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Abstract

Rising wind penetrations can suppress wholesale energy prices by displacing higher-cost conventional generation from
the merit order. Wind suffers disproportionately from this price suppression, because the price is most suppressed when
wind availability is high, hindering wind-investment incentives. One way to mitigate this price suppression is by wind
exercising market power, which introduces efficiency losses. An alternative is to use energy storage, which allows energy
to be stored when wind availability is high. This stored energy is later discharged when wind availability is lower and
prices are higher.

This paper proposes a bilevel equilibrium model to study market equilibrium interactions between energy storage and
wind and conventional generators. We represent the market interaction using an equilibrium problem with equilibrium
constraints. An illustrative case study is used to demonstrate the social welfare and profit benefits of using energy
storage in this manner.
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1. Introduction

The electricity industry has seen rising penetrations of
nondispatchable renewable generation. This has histori-
cally been driven by policy mandates, such as subsidies or
renewable portfolio standards [1–3]. These mandates have
resulted in renewable cost reductions, through learning-by-
doing and economy-of-scale effects, to the point that some
renewables are becoming prudent investments without the
mandates [3–5].

Green and Vasilakos [6] study the market impacts of
high renewable penetrations. They demonstrate that as its
penetration increases, wind has the effect of suppressing
wholesale energy prices by displacing higher-priced gen-
eration from the merit order. Wind suffers dispropor-
tionately (compared to conventional generation) from this
price suppression, because the price-suppression is great-
est during periods that wind availability is high. Thus,
this price suppression can disproportionately reduce wind-
investment incentives. Buygi et al. [7] further demonstrate
that this price-suppression effect can also be attributed to
the assumption that renewable generators are small play-
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ers that behave nonstrategically, meaning that their gen-
eration unduly suppresses energy prices.

Wind could mitigate this price suppression by exercis-
ing market power [8]. This involves wind generators offer-
ing their supply into the market above cost. This solution
typically introduces efficiency losses, however. Efficiency
losses arise because wind generators are withholding sup-
ply, allowing higher-cost generation that would otherwise
(absent the exercise of market power) not clear the market
to set the price.

An alternate solution to the price-suppression effect is
to use energy storage [9]. Energy is stored when high wind
availability would otherwise suppress prices and is later
discharged when wind availability is lower and prices are
higher. Wind derives this benefit from energy storage re-
gardless of whether it owns the storage or not [9]. Previous
market analyses of wind and storage are limited, however,
because they often rely on highly stylized models to find an
equilibrium between storage, wind, and conventional units.
This paper relaxes those restrictive assumptions and ex-
amines the market interactions between storage, wind, and
conventional units under a variety of market and owner-
ship structures within a bilevel-equilibrium framework.

At a high level, the model that we propose assumes that
there is a set of firms, each of which can own some combi-
nation of storage, conventional, and wind units. The firms
make offers, which consist of price/quantity pairs specify-
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ing the price at which storage is willing to be charged
or discharged or the price at which generation is will-
ing to supply energy, to a centrally dispatched market.
The bilevel nature of the model arises because there is
a lower-level problem embedded within the firms’ profit-
maximization problems representing the clearing of the
market (on the basis of the firms’ offers). An equilibrium
framework arises because the firms simultaneously deter-
mine their offers into the market to maximize profits.

Thus, unlike previous analyses, the modeling frame-
work that we propose allows for a great deal of flexibility in
modeling interactions between storage, conventional, and
wind units within a market environment. Our modeling
framework is somewhat simplified compared to other anal-
yses of renewable energy and storage technologies [10–13]
in terms of representing engineering details. Other works
may model more complex technical characteristics of the
technologies in question, but neglect market equilibria.
The model that we propose fills this gap, which is im-
portant insomuch as how conventional, wind, and storage
units interact within a market environment raises impor-
tant policy and market-design issues. Many other works,
conversely, examine storage or renewables from the per-
spective of a central planner. The model that we propose
provides a reasonable balance between engineering fidelity,
representation of market interactions, and model tractabil-
ity.

We use optimality conditions of the lower-level prob-
lem to convert the bilevel profit-maximization problem of
each firm into a mathematical program with equilibrium
constraints (MPEC). We then convert the collection of
MPECs into an equilibrium problem with equilibrium con-
straints (EPEC), which we solve to find Nash equilibria.

We apply our modeling framework to an illustrative
case study with a number of market and asset-ownership
structures. This includes cases in which energy storage
and wind are price-taking or price-making and we find
equilibria ranging from extremely collusive to competi-
tive outcomes. We find the same price-suppression effect
that Green and Vasilakos [6] and Buygi et al. [7] do and
demonstrate the efficiency losses of having the wind gener-
ator exercise market power. Our results show that energy
storage is a preferred solution to the price-suppression ef-
fect from the perspective of social welfare and wind- and
conventional-generator profits.

The remainder of this paper is organized as follows.
Section 2 provides a survey of literature that is related
to our work and summarizes the major contributions of
our work relative to this literature. Section 3 details our
modeling framework and the derivation of the market-
equilibrium problem. Sections 4 and 5 provide our case-
study data and results, respectively. Section 6 summa-
rizes the results of three sensitivity analyses, in which
conventional-generator costs and ramping capabilities and
wind availability are varied. Section 7 concludes.

2. Related Literature and Our Contributions

A variety of techniques are used in the literature to
model the offering and bidding strategies of players par-
ticipating in energy markets. Complementarity models are
recognized as being a particularly powerful tool to repre-
sent such games. This is because complementarity models
are able to model the simultaneous optimization of firms
competing in a market [14]. Zou et al. [15] examine the
benefits of energy storage in supporting renewable gener-
ation in joint energy and ancillary service markets while
Hu et al. [16] analyze the impact of demand response in
an energy market with demand uncertainty. Both of these
works take a complementarity approach to finding Nash-
Cournot equilibria. Zou et al. [17] employ a complemen-
tarity model of a multi-period Nash-Cournot equilibrium
to study the evolution of the current Chinese power system
to a renewable-dominated design in the future.

MPECs are an extension of the complementarity model
that can represent more even more complex market in-
teractions. MPECs can be used to represent sequential
market interactions and leader/follower games. This is
because the optimization problem of the first player or
leader in the game can have embedded within it equilib-
rium constraints that characterize the optimal decisions of
the second player or follower. Thus, this framework cap-
tures the first player or leader making decisions that take
into account the optimal decisions that are subsequently
made. Zhang et al. [18, 19] use an MPEC model to opti-
mize the trading strategies of a distribution company with
distributed energy resources and with demand-responsive
customers, respectively.

An EPEC model further extends the MPEC by hav-
ing multiple leaders as opposed to only one. Thus, an
EPEC can be thought of as consisting of one MPEC for
each leader, with variables in the different MPECs being
interrelated to one another (because the leaders are all
participating in the same equilibrium) [14]. One of the
complications of EPECs is that they are often highly non-
convex problems. Thus, it can be very challenging to find
all possible equilibria. In practice, this issue is overcome
by using different objective functions in the overall EPEC
problem, which can provide a bounding range of equilib-
ria. For instance, one could solve EPECs with welfare-
maximization and generator profit-maximization as the
objective functions, which provides a range of most- and
least-competitive equilibria. Kazempour and Zareipour
[20] use an EPEC model to analyze the impacts of large
strategic wind producers in day-ahead and real-time mar-
kets. However, they solely use profit-maximization of the
generators as the objective function of the EPEC, meaning
that they examine only the least-competitive market equi-
libria. Dai and Qiao [21] employ an EPEC model to obtain
equilibria in a market with both strategic and nonstrate-
gic wind generators. They find the same price suppression
effect that Green and Vasilakos [6] and Buygi et al. [7] do
and that higher renewable penetrations decrease prices.
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They also observe transmission congestion potentially in-
creasing prices.

Although EPEC models are used to study market equi-
libria with renewables, interactions between renewables
and energy storage are not well studied in the literature.
This is particularly true of analyses of interactions between
renewables and storage within a market equilibrium. This
is because modeling energy storage requires a multi-period
model to capture intertemporal constraints related to en-
ergy storage. Zou et al. [22] develop an equilibrium model
to study the market impact of strategic storage firms.
However, their treatment of the market equilibrium is not
as comprehensive as ours. Furthermore, their modeling
approach requires the solution of a nonconvex nonlinear
optimization problem, which can create computational is-
sues. Our approach, conversely, uses mixed-integer linear
programs (MILPs), which are not prone to the same com-
putational challenges. Their study is focused on compar-
ing strategic behavior of different energy storage systems.
Our work examines market interactions between storage
and renewables.

Given this state of the literature related to market
interactions between energy storage and renewables, our
work makes four main contributions in this topic area.
First, we develop a novel multi-period equilibrium model
that comprehensively captures generator and storage offers
in the form of price/quantity blocks. The goal of devel-
oping this model is to analyze the price-suppressing effect
of renewables and investigating possible means of mitigat-
ing it. At the same time, the model framework that we
develop relaxes many of the restrictive assumptions em-
ployed in the scant analyses of market equilibria involving
storage in the literature. Second, we show how to recast
the multi-period equilibrium model into an EPEC that is
formulated as a MILP, meaning that the EPEC can be effi-
ciently solved using commercial software packages. Third,
we use different objectives in the EPEC problem to obtain
a bounding range of solutions, which we show to be equi-
libria using a diagonalization process. Finally, we conduct
a comprehensive analysis of the interactions between wind
and conventional generators and energy storage units un-
der a variety of market and ownership structures. We use
the solutions obtained to determine the impacts on market
prices, firm profits, and social welfare of the different equi-
libria. Although the literature includes analyses of interac-
tions between storage and renewables, many of these take a
central-planning or command-and-control approach. Our
work, conversely, examines interactions within a market-
equilibrium setting.

3. Market Equilibrium Model

We model a Nash equilibrium between a set of compet-
ing firms, each of which may own some mixture of storage,
conventional, and wind units. To reduce the complexity of
the model (and to simplify notation) we assume a deter-
ministic setting, and wind-availability uncertainty is not

modeled. We also do not model transmission constraints.
This is a common assumption in equilibrium analyses of
electricity markets, which often neglect transmission con-
straints [7, 20, 22–25]. Instead, these works focus on mod-
eling market interactions and drawing insights from mar-
ket equilibria. These two assumptions can be relaxed, but
at the cost of increasing the complexity of the resulting
model.

Figure 1 gives a high-level schematic overview of our
proposed modeling framework. The figure is divided into
five panes. The top pane shows the bilevel structure of our
proposed model. At the top there are individual profit-
maximization problems for each firm, each of which can
own some combination of conventional, wind, and stor-
age units. Each firm individually determines how to offer
its units into a spot energy market, which is the lower-
level problem. These offer decisions are made to maximize
individual firm profits, and are constrained by whatever
limits market rules impose (e.g., monotone offers on gener-
ation blocks are a common constraint imposed by market
rules). The lower-level market operator’s problem takes
the supply offers from the firms as inputs and determines
the welfare-maximizing dispatch of the units and the re-
sulting energy prices.

The next pane in Figure 1 shows the step in which each
firm’s bilevel problem is converted to an MPEC. This is
done by replacing the lower-level market operator’s prob-
lem with its necessary and sufficient primal/dual optimal-
ity conditions. The third pane of the figure shows the next
step, which is to convert the collection of MPECs (i.e.,
one for each firm) into a single EPEC. This is done by re-
placing each MPEC with its Karush-Kuhn-Tucker (KKT)
conditions, which are the constraints of the EPEC. The
EPEC is solved using two different objective functions,
which provide a bounding range of possible market equi-
libria. One objective function yields highly competitive
equilibria whereas the other yields highly collusive out-
comes.

The EPEC has a number of nonlinearities, complicat-
ing its solution. The fourth pane of Figure 1 shows a
number of steps that are taken to linearize the EPEC.
These steps yield an MILP, which can be solved using off-
the-shelf software, such as Gurobi. The final pane of the
figure shows the last step of our modeling procedure, which
is to ensure that a solution of the EPEC is indeed a Nash
equilibrium.

We proceed in the remainder of this section by provid-
ing further details on the steps that are illustrated in Fig-
ure 1. We first examine the market operator’s problem in
Section 3.2. Section 3.3 then gives the firms’ bilevel profit-
maximization problems, which have the market operator’s
problem at the lower level. Section 3.4 finally outlines the
Nash equilibrium concept that we employ in our analysis.

We leave the technical details regarding the conver-
sion of the firm’s bilevel profit-maximization problems into
MPECs, formation and linearization of the EPEC, and
verification that EPEC solutions are Nash equilibria to
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the appendices. More specifically, Appendix A shows how
each firm’s bilevel model is converted into an MPEC, by
replacing the lower-level market operator’s problem with
necessary and sufficient primal/dual optimality conditions.
Next, Appendix B shows how the firms’ MPECs are com-
bined to form an EPEC. Appendix C describes the steps
that are taken to linearize the EPEC. Finally, Appendix D
discusses how we verify that EPEC solutions are Nash
equilibria.

3.1. Model Notation

We begin by first defining the following model nota-
tion. This includes sets and set-related parameters, model
parameters, and lower- and upper-level variables.

3.1.1. Sets and Index Parameters
B number of blocks for demand, generation, and

storage bids and offers.
P set of firms.
T number of hours in model horizon.
∆G

p set of conventional units owned by firm p.
∆S

p set of storage units owned by firm p.
∆W

p set of wind units owned by firm p.

3.1.2. Model Parameters
Cx,b marginal cost of generation block b of conven-

tional unit x.
D̄t,b hour-t maximum demand in demand block b.
Ēx maximum storage capacity of storage unit x.
Ḡx,b capacity of generation block b of conventional

unit x.
RU

x ramp-up limit of conventional unit x.
RD

x ramp-down limit of conventional unit x.
S̄C
x,b charging capacity of block b of storage unit x.

S̄H
x,b discharging capacity of block b of storage unit x.

Ut,b hour-t marginal utility of demand block b.
W̄t,x,b hour-t available generation from block b of wind

unit x.
ηCx charging efficiency of storage unit x.
ηHx discharging efficiency of storage unit x.

3.1.3. Lower-Level Variables
Dt,b hour-t demand of demand block b that is satis-

fied.
Et,x ending hour-t storage level of storage unit x.
Gt,x,b hour-t dispatch of block b of conventional unit x.
SC
t,x,b hour-t energy charged in block b of storage

unit x.
SH
t,x,b hour-t energy discharged from block b of storage

unit x.
Wt,x,b hour-t dispatch of block b of wind unit x.

3.1.4. Upper-Level Variables
OC

t,x,b hour-t bid price for charging block b of storage
unit x.

OH
t,x,b hour-t offer price for discharging block b of stor-

age unit x.

OG
t,x,b hour-t offer price for block b of conventional

unit x.
OW

t,x,b hour-t offer price for block b of wind unit x.

3.2. Market Operator’s Problem

The market operator takes supply offers from the gen-
eration and storage units and demand bids as inputs and
determines the system dispatch. This problem is formu-
lated as:

min
∑

t,x,b

(

OG
t,x,bGt,x,b +OW

t,x,bWt,x,b +OH
t,x,bS

H
t,x,b (1)

−OC
t,x,bS

C
t,x,b

)

−
∑

t,b

Ut,bDt,b

s.t.
∑

x,b

(

Gt,x,b +Wt,x,b + SH
t,x,b − SC

t,x,b

)

=
∑

b

Dt,b, (2)

∀t (ψt)

0 ≤ Dt,b ≤ D̄t,b, ∀t, b (θD,−
t,b , θD,+

t,b ) (3)

0 ≤ Gt,x,b ≤ Ḡx,b, ∀t, x, b (θG,−
t,x,b, θ

G,+
t,x,b) (4)

−RD
x ≤

∑

b

(Gt,x,b −Gt−1,x,b) ≤ RU
x , (5)

∀t, x (θR,−
t,x , θR,+

t,x )

0 ≤Wt,x,b ≤ W̄t,x,b, ∀t, x, b (θW,−
t,x,b, θ

W,+
t,x,b) (6)

0 ≤ SC
t,x,b ≤ S̄C

x,b, ∀t, x, b (θC,−
t,x,b, θ

C,+
t,x,b) (7)

0 ≤ SH
t,x,b ≤ S̄H

x,b, ∀t, x, b (θH,−
t,x,b, θ

H,+
t,x,b) (8)

Et,x = Et−1,x +
∑

b

(

ηCx S
C
t,x,b − SH

t,x,b/η
H
x

)

, (9)

∀t, x (θEt,x)

0 ≤ Et,x ≤ Ēx, ∀t, x (θE,−
t,x , θE,+

t,x ) (10)

ET,x = E0,x, ∀x (θE,0
x ) (11)

where the dual variable associated with each constraint
appear in parentheses to its right. The decision variables
of the market operator’s problems are all of the dispatch-
related variables—Gt,x,b, Wt,x,b, S

H
t,x,b, S

C
t,x,b, Et,x, and

Dt,b.
Objective function (1) maximizes social welfare on the

basis of the willingness to pay of demand and supply of-
fers from the generation and storage units. The objective
function is given in minimization form. Constraints (2)
are the hourly load-balance restrictions. As is common
practice in wholesale electricity markets, we assume that
energy transacted in the market is priced using the dual
variables, ψt, on these load-balance constraints.

Constraints (3) limit the energy served in each block to
the size of the block and constraints (4) and (6) impose the
same restrictions on the dispatch of conventional and wind
units. Constraints (5) impose conventional-unit ramping
limits.

Constraints (7)–(11) impose restrictions on the opera-
tion of the storage units. Constraints (7) and (8) impose
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the size of each block on the amount of energy charged or
discharged. Constraints (9) are energy-balance equations
defining the ending storage level of each storage unit in
each hour. Constraints (10) impose the energy limit on
each storage unit and constraints (11) restrict each stor-
age unit to have the same state of charge at the end of the
operating period as it started with. These constraints are
included because without them each storage unit would
be left fully discharged at the end of the operating period
[26].

3.3. Firm Profit-Maximization Problem

Each firm determines offers for its generation and stor-
age units to maximize its profits. The profit-maximization
problem of firm p is formulated as:

min
∑

t,x∈∆G
p ,b

(Cx,b − ψt)Gt,x,b −
∑

t,x∈∆W
p ,b

ψtWt,x,b (12)

−
∑

t,x∈∆S
p ,b

ψt ·
(

SH
t,x,b − SC

t,x,b

)

s.t. OG
t,x,b ≥ OG

t,x,b−1, ∀t, x ∈ ∆G
p , b > 1 (ΦG

p,t,x,b) (13)

OW
t,x,b ≥ OW

t,x,b−1, ∀t, x ∈ ∆W
p , b > 1 (ΦW

p,t,x,b) (14)

OC
t,x,b ≥ OC

t,x,b−1, ∀t, x ∈ ∆S
p , b > 1 (ΦC

p,t,x,b) (15)

OH
t,x,b ≥ OH

t,x,b−1, ∀t, x ∈ ∆S
p , b > 1 (ΦH

p,t,x,b) (16)

(1)–(11), (17)

where the Lagrange multiplier that is associated with each
constraint appears in parentheses to its right.

Objective function (12), which is given in minimiza-
tion form, maximizes the firm’s profit. Constraints (13)–
(16) impose monotonicity on the offers, which is a typical
market requirement. Constraint (17) gives the bilevel na-
ture of this problem, by embedding the market operator’s
problem as a lower level problem. The market operator’s
problem is embedded to represent the relationship between
firm offers and prices and dispatch. The decision variables
in this problem are the firm offers—OG

t,x,b, O
W
t,x,b, O

C
t,x,b,

and OH
t,x,b—and the dispatch variables and prices from the

market operator’s problem.

3.4. Market Equilibrium

We define a Nash equilibrium as a set of firm offers (i.e.,
values of OG

t,x,b, O
W
t,x,b, O

C
t,x,b, and O

H
t,x,b for each firm) and

corresponding values of the market operator’s dispatch de-
cisions (i.e., values of Gt,x,b, Wt,x,b, S

H
t,x,b, S

C
t,x,b, Et,x, and

Dt,b) and energy prices (i.e., values of ψt) that are simulta-
neously optimal in each firm’s profit-maximization prob-
lem and the market operator’s dispatch problem. That
is to say, each firm’s offers should be individually profit
maximizing, in light of the offers that are submitted by its
rival firms. Moreover, the resulting dispatch and energy
prices should be optimal in the market operator’s primal
dispatch problem and its dual problem.

As noted before, we defer the detailed technical steps
required to obtain such equilibria to the appendices. One
of the difficulties in analyzing non-cooperative games is
that they may have many Nash equilibria. As such, we
impose two different objective functions on the EPEC from
which we obtain Nash equilibria. The first:

min
∑

t,x,b

[Cx,bGt,x,b − ψt · (Gt,x,b +Wt,x,b

+SH
t,x,b − SC

t,x,b)
]

,

which is given in minimization form, maximizes total prof-
its across all of the firms. Equilibria arising from the EPEC
with this objective function tend to be the least competi-
tive, and as such we informally term them ‘collusive equi-
libria.’ The second objective function:

min
∑

t,x,b

Cx,bGt,x,b −
∑

t,b

Ut,bDt,b,

which is also given in minimization form, maximizes social
welfare. Equilibria arising from the EPEC with this ob-
jective function tend to be the most competitive, and as
such we informally term them ‘quasi-competitive equilib-
ria.’ Further details on these two objective functions are
given in Appendix B.

The idea behind imposing these two objective func-
tions on the EPEC is that they provide a bounding range
of equilibria. That is to say, by examining highly com-
petitive and uncompetitive equilibria, we can examine the
potential range of market equilibria and outcomes.

4. Case-Study Data

We illustrate our proposed model by using a small
eight-period example with two conventional, one wind, and
one storage units. One of the main reasons for using an
eight-period example is the time involved in solving larger
case studies (e.g., a 24-hour example). Our analysis con-
siders numerous cases with different asset-ownership struc-
tures and types of equilibria. Moreover, we conduct a thor-
ough sensitivity analysis in Section 6. Finally, the cases
are solved using a laptop as opposed to high-performance
computing equipment. For these reasons, we opt to use a
case study that can solve relatively quickly. For purpose of
comparison, a 24-hour variant of our case study can take
between 13 seconds and 27 hours to solve, depending on
the assumed market and asset-ownership structure. All
of the eight-period cases that we use in our analysis take
less than one hour to solve. These findings shows that our
modeling framework could be applied to larger-scale prob-
lems that consider 24 (or more) hours. However, given the
volume of cases and sensitivity analyses that we consider,
using a 24-hour case study would not be computationally
tractable.

This being said, the eight-period example that we use
does capture the important salient features that would be
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exhibited in a 24-hour example. For instance, we have on-
and off-peak load and wind periods. It is also worth not-
ing that each of the time periods in the example could be
used to represent a multi-hour block of time (e.g., three-
hour time periods). However, in our case study each period
represents a single hour. Finally, it should be noted that
our analysis is mostly focused on a qualitative assessment
of market equilibria. That is to say, the exact values deter-
mined by the model are not as important as understanding
how market equilibria compare to one another under dif-
ferent market and asset-ownership structures. Among the
24-hour case studies that we solve (for purposes of deter-
mining their solution times), we find that the market equi-
libria are qualitatively similar to those that are obtained
from our eight-period case studies. This further suggests
that for purposes of determining the qualitative properties
of market equilibria, our eight-period case studies are suf-
ficient. Finally, as discussed above, a more thorough anal-
ysis of a specific market could be conducted using more
operating periods. Such an analysis would be computa-
tionally tractable, especially because it would likely not
entail the volume of cases that we consider.

Table 1 summarizes the assumed characteristics of the
conventional generators. Each unit is assumed to have
two blocks of the same size (i.e., 120 MW and 80 MW,
respectively). The storage unit has a charging and dis-
charging power capacity of 200 MW, an energy capacity
of 200 MWh, a roundtrip efficiency of 85%, and an ini-
tial storage level of 100 MWh. For sake of maintaining a
generic modeling framework, we do not consider any spe-
cific storage technology. Rather, the storage-related pa-
rameters that we assume are meant to represent a large-
scale technology, such as pumped hydroelectric or com-
pressed air energy storage [11, 27, 28].

Table 1: Conventional-Unit Data

Unit Ḡx,b RD
x RU

x Cx,1 Cx,2

1 120 180 200 30 40
2 80 130 150 50 60

Figure 2 shows the profile of hourly wind availability
and maximum potential demand. The figure shows that
wind availability and load are negatively correlated, which
is common in many systems. We consider a case in which
total wind availability is about 40% of total maximum de-
mand. This is roughly consistent with the penetration of
wind energy in a number of real-world electricity systems,
including those of Denmark, Spain, Portugal, and Ireland.
Moreover, the assumed structure of the offer behavior in
our bilevel modeling framework is roughly consistent with
how wholesale electricity markets in these countries are
operated. The demand in each hour is assumed to be bid
in three blocks. The prices at which the blocks are bid
are positively correlated with total demand—demands in
hours 4–6 have relatively high willingness to pay compared

to hours 1, 2, and 8.
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Figure 2: Wind Availability and Maximum Demand in Each Hour

To analyze the interactions between storage, wind, and
conventional units, we model equilibria in the nine cases
that are listed in Table 2. Case 1 represents a base case
without wind or storage units and assumes that the two
conventional units are owned by two competing firms. The
remaining cases have a third firm, which owns the wind
generator. In Cases 2–5 the wind generator behaves as a
price-taker, meaning that it offers its generation at its true
cost of zero. Cases 6–9 assume that the wind generator
behaves as a price-maker, meaning that it follows profit-
maximizing generation offers given by its MPEC (and the
KKT conditions of the wind generator’s MPEC are in-
cluded in the EPEC).

Table 2: Cases Examined

Case Wind Storage

1 None None
2 Price-Taking None
3 Price-Taking Price-Taking
4 Price-Taking Standalone
5 Price-Taking Wind-Operated
6 Price-Making None
7 Price-Making Price-Taking
8 Price-Making Standalone
9 Price-Making Wind-Operated

Cases 2 and 6 assume that there is no storage, while
Cases 3–5 and 7–9 assume storage with different types
of behavior. Cases 3 and 7 assume price-taking storage,
meaning that it offers into the market at its cost of zero. In
these cases, the market operator dispatches storage com-
petitively to minimize system-operation costs. Cases 4
and 8 assume that storage is owned by a fourth firm that
behaves as a price-maker. Cases 5 and 9 assume that stor-
age is owned by the wind generator, and that the storage
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is offered as a price-maker. In Case 5 wind is offered at
cost but storage can be offered at a price above its cost of
zero.

5. Case-Study Results

Table 3 summarizes the results of the equilibria found
for the different cases using the two objective functions for
the EPEC. Quasi-competitive equilibria see the highest
possible demand levels being met. As such, the firms have
very limited opportunity to exercise market power. Con-
versely, firms successfully restrict output and the amount
of demand met to increase market prices in collusive equi-
libria. As such, Table 3 reports results for all nine collu-
sive cases but only quasi-competitive Cases 1–5. This is
because the wind generator is unable to exercise market
power in the quasi-competitive equilibria and the results
of Cases 6–9 are identical to those of Cases 2–5.

Adding wind to the market has the effect of suppress-
ing prices. In Case 1, which has no wind, the average
energy price is $69.00/MWh and $82.20/MWh in quasi-
competitive and collusive equilibria, respectively. These
prices are reduced to $62.30/MWh and $69.10/MWh, re-
spectively, when wind is added in Case 2 . One way that
wind generators can mitigate this price suppression is by
withholding their generation from the market. In Case 6,
in which wind is price-making, the average energy price
increases to $78.90/MWh in the collusive setting. This
comes at the cost of significantly reducing the amount of
wind that is used, however. Table 4 shows that in Case 6,
the price increase comes with 15.4% of potential wind gen-
eration being curtailed. The other means of mitigating the
price-suppression effect is using energy storage. In collu-
sive Cases 7–9, the inclusion of the energy storage increases
the average energy price to $78.80/MWh–$80.50/MWh.
As Table 4 shows, there is considerably less wind curtail-
ment in these three cases. It is also worth noting that the
case in which the wind generator owns the energy stor-
age minimizes wind curtailment. The other cases that are
not listed in Table 4 do not have any wind curtailment,
because the wind generator is not able to exercise market
power.

Table 4: Total Wind Curtailment in Collusive Market Equilibria

Case 6 7 8 9

Curtailment [%] 15.4 6.9 6.9 1.4

Energy storage can also benefit the wind generator in
quasi-competitive equilibria, if the wind generator owns
the storage (cf. Cases 2 and 5). Otherwise, as seen by
comparing quasi-competitive Cases 3–4 to 2, energy stor-
age may not benefit the wind generator because in these
equilibria storage is used to improve social welfare as op-
posed to firm profits.

Comparing conventional-generator profits in collusive
Cases 3–5 to 2 and 7–9 to 6 shows that conventional gener-
ators also benefit from energy storage being in the market.
Moreover, conventional generators benefit from storage be-
having uncompetitively (either as a standalone or wind-
owned profit maximizer). In the quasi-competitive equi-
libria conventional-generator profits are lower with storage
in the market. However, the reductions in conventional-
generator profits are reduced if storage is behaving un-
competitively, which is in keeping with the results of the
collusive equilibria.

Comparing collusive equilibria in Cases 2 and 6 and
quasi-competitive equilibria in Case 2 to the other equilib-
ria shows that energy storage improves social welfare. It
is important to stress, however, that these social welfare
calculations do not account for the cost of building energy
storage, which could yield a net welfare loss. Interestingly,
in collusive and quasi-competitive equilibria, and regard-
less of whether the wind generator is a price taker or price
maker, having storage owned by the wind generator is the
most desirable from the perspective of maximizing social
welfare and total firm profits. This is demonstrated in Fig-
ure 3, which shows social welfare and total firm profits in
collusive and quasi-competitive equilibria in the different
cases examined. Welfare and profits are reported as a per-
centage of the highest welfare and firm profits among the
equilibria found. The figure shows that the equilibria in
Cases 5 and 9 result in the highest social welfare and firm
profits.

Another question of interest is whether investments in
storage units can be justified by the profits that they earn
or the increases in social welfare that they engender. This
is because the true net value of storage must take into
account its capital costs. A complete investment analysis
is beyond the scope of this work. Instead, we do a more
simplified analysis using an assumed capital charge rate
(CCR) [29, 30]. The CCR captures all of the financing
and other costs that go into building a storage unit and
translates that capital cost into an annualized cost. We
use an 11% CCR in our analysis, which is typical for the
electric power industry [31]. This means that a storage
unit that has a capital cost of $Y to build must earn an
average of $(0.11 · Y ) in operating profits to cover the an-
nualized cost of financing that investment. Conversely, a
storage unit that earns an average of $Z per year in oper-
ating profits can have a capital cost of up to $(Z/0.11) and
be able to recover its investment cost from those operating
profits.

Our analysis takes this latter approach of translat-
ing annual operating profits into the highest capital cost
that can be justified, assuming an 11% CCR. We conduct
this analysis in three ways. First, we examine the prof-
its earned by the storage unit only (i.e., we use storage
profits as the value of Z in the CCR analysis). Second,
we examine the increase in the joint profits of the wind
and storage units. This is because the focus of our analy-
sis is the use of storage for increasing the profits of wind
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Table 3: Results of Market Equilibria

EPEC Social Firm Profits [$]
Objective Welfare Demand
Function Case [$] Met [%] Conv. Wind Storage

Profit 1 89900 63.5 88700 n/a n/a
Profit 2 128740 76.8 65090 45850 n/a
Profit 3 136195 74.6 65900 55310 3876
Profit 4 136031 75.2 68611 57490 629
Profit 5 136204 73.4 66514 57490 2900
Profit 6 122450 68.3 63680 53170 n/a
Profit 7 133125 71.4 65486 60706 1524
Profit 8 133820 71.4 66594 60926 1100
Profit 9 135870 73.0 66594 60064 2013
Welfare 1 94950 77.8 71250 n/a n/a
Welfare 2 134510 89.8 59553 41937 n/a
Welfare 3 140547 88.3 40147 39170 4529
Welfare 4 140547 88.3 46920 39730 7697
Welfare 5 140547 88.3 57507 43010 7829

generators. Finally, we examine the increase in social wel-
fare when storage is in the system, compared to a case
without storage. This third case is examined because a
policymaker may wish to incentivize investment in energy
storage if it gives social-welfare increases that are greater
than the profit earned by the storage unit [32].

Because our case study only considers eight hours, we
scale the profit and social-welfare values that are found in
our case studies by a factor of (8760/8) to convert these
values into an annualized value. We then apply the as-
sumed 11% CCR to determine the total capital cost that
can be justified by the profit or social-welfare increases.
We finally divide this value by the assumed 200000 kW
capacity of the storage unit to arrive at a maximum $/kW
capital cost that can be justified by the profit or social-
welfare increases. Thus, we compute this maximum capi-
tal cost as:

8760

8
·

1

0.11
·

1

200000
· Z, (18)

where Z is either profit of the storage unit, increase in
the joint profit of wind and storage, or increase in social
welfare when the storage unit is added to the system.

Table 5 summarizes the maximum capital cost of stor-
age that can be justified under the different cases and types
of equilibria that we examine. Interestingly, we find that
in many cases the social value of storage (which is repre-
sented by the maximum capital cost justified on the basis
of the social-welfare increase that it engenders) is greater
than the private value to the storage unit itself. This sug-
gests that incentives for storage investment may be pru-
dent from a societal perspective. In some cases, the value
of storage that can be justified through joint profits of wind
and storage outweigh the social value. This means that
co-owned wind and storage (or a contracting arrangement
between wind and storage) can increase storage investment

in some cases. On the other hand, such collaboration be-
tween wind and storage can result in overinvestment (from
the perspective of social welfare).

The cases that we examine are all formulated using
version 24.2.1 of the GAMS mathematical programming
software package and solved using Gurobi version 5.6.2.
The cases are solved on a computer with a 2.26 GHz Intel
Core 2 Duo processor and 2 GB of memory. The solution
times of the EPECs for collusive equilibria range between
one and 61 minutes, whereas the EPECs solve within two
minutes for quasi-competitive equilibria. The diagonal-
ization process takes an additional minute of computing
time.

6. Sensitivity Analyses

We present the results of three sensitivity analyses,
in which we vary (i) the operating costs of the conven-
tional units, (ii) the ramping capabilities of the conven-
tional units, and (iii) wind availability. The purpose of
these analyses is to demonstrate the effects of these param-
eters on market equilibria and outcomes. Importantly, we
show that the qualitative results that are observed in the
base case largely carry over to the sensitivity cases. For
all three sensitivity cases we only examine the cases that
are listed in Table 2 in which the storage firm participates
in the market.

6.1. Conventional Unit Cost

Figures 4–6 summarize the range of changes in social
welfare, total firm profits, and demand met (respectively)
in a set of sensitivity cases in which the costs of conven-
tional units are decreased or increased by 30% relative to
their baseline values. The stars in the figures indicate
the social welfare, firm profits, and demand met in the
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Table 5: Justifiable Capital Cost of the Storage Unit Based on Increases in Profit or Social Welfare [$/kW]

Basis of Calculation
Equilibrium Type Case Storage Profit Storage and Wind Profit Social Welfare

Collusive 3 193 664 371
Collusive 4 31 611 363
Collusive 5 144 724 372
Collusive 7 76 451 531
Collusive 8 55 441 566
Collusive 9 100 443 668
Quasi-Competitive 3 225 88 300
Quasi-Competitive 4 383 273 300
Quasi-Competitive 5 390 443 300

base case, while the pairs of triangles indicate the ranges
of these values obtained in the sensitivity cases. As ex-
pected, we find that social welfare decreases across the
types of equilibria and market structures as generation cost
increases and vice versa.

Changing generation cost has the expected effect on
firm profits under collusive equilibria. Decreasing genera-
tion costs increases total firm profits while increasing costs
has the opposite effect. Interestingly, this result does not
necessarily hold under quasi-competitive equilibria. The
reason for this is that quasi-competitive equilibria seek to
maximize social welfare, which often entails higher levels of
demand being served, as opposed to maximizing firm prof-
its. As a result, some quasi-competitive equilibria with
decreased generation costs result in more demand being
served (to increase social welfare), which gives lower firm
profits.

The amount of demand that is met is not adversely af-
fected by increased generation costs under collusive equi-
libria. This is because both in the base case and with
different production costs, generators restrict output to in-
crease their profits under collusive equilibria. On the other
hand, the amount of demand met is severely affected by
generation costs under quasi-competitive equilibria.

As in the base case, we find that regardless of changes
in generation costs, an asset-ownership structure in which
wind and storage are co-owned and co-operating yields the
greatest social welfare and total firm profits among the
structures that are examined. Figure 4 also shows that
wind and storage being co-owned and co-operated by the
same firm mitigates some of the negative welfare impacts
of increasing generation costs. This is because Cases 5
and 9 yield higher social welfare compared to other cases
in which storage acts as an independent price-taker or -
maker. Figure 4 also shows that having the wind gen-
erator behave as a price-maker under collusive equilibria
yields social-welfare losses compared to wind behaving as
a price-taker. This is keeping with the qualitative welfare
results that are observed in the base case. Overall, the
social-welfare impacts of storage that are observed in this
sensitivity case are qualitatively similar to those that are

observed in the base case, showing that those results are
robust to conventional-generator costs.

6.2. Conventional Unit Ramping

Figures 7–9 summarize the range of changes in social
welfare, total firm profits, and demand met (respectively)
in a set of sensitivity cases in which the ramping capa-
bilities of conventional units are decreased or increased
by 35% relative to their baseline values. Social welfare
and firm profits both slightly decrease in most cases if the
ramping capabilities of conventional units are decreased.
This does not hold, however, for collusive equilibria in
which storage is controlled by the market operator (Cases 3
and 7). This is because in these cases the market operator
uses storage to increase social welfare while the demand
served remains the same, preventing reductions in firm
profits.

Social-welfare losses are larger in collusive equilibria
than they are under quasi-competitive ones. This is be-
cause reducing conventional-unit ramping capabilities re-
stricts the ability of conventional units to withhold gen-
eration without affecting production levels in ‘adjacent’
time periods. The amount of demand that is met remains
nearly the same with restricted ramping constraints under
collusive equilibria whereas slightly more demand is met
under quasi-competitive equilibria. This is because under
quasi-competitive equilibria more demand is met during
off-peak periods to ensure that higher-value demand can
be met during on-peak periods.

In cases in which reduced conventional-unit ramping-
capabilities yield social welfare losses, storage being co-
owned by the wind generator results in smaller social-
welfare losses. Greater total firm profits are also achieved
with co-owned wind and storage. We also observe the same
finding that co-ownership of storage by wind units results
in higher social welfare and total firm profits compared to
other storage-ownership structures. Thus, we overall find
that co-ownership of wind and storage is desirable from a
number of perspectives, which is keeping with the base-
case results.
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Figure 3: Social Welfare and Total Firm Profits Under Collusive
and Quasi-Competitive Equilibria in Different Cases Examined [%
of Highest-Value Case]

6.3. Wind Availability

Figures 10–12 summarize the range of changes in social
welfare, total firm profits, and demand met (respectively)
in a set of sensitivity cases in which wind availability is
decreased or increased by 20% relative to its baseline value.
As expected, social welfare, total firm profits, and demand
met all remain the same or increase with greater wind
availability and vice versa. This is because wind provides
a zero-cost source of energy.

The cases in which demand met does not increase with
greater wind availability are those in which the wind units
behave as price makers. This is because price-making wind
units curtail wind production in the base case to increase
their profits. As such, increasing wind availability does not
result in greater wind production or demand being met.
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Figure 4: Range of Total Social Welfare Obtained in Equilibria With
Between 30% Decrease and 30% Increase in Conventional-Unit Costs
Relative to Baseline (Star Indicates Baseline Value and Triangles
Range of Values)
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Figure 5: Range of Total Firm Profits Obtained in Equilibria With
Between 30% Decrease and 30% Increase in Conventional-Unit Costs
Relative to Baseline (Star Indicates Baseline Value and Triangles
Range of Values)

Thus, price-making wind results in smaller social-welfare
increases arising from greater wind availability compared
to cases in which wind behaves as a price taker. How-
ever, among the cases in which the wind units behave as
price makers, that in which it co-owns storage results in
the highest social welfare. As in the base and two other
sensitivity cases, co-ownership of storage by the wind units
is also desirable from the perspective of maximizing total
firm profits.

Overall, this sensitivity analysis shows that the obser-
vations in the base case and in the two other sensitivity
cases are robust to the assumed case-study data. That is
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Figure 6: Range of Total Demand Met in Equilibria With Between
30% Decrease and 30% Increase in Conventional-Unit Costs Relative
to Baseline (Star Indicates Baseline Value and Triangles Range of
Values)
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Figure 7: Range of Total Social Welfare Obtained in Equilibria
With Between 35% Decrease and 35% Increase in Conventional-Unit
Ramping Capabilities Relative to Baseline (Star Indicates Baseline
Value and Triangles Range of Values)

to say, many of the qualitative observations regarding dif-
ferent types of equilibria and asset-ownership structures in
the base case carry over to sensitivity cases with different
data.

7. Conclusion

This paper provides a framework to analyze market in-
teractions between conventional, wind, and storage units.
The resulting model is an EPEC that can be solved as a
MILP. We use a case study to examine the interactions be-
tween these three types of entities. Our results show that
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Figure 8: Range of Total Firm Profits Obtained in Equilibria
With Between 35% Decrease and 35% Increase in Conventional-Unit
Ramping Capabilities Relative to Baseline (Star Indicates Baseline
Value and Triangles Range of Values)
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Figure 9: Range of Total Demand Met in Equilibria With Between
35% Decrease and 35% Increase in Conventional-Unit Ramping Ca-
pabilities Relative to Baseline (Star Indicates Baseline Value and
Triangles Range of Values)

adding wind to the market significantly depresses market
prices [6, 7]. One way that wind generators can address
this price suppression is by withholding their generation.
This is an inefficient ‘solution,’ however, because zero-cost
generation is curtailed. Alternatively, energy storage can
be used to store excess energy when prices are depressed
that is later discharged when wind availability is lower and
prices are higher [9]. We also demonstrate that the profit
or social value of storage can justify capital costs of up to
more than $700/kW in some of the cases that are exam-
ined. It is notable that this justified cost is comparable to
the cost of some large-scale storage technologies that are

11



Pro
fit,

 3

Pro
fit,

 4

Pro
fit,

 5

Pro
fit,

 7

Pro
fit,

 8

Pro
fit,

 9

W
elf

ar
e,

 3

W
elf

ar
e,

 4

W
elf

ar
e,

 5

EPEC Objective Function and Case

128

130

132

134

136

138

140

142

144

146

148

S
oc

ia
l W

el
fa

re
 [$

 T
ho

us
an

d]

Figure 10: Range of Total Social Welfare Obtained in Equilibria
With Between 20% Decrease and 20% Increase in Wind Availability
Relative to Baseline (Star Indicates Baseline Value and Triangles
Range of Values)
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Figure 11: Range of Total Firm Profits Obtained in Equilibria With
Between 20% Decrease and 20% Increase in Wind Availability Rela-
tive to Baseline (Star Indicates Baseline Value and Triangles Range
of Values)

available today [11]. Our sensitivity analyses further show
that our results are robust to the parameter values that
are assumed in our case study.

Our proposed model can help inform policy makers,
market designers, and regulators about the implications
of market rules and structures on market outcomes. We
demonstrate the inefficiency of allowing wind generators
to exercise market power, but that energy storage can
mitigate this. From the perspective of maximizing prof-
its and economic incentives for wind, price-making storage
and wind-owned storage are preferred in the collusive and
quasi-competitive settings, respectively. We also demon-
strate that among the different strategies for integrating
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Figure 12: Range of Total Demand Met in Equilibria With Between
20% Decrease and 20% Increase in Wind Availability Relative to
Baseline (Star Indicates Baseline Value and Triangles Range of Val-
ues)

storage in the system, wind-owned storage is the best in
many respects, such as minimizing wind curtailment, max-
imizing social welfare and total firm profits, and also recov-
ering storage-investment costs. On the other hand, further
numerical testing and more case studies that are tailored
to a particular system are likely needed to ensure that the
results and the ranking of the different market structures
apply in those settings. Our sensitivity analyses do sug-
gest, however, that our qualitative findings are robust to
parameter values.
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Appendix A. MPEC Form of Profit-Maximization

Problem of Firms

Each firm’s bilevel profit-maximization problem can
be converted to an MPEC, by replacing the lower-level
market operator’s problem with its primal/dual optimal-
ity conditions [33]. Because the objective function and
constraints of the market operator’s problem are linear in
the dispatch variables these conditions are necessary and
sufficient for an optimum.

The primal/dual optimality conditions for the market
operator’s problem in firm p’s profit-maximization prob-
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lem (i.e., what we replace constraint (17) with) are:

∑

x,b

(

Gt,x,b +Wt,x,b + SH
t,x,b − SC

t,x,b

)

=
∑

b

Dt,b, (A.1)

∀t (Ψp,t)

0 ≤ Dt,b ≤ D̄t,b, ∀t, b (ΘD,−
p,t,b,Θ

D,+
p,t,b) (A.2)

0 ≤ Gt,x,b ≤ Ḡx,b, ∀t, x, b (ΘG,−
p,t,x,b,Θ

G,+
p,t,x,b) (A.3)

−RD
x ≤

∑

b

(Gt,x,b −Gt−1,x,b) ≤ RU
x , (A.4)

∀t, x (ΘR,−
p,t,x,Θ

R,+
p,t,x)

0 ≤Wt,x,b ≤ W̄t,x,b, ∀t, x, b (ΘW,−
p,t,x,b,Θ

W,+
p,t,x,b) (A.5)

0 ≤ SC
t,x,b ≤ S̄C

x,b, ∀t, x, b (ΘC,−
p,t,x,b,Θ

C,+
p,t,x,b) (A.6)

0 ≤ SH
t,x,b ≤ S̄H

x,b, ∀t, x, b (ΘH,−
p,t,x,b,Θ

H,+
p,t,x,b) (A.7)

Et,x = Et−1,x +
∑

b

(

ηCx S
C
t,x,b − SH

t,x,b/η
H
x

)

, (A.8)

∀t, x (ΘE
p,t,x)

0 ≤ Et,x ≤ Ēx, ∀t, x (ΘE,−
p,t,x,Θ

E,+
p,t,x) (A.9)

ET,x = E0,x, ∀x (ΘE,0
p,x ) (A.10)

Ut,b − ψt + θD,−
t,b − θD,+

t,b = 0, ∀t, b (ωD
p,t,b) (A.11)

−OG
t,x,b + ψt + θG,−

t,x,b − θG,+
t,x,b + θR,−

t,x − θR,−
t+1,x (A.12)

− θR,+
t,x + θR,+

t+1,x = 0, ∀t < T, x, b (ωG
p,t,x,b)

−OG
T,x,b + ψT + θG,−

T,x,b − θG,+
T,x,b + θR,−

T,x − θR,+
T,x (A.13)

= 0, ∀x, b (ωG
p,T,x,b)

−OW
t,x,b + ψt + θW,−

t,x,b − θW,+
t,x,b = 0, (A.14)

∀t, x, b (ωW
p,t,x,b)

OC
t,x,b − ψt + θC,−

t,x,b − θC,+
t,x,b − ηCx θ

E
t,x = 0, (A.15)

∀t, x, b (ωC
p,t,x,b)

−OH
t,x,b + ψt + θH,−

t,x,b − θH,+
t,x,b + θEt,x/η

H
x = 0, (A.16)

∀t, x, b (ωH
p,t,x,b)

θEt,x − θEt+1,x + θE,−
t,x − θE,+

t,x = 0, (A.17)

∀t < T, x (ωE
p,t,x)

θET,x + θE,−
T,x − θE,+

T,x + θE,0
x = 0, ∀x (ωE,0

p,x ) (A.18)

θD,−
t,b , θD,+

t,b ≥ 0, ∀t, b (ΩD,−
p,t,b,Ω

D,+
p,t,b) (A.19)

θG,−
t,x,b, θ

G,+
t,x,b ≥ 0, ∀t, x, b (ΩG,−

p,t,x,b,Ω
G,+
p,t,x,b) (A.20)

θR,−
t,x , θR,+

t,x ≥ 0, ∀t, x (ΩR,−
p,t,x,Ω

R,+
p,t,x) (A.21)

θW,−
t,x,b, θ

W,+
t,x,b ≥ 0, ∀t, x, b (ΩW,−

p,t,x,b,Ω
W,+
p,t,x,b) (A.22)

θC,−
t,x,b, θ

C,+
t,x,b ≥ 0, ∀t, x, b (ΩC,−

p,t,x,b,Ω
C,+
p,t,x,b) (A.23)

θH,−
t,x,b, θ

H,+
t,x,b ≥ 0, ∀t, x, b (ΩH,−

p,t,x,b,Ω
H,+
p,t,x,b) (A.24)

θE,−
t,x , θE,+

t,x ≥ 0, ∀t, x (ΩE,−
p,t,x,Ω

E,+
p,t,x) (A.25)

∑

t,x,b

(

OG
t,x,bGt,x,b +OW

t,x,bWt,x,b +OH
t,x,bS

H
t,x,b (A.26)

−OC
t,x,bS

C
t,x,b

)

−
∑

t,b

Ut,bDt,b = −
∑

t,b

D̄t,bθ
D,+
t,b

−
∑

t,x,b

(

Ḡx,bθ
G,+
t,x,b +RD

x θ
R,−
t,x +RU

x θ
R,+
t,x + W̄t,x,bθ

W,+
t,x,b

)

+
∑

x,b

G0,x,b ·
(

θR,−
1,x − θR,+

1,x

)

−
∑

t,x,b

(

S̄C
x,bθ

C,+
t,x,b

+S̄H
x,bθ

H,+
t,x,b

)

+
∑

x

(

E0,x ·
(

θE1,x + θE,0
x

)

−
∑

t

Ēxθ
E,+
t,x

)

, (ΩSD
p )

where the Lagrange multiplier that is associated with each
constraint appears in parentheses to its right. Condi-
tions (A.1)–(A.10) are the primal constraints of the mar-
ket operator’s problem, conditions (A.11)–(A.25) are the
dual constraints of the market operator’s problem, and
constraint (A.26) imposes strong duality.

Although conditions (A.1)–(A.26) are common to all
of the firms, we index the Lagrange multipliers of each of
these conditions by p. This is because these Lagrange mul-
tipliers may take on different values in each firm’s profit-
maximization problem.

With this primal/dual characterization of an optimal
solution to the market operator’s problem, firm p’s profit-
maximization problem can be solved by minimizing (12)
subject to constraints (13)–(16) and (A.1)–(A.26).

Appendix B. Multi-Firm Nash Equilibrium

To find a Nash equilibrium, we must find a set of so-
lutions (i.e., offers and resulting primal and dual solutions
of the market operator’s problem) that are simultaneously
optimal in each firm’s MPEC. We find such an equilib-
rium by solving a single EPEC problem, which has as
its constraints the Karush-Kuhn-Tucker (KKT) conditions
of each firm’s MPEC. The KKT conditions for firm p’s
MPEC are:

− ΦG
p,t,x,b +ΦG

p,t,x,b+1 +ΩSD
p Gt,x,b − ωG

p,t,x,b = 0, (B.1)

∀t, x ∈ ∆G
p , b < B

− ΦG
p,t,x,B +ΩSD

p Gt,x,B − ωG
p,t,x,B = 0, (B.2)

∀t, x ∈ ∆G
p

− ΦW
p,t,x,b +ΦW

p,t,x,b+1 +ΩSD
p Wt,x,b − ωW

p,t,x,b = 0, (B.3)

∀t, x ∈ ∆W
p , b < B

− ΦW
p,t,x,B +ΩSD

p Wt,x,B − ωW
p,t,x,B = 0, (B.4)

∀t, x ∈ ∆W
p

− ΦC
p,t,x,b +ΦC

p,t,x,b+1 − ΩSD
p SC

t,x,b + ωC
p,t,x,b = 0, (B.5)

∀t, x ∈ ∆S
p , b < B

− ΦC
p,t,x,B − ΩSD

p SC
t,x,B + ωC

p,t,x,B = 0, (B.6)

∀t, x ∈ ∆S
p
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− ΦH
p,t,x,b +ΦH

p,t,x,b+1 +ΩSD
p SH

t,x,b − ωH
p,t,x,b = 0, (B.7)

∀t, x ∈ ∆S
p , b < B

− ΦH
p,t,x,B +ΩSD

p SH
t,x,B − ωH

p,t,x,B = 0, (B.8)

∀t, x ∈ ∆S
p

−Ψp,t +ΘD,+
p,t,b −ΘD,−

p,t,b − ΩSD
p Ut,b = 0, ∀t, b (B.9)

Cx,b − ψt +Ψp,t +ΘG,+
p,t,x,b −ΘG,−

p,t,x,b +ΘR,+
p,t,x (B.10)

−ΘR,+
p,t+1,x −ΘR,−

p,t,x +ΘR,−
p,t+1,x +ΩSD

p OG
t,x,b = 0,

∀t < T, x ∈ ∆G
p , b

Cx,b − ψT +Ψp,T +ΘG,+
p,T,x,b −ΘG,−

p,T,x,b +ΘR,+
p,T,x (B.11)

−ΘR,−
p,T,x +ΩSD

p OG
T,x,b = 0, ∀x ∈ ∆G

p , b

Ψp′,t +ΘG,+
p′,t,x,b −ΘG,−

p′,t,x,b +ΘR,+
p′,t,x −ΘR,+

p′,t+1,x (B.12)

−ΘR,−
p′,t,x +ΘR,−

p′,t+1,x +ΩSD
p′ OG

t,x,b = 0,

∀p′ 6= p, t < T, x ∈ ∆G
p′

Ψp′,T +ΘG,+
p′,T,x,b −ΘG,−

p′,T,x,b +ΘR,+
p′,T,x −ΘR,−

p′,T,x (B.13)

+ ΩSD
p′ OG

T,x,b = 0, ∀p′ 6= p, x ∈ ∆G
p′

− ψt +Ψp,t +ΘW,+
p,t,x,b −ΘW,−

p,t,x,b +ΩSD
p OW

t,x,b = 0, (B.14)

∀t, x ∈ ∆W
p , b

Ψp′,t +ΘW,+
p′,t,x,b −ΘW,−

p′,t,x,b +ΩSD
p′ OW

t,x,b = 0, (B.15)

∀p′ 6= p, t, x ∈ ∆W
p′ , b

ψt −Ψp,t −ΘC,−
p,t,x,b +ΘC,+

p,t,x,b − ηCx Θ
E
p,t,x (B.16)

− ΩSD
p OC

t,x,b = 0, ∀t, x ∈ ∆S
p , b

−Ψp′,t −ΘC,−
p′,t,x,b +ΘC,+

p′,t,x,b − ηCx Θ
E
p′,t,x (B.17)

− ΩSD
p′ OC

t,x,b = 0, ∀p′ 6= p, t, x ∈ ∆S
p′ , b

− ψt +Ψp,t −ΘH,−
p,t,x,b +ΘH,+

p,t,x,b +ΘE
p,t,x/η

H
x (B.18)

+ ΩSD
p OH

t,x,b = 0, ∀t, x ∈ ∆S
p , b

Ψp′,t −ΘH,−
p′,t,x,b +ΘH,+

p′,t,x,b +ΘE
p′,t,x/η

H
x (B.19)

+ ΩSD
p′ OH

t,x,b = 0, ∀p′ 6= p, t, x ∈ ∆S
p′ , b

ΘE
p,t,x −ΘE

p,t+1,x −ΘE,−
p,t,x +ΘE,+

p,t,x = 0, (B.20)

∀t < T, x

ΘE
p,T,x −ΘE,−

p,T,x +ΘE,+
p,T,x +ΘE,0

p,x = 0, ∀x (B.21)

− E0,xΩ
SD
p +

∑

b

(

ωH
p,1,x,b/η

H
x − ηCx ω

C
p,1,x,b

)

(B.22)

+ ωE
p,1,x = 0, ∀x

∑

b

(

ωH
p,t,x,b/η

H
x − ηCx ω

C
p,t,x,b

)

+ ωE
p,t,x (B.23)

− ωE
p,t−1,x = 0, ∀t ∈ {2, . . . , T − 1}, x

∑

b

(

ωH
p,T,x,b/η

H
x − ηCx ω

C
p,T,x,b

)

+ ωE,0
p,x (B.24)

− ωE
p,T−1,x = 0, ∀x

− E0,xΩ
SD
p + ωE,0

p,x = 0, ∀x (B.25)

−
∑

x∈∆G
p ,b

Gt,x,b −
∑

x∈∆W
p ,b

Wt,x,b (B.26)

−
∑

x∈∆S
p ,b

(

SH
t,x,b − SC

t,x,b

)

−
∑

b

ωD
p,t,b +

∑

x,b

(

ωG
p,t,x,b

+ωW
p,t,x,b + ωH

p,t,x,b − ωC
p,t,x,b

)

= 0, ∀t

ωD
p,t,b − ΩD,−

p,t,b = 0, ∀t, b (B.27)

D̄t,bΩ
SD
p − ωD

p,t,b − ΩD,+
p,t,b = 0, ∀t, b (B.28)

ωG
p,t,x,b − ΩG,−

p,t,x,b = 0, ∀t, x, b (B.29)

Ḡx,bΩ
SD
p − ωG

p,t,x,b − ΩG,+
p,t,x,b = 0, ∀t, x, b (B.30)

ωW
p,t,x,b − ΩW,−

p,t,x,b = 0, ∀t, x, b (B.31)

W̄t,x,bΩ
SD
p − ωW

p,t,x,b − ΩW,+
p,t,x,b = 0, ∀t, x, b (B.32)

RD
x ΩSD

p −
∑

b

(

G0,x,bΩ
SD
p − ωG

p,1,x,b

)

− ΩR,−
p,1,x (B.33)

= 0, ∀x

RD
x ΩSD

p +
∑

b

(

ωG
p,t,x,b − ωG

p,t−1,x,b

)

− ΩR,−
p,t,x = 0, (B.34)

∀t > 1, x

RU
x Ω

SD
p +

∑

b

(

G0,x,bΩ
SD
p − ωG

p,1,x,b

)

− ΩR,+
p,1,x = 0, (B.35)

∀x

RU
x Ω

SD
p −

∑

b

(

ωG
p,t,x,b − ωG

p,t−1,x,b

)

− ΩR,+
p,t,x = 0, (B.36)

∀t > 1, x

ωC
p,t,x,b − ΩC,−

p,t,x,b = 0, ∀t, x, b (B.37)

S̄C
x,bΩ

SD
p − ωC

p,t,x,b − ΩC,+
p,t,x,b = 0, ∀t, x, b (B.38)

ωH
p,t,x,b − ΩH,−

p,t,x,b = 0, ∀t, x, b (B.39)

S̄H
x,bΩ

SD
p − ωH

p,t,x,b − ΩH,+
p,t,x,b = 0, ∀t, x, b (B.40)

ωE
p,t,x − ΩE,−

p,t,x = 0, ∀t < T, x, b (B.41)

ωE,0
p,x − ΩE,−

p,T,x = 0, ∀x, b (B.42)

ĒxΩ
SD
p − ωE

p,t,x − ΩE,+
p,t,x = 0, ∀t < T, x, b (B.43)

ĒxΩ
SD
p − ωE,0

p,x − ΩE,+
p,T,x = 0, ∀x, b (B.44)

(A.1), (A.8), (A.10)–(A.18), (A.26) (B.45)

0 ≤ OG
t,x,b −OG

t,x,b−1 ⊥ ΦG
p,t,x,b ≥ 0, (B.46)

∀t, x ∈ ∆G
p , b > 1

0 ≤ OW
t,x,b −OW

t,x,b−1 ⊥ ΦW
p,t,x,b ≥ 0, (B.47)

∀t, x ∈ ∆W
p , b > 1

0 ≤ OC
t,x,b −OC

t,x,b−1 ⊥ ΦC
p,t,x,b ≥ 0, (B.48)

∀t, x ∈ ∆S
p , b > 1

0 ≤ OH
t,x,b −OH

t,x,b−1 ⊥ ΦH
p,t,x,b ≥ 0, (B.49)

∀t, x ∈ ∆S
p , b > 1

0 ≤ Dt,b ⊥ ΘD,−
p,t,b ≥ 0, ∀t, b (B.50)

0 ≤ D̄t,b −Dt,b ⊥ ΘD,+
p,t,b ≥ 0, ∀t, b (B.51)
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0 ≤ Gt,x,b ⊥ ΘG,−
p,t,x,b ≥ 0, ∀t, x, b (B.52)

0 ≤ Ḡx,b −Gt,x,b ⊥ ΘG,+
p,t,x,b ≥ 0, ∀t, x, b (B.53)

0 ≤
∑

b

(Gt,x,b −Gt−1,x,b) +RD
x ⊥ ΘR,−

p,t,x ≥ 0, (B.54)

∀t, x

0 ≤ RU
x −

∑

b

(Gt,x,b −Gt−1,x,b) ⊥ ΘR,+
p,t,x ≥ 0, (B.55)

∀t, x

0 ≤Wt,x,b ⊥ ΘW,−
p,t,x,b ≥ 0, ∀t, x, b (B.56)

0 ≤ W̄t,x,b −Wt,x,b ⊥ ΘW,+
p,t,x,b ≥ 0, ∀t, x, b (B.57)

0 ≤ SC
t,x,b ⊥ ΘC,−

p,t,x,b ≥ 0, ∀t, x, b (B.58)

0 ≤ S̄C
x,b − SC

t,x,b ⊥ ΘC,+
p,t,x,b ≥ 0, ∀t, x, b (B.59)

0 ≤ SH
t,x,b ⊥ ΘH,−

p,t,x,b ≥ 0, ∀t, x, b (B.60)

0 ≤ S̄H
x,b − SH

t,x,b ⊥ ΘH,+
p,t,x,b ≥ 0, ∀t, x, b (B.61)

0 ≤ Et,x ⊥ ΘE,−
p,t,x ≥ 0, ∀t, x (B.62)

0 ≤ Ēx − Et,x ⊥ ΘE,+
p,t,x ≥ 0, ∀t, x (B.63)

0 ≤ θD,−
t,b ⊥ ΩD,−

p,t,b ≥ 0, ∀t, b (B.64)

0 ≤ θD,+
t,b ⊥ ΩD,+

p,t,b ≥ 0, ∀t, b (B.65)

0 ≤ θG,−
t,x,b ⊥ ΩG,−

p,t,x,b ≥ 0, ∀t, x, b (B.66)

0 ≤ θG,+
t,x,b ⊥ ΩG,+

p,t,x,b ≥ 0, ∀t, x, b (B.67)

0 ≤ θR,−
t,x ⊥ ΩR,−

p,t,x ≥ 0, ∀t, x (B.68)

0 ≤ θR,+
t,x ⊥ ΩR,+

p,t,x ≥ 0, ∀t, x (B.69)

0 ≤ θW,−
t,x,b ⊥ ΩW,−

p,t,x,b ≥ 0, ∀t, x, b (B.70)

0 ≤ θW,+
t,x,b ⊥ ΩW,+

p,t,x,b ≥ 0, ∀t, x, b (B.71)

0 ≤ θC,−
t,x,b ⊥ ΩC,−

p,t,x,b ≥ 0, ∀t, x, b (B.72)

0 ≤ θC,+
t,x,b ⊥ ΩC,+

p,t,x,b ≥ 0, ∀t, x, b (B.73)

0 ≤ θH,−
t,x,b ⊥ ΩH,−

p,t,x,b ≥ 0, ∀t, x, b (B.74)

0 ≤ θH,+
t,x,b ⊥ ΩH,+

p,t,x,b ≥ 0, ∀t, x, b (B.75)

0 ≤ θE,−
t,x ⊥ ΩE,−

p,t,x ≥ 0, ∀t, x (B.76)

0 ≤ θE,+
t,x ⊥ ΩE,+

p,t,x ≥ 0, ∀t, x (B.77)

where ‘⊥’ denotes complementary slackness between an
inequality constraint in firm p’s MPEC and the corre-
sponding non-negativity constraint on the corresponding
Lagrange multiplier.

The EPEC is formed by combining Constraints (B.1)–
(B.77) for all p ∈ P [33]. An EPEC can have many solu-
tions, corresponding to different possible Nash equilibria.
To help find equilibria that are economically meaningful,
we impose two objective functions on the EPEC [33]. The
first:

min
∑

t,x,b

[Cx,bGt,x,b − ψt · (Gt,x,b +Wt,x,b (B.78)

+SH
t,x,b − SC

t,x,b)
]

,

maximizes total profits across all of the firms. The second:

min
∑

t,x,b

Cx,bGt,x,b −
∑

t,b

Ut,bDt,b, (B.79)

maximizes total social welfare (both objective functions
are given in minimization form). Thus, the EPEC that
maximizes firm profits is solved by minimizing (B.78) sub-
ject to (B.1)–(B.77) ∀p ∈ p, while the one that maxi-
mizes social welfare is solved by minimizing (B.79) subject
to (B.1)–(B.77) ∀p ∈ p.

We include objective functions (B.78) and (B.79) in
the EPEC so we can find and evaluate a range of possi-
ble market outcomes. Nash equilibria given by objective
functions (B.78) tend to be the least competitive, because
firms are colluding to maximize their joint profits (we refer
to these, informally, as collusive equilibria). It should be
noted that these so-called equilibria are not truly collusive
(e.g., they will not be the behavior of an explicit cartel),
because they must ultimately be Nash equilibria that are
unilateral-deviation-proof.

Conversely, equilibria that are given by objective func-
tion (B.79) tend to be the most competitive, because firms
are behaving in a manner to maximize social welfare (we
refer to these, informally, as quasi-competitive equilibria).
It should be stressed, again, that these equilibria are not
perfectly competitive, because each firm is assumed to be
individually maximizing its profits through its offer strat-
egy. This range of equilibria can be helpful for regulators,
market operators, or policy makers to understand the pos-
sible outcomes in a market that is dispatched on the basis
of supply offers from competing generating firms.

Appendix C. Linearization of EPEC

There are several nonlinearities in the objective func-
tion and constraints of the EPECs. We outline the steps
taken to linearize these.

Appendix C.1. Strong-Duality Property

Constraint (B.45) includes the strong-duality equality,
which is given by (A.26). The strong-duality property has
numerous nonlinear terms in which offer variables are mul-
tiplied by dispatch variables.

Because the objective function and constraints of the
market operator’s problem are linear in the market op-
erator’s decision variables, the strong-duality property is
equivalent to the complementary-slackness conditions on
the inequality constraints of the market operator’s prob-
lem and the non-negativity constraints on the associated
dual variables [33, 34]. As such, we can replace (A.26)
in (B.45) with the following equivalent conditions:

0 ≤ Dt,b ⊥ θD,−
t,b ≥ 0, ∀t, b (C.1)

0 ≤ D̄t,b −Dt,b ⊥ θD,+
t,b ≥ 0, ∀t, b (C.2)

0 ≤ Gt,x,b ⊥ θG,−
t,x,b ≥ 0, ∀t, x, b (C.3)
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0 ≤ Ḡx,b −Gt,x,b ⊥ θG,+
t,x,b ≥ 0, ∀t, x, b (C.4)

0 ≤
∑

b

(Gt,x,b −Gt−1,x,b) +RD
x ⊥ θR,−

t,x ≥ 0, (C.5)

∀t, x

0 ≤ RU
x −

∑

b

(Gt,x,b −Gt−1,x,b) ⊥ θR,+
t,x ≥ 0, (C.6)

∀t, x

0 ≤Wt,x,b ⊥ θW,−
t,x,b ≥ 0, ∀t, x, b (C.7)

0 ≤ W̄t,x,b −Wt,x,b ⊥ θW,+
t,x,b ≥ 0, ∀t, x, b (C.8)

0 ≤ SC
t,x,b ⊥ θC,−

t,x,b ≥ 0, ∀t, x, b (C.9)

0 ≤ S̄C
x,b − SC

t,x,b ⊥ θC,+
t,x,b ≥ 0, ∀t, x, b (C.10)

0 ≤ SH
t,x,b ⊥ θH,−

t,x,b ≥ 0, ∀t, x, b (C.11)

0 ≤ S̄H
x,b − SH

t,x,b ⊥ θH,+
t,x,b ≥ 0, ∀t, x, b (C.12)

0 ≤ Et,x ⊥ θE,−
t,x ≥ 0, ∀t, x (C.13)

0 ≤ Ēx − Et,x ⊥ θE,+
t,x ≥ 0. ∀t, x (C.14)

Appendix C.2. Complementary Slackness Conditions

Constraints (B.46)–(B.77) and (C.1)–(C.14) are com-
plementary slackness conditions, which are inherently non-
linear. This is because a complementary slackness condi-
tion of the form:

0 ≤ f(z) ⊥ ζ ≥ 0, (C.15)

can be written as:

0 ≤ f(z)

ζ ≥ 0

ζf(z) = 0.

Complementary slackness condition (C.15) can be lin-
earized by introducing a new binary variable, which we
denote π, and a sufficiently large constant, which we de-
note M . We then replace (C.15) with [35]:

0 ≤ f(z) ≤Mπ

0 ≤ ζ ≤M · (1− π)

π ∈ {0, 1}.

We linearize all of the complementary slackness conditions
in this way.

Appendix C.3. Product of ΩSD
p

There are terms in constraints (B.1)–(B.8) and (B.10)–
(B.19) in which ΩSD

p multiplies a dispatch or offer variable.

Because ΩSD
p is the common nonlinearity to all of these

constraints, we parameterize the solutions of the EPEC
by fixing the values of this variable, which is a commonly
used solution to linearizing such a nonlinearity [33, 36].
Once the value of ΩSD

p is fixed, these terms are no longer
nonlinear.

Appendix C.4. Objective Function (B.78)

Objective function (B.78) is nonlinear because of bi-
linear terms in which ψt multiplies the dispatch variables.
We eliminate these nonlinearities by approximating the
function using binary expansion [37]. To do this, we first
rewrite objective function (B.78) as:

min
∑

t,x,b

Cx,bGt,x,b −
∑

t

ψtνt,

where we let the variable νt, which is defined as:

νt =
∑

x,b

(

Gt,x,b +Wt,x,b + SH
t,x,b − SC

t,x,b

)

,

denote total hour-t net generation. After rewriting the ob-
jective function, the ψtνt terms are the only nonlinearities
that remain in this objective function.

To eliminate these nonlinearities, we approximate νt
as taking on one of a fixed set of values, which we denote
as ν̄t,1, . . . , ν̄t,Ξ. We assume that these values are equally
spaced, meaning that ν̄t,2− ν̄t,1 = · · · = ν̄t,Ξ− ν̄t,Ξ−1 = ν̄∆t .
We next introduce a set of continuous and binary vari-
ables, which we denote as γt,1, . . . , γt,Ξ and χt,1, . . . , χt,Ξ,
respectively.

We then replace objective function (B.78) with:

min
∑

t,x,b

Cx,bGt,x,b −
∑

t,ξ

γt,ξν̄t,ξ,

and add the constraints:

νt =
∑

x,b

(

Gt,x,b +Wt,x,b + SH
t,x,b − SC

t,x,b

)

, ∀t

νt − ν̄∆t ≤
∑

ξ

ν̄t,ξχt,ξ ≤ νt, ∀t (C.16)

∑

ξ

χt,ξ = 1, ∀t (C.17)

0 ≤ ψt − γt,ξ ≤M · (1− χt,ξ), ∀t, ξ (C.18)

0 ≤ γt,ξ ≤M · χt,ξ, ∀t, ξ (C.19)

χt,ξ ∈ {0, 1}, ∀t, ξ (C.20)

to the EPEC. Constraints (C.16), (C.17), and (C.20) force
the variable χt,ξ that has a corresponding value of ν̄t,ξ
closest to νt to equal 1, while the other χt,ξ’s are forced to
equal 0. Constraints (C.18) force the value of γt,ξ cor-
responding to the χt,ξ that is equal to 1 to equal ψt,
while constraints (C.19) force the other γt,ξ’s to equal zero.
Thus:

∑

t,ξ

γt,ξν̄t,ξ,

represents the product between ψt and the value of ν̄t,ξ
that is closest to νt.
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Appendix D. Verification of Equilibria

The linearizations that are outlined in Appendix C al-
low us to convert the EPECs into MILPs. However, a
solution to an EPEC is not necessarily a Nash equilib-
rium. Rather, it is a point that satisfies the KKT condi-
tions of each firm’s MPEC. To verify whether an EPEC
solution is a Nash equilibrium, we use a diagonalization
technique [36]. This method works by sequentially solving
each firm’s MPEC, holding the offers of its rival firms fixed.
If the EPEC solution is optimal in each firm’s MPEC, this
means that no firm has a profitable unilateral deviation,
and that the EPEC solution is a Nash equilibrium. Oth-
erwise, the EPEC solution is not a Nash equilibrium.
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Figure 1: Overview of Equilibrium Modeling Approach
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