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Abstract—Due to complexity in determining its state of en-
ergy (SOE), multi-use applications complicate the assessment of
energy storage’s resource-adequacy contribution. SOE impacts
resource-adequacy assessment because energy storage must have
stored energy available to mitigate a loss of load. This paper
develops a three-step process to assess the resource-adequacy
contribution of energy storage that provides frequency regulation.
First, we use discretized stochastic dynamic optimization to derive
decision policies that tradeoff between different energy-storage
applications. Next, the decision policies are used in a mixed-
integer linear optimization that determines actual energy-storage
operation in a rolling-horizon fashion. Finally, simulation is used
to assess energy storage’s resource-adequacy contribution. The
methodology is demonstrated using a simple example and a
case study that are based on actual real-world system data.
We benchmark our proposed model to another that neglects
frequency regulation and show the impacts of market design,
frequency-regulation provision, and energy-storage size on the
capacity value of energy storage.

Index Terms—Power system security and risk analysis, ancil-
lary service, capacity value, reliability theory, dynamic program-
ming, energy storage

I. INTRODUCTION

ENERGY storage is used increasingly for multiple applica-

tions [1]–[3], which can yield synergies and opportunity

costs [4], [5]. Synergies arise if multiple applications call for

the same operational profile (e.g., discharging stored energy

to exploit a high price can have a capacity-deferral benefit).

Opportunity costs arise from conflicting applications (e.g.,

discharging energy to exploit a high price may leave less

energy to alleviate subsequent loss of load).

Opportunity costs between multiple services can compli-

cate energy-storage assessment. Of particular importance is

Manuscript received 18 April, 2024; revised 16 August, 2024; accepted
9 November, 2024. This work was supported by National Science Foundation
grants 1463492, 1808169, and 1922666, Electric Power Research Institute
grants 00-10007617 and DKT230520, Carnegie Mellon Electricity Industry
Center, and Wilton E. Scott Institute for Energy Innovation. (Corresponding
author: Hyeong Jun Kim.)

H. J. Kim is with Department of Integrated Systems Engineering,
The Ohio State University, Columbus, OH 43210-1271, USA (e-mail:
kim.5206@buckeyemail.osu.edu).

R. Sioshansi is with Department of Engineering and Public Policy, Carnegie
Mellon Electricity Industry Center, Department of Electrical and Computer
Engineering, and Wilton E. Scott Institute for Energy Innovation, Carnegie
Mellon University, Pittsburgh, PA 15213-3815, USA and with Department of
Integrated Systems Engineering, The Ohio State University, Columbus, OH
43210-1271, USA (e-mail: rsioshan@andrew.cmu.edu).

E. Lannoye is with Grid Operations & Planning, EPRI Europe, Dublin,
Ireland (elannoye@epri.com).

E. Ela is with Power Delivery and Utilization Department, Electric Power
Research Institute, Palo Alto, CA 94304-1395, USA (e-mail: eela@epri.com).

determining the contribution of energy storage towards the

resource-adequacy needs of the electricity system in which

it is located. This importance arises from planners needing

to determine, potentially with a long lead time, that its

electricity system can serve load reliably [6], [7]. There is a

growing recognition that energy storage may play an outsize

role in meeting the resource-adequacy needs of decarbonized

electricity systems [8], [9]. Energy storage meeting resource-

adequacy needs is tied to its state of energy (SOE). This

relationship arises because energy storage must have stored

energy available to mitigate a loss of load [10]–[13].

Thus, assessing energy storage’s resource-adequacy contri-

bution requires understanding how its SOE evolves. Its SOE

depends on how energy storage is operated and exogenous

factors. For instance, scheduling charging and discharging

impacts energy-storage SOE. In addition, providing ancillary

services may yield an uncertain energy-storage SOE (e.g., due

to real-time ancillary-service deployments).

Electricity-system reliability can be sensitive to operational

decisions [14]. Its energy-limited nature can complicate such

an assessment for energy storage. The technical literature

tackles this challenge using analytic methods and simulation.

Klöckl and Papaefthymiou [15] develop an approach that

expresses energy-storage SOE as a function of its initial SOE

and load, assuming that energy storage has unlimited energy

capacity. Edwards et al. [12] use non-sequential simulation,

assuming that energy storage can be charged fully overnight.

Another approach [10], [13] uses dynamic optimization to

compute an optimal decision policy, from which the proba-

bility distribution of SOE is derived. Examples of simulation-

based works include that of Hu et al. [16], which considers

different energy-storage-dispatch strategies. Koh et al. [17]

compute reliability indices under different energy-storage-

deployment scenarios. Zhou et al. [18] model the effective

load carrying capability (ELCC) of energy storage that is used

for peak-load shaving. Konstantelos et al. [19] use simulation

to study the impact of network reliability on energy storage’s

ELCC.

A limitation of this literature is its focus on energy storage

providing energy services (e.g., energy shifting). Many energy-

storage technologies are well suited to providing ancillary

services (e.g., frequency regulation) and energy storage is

built for such applications [20]–[22]. Using energy storage

for ancillary services can create opportunity costs vis-à-vis

its resource-adequacy contribution. Providing high-value fre-

quency regulation calls for maintaining ‘headroom’ to follow

the real-time frequency-regulation signal [23]. Such headroom
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conflicts with maintaining a high SOE to have stored energy

available to alleviate a loss of load. In addition, a service

such as frequency regulation introduces SOE uncertainty,

because energy storage must charge and discharge to follow

the frequency-regulation signal.
The literature includes works that model energy storage pro-

viding frequency regulation. One modeling approach employs

linear optimization [24]–[26]. Unless it is used in a rolling-

horizon fashion, linear optimization is static, insomuch as the

modeled decisions might not be adjusted as new information is

available. Dynamic optimization can overcome this limitation

[4], [27], [28]. In addition to model structure, the analytical

foci of these works differ. For instance, some works [24],

[26], [29], [30] assess the revenues that energy storage can

earn from providing energy and ancillary services whereas

others [4], [27] develop models that could be used for real-

time operation and trading-off between different applications.
This paper synthesizes these two streams of work to develop

an approach to assess the resource-adequacy contribution of

energy storage that provides frequency regulation. We begin

in Section II by providing an exact model, which captures

all of the pertinent dynamics and uncertainties, but is com-

putationally intractable. Next, Section III provides our three-

step approach, which is a tractable approximation of the exact

model. First, stochastic dynamic optimization is used to derive

decision policies. Next, optimal decision policies are used to

build a mixed-integer linear optimization that determines, in

a rolling-horizon fashion, real-time energy-storage operation.

Finally, simulation is used to estimate energy storage’s impact

on electricity-system reliability. Section IV summarizes data

generation and simulation, which are based on real-world data

that correspond to an actual electricity system. Section V

summarizes results for a one-day example and includes a

comparison to a simpler exact model that neglects frequency

regulation [13]. Section VI summarizes case-study results and

Section VII concludes.
The novelty and primary contribution of our work is de-

veloping a resource-adequacy-assessment approach for energy

storage that captures the SOE-related complexities of fre-

quency regulation. Our work extends previous approaches to

assessing the resource-adequacy contribution of energy storage

[10], [13] by accounting for the provision of frequency regu-

lation or other ancillary services. Our example and case study

demonstrate the balance between computational tractability

and model fidelity of our three-step approximation. Further-

more, we demonstrate the tradeoffs between the use of energy

storage for resource adequacy and other applications. We

explore also the effects of market-design and energy-storage-

capacity choices on the resource-adequacy contribution of

energy storage.

II. EXACT MODEL

We model price-taking energy storage that provides energy

shifting, frequency regulation, and capacity. Energy-shifting

revenue is based on prices for charging and discharging energy.

Without loss of generality, we model a single frequency-

regulation product that includes upward and downward ser-

vices. Some markets treat these as two separate products [31],

[32], which can be captured by our model trivially. Energy

storage receives a payment, based on a capacity price, for

each MW of frequency-regulation capacity that it provides

during a given hour. If energy storage is unable to follow

the resultant frequency-regulation signal, it is penalized for its

shortfall. We assume that energy storage has its rated capacity

cleared in a capacity auction. We do not account for capacity-

auction revenue, because it is a constant under our assumption.

The capacity mechanism includes a non-performance penalty,

which is levied against the energy storage if it is unable to

operate at its rated capacity during a loss of load [33].

Our exact approach uses stochastic dynamic optimization

to model energy-storage operations and to yield an optimal

decision policy [34]. Our model can capture any uncertainty

that impacts energy-storage operations or SOE. As detailed

in Section IV, our example and case study consider uncertain

prices, loss of load events, and frequency-regulation deploy-

ments. The policy that is obtained from the stochastic dynamic

optimization is used to compute the probability distributions of

the hourly energy-storage SOEs and to assess energy storage’s

resource-adequacy contribution.

A. Stochastic Dynamic Optimization

1) Stages: We consider an ordered set, T , of hours, each

of which is a decision stage. t denotes the time index.

2) Decision Variables: For all t ∈ T , ct and dt denote

scheduled hour-t energy-storage charging (MW) and discharg-

ing (MW), respectively, and nt denotes hour-t frequency-

regulation capacity (MW) that the energy storage schedules.

For notational ease, ∀t ∈ T , we define:

at = (ct, dt, nt) ;

as a vector of hour-t decision variables.

3) State Variables: For all t ∈ T , there are four exogenous

state variables. πt and ρt are hour-t energy ($/MWh) and

frequency-regulation ($/MW-h) prices, respectively. It is a

binary variable that equals 0 if there is an hour-t loss of load

and equals 1 otherwise. δt is the hour-(t − 1) dispatch-to-

contract ratio (p.u.), which determines how much net energy

must be charged or discharged by the energy storage to fulfill

its frequency-regulation obligation [23], [35]. The one-hour

offset in the index is due to the amount of energy that will be

needed being unknown when the energy storage determines

how much hour-t frequency regulation to schedule [4], [27].

There are two sets of endogenous state variables. For all

t ∈ T , ut is the amount of unfulfilled hour-(t− 1) frequency-

regulation energy (MWh) and lt is the beginning hour-t SOE

of the energy storage (MWh). The same one-hour offset that

is used to define δt is used in defining ut. For all t ∈ T , we

define:

Wt = (πt, ρt, It, δt, ut) ;

as a vector of hour-t state variables other than lt.
4) State-Transition Functions: The exogenous state vari-

ables are simulated (cf. Sections II-C and IV). For all t ∈ T ,

the calculations of ut and lt depend on the sign of δt, be-

cause the sign determines whether the energy storage charges
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or discharges to fulfill its hour-(t − 1) frequency-regulation

commitment. For all t ∈ T , if δt ≥ 0, then:

ut = max {0, δtnt−1 + dt−1 − ct−1 − lt−1} ; (1)

whereas if δt < 0, then:

ut =

min
{

0, δtnt−1 + dt−1 − ct−1 +
(

Ē − lt−1

)

/η
}

; (2)

where Ē is energy storage’s maximum SOE (MWh) and η is

its p.u. roundtrip efficiency. The intuition behind (1) is that if

δt ≥ 0, energy storage must discharge δtnt−1 to fulfill its hour-

(t−1) frequency-regulation obligation. The maximum amount

of energy that it could discharge, if it depletes it stored energy

fully, is (lt−1 − dt−1 + ct−1). ut is the difference between

these two quantities. The intuition behind (2) is analogous, but

considers the amount that could be charged if energy-storage

SOE goes to its maximum.

For all t ∈ T , if δt+1 ≥ 0, then:

lt+1 = lt + ηct − (dt + δt+1nt − ut+1) ; (3)

whereas if δt+1 < 0, then:

lt+1 = lt + η · (ct − δt+1nt + ut+1)− dt. (4)

To understand (3), suppose that ut = 0, meaning that en-

ergy storage can fulfill its hour-(t − 1) frequency-regulation

obligation. Because δt+1 ≥ 0, energy storage must discharge

δt+1nt MWh. Combining this with its scheduled hour-t charg-

ing and discharging gives the right-hand side of (3). If energy

storage is unable to fulfill its frequency-regulation obligation,

the unfulfilled amount is deducted from the final term on

the right-hand side of (3). State-transition function (4) has

an analogous interpretation for cases wherein energy storage

charges to fulfill its frequency-regulation obligation.

5) Constraints: The energy storage has power constraints:

0 ≤ dt + nt ≤ R̄; ∀t ∈ T (5)

0 ≤ ct + nt ≤ ItR̄/η; ∀t ∈ T ; (6)

where R̄ is the power limit of the energy storage (MW); SOE

constraints:

0 ≤ lt+1 ≤ Ē; ∀t ∈ T ; (7)

and non-negativity constraints:

ct, dt, nt ≥ 0; ∀t ∈ T. (8)

It appears in the right-hand side of (6) to ensure that energy

storage does not charge during a loss of load. Constraints (7)

can be rewritten as explicit restrictions on at, ∀t ∈ T , by

using (3) and (4) to substitute for lt+1 in (7).

We define At(Wt, lt), ∀t ∈ T , as the set of hour-t decisions

that are feasible in (5)–(8) if the hour-t state is (Wt, lt).
Some operational models of energy storage include explicit

constraints to prevent simultaneous charging and discharging

[36]. Such a restriction could be incorporated into our model

easily, either by introducing binary variables or with logical

constraints [34]. We do not include such constraints for two

reasons. First, because of the η term that appears in (3) and (4),

simultaneous charging and discharging is suboptimal under

most cases [37]. Indeed, we do not observe simultaneous

charging and discharging in our example nor in our case

study. Second, some energy-storage technologies are capable

of charging and discharging simultaneously [38]. Thus, a con-

straint preventing such operation would be unduly restrictive.
6) Objective-Contribution Functions: For all t ∈ T , the

hour-t objective-contribution function is:

Kt(at;Wt, lt) = πt · (dt − ct) + ρt−1nt−1

− πt−1ut/δt − V̄ · (1 − It)
(

R̄− dt
)

; (9)

which consists of four terms. The first gives net revenue

that the energy storage earns from scheduled hour-t energy

charging and discharging.

The next two terms give net revenue for providing fre-

quency regulation. The term, ρt−1nt−1, is revenue that energy

storage earns from providing frequency-regulation capacity.

The following term is the penalty for unfulfilled frequency-

regulation deployments, which depends upon the energy price.

This financial penalty is a common design of many wholesale

electricity markets, and is used to incentivize resources to

provide frequency regulation and other ancillary services in-

line with their commitments [39]. The penalty cannot be levied

until the dispatch-to-contract ratio is known, which is why

these terms have the same one-hour lag that defines δt and ut.
The final term that is in (9) gives the capacity-auction non-

performance penalty, where V̄ is the penalty cost ($/MW-h).

If there is an hour-t loss of load (i.e., if It = 0), the energy

storage is penalized if it discharges less than its rated power

capacity. Otherwise, if It = 1, this term is zero.

Objective-contribution function (9) captures revenues, costs,

and penalties that are related to energy-storage participation

in the energy, frequency-regulation, and capacity markets.

As such, our model captures the varying incentives of these

markets on energy-storage operations and market participation.
7) Optimal Decision Policy: A feasible policy, ξ, is a map-

ping, Aξ
t (Wt, lt), ∀t ∈ T , between an hour-t state, (Wt, lt),

and feasible hour-t decisions, at ∈ At(Wt, lt). We define Ξ
as the set of feasible policies and ∀ξ ∈ Ξ, t ∈ T we define:

Gξ
t (Wt, lt) =

E





∑

τ∈T,τ≥t

Kτ (A
ξ
τ (Wτ , lτ );Wτ , lτ )

∣

∣

∣

∣

∣

∣

Wt



 ;

as net energy-storage profit from hour t onward. If ξ∗ satisfies:

Gξ∗

t (Wt, lt) = sup
ξ∈Ξ

Gξ
t (Wt, lt); ∀t ∈ T. (10)

then it is an optimal decision policy. For all t ∈ T , we let:

cξ
∗

t (Wt, lt);

dξ
∗

t (Wt, lt);

and:

nξ∗

t (Wt, lt);

denote optimal charging, discharging, and frequency-

regulation policies, where we have:

Aξ∗

t (Wt, lt) =
(

cξ
∗

t (Wt, lt), d
ξ∗

t (Wt, lt), n
ξ∗

t (Wt, lt)
)

.
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B. Probability Distribution of lt

For all t ∈ T such that t > 1, lt is random. This

randomness is due to lt depending upon charging, discharging,

and frequency-regulation decisions, which depend upon the

random state variables. In addition, lt depends directly upon

random state variables (e.g., δt affects the values of ut and

lt).
Using ξ∗, we can compute the probability distribution of lt,
∀t ∈ T , which we denote as ζt(·). To do so, we let l̄1 denote

the starting hour-1 SOE and ∀t ∈ T , such that t < |T | and

δt ≥ 0, we define:

Wt+1(y) =
{

Wt, lt

∣

∣

∣
lt + ηcξ

∗

t (Wt, lt)

−
(

dξ
∗

t (Wt, lt) + δt+1n
ξ∗

t (Wt, lt)− ut+1

)

= y
}

; (11)

and ∀t ∈ T , such that t < |T | and δt < 0, we define:

Wt+1(y) =
{

Wt, lt

∣

∣

∣
lt + η ·

(

cξ
∗

t (Wt, lt)

−δt+1n
ξ∗

t (Wt, lt) + ut+1

)

− dξ
∗

t (Wt, lt) = y
}

. (12)

For all t ∈ T , such that t < |T |,Wt+1(y) is defined as the set

of hour-t states from which the optimal decision policy yields

an hour-(t + 1) SOE of y MWh. With these definitions, we

have:

ζ1(y) =

{

1; if y = l̄1

0; otherwise;
(13)

and:

ζt+1(y) =

∫

(Γ,λ)∈Wt+1(y)

ft(Γ)ζt(λ)dΓdλ;

∀t ∈ T, t < |T |; (14)

where ft(·) is the joint probability distribution of Wt.

The intuition behind (13) is that the probability distribution

of the hour-1 SOE is trivial—with probability 1 the SOE is

l̄1. As for (14), consider an hour, t ∈ T , such that t < |T |.
By the definition of Wt+1(y), for the hour-(t+1) SOE to be

a given value, y, the hour-t state variable must be an element

of Wt+1(y). Equation (14) considers all elements, (Γ, λ), of

the set, Wt+1(y), and for each one multiplies the probability

that Wt = Γ by the probability that lt = λ. Integrating

these products over the set, Wt+1(y), gives the probability

that the hour-(t+1) SOE is y. Equations (13) and (14) make

no assumption about a parametric form for the probability

distribution of the SOE. There may be cases that having a

specified parametric form for ζt(y), ∀t ∈ T is useful. Such

an approximation could be achieved by fitting a parametric

distribution to the distributions that are obtained from (13)

and (14).

C. Energy-Storage ELCC

Resource-adequacy assessment may be done with different

capacity-valuation and risk metrics [7]. Without loss of gen-

erality, we use ELCC and loss of load expectation (LOLE) as

these two metrics. To compute energy-storage ELCC, first we

calculate, ∀t ∈ T , the hour-t loss of load probability (LOLP)

of the base electricity system (without energy storage) as:

pt = Prob {Xt < Zt} ; (15)

where Xt is hour-t generation capacity that is available (MW)

and Zt is hour-t demand (MW). The Prob {·} function that

defines the LOLPs can account for any pertinent uncertainty

(e.g., generator failures). By definition, ∀t ∈ T , pt and (1−pt)
are the probabilities with which It equals 0 and 1, respectively.

The LOLE of the base system is defined as:
∑

t∈T

pt.

Energy-storage ELCC is defined as the value of Z̄ such that:

∑

t∈T

pt =
∑

t∈T

∫ Ē

λ=0

∫

Γ

ft(Γ)ζt(λ)×

Prob
{

Xt + dξ
∗

t (Γ, λ) < Zt + Z̄
}

dΓdλ. (16)

The intuition behind (16) is that energy storage increases

electricity-system reliability, insomuch as it may discharge

during a loss of load. This discharging is reflected on the left-

hand side of the inequality that is in the Prob {·} function

in (16). The amount that is discharged during each hour

depends, through ξ∗, on Wt and lt. Thus, the probability

distributions, ft(Γ) and ζt(λ), of these random variables

appear in the integrand. The ELCC, Z̄ , is the amount by which

the hourly loads can be increased to achieve the same LOLE of

the system with the energy storage as that of the base system.

III. APPROXIMATE MODEL

The approach that is outlined in Section II is exact but

computationally intractable due to two complicating factors.

First, the stochastic dynamic optimization has large (poten-

tially uncountably infinite) decision- and state-variable spaces.

Second, (11), (12), (14), and (16) involve sets and integrals

that likely cannot be computed directly. Thus, we propose

the following three-step process to approximate the exact

model, which employs discretized optimization and random

sampling. The approximation is exact, in the sense that it

should replicate the outcomes of the exact model if the

discretization and random sampling are exact (i.e., replicate

the true underlying decision and state spaces and random

variables). We demonstrate this exactness empirically with our

example in Section V-A. Fig. 1 is a high-level flow chart that

summarizes the connections between the three steps. As we

describe each step of the modeling process, we explain the

steps and linkages that are shown by Fig. 1.

A. Discretized Stochastic Dynamic Optimization

Step 1 of our method (cf. Fig. 1) employs a discretized

version of the model that is proposed in Section II-A [40].

All of T , t, πt, ρt, It, and δt retain the same definitions as

before. For all t ∈ T , we define c̃t, d̃t, ñt, ãt, ũt, and l̃t as

discretized variants of ct, dt, nt, at, ut, and lt, respectively.

The discretization that is used is a modeling choice, which



KIM ET AL.: ASSESSING THE CAPACITY VALUE OF ENERGY STORAGE THAT PROVIDES FREQUENCY REGULATION 5

Discretized value function from Step 1 used

of continuous value function
to generate piecewise-linear approximation

Step 1: Discretized Stochastic
Dynamic Optimization

Output: Optimized decision policies
(cf. Section III-A)

discretization)
and value functions (under assumed

(without any assumed discretization)

Step 2: Mixed-Integer Linear
Optimization (cf. Section III-B)

Output: Optimized decisions

Mixed-integer linear optimization from Step 2

solved iteratively in rolling-horizon fashion one
hour at a time with a sample path of realized
random variables to determine optimal sequence
of energy-storage operations

Algorithm (cf. Section III-C)
Step 3: Rolling-Horizon Solution

Output: Optimized decisions, SOE,

(without any assumed discretization)
and profit under each sample path

Fig. 1. High-level flow chart of the three-step approximation method that is
outlined in Section III.

introduces a tradeoff between computational complexity and

fidelity of the model results. Section IV details the discretiza-

tion that we use in our example and case study, which performs

well vis-à-vis the aforementioned tradeoff. For notational ease,

∀t ∈ T , we let Mt denote the number of values that l̃t can

take in the discretization and let l̃1t ≤ l̃2t ≤ · · · ≤ l̃Mt

t denote

the values to which l̃t is restricted. For all t ∈ T , we define:

W̃t = (πt, ρt, It, δt, ũt) ;

let Ωt denote the set of scenarios for the exogenous hour-t
state variables, and let ω be the scenario index. As needed, an

ω superscript indicates the scenario-ω value of a state variable.

The exogenous state variables are simulated (cf. Sec-

tions II-C and IV) and the endogenous state variables follow

the same state transitions that are given in (1)–(4), with tildes

on appropriate terms. The discretized model includes the same

constraints, (5)–(8), with tildes on appropriate terms.

For all t ∈ T , the hour-t objective-contribution function of

the discretized model is:

K̃t(ãt; W̃t, l̃t) = πt ·
(

d̃t − c̃t

)

+ ρt−1ñt−1 − πt−1ũt/δt

− V̄ · (1− It)
(

R̄− d̃t

)

− πt · (δt+1ñt − Si). (17)

The first four terms of (9) and (17) are identical, save for tildes

in the latter. The fifth term in (17) is a correction factor, which

accounts for l̃t+1 being restricted to one of l̃1t , l̃
2
t , · · · , l̃

Mt

t .

Specifically, the amount of energy that must be supplied to

fulfill the frequency-regulation obligation, δt+1ñt, is rounded

to an element of the ordered set, S. We define Si in (17) as:

argmin
S∈S

|δt+1ñt − S| .

Thus, the fifth term in (17) assumes that the rounding error

in the frequency-regulation obligation is settled through the

energy market.

We define ξ̃, Ξ̃, and G̃ξ̃
t (W̃t, l̃t), ∀t ∈ T analogously to ξ, Ξ,

and Gξ
t (Wt, lt), respectively, with tildes on appropriate terms.

Thus, ξ̃∗ is an optimal decision policy if it satisfies:

G̃ξ̃∗

t (W̃t, l̃t) = sup
ξ̃∈Ξ̃

G̃ξ̃t(W̃t, l̃t); ∀t ∈ T.

Because of the assumed finite decision- and state-variable

spaces, ξ̃∗ can be obtained using backward recursion.

As noted above, the discretized stochastic dynamic opti-

mization gives the same decision policies as the model that

is introduced in Section II-A if the discretization is exact in

the sense that it represents the true decision and state spaces

and random variables. This exactness is because the fifth

term in (17) becomes zero, which means that the objective-

contribution functions and constraints of the discretized and

exact dynamic optimizations are the same.

B. Mixed-Integer Linear Optimization

As is stated in the box that is labled ‘Step 1’ in Fig. 1, ξ̃∗ is

optimal if the energy storage is restricted to the assumed dis-

cretization. Our numerical results suggest that a discretization

that yields a computationally tractable dynamic optimization

gives poor ELCC estimates. Thus, our second step uses:

G̃ξ̃∗

t+1(W̃t+1, l̃t+1), ∀t ∈ T ;

in a two-stage stochastic mixed-integer linear optimization that

relaxes the discretization. This linkage between Steps 1 and 2
is illustrated by the arrow connecting the two corresponding

boxes that are in Fig. 1. This model determines energy-storage

operations in a rolling-horizon fashion (cf. Section III-C). For

all t ∈ T , the hour-t model optimizes at and uses a piecewise-

linear approximation of:

G̃ξ̃∗

t+1(W̃t+1, l̃t+1);

to tradeoff between at and subsequent decisions.

For all t ∈ T , we have that:

G̃ξ̃∗

t+1(W̃t+1, l̃t+1);

depends on hour-t and -(t+ 1) decision variables. To use:

G̃ξ̃∗

t+1(W̃t+1, l̃t+1), ∀t ∈ T ;

in the fashion that we envision, we need to have terms that

depend on hour-(t+1) variables only. Thus, ∀t ∈ T , we define:

G̃∗
t+1(W̃t+1, l̃t+1) =

πt+1 ·
(

dξ̃
∗

t+1

(

W̃t+1, l̃t+1

)

− cξ̃
∗

t+1

(

W̃t+1, l̃t+1

))

+ ρt+1n
ξ̃∗

t+1

(

W̃t+1, l̃t+1

)

− πt+1ũt+2/δt+2

− V̄ · (1− It)
(

R̄− dξ̃
∗

t+1

(

W̃t+1, l̃t+1

))

+ G̃∗
t+2

(

W̃t+2, l̃t+2

)

.
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For all t ∈ T , based on (9) and the one-hour offset in defining

δt and ut, we have that:

G̃ξ̃∗

t+1(W̃t+1, l̃t+1);

includes the term, ρtnt − πtũt+1/δt+1. The function:

G̃∗
t+1(W̃t+1, l̃t+1)

replaces this term with ρt+1nt+1−πt+1ũt+2/δt+2. This time-

index change does not affect the overall objective function, as

all of ρ1n1, . . . , ρ|T |n|T | and π1ũ2/δ2, . . . , πT ũ|T |+1/δ|T |+1

are considered in the rolling-horizon optimization. With this

definition, ∀t ∈ T , m = 1, . . . ,Mt − 1, we can define the

slope of the mth piece of the piecewise-linear interpolation of

G̃∗
t+1(W̃t+1, l̃t+1) as:

σ̂m
t+1(W̃t+1) =

G̃∗
t+1(W̃t+1, l̃

m+1
t+1 )− G̃∗

t+1(W̃t+1, l̃
m
t+1)

l̃m+1
t − l̃mt

. (18)

Our mixed-integer linear model optimizes hour-t energy-

storage operations, ct, dt, nt. Depending upon the scenario,

ω ∈ Ωt+1, that is realized, the random variable, δωt+1, deter-

mines the amount of energy that must be supplied to fulfill

the frequency-regulation obligation. These values determine

the resultant unfulfilled frequency-regulation energy, uω
t+1, and

SOE, lωt+1. In addition to ct, dt, nt, and uω
t+1 and lωt+1,

∀ω ∈ Ωt+1, the model has two additional auxiliary-variable

sets, which are used for the piecewise-linear approximation of

G̃∗
t+1(W̃t+1, l̃t+1). Specifically, ∀ω ∈ Ωt+1, we break lωt+1

into segments that correspond to the values to which l̃t+1

is restricted in the discrete dynamic optimization. For all

m = 1, . . . ,Mt+1 and ω ∈ Ωt+1, ym,ω
t+1 is a binary variable

that equals 1 if lωt+1 ≥ l̃mt+1 and equals 0 otherwise. For all

m = 1, . . . ,Mt+1 − 1 and ω ∈ Ωt+1, qm,ω
t+1 is defined as the

amount of lωt+1 that is greater than or equal to l̃mt+1 and less

than or equal to l̃m+1
t+1 .

The mixed-integer linear model is formulated as:

max πt · (dt − ct) + ρtnt − V̄ · (1− It)
(

R̄− dt
)

+
∑

ω∈Ωt+1

Prob
{

Wω
t+1|Wt

}

×

Mt−1
∑

m=1

(

σ̂m
t+1(W

ω
t+1)q

m,ω
t+1 − πt

uω
t+1

δωt+1

)

(19)

s.t. 0 ≤ dt + nt ≤ R̄ (20)

0 ≤ ct + nt ≤ ItR̄/η (21)

0 ≤ lωt+1 ≤ Ē; ∀ω ∈ Ωt+1 (22)

uω
t+1 ≥ 0; ∀ω ∈ Ωt+1 ∋ δωt+1 ≥ 0 (23)

uω
t+1 ≥ δωt+1nt + dt − ct − lt;

∀ω ∈ Ωt+1 ∋ δωt+1 ≥ 0 (24)

uω
t+1 ≤ 0; ∀ω ∈ Ωt+1 ∋ δωt+1 < 0 (25)

uω
t+1 ≤ δωt+1nt + dt − ct +

(

Ē − lt
)

/η;

∀ω ∈ Ωt+1 ∋ δωt+1 < 0 (26)

uω
t+1 ≤ ItR̄; ∀ω ∈ Ωt+1 ∋ δωt+1 ≥ 0 (27)

uω
t+1 ≤ ItR̄; ∀ω ∈ Ωt+1 ∋ δωt+1 < 0 (28)

lωt+1 = lt + ηct −
(

dt + δωt+1nt − uω
t+1

)

;

∀ω ∈ Ωt+1 ∋ δωt+1 ≥ 0 (29)

lωt+1 = lt + η ·
(

ct − δωt+1nt + uω
t+1

)

− dt;

∀ω ∈ Ωt+1 ∋ δωt+1 < 0 (30)

Mt+1−1
∑

m=1

qm,ω
t+1 = lωt+1; ∀ω ∈ Ωt+1 (31)

0 ≤ qm,ω
t+1 ≤ ym,ω

t+1 ·
(

l̃m+1
t+1 − l̃mt+1

)

;

∀ω ∈ Ωt+1;m = 1, . . . ,Mt+1 − 1 (32)

qm,ω
t+1 ≥ ym+1,ω

t+1 ·
(

l̃m+1
t+1 − l̃mt+1

)

;

∀ω ∈ Ωt+1;m = 1, . . . ,Mt+1 − 1 (33)

ym,ω
t+1 ∈ {0, 1}; ∀ω ∈ Ωt+1;m = 1, . . . ,Mt+1 (34)

ct, dt, nt ≥ 0; (35)

Objective function (19) is a linear Bellman-like equation

that consists of immediately earned net profit from the hour-

t decisions (the first three terms) and expected profit that is

earned from hour (t+1) onward. The expected-profit term uses

the slopes that are computed in (18) to give a piecewise-linear

approximation of G̃∗
t+1(W

ω
t+1, l

ω
t+1), ∀ω ∈ Ωt+1. The use of

G̃∗
t+1(W̃t+1, l̃t+1) in defining these slopes yields immediate-

profit terms that depend solely upon hour-t decisions.

Constraints (20)–(22) and (35) are analogous to (5)–(8)

in the exact model and (23)–(26) are analogous to (1)–(2).

The min{·} and max{·} operators that appear in (1)–(2) are

linearized in (23)–(26) using pairs of inequalities. For all

ω ∈ Ωt+1, energy storage is penalized for having non-zero

values of uω
t+1. Thus, an optimal solution that satisfies (23)–

(26) satisfies (1)–(2). For all ω ∈ Ωt+1, (29)–(30) use the

values of uω
t+1 that are determined by (23)–(26) to determine

the hour-(t + 1) SOE. Constraints (27) and (28) ensure that

unserved frequency regulation is zero if It = 0, because,

by assumption, energy storage does not provide frequency

regulation during a loss of load.

Constraints (31)–(34) pertain to the piecewise-linear approx-

imation of G̃∗
t+1(W

ω
t+1, l

ω
t+1), ∀ω ∈ Ωt+1. For all ω ∈ Ωt+1,

(31) decomposes lωt+1 into the sum over m = 1, . . . ,Mt+1−1
of qm,ω

t+1 . For all ω ∈ Ωt+1 and m = 1, . . . ,Mt+1 − 1,

(32) restricts qm,ω
t+1 to equal zero if ym,ω

t+1 = 0. Otherwise,

if ym,ω
t+1 = 1, then qm,ω

t+1 is restricted to be no greater than

(l̃m+1
t+1 − l̃mt+1). For all ω ∈ Ωt+1 and m = 1, . . . ,Mt+1 − 1,

(33) forces qm,ω
t+1 to equal (l̃m+1

t+1 −l̃
m
t+1) if ym+1,ω

t+1 = 1. Finally,

(34) imposes integrality restrictions on all ym,ω
t+1 .

C. Rolling-Horizon Solution Algorithm

The final step of our approximation method solves (19)–(35)

in a rolling-horizon fashion one hour at a time to determine

the contribution of energy storage towards mitigating a loss of

load. Specifically, two key outputs are computed. The first,

ζ̆t(·), ∀t ∈ T , is the approximated probability distribution

of the hour-t energy-storage SOE. The second, d̈ω,lt
t , ∀t ∈

T, ω ∈ Ωt, lt = l̃1t , . . . , l̃
Mt

t is the amount that energy storage

discharges during hour t if there is an hour-t loss of load and

the hour-t exogenous state and starting energy-storage SOE are
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ω and lt, respectively. Once these quantities are determined, an

ELCC calculation that is akin to (16) is conducted. The linkage

between Steps 2 and 3 are illustrated by the corresponding

arrow in Fig. 1, which summarizes also the outputs of the

rolling-horizon algorithm.

Our method solves (19)–(35) in a rolling-horizon fashion

because, by its structure, each instance of (19)–(35) provides

optimized decisions for a single hour only. Thus, solving (19)–

(35) in a rolling-horizon fashion yields a sequence of opti-

mized decisions. Alternatively, (19)–(35) could be structured

to represent explicitly the full sequence of decisions. However,

such a formulation would result in a large and computationally

intractable multi-stage stochastic mixed-integer linear opti-

mization.

Algorithm 1 provides pseudocode for the rolling-horizon

technique. Line 1 initializes the algorithm by setting ζ̆t(·)
equal to zero ∀t ∈ T and Line 2 sets the boundary condition by

setting ζ̆1(l̄1) equal to 1, which is akin to (13). The algorithm

iterates through each hour of the model horizon (cf. Line 3)

and ∀t ∈ T , each discrete hour-t exogenous state (cf. Line 4).

For all t ∈ T ∋ t > 1, Lines 5–20 conduct an iterative

updating of ζ̆t(·) that is akin to (14). Lines 5–20 are unneces-

sary for t = 1, because l1 = l̄1 with probability 1 (cf. Line 2).

Lines 5–20 examine all possible hour-(t− 1) exogenous state

variable-values (cf. Line 6) and all possible hour-(t− 1) SOE

levels (cf. Line 7). For each state-variable/SOE pair, unserved

frequency-regulation energy is computed in Line 9 or 12 and

the resultant starting hour-t SOE is computed in Line 10 or 13

(depending on whether energy storage discharges or charges to

serve frequency regulation). These calculations depend upon

an optimal set of hour-(t− 1) decisions, ċ
ω,lt−1

t−1 , ḋ
ω,lt−1

t−1 , and

ṅ
ω,lt−1

t−1 , which are determined by Line 22. Line 15 com-

putes the resultant hour-t contribution to the overall energy-

storage objective function. This computation is not necessary

for resource-adequacy assessment, but is included to assess

financial performance. Line 16 rounds l̆
ω′,lt−1

t to the nearest

value among the hour-t discretization, l̃1t , . . . , l̃
Mt

t . Line 17 is

the recursive updating of ζ̆t(·).

Once ζ̆t(·) is updated, Lines 21–29 conduct two calculations

for each possible discrete hour-t starting SOE level. First,

Line 22 solves (19)–(35) to determine an optimal set of hour-

t decisions, given the actual exogenous hour-t state. Next,

Lines 23–27 determine energy storage’s discharging action if

there is an hour-t loss of load. Line 24 considers the case in

which the capacity auction requires that energy storage supply

as much energy as it is technically capable of supplying.

Line 27 assumes no such requirement and determines energy-

storage action by solving (19)–(35) with It fixed equal to 0.

Following from the discussion that is in Section III-A,

solving (19)–(35) using Algorithm 1 yields:

ζt(l) = ζ̆t(l), ∀t ∈ T, l;

which means that the exact and approximate model are equiva-

lent, if the discretization that is used is exact. This equivalence

stems from (19) being the same linear Bellman-like equation

that would be used to solve (10) and the feasible space that is

defined by (20)–(35) being the same as At(Wt, lt), ∀t ∈ T .

Algorithm 1 Rolling-Horizon Algorithm for (19)–(35)

1: ζ̆t(lt)← 0, ∀t ∈ T
2: ζ̆1(l̄1)← 1
3: for t ∈ T do

4: for ω ∈ Ωt do

5: if t > 1 then

6: for ω′ ∈ Ωt−1 do

7: for lt−1 ← l̃1t−1 to l̃
Mt−1

t−1 do

8: if δωt ≥ 0 then

9: ŭ
ω′,lt−1

t ← max{0, δωt ṅ
ω′,lt−1

t−1 + ḋ
ω′,lt−1

t−1 −

ċ
ω′,lt−1

t−1 − lt−1}

10: l̆
ω′,lt−1

t ← lt−1 + ηċ
ω′,lt−1

t−1 − (ḋ
ω′,lt−1

t−1 +

δωt ṅ
ω′,lt−1

t−1 − ŭ
ω′,lt−1

t )
11: else

12: ŭ
ω′,lt−1

t ← min{0, δωt ṅ
ω′,lt−1

t−1 + ḋ
ω′,lt−1

t−1 −

ċ
ω′,lt−1

t−1 + (Ē − lt−1)/η}

13: l̆
ω′,lt−1

t ← lt−1+η ·(ċ
ω′,lt−1

t−1 −δωt ṅ
ω′,lt−1

t−1 +

ŭ
ω′,lt−1

t )− ḋ
ω′,lt−1

t−1

14: end if

15: K̆
ω′,lt−1

t−1 ← πω′

t−1 · (ḋ
ω′,lt−1

t−1 − ċ
ω′,lt−1

t−1 −

ŭ
ω′,lt−1

t /δωt ) + ρω
′

t−1ṅ
ω′,lt−1

t−1 − V̄ · (1 −

It−1)(R̄− ḋ
ω′,lt−1

t−1 )

16: l̆
ω′,lt−1

t ← argmin
lt∈{l̃1

t
,...,l̃

Mt

t
}
|lt − l̆

ω′,lt−1

t |

17: ζ̆t(l̆
ω′,lt−1

t ) ← ζ̆t(l̆
ω′,lt−1

t ) + ζ̆t−1(lt−1) ×

Prob
{

Wω
t |W

ω′

t−1

}

Prob
{

Wω′

t−1

}

18: end for

19: end for

20: end if

21: for lt ← l̃1t to l̃Mt

t do

22: (ċω,lt
t , ḋω,lt

t , ṅω,lt
t )← argmax (19) s.t. (20)–(35)

23: if V̄ > 0 then

24: c̈ω,lt
t ← 0, d̈ω,lt

t ← min{lt, R̄}, n̈
ω,lt
t ← 0

25: else

26: Iωt ← 0
27: (c̈ω,lt

t , d̈ω,lt
t , n̈ω,lt

t ) ← argmax (19) s.t. (20)–

(35)

28: end if

29: end for

30: end for

31: end for

Because (19)–(35) is solved in a rolling-horizon fashion, it

replicates the application of dynamic programming algorithm

to solve (10) [34].

D. Estimated Energy-Storage ELCC

To estimate energy-storge ELCC, we begin by using (15)

to compute the LOLPs of the base system (without energy

storage). The estimated energy-storage ELCC is defined as

the value of Z̄ such that:

∑

t∈T

pt =
∑

t∈T

∑

ω∈Ωt

∑

ω′∈Ωt−1

∑

lt∈{l̃1
t
,...,l̃

Mt

t
}

ζ̆t(lt)
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× Prob
{

Wω
t

∣

∣

∣
Wω′

t−1

}

Prob
{

Wω′

t−1

}

× Prob
{

Xt + d̈ω,lt
t < Zt + Z̄

∣

∣

∣
Wω

t

}

. (36)

The values, ζ̆t(·), ∀t ∈ T and d̈ω,lt
t , ∀t ∈ T, ω ∈ Ωt, lt =

l̃1t , . . . , l̃
Mt

t , which appear in (36) are obtained from Algo-

rithm 1, as is listed in the ‘Outputs’ of ‘Step 3’ in Fig. 1.

The ELCC calculations that are given by (16) and (36) are

equivalent if the discretization that is used is exact. This result

follows immediately from the discussions in Sections III-A

and III-C regarding the equivalence of the stochastic dynamic

optimization that is detailed in Section II-A and the three-step

approximation method.

IV. DATA GENERATION AND SIMULATION

We apply our model to a case study that is based on

historical real-world data that are obtained from the operator

of a summer-peaking electricity system [13]. Due to data

propriety, we are able neither to provide the raw data nor to

reveal the system to which the data correspond. We summarize

the raw data and the steps that are taken to construct our case

study.
We use nine data sets. Two of the data sets—nameplate

generator capacities and hourly net loads (i.e., demand less

renewable-generator and behind-the-meter power output)—

are combined with generator effective forced outage rates

(EFORs) to compute hourly LOLPs. EFORs represent gener-

ators’ steady-state unavailability probabilities, accounting for

restoration time after a failure occurs. The other seven data sets

are summarized in Table I. Except for frequency-regulation

deployments, all of the data sets that are listed in Table I

have hourly resolutions. Frequency-regulation deployments are

reported at four-second intervals, and the values are integrated

numerically to yield hourly values. The second column of

Table I specifies the fitted parametric distribution of each data

set, which is determined using Anderson-Darling tests [41].

TABLE I
RAW DATA USED TO CONSTRUCT CASE STUDY AND FITTED

PARAMETRIC DISTRIBUTION OF EACH DATA SET

Data Set Fitted Distribution

Energy Price Gamma
Upward Frequency-Regulation Price Log-Normal
Downward Frequency-Regulation Price Log-Normal
Upward Frequency-Regulation Procurement Log-Normal
Downward Frequency-Regulation Procurement Log-Normal
Upward Frequency-Regulation Deployment Weibull
Downward Frequency-Regulation Deployment Weibull

The exogenous random variables, πt, ρt, and δt, are sim-

ulated from the fitted distributions by bootstrapping [42] and

employing one-step-ahead forecasting [43], [44]. We illustrate

the simulation process for πt, ∀t ∈ T . For all t ∈ T , we define

πt+1 = πt + ∆πt, where ∆πt follows a fitted gamma distri-

bution (as specified in Table I). Randomly sampling a value

of ∆πt using the fitted gamma distribution gives a randomly

generated value of πt+1. In addition, πt, ∀t ∈ T is Markovian,

which captures serial correlations in the underlying data set.

For all t ∈ T , ρt is simulated identically.

For all t ∈ T , δt is defined as the ratio between the

frequency-regulation deployment and procurement. As such,

∀t ∈ T , we generate one random sample each of upward

and downward frequency-regulation deployments and procure-

ments using the same simulation procedure that is used to

generate πt and ρt, ∀t ∈ T . The ratios between the deploy-

ments and procurements of upward and downward frequency

regulation are computed and the larger of the two ratios is used

for the simulated value of δt and the associated frequency-

regulation price is used as the corresponding value of ρt (i.e.,

we take a conservative approach, wherein a worst-case value

of δt that requires the most energy deployment is realized).

For all t ∈ T , It is simulated by conducting Bernoulli

trials of generator failures. Specifically, during each hour, each

generator is assumed to have a failure, in which case it has

zero capacity available, with probability equal to its EFOR.

Otherwise, if a generator does not have a failure, its nameplate

capacity is available. For a given sample of Bernoulli trials,

LOLPs can be computed using (15).

For all t ∈ T , we generate 49 equiprobable samples of

the random variables. k-means clustering is applied to reduce

the 49 samples to seven clusters, using cluster centroids as the

associated random-variable values. For all t ∈ T , the transition

probability between hour-(t−1) cluster, i, and hour-t cluster, j,

is determined by the number of transitions that occur between

the elements of clusters i and j [45]. Specifically, ∀t ∈ T , let

φt
i,j denote the number of transitions from elements of cluster i

to elements of cluster j. The probability of transitioning from

cluster i during hour (t− 1) to cluster j during hour t is:

φt
i,j

/

∑

k∈κt

φt
i,k;

where κt is the set of hour-t clusters. Student’s t-test and

Levene’s test are used to verify the goodness of fit of the

simulated data to the underlying raw data sets.

Finally, ∀t ∈ T , one sample from the reduced clusters is

selected randomly to represent the ‘actual’ realized sample

path of the random variables.

We assume that R̄ = 100 MW, η = 0.75, and consider

different values of Ē and V̄ . The discretized stochastic dy-

namic optimization allows each of ηc̃t, d̃t, and ñt, ∀t ∈ T to

take one of 101 equally spaced values between their lower and

upper bounds. For all t ∈ T , l̃t is discretized between its min-

imum and maximum value using 1-MWh increments. For all

t ∈ T , the piecewise-linear interpolation of G̃∗
t+1(W̃t+1, l̃t+1)

requires discretization of l̃t, which is discretized between its

minimum and maximum values using 5-MWh increments.

For all of our computations, Algorithm 1 is implemented

using MATLAB 2022. The optimization problems that are

solved in Lines 22 and 27 are programmed using GAMS 40.0
and solved using CPLEX 22.1.1.0. Computations are done

using a computer with an Intel i7 − 11700 CPU and 16 GB

of memory.

V. NUMERICAL EXAMPLE

We begin by examining a simple example that considers the

single day with the highest LOLPs of the case-study year.
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A. Case 1: Model Benchmarking

We begin with a case that assumes the energy storage

does not provide frequency regulation (i.e., all frequency-

regulation-related variables are fixed equal to zero) and that

there is no price uncertainty. This case benchmarks our ap-

proximation technique to an exact model [13] that captures

neither frequency regulation nor price uncertainty. In doing

so, we are able to demonstrate the theoretical equivalence

between the exact model and three-step approximation, by

virtue of our using a sufficiently granular discretization. Ta-

ble II summarizes the sample means and standard errors

of ELCCs that are obtained from applying the exact model

to 100 replications of the data-generation process that is

summarized in Section IV. Table III summarizes the same

outputs from applying our approximation technique to the

same 100 replications. Using the values that are reported in

the tables, we conduct hypothesis tests to determine whether

the mean ELCCs are statistically significantly different. In all

cases, we are unable to reject the null hypothesis at the 1%

confidence level, which provides strong evidence that the two

models provide ELCC estimates that are statistically similar.

TABLE II
MEAN AND STANDARD ERROR (IN PARENTHESES) ELCC OF ENERGY

STORAGE (% OF NAMEPLATE NET DISCHARGING CAPACITY) IN

EXAMPLE FROM SECTION V-A USING EXACT MODEL [13]

V̄

Ē 0 1000 9000

100 30 (0.03) 85 (0.01) 85 (0.00)
200 59 (0.00) 97 (0.01) 98 (0.00)
400 78 (0.60) 99 (0.01) 99 (0.02)
800 100 (0.07) 100 (0.00) 100 (0.00)

TABLE III
MEAN AND STANDARD ERROR (IN PARENTHESES) ELCC OF ENERGY

STORAGE (% OF NAMEPLATE NET DISCHARGING CAPACITY) IN

EXAMPLE FROM SECTION V-A USING APPROXIMATION

V̄

Ē 0 1000 9000

100 30 (0.03) 85 (0.01) 85 (0.00)
200 59 (0.00) 97 (0.01) 98 (0.00)
400 79 (0.65) 99 (0.01) 99 (0.03)
800 100 (0.00) 100 (0.00) 100 (0.00)

The tables show that increasing either of V̄ or Ē increases

energy-storage ELCC [13]. The former is due to energy

storage being operated to have a higher SOE during high-

LOLP hours and the latter due to the energy storage having

greater energy-carrying capacity.

B. Case 2: Price Uncertainty

Our second case is the same as Case 1, except that we model

price uncertainty. We cannot benchmark our approximation to

the exact model, because the latter does not represent price

uncertainty [13]. Thus, we examine this case by comparing

energy-storage ELCC estimates that are obtained from our

proposed approximation with and without price uncertainty.

Table IV summarizes the means and standard errors of the

Case-2 ELCC estimates that are obtained from applying our

approximation method to the same 100 replications that are

examined in Section V-A. Using the results that are reported

in Tables III and IV, we conduct hypothesis tests to determine

if the mean ELCC estimates that are obtained from our

approximation are statistically significantly different with and

without price uncertainty. We are unable to reject the null

hypothesis at the 1% confidence, which suggests the ELCC

estimates that are produced by our approximation are robust

to price uncertainty.

TABLE IV
MEAN AND STANDARD ERROR (IN PARENTHESES) ELCC OF ENERGY

STORAGE (% OF NAMEPLATE NET DISCHARGING CAPACITY) IN

EXAMPLE FROM SECTION V-B USING APPROXIMATION

V̄

Ē 0 1000 9000

100 30 (0.01) 85 (0.00) 85 (0.00)
200 59 (0.00) 97 (0.00) 98 (0.00)
400 78 (0.25) 99 (0.00) 99 (0.01)
800 100 (0.00) 100 (0.00) 100 (0.00)

C. Case 3: Frequency Regulation

Case 3 includes frequency regulation, which changes oper-

ations compared to if energy storage conducts energy shifting

only. In the latter case, energy-storage SOE varies between its

extremes [10]. Providing frequency regulation requires having

SOE away from its bounds, to have headroom to follow real-

time frequency-regulation deployments [4], [23], [27].

Fig. 2 shows for one sample path of random variables

hourly expected energy prices and expected SOE of energy

storage with Ē = 200 without and with frequency-regulation

provision if V̄ = 0. Without frequency regulation, energy-

storage SOE reaches a maximum of 200 MWh during hours 8–

15 and a minimum of 0 MWh during hours 17–24 (i.e.,

following the day’s low- and high-price hours, respectively).

Hours 15 and 16 have the highest energy prices of the day,

and the expected SOE goes from 200 MWh to 0 MWh during

these hours to exploit the high prices. If providing frequency

regulation, energy-storage SOE is 200 MWh during hours 11–

13 only and goes to 0 MWh during the course of hours 13–20.

Table V summarizes Case-3 ELCC estimates for the same

sample path of the random variables that is summarized in

Fig. 2. Comparing the ELCCs with V̄ = 0 that are in Table V

to those that are in Tables II–IV shows the capacity-value

impact of frequency-regulation provision. The differences stem

from energy-storage SOE being at its maximum for fewer

hours with frequency regulation, thereby reducing energy

storage’s ability to mitigate a loss of load. Having V̄ > 0
provides a financial incentive to maintain higher energy-

storage SOE during high-LOLP hours, thereby increasing the

energy-storage ELCC. For instance, hours 13–19 of the day

that is shown in Fig. 2 have over 99% of the day’s total LOLE.

With V̄ = 0 and frequency-regulation provision, the average
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Fig. 2. Hourly expected SOE of energy storage without and with frequency-
regulation provision and expected energy prices in example from Sections V-B
and V-C with Ē = 200 and V̄ = 0.

SOE of energy storage with Ē = 200 during these hours is

93 MWh. Having V̄ = 9000 increases the average SOE during

these hours to 153 MWh.

TABLE V
ELCC OF ENERGY STORAGE (% OF NAMEPLATE NET DISCHARGING

CAPACITY) IN EXAMPLE FROM SECTION V-C USING APPROXIMATION

V̄

Ē 0 1000 9000

100 5 77 83

200 10 94 98

400 17 100 100

800 32 100 100

We conclude the analysis of the example by comparing

expected energy-storage profit, as is computed in Line 15 of

Algorithm 1, for the cases that are considered in Sections V-B

and V-C. Table VI reports profits for the random-variable sam-

ple path that is summarized in Fig. 2. Increasing the value of

V̄ decreases energy-storage profit, through two effects. First, a

higher value of V̄ means that energy storage incurs higher non-

performance penalties. Indeed, if Ē = 100, non-performance

penalties outweigh energy-storage profit from providing en-

ergy or frequency regulation. This result follows from the

ELCCs that are reported in Tables IV and V being significantly

lower than 100% if Ē = 100. Second, a higher value of V̄
incentivizes energy storage to maintain a higher SOE during

high-LOLP hours, which reduces profit due to foregone energy

and frequency-regulation revenue. Ultimately, energy storage

should determine its optimal provision of capacity by weighing

capacity payments against non-performance penalties. Such a

comparison is beyond the scope of our work.

VI. CASE STUDY

This section expands upon Section V by simulating the

operation and resultant ELCC of energy storage during the

31 days of the year with the highest daily peak LOLPs.

TABLE VI
EXPECTED ENERGY-STORAGE PROFIT ($ THOUSAND) IN EXAMPLE FROM

SECTIONS V-B AND V-C USING APPROXIMATION

Section V-B Section V-C
V̄ V̄

Ē 0 1000 9000 0 1000 9000

100 9.4 −9.0 −97.6 23.7 −0.1 −68.2

200 18.2 9.2 −4.1 30.0 22.3 4.7

400 27.1 25.6 22.5 34.8 34.4 33.9

800 32.7 32.7 32.7 34.9 34.8 34.8

Examining days with high LOLPs is a reasonable approach

to simplify an annual ELCC calculation, because a resource’s

ELCC is driven strongly by its ability to produce energy during

a small subset of hours during the year with non-trivially high

LOLPs [10], [46]–[48].

Table VII summarizes energy-storage ELCCs for the case

study and shows similar trends to those that are observed in

Section V. Energy-storage ELCC increases with Ē and V̄ .

The former is due to energy-storage having more energy-

storage capacity and the latter due to energy-storage SOE be-

ing managed more conservatively vis-à-vis high-LOLP hours.

Different ELCCs that are reported in Tables V and VII,

especially for cases with V̄ = 0, stem largely from different

load and LOLP patterns between the example and case study.

The example focuses on the single highest-LOLP day of the

year. This day has a total LOLE (without energy storage) of

0.70. Moreover, there are five consecutive hours (hours 14–18)

that account for 99.28% of this total LOLE. Thus, the ELCC

of energy storage is connected closely to its ability to provide

energy during these consecutive hours. By considering more

days, the case study captures the ability of energy storage

to supply energy during other high-LOLP hours. Overall,

Tables V and VII illustrate an important tradeoff in ELCC

modeling. If the model horizon is too short, ELCC estimates

may misrepresent the ability of a resource to mitigate potential

loss of load. Conversely, increasing the model horizon makes

the computations more expensive.

TABLE VII
ELCC OF ENERGY STORAGE (% OF NAMEPLATE NET DISCHARGING

CAPACITY) IN CASE STUDY FROM SECTION VI USING APPROXIMATION

V̄

Ē 0 1000 9000

100 5 70 88

200 16 92 97

400 43 99 100

800 69 100 100

Table VIII summarizes expected energy-storage profit dur-

ing the 31 days that we model for the case study. The table

shows qualitatively similar trends to those that are observed

from Table VI. Increasing V̄ decreases energy-storage profit,

both due to non-performance penalties and because energy

storage is more conservative in providing energy shifting and

frequency regulation. The profit of energy storage increases
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with Ē, due to its increased energy-storage capacity reducing

the impact of potential non-performance penalties.

TABLE VIII
EXPECTED ENERGY-STORAGE PROFIT ($ THOUSAND) IN CASE STUDY

FROM SECTION VI USING APPROXIMATION

V̄

Ē 0 1000 9000

100 640 547 252

200 780 752 683

400 896 892 887

800 989 989 989

VII. CONCLUSIONS

This paper examines the problem of assessing the resource-

adequacy contribution of energy storage that provides multiple

services, including energy shifting and frequency regulation.

The key technical challenge that we address is capturing

the complicated and uncertain SOE dynamics that providing

frequency regulation entails. We propose a computationally in-

tractable exact model and a three-step approximation method.

The approximation method consists of (i) computing optimal

decision policies from a discretized stochastic dynamic model,

(ii) using the optimal decision policies in a rolling-horizon

mixed-integer linear optimization, and (iii) Monte Carlo sim-

ulation.

We apply our model to a comprehensive case study that is

based on a real-world electricity system. In doing so, we find

a tradeoff between using energy storage to provide capacity,

energy shifting, and frequency regulation. Maximizing capac-

ity value requires maintaining a high SOE, whereas frequency

regulation calls for maintaining headroom between the SOE

and its bounds. As such, without properly designed market

signals (or other incentives), the capacity value of energy

storage that provides frequency regulation can decrease by as

much as 68 percentage points compared to if it provides energy

shifting only. Thus, our model lends itself to many potential

uses vis-à-vis examining the resource-adequacy contribution

of energy storage. Energy-storage owners can use our model

to determine how to use their assets between these compet-

ing services. Electricity-system planners can use our model

to capture energy storage in resource-adequacy assessments.

Finally, our model can provide insights to market designers

regarding how capacity auctions or mechanisms that include

energy storage as capacity resources should be structured to

maximize energy-storage value towards that application.

Our model represents all decisions and state dynamics

at hourly time steps. In practice, most frequency-regulation

markets require resources to follow a dispatch signal with an

approximately four-second time resolution [49], [50]. In ad-

dition, many markets connect frequency-regulation payments

to the ability of a resource to follow the real-time dispatch

signal [51]. We do not model the four-second dynamics of

the frequency-regulation signal, because we assume that the

energy-storage has the operational and ramping flexibility to

follow the signal. Rather, our model is formulated to ensure

that there is sufficient headroom between the SOE and its

bounds to allow the requiste energy-storage charging and

discharging to follow the aggregate hourly signal. We do

not believe that the four-second dynamics of the frequency-

regulation signal would have any significant impact on our

model results. Nonetheless, extending our model to capture

these dynamics would be a natural topic for future study.
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