non-linearity of this type is common practice [32–34].

Appendix D.2. Bilinear Terms in Strong-Duality Equality

Strong-duality equality (A.26), which appears in constraint (B.45) of the EPEC, has the bilinear terms,
OG

t,x,bGt,x,b, O
W
t,x,bWt,x,b, O

H
t,x,bS

H
t,x,b, and O

C
t,x,bS

C
t,x,b. We linearize these by noting that because the MO’s

problem is linear, the strong-duality equality is equivalent to the complementary-slackness conditions of the
lower-level problem [32, 35]. Thus, condition (A.26) can be removed from constraint (B.45) and replaced
with the following equivalent complementary-slackness conditions:

0 ≤ Dt,b ⊥ θD,−
t,b ≥ 0, ∀t, b (D.1)

0 ≤ D̄t,b −Dt,b ⊥ θD,+
t,b ≥ 0, ∀t, b (D.2)

0 ≤ Gt,x,b ⊥ θG,−
t,x,b ≥ 0, ∀t, x, b (D.3)

0 ≤ Ḡx,b −Gt,x,b ⊥ θG,+
t,x,b ≥ 0, ∀t, x, b (D.4)

0 ≤
∑

b

(Gt,x,b −Gt−1,x,b) +RD
x ⊥ θR,−

t,x ≥ 0, ∀t, x (D.5)

0 ≤ RU
x −

∑

b

(Gt,x,b −Gt−1,x,b) ⊥ θR,+
t,x ≥ 0, ∀t, x (D.6)

0 ≤Wt,x,b ⊥ θW,−
t,x,b ≥ 0, ∀t, x, b (D.7)

0 ≤ W̄t,x,b −Wt,x,b ⊥ θW,+
t,x,b ≥ 0, ∀t, x, b (D.8)

0 ≤ SC
t,x,b ⊥ θC,−

t,x,b ≥ 0, ∀t, x, b (D.9)

0 ≤ S̄C
x,b − SC

t,x,b ⊥ θC,+
t,x,b ≥ 0, ∀t, x, b (D.10)

0 ≤ SH
t,x,b ⊥ θH,−

t,x,b ≥ 0, ∀t, x, b (D.11)
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0 ≤ S̄H
x,b − SH

t,x,b ⊥ θH,+
t,x,b ≥ 0, ∀t, x, b (D.12)

0 ≤ Et,x ⊥ θE,−
t,x ≥ 0, ∀t, x (D.13)

0 ≤ Ēx − Et,x ⊥ θE,+
t,x ≥ 0. ∀t, x (D.14)

Appendix D.3. Complementary-Slackness Conditions

Complementary-slackness conditions (B.46)–(B.77) and (D.1)–(D.14) are nonlinear because a comple-
mentarity constraint of the form:

0 ≤ f(z) ⊥ ζ ≥ 0, (D.15)

can be equivalently written as:

0 ≤ f(z)

ζ ≥ 0

f(z)ζ = 0.

Complementary-slackness condition (D.15) can be linearized using the so-called Fortuny-Amat method
[36]. This method introduces a binary variable (one for each complementary-slackness condition), which we
denote as π, and a sufficiently large constant, which we denote as M . Condition (D.15) is then replaced
with the constraints:

0 ≤ f(z) ≤Mπ

0 ≤ ζ ≤M · (1− π)

π ∈ {0, 1}.

All of the aforementioned complementary-slackness conditions are linearized using this method.

Appendix D.4. Bilinear Terms in Objective Function (C.1)

Objective function (C.1) has the bilinear terms, ψtGt,x,b, ψtWt,x,b, ψtS
H
t,x,b, and ψtS

C
t,x,b. We approximate

these terms using the so-called binary expansion method [37]. To do this, objective function (C.1), can be
rewritten as:

min
∑

t,x,b

Cx,bGt,x,b −
∑

t

ψtνt,

where the auxiliary variable, νt, denotes total hour-t net generation and is defined as:

νt =
∑

x,b

(

Gt,x,b +Wt,x,b + SH
t,x,b − SC

t,x,b

)

.

After rewriting the objective function, we approximate νt as taking on one of a fixed set of values, which
we denote as ν̄t,1, . . . , ν̄t,Ξ. We assume that these values are equally spaced, meaning that ν̄t,2 − ν̄t,1 =
· · · = ν̄t,Ξ − ν̄t,Ξ−1 = ν̄∆t . We then introduce a set of continuous and binary variables, which we denote as
γt,1, . . . , γt,Ξ and χt,1, . . . , χt,Ξ, respectively. Finally, objective function (C.1) is replaced with:

min
∑

t,x,b

Cx,bGt,x,b −
∑

t,ξ

γt,ξ ν̄t,ξ,
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and the following constraints:

νt =
∑

x,b

(

Gt,x,b +Wt,x,b + SH
t,x,b − SC

t,x,b

)

, ∀t

νt − ν̄∆t ≤
∑

ξ

ν̄t,ξχt,ξ ≤ νt, ∀t (D.16)

∑

ξ

χt,ξ = 1, ∀t (D.17)

0 ≤ ψt − γt,ξ ≤M · (1 − χt,ξ), ∀t, ξ (D.18)

0 ≤ γt,ξ ≤M · χt,ξ, ∀t, ξ (D.19)

χt,ξ ∈ {0, 1}, ∀t, ξ (D.20)

are added to the EPEC.
Constraints (D.16), (D.17), and (D.20) force the variable χt,ξ that has a corresponding value of ν̄t,ξ that

is closest to νt to equal 1, while the other χt,ξ’s are forced equal to 0. Constraints (D.18) force the value of
γt,ξ corresponding to the χt,ξ that is equal to 1 to equal ψt, while constraints (D.19) force the other γt,ξ’s
to equal zero. Thus:

∑

t,ξ

γt,ξν̄t,ξ,

represents the product between ψt and the value of ν̄t,ξ that is closest to νt.

Appendix E. Verifying Nash Equilibria

Linearizing the EPEC using the techniques that are mentioned in Appendix D yields an MILP. As noted
before, a solution to this MILP is a solution to the original EPEC. However, there is no guarantee that
an EPEC solution is a Nash equilibrium [32, 33]. Thus, we verify whether an EPEC solution is in fact
a Nash equilibrium by using diagonalization [33, 34]. Diagonalization involves solving each firm’s MPEC,
while holding the decision variables of all of that firm’s rivals fixed equal to the values that are obtained
from the EPEC solution. If the EPEC solution is optimal in each firm’s MPEC, that means the EPEC
solution satisfies the no-unilateral-deviation property and is indeed a Nash equilibrium. Otherwise, if the
EPEC solution is not optimal in the MPEC of one or more firms, the EPEC solution does not constitute a
Nash equilibrium and is discarded from further consideration.

References

[1] E. Moiseeva, M. R. Hesamzadeh, D. R. Biggar, Exercise of Market Power on Ramp Rate in Wind-Integrated Power
Systems, IEEE Transactions on Power Systems 30 (2015) 1614–1623.

[2] M. L. Kubik, P. J. Coker, J. F. Barlow, Increasing thermal plant flexibility in a high renewables power system, Applied
Energy 154 (2015) 102–111.

[3] R. Edmunds, L. Davies, P. Deane, M. Pourkashanian, Thermal power plant operating regimes in future British power
systems with increasing variable renewable penetration, Energy Conversion and Management 105 (2015) 977–985.

[4] X. Zha, T. Ouyang, L. Qin, Y. Xiong, H. Huang, Selection of time window for wind power ramp prediction based on risk
model, Energy Conversion and Management 126 (2016) 748–758.

[5] E. Heydarian-Forushani, M. P. Moghaddam, M. K. Sheikh-El-Eslami, M. Shafie-khah, J. P. S. Catalão, A stochastic
framework for the grid integration of wind power using flexible load approach, Energy Conversion and Management 88
(2014) 985–998.

[6] J. Salpakari, J. Mikkola, P. D. Lund, Improved flexibility with large-scale variable renewable power in cities through optimal
demand side management and power-to-heat conversion, Energy Conversion and Management 126 (2016) 649–661.
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