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Abstract—Energy storage can contribute to the resource-
adequacy needs of power systems. However, the energy-limited
nature of energy storage complicates estimating its resource-
adequacy contribution. Energy storage that discharges to mitigate
a loss-of-load event may have less energy available to mitigate a
subsequent loss-of-load event. We present a stochastic-dynamic-
optimization approach to capture such impacts endogenously. We
demonstrate our approach using an example and two case studies,

which show that energy storage’s capacity value is sensitive to
the load patterns of the system in which it is deployed.

Index Terms—Power system security and risk analysis, ca-
pacity value, reliability theory, dynamic programming, energy
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NOMENCLATURE

Indices, Sets, and Parameters

At(lt, ωt) hour-t decisions that are feasible if the system

state is (lt, ωt)
e loss-of-load expectation (LOLE)

eM̄ LOLE with M̄ MW of load added during each

hour

Gt hour-t generating capacity available (MW)

h̄ energy-carrying capacity of energy storage (h)

It+1(y) hour-t states from which an optimal policy results

in the hour-(t+1) state of energy (SOE) of energy

storage being y
l̄1 hour-1 starting SOE of energy storage (MWh)

M̄ hourly load that is added in computation of effec-

tive load-carrying capability (MW)

Mt hour-t load (MW)

pt hour-t loss-of-load probability

R̄ power capacity of energy storage (MW)

t time index

T number of time periods in model horizon

V̄ penalty imposed on energy storage for a power-

output shortfall ($/MW)
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∆ set of decision policies

η round-trip efficiency of energy storage (p.u.)

ξt(y) probability that the hour-t SOE of energy storage

is y
πt hour-t energy price ($/MWh)

State Variables

lt beginning hour-t SOE of energy storage (MWh)

ωt equals 0 if the system has a capacity shortfall

during hour t and equals 1 otherwise

Decision Variables

ct hour-t charging into energy storage (MW)

dt hour-t discharging from energy storage (MW)

Decision Policies

δ a decision policy

cδt (lt, ωt) hour-t charging policy (MW)

dδt (lt, ωt) hour-t discharging policy (MW)

I. INTRODUCTION

ENERGY storage can be used for numerous services,

including energy shifting, ancillary services, resource

adequacy, investment deferral, and end-user applications [1].

Given its capital costs, the owner may use an energy-storage

asset for multiple applications [2], [3]. Its energy-limited

nature makes using energy storage for resource adequacy chal-

lenging, however. For instance, if energy storage discharges

during hour t to earn energy revenue or to alleviate a loss-of-

load event, its state of energy (SOE) and ability to alleviate

a subsequent loss-of-load event may be reduced. Given these

complications, operators of restructured markets are seeking

methods to ascribe capacity value to energy-storage resources.

The literature takes a number of approaches to estimating

the resource-adequacy contribution of energy storage. One

approach uses approximations, e.g., based on capacity factors

[4], [5] or load-duration-curve analyses [6]. Such methods can

be computationally efficient but limited, insomuch as they rely

on having known load or energy-storage-operation profiles.

Another approach to estimating the resource-adequacy con-

tribution of energy storage employs Monte Carlo methods [7].

Bagen and Billinton [8] use such methodology in examining

the impact of energy storage on expected unserved energy.

Hu et al. [9] employ a similar approach and consider different

energy-storage-dispatch strategies. Koh et al. [10] develop a
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hybrid method that combines sequential energy-storage simu-

lation with convolution of the load-duration curve and solar-

generation pattern. Zhou et al. [11] use a sequential model

to compute the effective load-carrying capability (ELCC) of

energy storage that is used for load shaving. Konstantelos et

al. [12] and Konstantelos and Strbac [13] study the impact

of network topology and reliability on the ELCC of energy

storage. A chief disadvantage of Monte Carlo techniques is

their computational expense.

A third body of work applies analytic methods to estimating

the resource-adequacy contribution of energy storage [14].

A key challenge of such methods is the need to represent

energy-storage operations and chronology. As such, many

analytic techniques rely on strong assumptions to maintain

tractability. Klöckl and Papaefthymiou [15] develop an ap-

proach for expressing the SOE of energy storage as a function

of its initial SOE and load. For simplicity, their approach

assumes that energy storage has unlimited energy-carrying ca-

pacity. Edwards et al. [16] employ non-sequential simulation,

assuming that energy storage always can be charged fully

overnight. Sioshansi et al. [17] develop an energy-storage-

operation model that assumes that energy storage is operated to

maximize arbitrage value without anticipating potential future

loss-of-load events in making operational decisions.

The aim of this paper is to expand upon these analytic

methods, and the work of Sioshansi et al. [17] in particular, by

relaxing the assumption of myopic energy-storage operations.

We propose a stochastic-dynamic-optimization model that

determines the operation of energy storage accounting for

energy prices and potential loss-of-load events. Loss-of-load

events are important to the energy storage, because we assume

that it participates in a capacity market with non-performance

penalties (e.g., ISO New England’s Forward Capacity Market).

We develop a technique that uses optimal decision policies to

estimate the resource-adequacy contribution of energy storage.

We demonstrate our proposed methodology using two case

studies, which are based on summer- and winter-peaking sys-

tems. Because the case-study data are proprietary, we include

also a simple example, the complete underlying data of which

we provide. Using our example and case studies, we show how

load patterns impact the resource-adequacy contribution of

energy storage. We show also that myopic decision making can

reduce the capacity value of energy storage, as its SOE may be

exhausted during periods with high loss-of-load probabilities

(LOLPs) that follow a high-price period.

Thus, this paper has two primary contributions to the

extant literature that build upon the work of Sioshansi et al.

[17]. First, our proposed methodology provides more robust

estimates of the resource-adequacy contribution of energy

storage than methods in the existing literature. This is because

our methodology accounts for uncertainty (e.g., loss-of-load

events) explicitly in making operational decisions. Sioshansi

et al. [17] use a deterministic modeling approach. Second,

our optimization model can be used to co-optimize the use

of energy storage for providing energy-shifting and resource-

adequacy services simultaneously. Our example and case

studies demonstrate the impact that non-performance penalties

have on the operation of energy storage, how the model trades-

off between the two services, and the resultant impact on the

resource-adequacy contribution of energy storage. Indeed, by

contrasting results with and without non-performance penal-

ties, we demonstrate our proposed model improving over the

previous work of Sioshansi et al. [17].

The remainder of this paper is organized as follows. Sec-

tion II details our proposed methodology. Section III illustrates

our methodology with a simple example. Sections IV and V

summarize, respectively, the data that underlie and the results

of two comprehensive case studies, to which we apply our

proposed methodology. Section VI concludes.

II. MODELING APPROACH

Our approach to estimating the capacity value of energy

storage consists of four major steps, which are detailed in

the following subsections. For ease of exposition, we assume

throughout that everything is modeled at hourly time steps

over a year-long horizon. There is no loss of generality in

these assumptions.

Our first modeling step determines the reliability of the base

system (i.e., without the energy storage), which we measure

using hourly LOLPs. LOLPs are needed for our second step,

which determines the operation of the energy storage with

a stochastic-dynamic-optimization model. Another reliability

metric could be used alongside LOLPs for measuring system

reliability, however. The third step uses the optimized decision

policies to determine the probability distributions of the SOE

of energy storage during each hour. The final step uses these

probability distributions to determine the resource-adequacy

contribution of energy storage. We measure this contribution

using ELCC [18], [19], but other metrics could be used.

A. Reliability Modeling of Base System

The hour-t LOLP is defined as:

pt = Prob {Gt < Mt} , (1)

where Prob {·} represents any randomness that impacts the

ability of the system to serve load [14]. As is common of

modeling power-system reliability, generators are assumed to

be available to produce power at nameplate capacity, so long

as they are not suffering an outage or failure that prevents their

operation. LOLE is defined as:

e =

T
∑

t=1

pt.

B. Energy-Storage-Operation Model

We formulate a stochastic-dynamic-optimization problem

to determine the operation of energy storage. The primary

source of uncertainty is loss-of-load events, the probabilities

of which are given by the LOLPs that are given by (1). Thus,

our model assumes that the energy-storage owner knows the

likelihood of future loss-of-load events. Other uncertainties

(e.g., energy prices) could be modeled as well. The model

maximizes expected revenues from energy shifting, less any

penalties that are assessed against energy storage for having a
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power-output shortfall during a loss-of-load event. We provide

an explicit model formulation, by detailing the stages, state and

decision variables, state-transition and objective-contribution

functions, and constraints [20], [21].

1) Stages: Each hour, t = 1, . . . , T , is a stage.

2) State Variables: ∀t = 1, . . . , T , ωt is an exogenous

random state variable that indicates whether the system ex-

periences an hour-t capacity shortfall. ∀t = 1, . . . , T , lt are

endogenous state variables.

3) Decision Variables: ∀t = 1, . . . , T , ct and dt are

decision variables.

4) State-Transition Functions: {ωt}
T
t=1 are determined ex-

ogenously and randomly. We have that ∀t = 1, . . . , T , ωt

equals 0 and 1 with probabilities pt and 1 − pt, respectively.

{lt}
T
t=1 evolve endogenously according to:

lt+1 = lt + ct − dt; ∀t = 1, . . . , T ; (2)

where:

l1 = l̄1. (3)

Equation (2) does not account explicitly for energy that is

lost during the energy-storage cycle. Instead, efficiency losses

are captured in the objective. For instance, if η = 0.75, then

for each MW that is charged into the energy storage during

the full duration of hour t, lt+1 increases by 1 MWh. Each

MW of stored energy that is discharged during a full hour

reduces the SOE of energy storage by 1 MWh, but outputs only

0.75 MWh to be provided to the power system (e.g., to earn

energy revenue or to alleviate a loss-of-load event). We model

energy losses in this way so the model has a finite state space,

which allows for solving the model efficiently using backward

recursion [17], [20], [21]. The assumption of different charging

and discharging rates is realistic, as modern energy-storage

technologies can be designed easily with different charging

and discharging capacities [22], [23].

5) Constraints: Charging and discharging are limited by

the power capacity of the energy storage:

0 ≤ ct ≤ R̄ · ωt; ∀t = 1, . . . , T ; (4)

0 ≤ dt ≤ R̄; ∀t = 1, . . . , T. (5)

Moreover, (4) does not allow the energy storage to charge

during a loss-of-load event, as doing so would exacerbate the

capacity shortfall and involuntary load curtailment.

The energy storage has SOE limits:

0 ≤ lt+1 ≤ h̄ · R̄; ∀t = 1, . . . , T ; (6)

as well. Strictly speaking, these are not valid constraints, be-

cause they restrict the state variable, lt+1, whereas constraints

should restrict decision variables [20], [21]. We can convert

these to the valid constraints:

−lt ≤ ct − dt ≤ h̄ · R̄− lt; ∀t = 1, . . . , T ; (7)

by substituting (2) into (6).

We define At(lt, ωt) = {ct, dt|(4), (5), and (7)}, ∀t =
1, . . . , T , as stage-t decisions that are feasible if the stage-

t state is (lt, ωt).

6) Objective-Contribution Functions: The hour-t objective-

contribution function is:

Kt(ct, dt; lt, ωt) = πt ·(ηdt−ct)−(1−ωt)V̄ η ·(R̄−dt); (8)

∀t = 1, . . . , T . This function consists of two terms. The first

gives the net operating revenue that is earned from energy

shifting. As noted in Section II-B4, we account for the energy

that is lost in the energy-storage cycle by applying η to

discharged energy in (8). Alternatively, one could apply the

energy losses in (2). We apply energy losses in (8) because

doing so gives us a finite state space, which eases solution

of the dynamic optimization model and computation of the

distributions of the SOE of energy storage during each hour

[17], [20], [21].

The second term in (8) represents the penalty that is

levied on the energy storage for not discharging up to its

power capacity if a loss-of-load event occurs. This term is

meant to mimic the function of non-performance penalties

that some markets impose on capacity resources. For instance,

PJM Interconnection’s Reliability Pricing Model imposes non-

performance penalties on resources that clear the capacity

auction [24]. ISO New England’s Forward Capacity Market

does the same.1

If there is not an hour-t loss-of-load event, the penalty term

in (8) vanishes and does not impact energy-storage operations.

On the other hand, if there is a loss-of-load event, the second

term in (8) remains and penalizes the energy storage for not

discharging at full power. Thus, if in the absence of an hour-

t loss-of-load event, energy storage would discharge during

hour t, it is optimal for it to do so during hour t in the presence

of a loss-of-load event.

7) Complete Optimization Model and Optimal Decision

Policies: To give the complete model, we define ∆ as the

set of feasible policies. ∀t = 1, . . . , T , a policy, Aδ
t (lt, ωt), is

a mapping between stage-t state, (lt, ωt), and a feasible set of

stage-t decisions, (ct, dt) ∈ At(lt, ωt). ∀δ ∈ ∆ we define:

Gδ
t (lt, ωt) = E

[

T
∑

τ=t

Kτ

(

Aδ
τ (lτ , ωτ ); lτ , ωτ

)

∣

∣

∣

∣

∣

ωt

]

;

∀t = 1, . . . , T ; (9)

as the total net operating profit from stage t onward. Equa-

tion (9) includes an expected-value operator, because of uncer-

tainty. We focus our analysis on loss-of-load events as being

the primary source of uncertainty. However, other factors (e.g.,

energy prices) could be modeled as uncertain as well. The

objective is to find an optimal policy, δ∗, that satisfies:

Gδ∗

t (lt, ωt) = sup
δ∈∆

Gδ
t (lt, ωt); ∀t = 1, . . . , T.

Our model is solved using backward recursion [20], [21],

which can be applied efficiently because the model has finite

optimal action and state spaces [17]. These finite optimal

action and state spaces arise from the way in which we model

energy losses that are associated with cycling energy through

the energy storage. Employing dynamic optimization and

1cf. Federal Energy Regulatory Commission docket number ER21-1010-
000.
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backward recursion simplifies our overall proposed method-

ology, because backward recursion yields decision policies.

These decision policies specify an optimal stage-t action for

any possible stage-t state, not only the state that results from

an optimal sequence of decisions. Decision policies allow us

to determine efficiently how the SOE and operation of energy

storage evolve after random loss-of-load events occur, which

change the system state. Energy-storage operations could be

optimized using other techniques (e.g., linear or mixed-integer

optimization). However, such models would need to be solved

repeatedly in an online manner to ‘construct’ decision-policy

information.

Hereafter we let {cδ
∗

t (lt, ωt)}
T
t=1 and {dδ

∗

t (lt, ωt)}
T
t=1 rep-

resent optimal charging and discharging decision policies,

where by definition we have:

Aδ∗

t (lt, ωt) =
(

cδ
∗

t (lt, ωt), d
δ∗

t (lt, ωt)
)

; ∀t = 1, . . . , T.

C. Probability Distribution of lt

{lt}
T
t=1 are random because δ∗ depends on {ωτ}

t
τ=1. We

can compute the probability distribution of {lt}
T
t=1 using δ∗

and {pt}
T
t=1. To do so, we define, ∀t = 1, . . . , T − 1:

It+1(y) =
{

lt, ωt

∣

∣

∣
lt + cδ

∗

t (lt, ωt)− dδ
∗

t (lt, ωt) = y
}

;

as the set of stage-t system states, (lt, ωt), from which δ∗

results in the stage-(t + 1) SOE of energy storage being y.

As discussed in Section II-B7, ∀t = 1, . . . , T − 1, It+1(y) is

easy to compute using the decision policies that the backward-

recursion algorithm yields.

Then, we can define the probability distribution, ξt(y), of

the hour-t SOE of energy storage recursively as:

ξ1(y) =

{

1; if y = l̄1;

0; otherwise;

and:

ξt+1(y) =
∑

(λ,w)∈It+1(y)

Prob {ωt = w} ξt(λ);

∀t = 1, . . . , T − 1. (10)

The Prob {·} in (10) is given by the LOLPs, {pt}
T
t=1.

The intuition behind (10) is that for the hour-(t+ 1) SOE

of energy storage to equal a particular value, y, the hour-t
system state must belong to an element of It+1(y). λ and

w are placeholders for different elements of It+1(y). ξt(λ)
gives the probability that the hour-t SOE of energy storage is

λ and pt gives the probability of ωt being equal to w. Thus,

the sum, over all elements of It+1(y), of the product of these

two probabilities gives the probability with which lt+1 = y.

D. Computing ELCC of Energy Storage

Combining δ∗ with {ξt(y)}
T
t=1, we compute the LOLE of

the system with the energy storage and M̄ MW of load added

as:

eM̄ =
T
∑

t=1

∑

y

ξt(y)×

Prob
{

Gt + ηdδ
∗

t (y, 0) < Mt + M̄
}

; (11)

where the Prob {·} represents the same sources of uncertainty

as in (1). The ηdδ
∗

t (y, 0) term in computing eM̄ represents the

amount that energy storage contributes toward meeting load

during hour t if the system experiences a loss-of-load event,

which is why we substitute ωt = 0 in dδ
∗

t (y, 0), and its hour-t
SOE is y, which occurs with probability, ξt(y).

By definition, the ELCC of energy storage is the value of

M̄ for which e = eM̄ .

III. EXAMPLE

We demonstrate our proposed methodology using a day-

long example with random loads, a renewable generator with

random production, and five conventional generators. The

conventional generators are modeled using random binary

states, meaning that each unit is either online, in which

case it can produce up to its nameplate capacity, or it is

offline, in which case it supplies nothing. All of the random

variables (e.g., loads, renewable output, and conventional-

generator states) are serially and cross-sectionally independent.

Table I summarizes the nameplate capacities and EFORs of

the five conventional generators. Fig. 1 shows load, renewable-

availability, and energy-price data. During each hour there

are two equiprobable scenarios with different loads and two

equiprobable scenarios with different renewable-availability

levels. These scenarios give four possible net-load levels (e.g.,

load less renewable availability), each with probability 1/4.

TABLE I
NAMEPLATE CAPACITIES AND EFORS OF CONVENTIONAL GENERATORS

IN EXAMPLE FROM SECTION III

Generator

1 2 3 4 5

Nameplate Capacity (MW) 75 100 150 150 175
EFOR 0.95 0.95 0.90 0.90 0.93

Fig. 1. Loads, renewable availabilites, and energy prices in Example from
Section III.
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Fig. 2 summarizes the operation of energy storage in the

example, assuming that h̄ = 4, R̄ = 100, η = 0.75, l̄1 = 100,

V̄ = 1000, and that no loss-of-load events occur during the

day. Despite loss-of-load events not occurring, we observe

the non-trivial probabilities of loss-of-load events (which are

given by the LOLPs in the lower pane of Fig. 2) and the non-

performance penalty (i.e., the nonzero value of V̄ ) impacting

energy-storage operations. As expected, energy-storage charg-

ing and discharging follow energy-price patterns—energy is

charged during the morning when prices are relatively low

and discharged later in the day when prices are higher [25].

Fig. 2. SOE of energy storage (assuming no loss-of-load events), energy
prices, LOLPs, net-load ranges, and ξt(0) in Example from Section III with
h̄ = 4 and V̄ = 1000.

However, the energy storage foregoes some energy-related

revenue to maintain a higher SOE to hedge against non-

performance penalties should a loss-of-load event occur.

Specifically, energy storage is discharged during hours 18–20,

when energy prices range between $52/MWh and $81/MWh,

and during hour 24, when the energy price is $26/MWh.

Importantly, energy storage does not discharge during hour 17,

when the energy price is $61/MWh. Discharging during

hour 17, as opposed to during hour 24, would (accounting

for η = 0.75) yield added revenue of $26.25. This energy

revenue is foregone because the power system has relatively

high LOLPs throughout hours 17–23. To illustrate the impact

of discharging during hour 17, we compute:

24
∑

t=18

ξt(0)pt;

which gives the LOLP-weighted probability that energy stor-

age is unable to mitigate a loss-of-load event during hours 18–

24. If energy storage is not discharged during hour 17, this

probability is 0.0206 as opposed to 0.0225 if its discharged

during hour 17.

Fig. 2 shows that ξt(0) is not necessarily monotone in

time—ξ22(0) = 0.173 and ξ21(0) = 0.017. We have ξ22(0) >
ξ21(0) in this case because the hour-21 LOLP is relatively

high and l21 = 100. If the system experiences an hour-21 loss-

of-load event, energy storage would discharge to reduce load

curtailment, which would yield l22 = 0. The hour-22 LOLP

is relatively low (compared to the hour-21 LOLP), which is

why ξ23(0) < ξ22(0).
Table II summarizes the estimated ELCCs of energy storage

in the example with different values of h̄ and V̄ . The ELCCs

are normalized by the nameplate net discharging capacity of

the energy storage [5], [26], which is 75 MW, because we

assume R̄ = 100 and η = 0.75 (cf. Sections II-B4 and II-B6

regarding the treatment of energy losses). The table shows that

increasing either of h̄ or V̄ can increase the ELCC, although

through different effects, which are explored in greater detail

in Section V. Increasing h̄ gives energy storage greater energy-

carrying capacity, meaning that, ceteris paribus, energy storage

tends to have more energy available to mitigate loss-of-load

events. Increasing V̄ tends to make energy-storage operations

more conservative, in the sense that the SOE is kept higher.

This is because a higher value of V̄ imposes a larger potential

non-performance penalty on energy storage that is unable to

mitigate a loss-of-load event.

TABLE II
ELCC OF ENERGY STORAGE (% OF NAMEPLATE NET DISCHARGING

CAPACITY) IN EXAMPLE FROM SECTION III

V̄

h̄ 0 1000 5000 9000

1 6 71 71 71
2 8 91 92 92
4 20 99 100 100
6 30 100 100 100
8 36 100 100 100

IV. CASE-STUDY DATA

Section V summarizes the results of applying our proposed

methodology to two case studies, which are based on data

that are obtained from operators of two different systems with

different generation mixes—one summer- and the other winter-

peaking. Due to data confidentiality, we do not reveal the

systems or provide detailed case-study data. Rather, we give a

high-level description of the system data that we obtain from

the operators and how the data are used to construct our case

studies. Each system operator provides us with three historical

data sets: generator data, loads, and wholesale energy prices.
Data for each generating unit include generation technology,

nameplate capacity, historical hourly production level for

the case-study year, and historical hourly outage informa-

tion. We use these data in different ways, depending upon

the generating technology of a particular unit. Dispatchable

generators (e.g., nuclear or fossil-fueled units) are modeled

using their nameplate capacities and effective forced outage

rates (EFORs) in the Prob {·} functions that appear in (1)

and (11). Specifically, each of these units is represented using

Bernoulli trials—each unit is unavailable and produces nothing

during a given hour with probability equal to its EFOR and

is available to operate at its nameplate capacity during the

hour with the complementary probability. This is a standard

approach to representing dispatchable generators in power-

system-reliability modeling. Each unit’s availability during
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each hour is serially and cross-sectionally independent. EFORs

are approximated using historical outage data. The remaining

generators (e.g., wind, solar, and small hydroelectric plants)

are assumed to produce during each hour according to their

historical production levels. This is a standard approach to

representing weather variability, which drives the output of

such units, in capacity-valuation exercises [27], [28]. Energy

storage is represented as outlined in Section II, as its resource-

adequacy contribution depends on its operation and resultant

SOE.

Load data specify the historical hourly load during the

case-study year for each system. The load data indicate also

hourly net exports of energy to neighboring regions and

deployment of demand-response resources and private-use

networks (which, in most cases, reflect load net of distributed

on-site generation by customers). We use these historical

data, assuming that the demand-response and private-use-

network resources are used in our case study as reported in

the historical data. System net load is given by subtracting

wind and solar production and demand-response deployment

from the sum of load, net exports, and private-use-network

deployment. We make an additive adjustment to the loads in

computing (1) for each system so that the LOLE of the base

system is 2.4 hours. This corresponds to the reliability standard

that is set by North American Electric Reliability Corporation

of one outage day every ten years [29]. These additive load

adjustments allow us to compare the capacity value of energy

storage between the two systems, without the LOLEs of the

base systems confounding the results [30].

Hourly historical wholesale electricity prices are used in (8).

We assume in our case studies that R̄ = 100 and η = 0.75
and consider cases with h̄ ∈ {1, 2, 4, 6, 8} and V̄ ∈ [0, 9000].
Thus, we use our real-world case studies to explore the drivers

of the ELCCs that are reported in Table II in greater detail.

The case studies, each of which include several hundred

generators, are implemented using MATLAB version R2018b

on a computer with a 1.80-GHz Intel Core i7 processor and

16 GB of memory. Solving the dynamic optimization model

takes less than one second of wall-clock time. However,

computing the ELCC of the energy storage takes over two

hours, due to the iterative nature of the calculation that is

required to equate e and eM̄ .

V. CASE-STUDY RESULTS

A. Energy-Storage Operations

Fig. 3 summarizes the operation of energy storage in the

summer-peaking system during 10 August, 2016 assuming

h̄ = 1 and V̄ = 0. 10 August, 2016 has relatively high

loads and non-trivial LOLPs (the LOLPs for the day sum

to 0.2, which is nearly a tenth of the year’s LOLE). We

focus our analysis on this day (as opposed to a day with

extremely high energy-price differences), because LOLPs have

a more important impact on the operation of energy storage

than energy prices do. The upper pane of Fig. 3 shows

that energy prices during the day peak during hour 15. As

such, without a financial incentive to keep energy stored to

mitigate potential loss of load between hours 16 and 18, energy

storage is discharged fully during hour 15 to exploit the high

energy prices (the SOEs that are shown in all of Figs. 3–9

assume ωt = 1 during all hours). As such, the energy storage

contributes to system reliability during hours 14 and 15 only

and, importantly, not during hour 16, which has the day’s

highest LOLP.

Fig. 3. SOE of energy storage (assuming no loss-of-load events), energy
prices, LOLPs, net loads, and ξt(0) in summer-peaking case study from
Section V during 10 August, 2016 with h̄ = 1 and V̄ = 0.

Fig. 4 summarizes the operation of the energy storage in the

same setting as in Fig. 3, except that V̄ = 9000 in the case that

is summarized in Fig. 4. Fig. 4 shows that the penalty on not

having energy available to discharge during a potential loss-

of-load event provides a strong financial incentive to maintain

a higher SOE during hours 16–19. The SOE profile that is

shown in Fig. 4 assumes ωt = 1 during all of the hours of the

day. Nevertheless, the high LOLPs during hours 16–19 and the

nonzero value of V̄ impose a high expected cost if the energy

storage has a zero SOE during this window of time, which

drives the change in the operating pattern between Figs. 3

and 4. Although the LOLPs between hours 20 and 24 are

nonzero, they are sufficiently close to zero that the revenue

that is earned from discharging stored energy during hour 19
outweighs the expected cost of any non-performance penalties

between hours 20 and 24. Although l15 = l16 = · · · =
l19 = 100 if ωt = 1, ∀t, ξ15(0), ξ16(0), . . . , ξ19(0) are trivially

nonzero in Fig. 4. These values of ξt(0) are nonzero because

during each of hours 15–19, there is a non-trivial probability

that a loss-of-load event during an earlier hour results in the

energy storage discharging, which would give a zero SOE in

a subsequent hour. The recursive calculation of ξt(·) in (10)

takes account of such intertemporal dynamics.
Contrasting the operational profiles that are shown in Figs. 3

and 4 provides insights into the difference between our current

work and that on which we build [17]. The earlier work models

the operation of energy storage by optimizing energy revenues

only and is akin to cases that we model with V̄ = 0. Cases

with V̄ > 0 allow us to examine how energy storage is

operated if it co-optimizes its energy and reliability values.
Fig. 5 summarizes the operation of the energy storage in

the same setting as in Fig. 3, with h̄ = 8 and V̄ = 0 in
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Fig. 4. SOE of energy storage (assuming no loss-of-load events), energy
prices, LOLPs, net loads, and ξt(0) in summer-peaking case study from
Section V during 10 August, 2016 with h̄ = 1 and V̄ = 9000.

the case that is summarized in Fig. 5. Fig. 5 shows that

with h̄ = 8 the financial incentive of V̄ is not needed for

the energy storage to contribute to system reliability during

the full window of time between hours 14 and 19 when the

system has non-trivial LOLPs. This is due to the relatively high

energy-carrying capability of the energy storage with h̄ = 8.

Indeed, the operational profile of energy storage with h̄ = 8
and V̄ = 9000, which we exclude for sake of brevity, is exactly

the same as that which is shown in Fig. 5.

Fig. 5. SOE of energy storage (assuming no loss-of-load events), energy
prices, LOLPs, net loads, and ξt(0) in summer-peaking case study from
Section V during 10 August, 2016 with h̄ = 8 and V̄ = 0.

Fig. 6 summarizes the operation of energy storage in the

winter-peaking system during 19 January, 2016 assuming

h̄ = 1 and V̄ = 0. As is common of winter-peaking systems,

there are morning and evening load peaks on this day. Prices

peak during hour 19, which is coincident with the peak in

the LOLPs on this day. However, LOLPs remain non-trivial

until hour 21. Because of the relatively high price during

hour 19, absent the financial incentive that a non-zero value

of V̄ provides, the energy storage is discharged and does not

contribute to system reliability during hours 20 and 21. Thus,

the operational profile that is shown in Fig. 6 exhibits the same

myopic behavior with respect to the reliability contribution of

energy storage that Fig. 3 shows. Fig. 7 shows that increasing

V̄ to 9000 has the same qualitative impact on energy-storage

operations as that shown in Fig. 4. Namely, the high potential

cost of a penalty for not having energy available during a

loss-of-load event results in energy storage retaining energy

through hour 22, which increases its reliability contribution.

Fig. 6. SOE of energy storage (assuming no loss-of-load events), energy
prices, LOLPs, net loads, and ξt(0) in winter-peaking case study from
Section V during 19 January, 2016 with h̄ = 1 and V̄ = 0.

Fig. 7. SOE of energy storage (assuming no loss-of-load events), energy
prices, LOLPs, net loads, and ξt(0) in winter-peaking case study from
Section V during 19 January, 2016 with h̄ = 1 and V̄ = 9000.

Fig. 7 shows that energy is retained until hour 22, despite the

LOLP being near-zero during that hour. This behavior stems

from the hour-22 LOLP being on the order of 10−3, which

appears to be near-zero, given the scale of the vertical axis in

Fig. 7. Multiplying the scale of the hour-22 LOLP with the

value of V̄ = 9000, means that the expected cost of having

no stored energy available during hour 22 is on the order
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of $101. The differences in energy prices between hours 22
and 21 is on the order of $3.50. These values demonstrate

that our model provides operational decisions that tradeoff the

monetized energy and reliability values of energy storage.

Figs. 8 and 9 summarize the operation of energy storage

with h̄ = 8 on the same day that is summarized in Figs. 6

and 7, assuming values of V̄ = 0 and V̄ = 9000, respectively.

As with Fig. 4, we see that the financial incentive that V̄
provides to retain stored energy is less crucial if energy storage

has sufficient energy-carrying capacity. Nevertheless, having

V̄ = 9000 does result in a small change in the operating

profile of the energy storage, which is that energy is retained

to contribute to system reliability during hour 22. Fig. 8 shows

that absent the financial incentive that V̄ provides, the energy

storage would discharge its remaining stored energy during

hour 21, meaning that it provides no reliability benefit during

hour 22.

Fig. 8. SOE of energy storage (assuming no loss-of-load events), energy
prices, LOLPs, net loads, and ξt(0) in winter-peaking case study from
Section V during 19 January, 2016 with h̄ = 8 and V̄ = 0.

Fig. 9. SOE of energy storage (assuming no loss-of-load events), energy
prices, LOLPs, net loads, and ξt(0) in winter-peaking case study from
Section V during 19 January, 2016 with h̄ = 8 and V̄ = 9000.

B. Energy-Storage ELCCs

Tables III and IV summarize the estimated ELCCs of energy

storage in the two systems with different values of h̄ and

V̄ . The ELCCs are normalized by the 75-MW nameplate

net discharging capacity of the energy storage. As shown in

Table II and expected from Figs. 3–9, the ELCC is increasing

in h̄ and V̄ .

TABLE III
ELCC OF ENERGY STORAGE IN SUMMER-PEAKING CASE STUDY FROM

SECTION V (% OF NAMEPLATE NET DISCHARGING CAPACITY)

V̄

h̄ 0 1000 5000 9000

1 32 81 91 93
2 60 89 96 99
4 81 97 100 100
6 97 100 100 100
8 100 100 100 100

TABLE IV
ELCC OF ENERGY STORAGE IN WINTER-PEAKING CASE STUDY FROM

SECTION V (% OF NAMEPLATE NET DISCHARGING CAPACITY)

V̄

h̄ 0 1000 5000 9000

1 41 83 89 92
2 67 95 97 99
4 92 100 100 100
6 95 100 100 100
8 95 100 100 100

The tables show that if there is a strong financial incentive,

energy-limited energy storage (e.g., with h̄ = 1) can have

relatively high ELCCs. This result is due to the load patterns.

Most systems experience a limited number of consecutive

hours of relatively high loads and LOLPs (cf. the load and

LOLP patterns that are summarized in Figs. 3–9). As such,

there is a low likelihood that energy storage (even with h̄ = 1)

is unable to provide energy during a loss-of-load event.

To illustrate this concept concretely, consider the LOLPs on

the day that is shown in Figs. 6–9. This day has four hours (18–

21) with non-trivial LOLPs, which are summarized in Table V.

With a sufficiently high value of V̄ , energy storage with h̄ = 1
is operated so it is charged fully as of the beginning of

hour 18. As such, ξ18(0) ≈ 0.2 Moreover, energy storage has a

0.89 probability of being fully charged as of the beginning of

hour 19 (i.e., it would be discharged if there is a loss-of-load

event during hour 18, which occurs with probability 0.11).

If there is no stored energy available as of the beginning of

hour 19, so long as the system does not experience loss of load

during hour 19, the energy storage recharges during hour 19,

and has energy available during hour 20. Thus, in such a case,

energy storage does contribute to system reliability during

hour 20, even if it has no reliability contribution during

hour 19. The recursive calculation of ξt(·) in (10), which

2There is a minuscule probability that l18 = 0, which occurs if there is a
loss-of-load event during hour 17, which is highly unlikely because p17 ≈ 0.
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underlies calculations of the ELCC of energy storage, takes

account of these types of intertemporal dynamics.

TABLE V
NON-TRIVIAL LOLPS FOR WINTER-PEAKING CASE STUDY FROM

SECTION V DURING 19 JANUARY, 2016

t 18 19 20 21

pt 0.11 0.19 0.13 0.05

We use three measures of energy-limited energy storage

with a relatively low value of h̄ benefiting from the low

likelihood of numerous consecutive hours with relatively high

LOLPs. The first metric is the average (over the year that

is modeled) number of consecutive hours during which the

LOLP is at least, p̄, conditional upon at least one hour having

an LOLP greater than or equal to p̄. Put another way, if pt ≥ p̄
for some t = 1, . . . , T , this first metric determines how many

subsequent consecutive hours have LOLPs of at least p̄. The

second metric is the number of days of the year with two or

more hours with LOLPs of at least p̄. The third metric is:
∑

t∈T

ξt(0)pt1{pt≥p̄}; (12)

where 1{pt≥p̄} is the indicator that pt ≥ p̄. Equation (12)

computes an LOLP-weighted average probability that the

energy storage is depleted (and unable to supply energy)

during periods with LOLPs of at least p̄.

Table VI summarizes the values of these three metrics for

the two systems for energy storage with h̄ = 1 and assuming

p̄ = 0.01. The table shows that, on average, there are relatively

short blocks of time with high LOLPs. The summer-peaking

system has, on average, four-hour blocks of consecutive hours

with LOLPs above 0.01 as opposed to an average of two-hour

blocks for the winter-peaking system. This difference in the

average duration of the blocks explains the lower ELCCs for

energy storage in the summer-peaking system for all values of

h̄ and V̄ relative to the ELCCs for the winter-peaking system

(cf. Tables III and IV).

TABLE VI
ELCC-RELATED METRICS FOR ENERGY STORAGE FOR CASE STUDY

FROM SECTION V WITH h̄ = 1 (p̄ = 0.01)

System

Metric Summer-Peaking Winter-Peaking

Average Consecutive 3.91 1.96
Hours With pt ≥ p̄

Number of Days With 11 14
pt ≥ p̄∑
t∈T ξt(0)pt1{pt≥p̄} 0.015 0.004

C. Energy-Storage Profits

Tables VII and VIII summarize the expected energy profits

that energy storage earns in the two systems for different

values of h̄ and V̄ . The profits that are reported do not account

for expected non-performance penalties. Profit is increasing

in h̄, which reflects the incremental value of increasing the

energy-carrying capability of energy storage [25]. Increasing

the capacity of energy storage allows it to arbitrage prices

differences between more pairs of hours. However, marginal

profits are diminishing, because the price differences between

the hours that are arbitraged with additional energy-carrying

capacity are smaller.

TABLE VII
ANNUAL EXPECTED ENERGY PROFIT FOR ENERGY STORAGE IN

SUMMER-PEAKING CASE STUDY FROM SECTION V ($ MILLION)

V̄

h̄ 0 1000 5000 9000

1 0.809 0.755 0.658 0.590
2 1.426 1.393 1.346 1.324
4 2.132 2.124 2.111 2.104
6 2.489 2.487 2.486 2.485
8 2.652 2.652 2.652 2.651

TABLE VIII
ANNUAL EXPECTED ENERGY PROFIT FOR ENERGY STORAGE IN

WINTER-PEAKING CASE STUDY FROM SECTION V ($ MILLION)

V̄

h̄ 0 1000 5000 9000

1 2.571 2.494 2.353 2.249
2 3.910 3.886 3.848 3.825
4 4.967 4.966 4.962 4.959
6 5.275 5.275 5.273 5.272
8 5.401 5.401 5.400 5.400

Profit is decreasing in V̄ , which reflects two effects of V̄
on energy-storage operations. The first is that energy storage

may not discharge stored energy during the highest-priced

hours, as illustrated in Figs. 3 and 4. Fig. 3 shows that with

V̄ = 0, stored energy is discharged during hour 15, when the

price peaks for the day at $96.56/MWh. Taking into account

η = 0.75 and the $17.11/MWh price of charging energy,

means that the energy storage earns $55.31 during the day.

With V̄ = 9000, Fig. 4 shows that the stored energy is

discharged during hour 19 after the high-LOLP period when

the energy price is $31.21. This operating profile yields a net

profit to the energy storage of $6.30/MW for the day.

Another profit impact that V̄ has, which is illustrated in

Figs. 8 and 9, is that with V̄ sufficiently high, some stored en-

ergy may not be discharged. Fig. 8 shows that with V̄ = 0, the

last incremental hour of energy-carrying capacity is discharged

during hour 21, when the energy price is $85.38/MWh. Taking

account of the $41.23/MWh cost of the last increment of

charging energy, this yields the energy storage a net profit

of $22.81/MW from this last increment of energy-carrying

capacity. With V̄ = 9000, the last increment of stored energy

is retained until the end of the high-LOLP period in hour 22,

when the energy price is $56.23/MWh. Thus, discharging this

last increment of energy during hour 22 would yield a net

profit of $0.94/MW. Given that energy must be stored for

high LOLPs during the subsequent day, it is more economic

to retain this last increment of stored energy.
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Taken together, these profit impacts of V̄ imply that energy

storage must be remunerated for operating in a manner to

co-optimize its energy and reliability benefits. The design

of such a remuneration mechanism is beyond the scope of

our work. Rather, our inclusion of V̄ in (8) could reflect, as

an example, non-performance penalties that are imposed on

resources that participate in organized capacity mechanisms

(e.g., PJM Interconnection’s Reliability Pricing Model or ISO

New England’s Forward Capacity Market).

VI. CONCLUSIONS

This paper expands upon previous work [17] to develop

a stochastic operational model that co-optimizes energy and

reliability benefits of energy storage. Our model abstracts the

details of how reliability benefits are monetized. We assume

that energy storage is remunerated for its reliability benefits but

that financial penalties (e.g., V̄ ) are imposed for real-time non-

performance. Setting V̄ = 0 provides operational strategies

that maximize energy value to the exclusion of reliability

benefit. An example and two comprehensive case studies are

used to demonstrate the operation, ELCC, and operating profit

of energy storage, including the impacts of h̄ and V̄ thereon.
Our example includes generator failure and random load

and renewable-energy production as sources of uncertainty.

Our case study focuses on generator failures as sources of

uncertainty. Our model could be applied easily to a case

with serial correlation (e.g., modeling Markovian generator

failures). Serial correlations would impact the state-transition

probabilities that determine the values of ωt during each stage.
In addition to providing decision support for an energy-

storage operator, our model can help guide current market-

design and policy decisions. Market operators are updating

their tariffs to allow energy storage to participate in their

systems as capacity resources. Much of this market develop-

ment is in reaction to Federal Energy Regulatory Commission

order 841.3 Some markets are proposing ad hoc rules with

respect to treating energy storage as capacity resources. For

instance, California’s Resource Adequacy construct requires

four hours of energy-carrying capability for energy storage to

be treated as having a 100% capacity rating. Other market

operators are proposing requiring energy-carrying capabilities

of eight or more hours. Our results show that depending upon

the load patterns, without a financial penalty, eight hours of

energy-carrying capability may yield an ELCC below 100%

(cf. Table IV). On the other hand, if there are sufficient

financial incentives, energy storage with two hours of energy-

carrying capability may have a near-100% capacity rating.

Intuitively, a nonzero value of V̄ is needed because energy

prices may peak before LOLPs (cf. Fig. 3) or because, even

if price and LOLP peaks are co-incident, energy storage that

is focused on energy revenue only may discharge before it

should from the perspective of reliability benefit (cf. Fig. 6).
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[15] B. Klöckl and G. Papaefthymiou, “An effort to overcome the chronologi-
cal modeling methods for energy storage devices,” in 2005 International

Conference on Future Power Systems. Amsterdam, Netherlands:
Institute of Electrical and Electronics Engineers, 18 November 2005.

[16] G. Edwards, S. Sheehy, C. J. Dent, and M. C. M. Troffaes, “Assessing
the contribution of nightly rechargeable grid-scale storage to generation
capacity adequacy,” Sustainable Energy, Grids and Networks, vol. 12,
pp. 69–81, December 2017.

[17] R. Sioshansi, S. H. Madaeni, and P. Denholm, “A Dynamic Program-
ming Approach to Estimate the Capacity Value of Energy Storage,” IEEE

Transactions on Power Systems, vol. 29, pp. 395–403, January 2014.
[18] M. Amelin, “Comparison of Capacity Credit Calculation Methods for

Conventional Power Plants and Wind Power,” IEEE Transactions on

Power Systems, vol. 24, pp. 685–691, May 2009.
[19] G. R. Pudaruth and F. Li, “Capacity Credit Evaluation: A literature re-

view,” in Third International Conference on Electric Utility Deregulation

and Restructuring and Power Technologies. Nanjing, China: Institute
of Electrical and Electronics Engineers, 6-9 April 2008, pp. 2719–2724.

[20] W. B. Powell, Approximate Dynamic Programming: Solving the Curses

of Dimensionality. Hoboken, New Jersey: Wiley-Interscience, 2007.
[21] R. Sioshansi and A. J. Conejo, Optimization in Engineering: Models and

Algorithms, ser. Springer Optimization and Its Applications. Gewerbe-
straße 11, 6330 Cham, Switzerland: Springer Nature, 2017, vol. 120.



KIM ET AL.: A STOCHASTIC-DYNAMIC-OPTIMIZATION APPROACH TO ESTIMATING THE CAPACITY VALUE OF ENERGY STORAGE 11

[22] J. B. Greenblatt, S. Succar, D. C. Denkenberger, R. H. Williams, and
R. H. Socolow, “Baseload wind energy: modeling the competition be-
tween gas turbines and compressed air energy storage for supplemental
generation,” Energy Policy, vol. 35, pp. 1474–1492, March 2007.

[23] R. Sioshansi, “Welfare Impacts of Electricity Storage and the Implica-
tions of Ownership Structure,” The Energy Journal, vol. 31, pp. 173–198,
2010.

[24] PJM Manual 18: PJM Capacity Market, 47th ed., PJM Interconnection,
27 January 2021.

[25] R. Sioshansi, P. Denholm, T. Jenkin, and J. Weiss, “Estimating the Value
of Electricity Storage in PJM: Arbitrage and Some Welfare Effects,”
Energy Economics, vol. 31, pp. 269–277, March 2009.

[26] D. McConnell, T. Forcey, and M. Sandiford, “Estimating the value of
electricity storage in an energy-only wholesale market,” Applied Energy,
vol. 159, pp. 422–432, 1 January 2015.

[27] A. Keane, M. R. Milligan, C. J. Dent, B. Hasche, C. D’Annunzio,
K. Dragoon, H. Holttinen, N. Samaan, L. Söder, and M. O’Malley,
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