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Abstract—We present a method to estimate the capacity value
of storage. Our method uses a dynamic program to model
the effect of power system outages on the operation and state
of charge of storage in subsequent periods. We combine the
optimized dispatch from the dynamic program with estimated
system loss of load probabilities to compute a probability dis-
tribution for the state of charge of storage in each period. This
probability distribution can be used as a forced outage ratefor
storage in standard reliability-based capacity value estimation
methods. Our proposed method has the advantage over existing
approximations that it explicitly captures the effect of system
shortage events on the state of charge of storage in subsequent
periods. We also use a numerical case study, based on five utility
systems in the U.S., to demonstrate our technique and compare
it to existing approximation methods.

Index Terms—Capacity value, reliability theory, approximation
techniques, energy storage

NOMENCLATURE

A. Capacity Value Estimate Parameters and Variables

T number of time periods in planning horizon.
T ′ subset of periods used in capacity factor-based ap-

proximation
Gt time-t generating capacity available.
G

g
t time-t generating capacity available from generatorg.

Bt time-t generating capacity available from benchmark
unit in equivalent conventional power (ECP) calcula-
tion.

d
µ
t maximum potential time-t output from storage device.

ξt(lt) probability that beginning time-t storage level islt.
Lt time-t load.
L̄ constant load added in each period in effective load-

carrying capability (ELCC) calculation.
pt time-t loss of load probability.
e loss of load expectation (LOLE) of base system.
eL LOLE with g and loads added in ELCC calculation.
eg LOLE with g added in ECP calculation.
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eB LOLE with benchmark unit added in ECP calculation.
wt time-t weight used in capacity factor-based approxi-

mation.

B. Storage Optimization Model Parameters

πt time-t energy price.
η roundtrip efficiency of storage device.
R̄ power capacity of storage device.
h̄ energy capacity, as a multiple of power capacity, of

storage device.
l̄1 starting time-1 storage level.

C. Storage Optimization Model Variables

lt beginning time-t storage level.
st energy stored in periodt.
dt energy discharged in periodt.

I. I NTRODUCTION

A N important issue in long-run power system planning
is the contribution of installed resources to reliably

meeting demand. Generator outages, which can occur due
to mechanical failures or planned maintenance, may leave
the system with insufficient generating capacity to meet load.
Renewable generators have the added complication of variable
real-time resource availability affecting their contribution to
serving load. Capacity value is the metric typically used to
quantify a resource’s effect on system reliability and for long-
run resource adequacy planning [1]–[3]. Capacity value is
often estimated using reliability-based methods. Such meth-
ods model resource outages probabilistically,e.g., using an
effective forced outage rate (EFOR). EFORs are used to
compute the likelihood of a system capacity shortfall in each
time period, which is typically measured by the loss of load
probability (LOLP). A resource’s capacity value is determined
by its effect on LOLPs.

Energy storage also contributes capacity to the system. This
is recognized in a 1976 EPRI study [4], which focuses on
charging pumped hydroelectric storage (PHS) with baseload
generation overnight to reduce the need to build peaking gen-
eration. Based in part on its ability to provide capacity, more
than 20 GW of PHS capacity was built in the United States
in the 1970s [5]. More recent analyses focus on the interplay
between storage and variable renewables, suggesting that stor-
age can provide flexibility to ease renewable integration [6]–
[10]. Implicit in these analyses is the assumption that storage
provides capacity value, reducing the need for conventional
generation. Even more recently, the California Public Utilities
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Commission opened a rulemaking process to set policy for
California utilities and load-serving entities to procureenergy
storage systems.1 The assigned commissioner’s ruling lists
capacity among the benefits that storage can provide.

Despite recognition of this role that storage can play, meth-
ods to robustly estimate storage’s capacity value are essentially
non-existent in the literature. A difficulty in estimating stor-
age’s capacity value is that it is an energy-limited and time-
dependent resource. Thus, its ability to serve load at timet

depends on its prior operation. Moreover, one must consider
both the planned operation of the device at timet and the
amount of energy in storage. This is because if the system
experiences a capacity shortfall at timet, stored energy that
would otherwise not be discharged could be used to serve load.

Tuohy and O’Malley [11], [12] propose a capacity value
approximation technique, which we refer to as the maximum
generation approximation, that overcomes these issues. This
approximation first determines an optimal dispatch of the
storage plant subject to technical constraints, assuming that
no system shortages occur. While different objectives can
be used, maximizing net profits from wholesale energy sales
and purchases is commonly assumed. The approximation then
determines, based on the dispatch, the maximum amount of
energy that the storage device could feasibly generate (using
stored energy) in each time period. This maximum potential
generation is used to estimate the plant’s capacity value.

An issue with this approximation is that it may overestimate
storage’s capacity value. To see this, consider two periods,
t < t′, that are in quick succession and have high LOLPs. In
real-time, there may be less stored energy available at time
t′ than the optimized dispatch suggests, since energy may be
used to mitigate a time-t system shortage. Should a shortage
occur, and sincet and t′ are in quick succession, there may
be insufficient time for the storage device’s state of chargeto
increase beforet′.

In this paper we propose an approach to estimate storage’s
capacity value. We use a dynamic program to determine
how storage operations are affected by system shortages.
The resulting operational schedules are used to determine the
probability that the storage device has energy available in
each period, accounting for the probability of system shortages
in previous periods. These estimated probabilities are used
as EFORs to model storage availability in reliability-based
models. Thus, these EFORs fully capture the effect of previous
outages on storage’s state of charge at any given time.

In addition to detailing this estimation technique, we demon-
strate its use through a numerical case study of five utility
systems in the U.S. We show that storage with one to 10 hours
of discharging capability has capacity values ranging between
40% and 100% of nameplate capacity. We also demonstrate
that there can be considerable interannual capacity value
variability. We compare the capacity value estimates given
by our technique to the maximum generation approximation,
showing that the approximation overestimates capacity values
for devices with small energy capacities. While the approxi-

1Details are available from the California Public UtilitiesCommission’s
website http://www.cpuc.ca.gov/PUC/energy/electric/storage.htm.

mation is better for less energy-constrained storage, it isvery
sensitive to the subset of hours considered.

The remainder of this paper is organized as follows: Sec-
tion II discusses standard reliability-based and approximation
methods used to estimate capacity values. Section III gives
the formulation of our storage operation model. Section IV
describes our proposed technique and further details the max-
imum generation approximation. Section V summarizes our
numerical case study and the data used. We present our results
in Section VI and Section VII concludes.

II. CAPACITY VALUE ESTIMATION TECHNIQUES

A. Reliability-Based Methods for Generators

Reliability-based methods are among the most robust and
widely accepted techniques to estimate generator capacityval-
ues [3], [13], [14]. These techniques use a standard reliability
index, LOLP, to determine how a generator affects system
reliability. LOLP is defined as the probability that outages
leave the system with insufficient capacity to serve the load
in a given time period. A related reliability index, loss of
load expectation (LOLE), is defined as the sum of LOLPs
over some planning horizon. LOLE gives a proportion of time
within the planning horizon that capacity shortages occur.
For instance, if the planning horizon is one year and the
modeled time periods are hours, the LOLE can be interpreted
as the sum of expected outage hours over the year. Reliability-
based methods determine a generator’s capacity value by
how it affects the system’s LOLE. Standard reliability-based
metrics include the effective load-carrying capability (ELCC)
and equivalent conventional power (ECP). We detail these
established reliability-based methods [3] below.

Other reliability metrics, such as loss of energy probability
or expected unserved energy, can also be used. It may also be
desirable to place a cost on capacity shortages, for instance
by weighting expected unserved energy by an assumed value
of lost load (VOLL), which may be time- and customer class-
variant. These metrics capture the severity of an outage, rather
than treating all outages equivalently. These metrics are less
common, however, and we focus on LOLE-based methods, to
make our results directly comparable to previous works [11]–
[22].

1) Effective Load-Carrying Capability: The ELCC of a
generator,g, is defined as the amount by which the sys-
tem’s load can increase, when the generator is added, while
maintaining the same LOLE. The ELCC is calculated by first
computing the system’s LOLPs withoutg as:

pt = Prob{Gt < Lt} , ∀ t = 1, . . . , T, (1)

where the probability function accounts for the likelihoodof
generator or other failures and stochastic loads or renewable
resource availability. The base system’s LOLE is defined as:

e =

T
∑

t=1

pt. (2)

http://www.cpuc.ca.gov/PUC/energy/electric/storage.htm
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Generatorg is added to the system and a fixed load,L̄, is
added to each period, giving a new LOLE:

eL =
T

∑

t=1

Prob
{

Gt + G
g
t < Lt + L̄

}

, (3)

The value ofL̄ is iteratively adjusted until the LOLE of the
system withg is the same as that of the base system, or until:

e = eL. (4)

Generatorg’s ELCC is defined as the value of̄L that achieves
equality (4).

2) Equivalent Conventional Power: The ECP of a gener-
ator, g, is defined to be the capacity of a benchmark unit
that can replaceg while maintaining the same LOLE. The
benchmark unit is assumed to have a positive EFOR. The ECP
is calculated by first computing the LOLE of the system when
g is added as:

eg =

T
∑

t=1

Prob{Gt + G
g
t < Lt} . (5)

The LOLE of the system when only the benchmark unit (i.e.,
without g) is added is also computed as:

eB =

T
∑

t=1

Prob{Gt + Bt < Lt} . (6)

The nameplate capacity of the benchmark unit is iteratively
adjusted until the LOLE of the system with the benchmark
unit is the same as that withg, or until:

eg = eB. (7)

Generatorg’s ECP is defined as the nameplate capacity of the
benchmark unit that achieves equality (7).

B. Capacity Factor Approximations

Approximations are also used to estimate capacity values.
Traditionally, approximations were used due to the compu-
tational cost of iteratively computing LOLPs, although that
is less of an issue today [18]. Approximations are still used
due to reduced data needs or because they provide insights
into the factors that affect capacity value [19]. One method,
which is applied to wind [15], [16] and solar [17], [20]–
[22], approximates the capacity value of a resource as its
weighted capacity factor over a subset of periods during which
the system has a high likelihood of experiencing a shortage.
These approximations commonly focus on periods with the
highest loads and use the base system’s LOLPs, given by (1),
as weights.

With this approximation, the weights are defined as:

wt =
pt

∑

τ∈T ′

pτ

, ∀ t ∈ T ′, (8)

where T ′ ⊆ {1, · · · , T } is the subset of periods with the
highest loads. The capacity value approximation for generator
g is given by:

∑

t∈T ′

wt · G
g
t . (9)

An important question when applying these techniques is
the number of periods to consider. Milligan and Parsons [15]
show that when applied to wind, the approximation should
consider the 10% of periods with the highest loads. Madaeni
et al. [20] apply the approximation to a concentrating solar
power (CSP) plant, showing that only the 10 highest-load
hours of the year should be considered. The sensitivity of the
approximation stems from different wind and solar generation
patterns and the extent to which they are coincident with
system loads.

III. STORAGE OPERATION MODEL

Models to optimize storage operations are abundant in the
literature. Although storage can be put to a multitude of uses
[23], most models focus on so-called energy arbitrage (i.e.,
charging energy when the price or cost is low and discharging
when high). This can either be done by an integrated utility
or system operator minimizing total system costs [4], [12] or
by a profit-maximizing firm reacting to prices [24]–[26].

A. Storage Operation Model Assumptions

For ease of exposition, we assume that storage is used
by a profit-maximizing firm for energy arbitrage only. The
firm is assumed to have perfect foresight of future energy
prices and naı̈vely maximize energy profits, without consid-
ering the possibility of future system shortages or their effect
on storage operations. Sioshansiet al. [26] show that this
perfect foresight assumption has a relatively small effecton
operational decisions, since prices tend to follow predictable
diurnal and seasonal patterns. We, thus, use a deterministic
profit-maximization to model storage operations. Our capacity
value estimation method is agnostic to the objective function,
however. We discuss the implications of this assumed opti-
mization criterion on storage’s capacity value in SectionsVI
and VII.

We further assume that the energy capacity parameter,h̄,
is integer and that the starting storage level,l̄1, is an integer
multiple of R̄.

B. Storage Operation Model Formulation

We formulate our model as a dynamic program, as it
aids our capacity value estimation. This model is identical,
however, to the linear program proposed by Sioshansiet al.
[26]. We follow the notational conventions used by Powell
[27].

1) Variables: Our model has one set of endogenous state
variables, lt, and two sets of action variables,st and dt.
We could also define the energy prices as exogenous state
variables, but do not do so to simplify notation.

2) State-Transition Functions: The endogenous state vari-
ables evolve according to:

lt+1 = lt + st − dt, ∀ t = 1, · · · , T ; (10)

and
l1 = l̄1. (11)
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3) Constraints: Gross charging and discharging are con-
strained to be within the storage device’s power capacity:

0 ≤ st ≤ R̄, ∀ t = 1, · · · , T ; (12)

and:

0 ≤ dt ≤ R̄, ∀ t = 1, · · · , T. (13)

We also constrain the storage level to be within the device’s
energy capacity:

0 ≤ lt ≤ h̄ · R̄, ∀ t = 1, · · · , T. (14)

4) Objective Function: The time-t profit contribution is
given by:

Ct(lt; st, dt) = πt · (η · dt − st). (15)

The parameter,η ∈ [0, 1], represents a constant roundtrip
device efficiency. LetA denote the set of all feasible policies.
A policy, at(lt), is a mapping between a time-t state,lt, and a
feasible time-t decision,(st, dt). For each policy,a ∈ A, we
define the total profit from timet forward as:

Ga
t (lt) =

T
∑

τ=t

Ct(lτ ; aτ (lτ )). (16)

The objective is to find an optimal policy,a∗, that satisfies:

Ga∗

t (lt) = sup
a∈A

Ga
t (lt), (17)

for all 0 ≤ t ≤ T . We lets∗t (lt) andd∗t (lt) denote the charging
and discharging decisions given by such an optimal policy.

C. Properties of an Optimal Policy

It is straightforward to show that if the time-t energy price
makes it optimal to charge or discharge at timet, it is optimal
to charge or discharge until either the time-t power or energy
capacity is exhausted. This is due to the linearity of the
dynamic program’s objective and constraints. Since we assume
that h̄ is integer andl̄1 is an integer multiple ofR̄, it is
straightforward to show that there is an optimal policy in which
the storage level in each period is an integer multiple ofR̄. We
hereafter assume that storage is operated using such a policy.

This assumption also allows storage operations to be op-
timized using the dynamic program algorithm, since we can
restrict ourselves to the finite state space:

lt ∈ {0, R̄, 2 · R̄, . . . , h̄ · R̄}, ∀ t = 1, · · · , T ; (18)

and the finite action space:

st, dt ∈ {0, R̄}, ∀ t = 1, · · · , T. (19)

IV. CAPACITY VALUE ESTIMATION FOR STORAGE

We now detail the maximum generation approximation and
our proposed estimation technique.

A. Maximum Generation Approximation

The maximum generation approximation uses the optimized
storage dispatch policy to compute the maximum amount of
energy that the storage device could feasibly provide in each
period as:

d
µ
t = η · min{R̄, lt−1}. (20)

These d
µ
t values are intended to represent the maximum

amount of energy the storage device could provide at timet,
should a system shortage occur, and are used to estimate the
capacity value. Tuohy and O’Malley [11], [12] approximate
the capacity value of PHS that is operated by a utility using
a capacity factor approximation (i.e., by substitutingGg

t = d
µ
t

in (9)). Madaeniet al. [22] apply the same method to a CSP
plant with thermal energy storage (TES).

B. Proposed Storage Capacity Value Estimation Technique

A limitation of the maximum generation approximation is
that it does not capture the effect of a time-t system shortage
on the storage level in subsequent hours. Fig. 1 illustrates
the effect of shortages on storage operations by showing the
optimized hourly dispatch of a 100 MW storage device with
8 hours of storage capacity. The dashed line in the figure
represents hourly energy prices and the unmarked solid line
represents an optimized dispatch policy if no shortages occur.
The remaining marked solid lines represent optimal dispatch
policies after some combination of shortages. A shortage
results in a lower state of charge, since the storage device
provides energy it otherwise wouldn’t to mitigate the shortage.
For instance, the solid line marked with ‘x’s represents the
resulting storage policy if a shortage occurs during hour 2.
This reduces the ending hour-2 storage level from 200 MWh
to 0 MWh, since the storage device does not charge during
hour 2 and instead discharges stored energy to mitigate the
shortage.
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Fig. 1. Optimized storage dispatch with different beginning storage levels.

The remaining marked lines in Fig. 1 represent the re-
sulting storage level after some combination of shortages.
For instance, if a shortage occurs during hour 2, the line
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marked with ‘x’s tells us that the ending hour-2 storage level
is 0 MWh. Suppose no other shortages occur until hour 7.
The state of charge would follow the line marked with ‘x’s,
until hour 7, when the state of charge falls to 300 MWh (since
storage would not be charged during hour 7 and would instead
discharge 100 MWh to mitigate the shortage). Thus, the state
of charge would thereafter follow the line marked with squares.

The maximum generation approximation uses the unmarked
solid line to estimate the capacity value. For instance, since
the optimized policy results in 200 MWh of energy being
stored at the end of hour 2, the storage device is modeled
as contributing 100 MW (less efficiency losses) to mitigating
an hour-3 shortage. The solid line marked with ‘x’s shows,
however, that if a shortage occurs during hour 2, the storage
device is completely depleted at the beginning of hour 3 and
contributes 0 MW to system reliability. Thus, to accurately
determine the time-t reliability impact of storage, one must
account for the effect of earlier shortages on the expected
time-t storage level.

Consideration of these shortages is the contribution of our
proposed capacity value estimation technique, which we now
detail. We proceed by discussing two additional assumptions
regarding shortage events and then show how optimal policies
derived from the dynamic program are combined with system
LOLPs to compute the probability that the storage device can
provide energy if a shortage is to occur in each period.

1) System Shortage Assumptions: We assume that if a
system shortage occurs at timet, any planned (based on
the operational policy) time-t charging does not take place.
Moreover, if there is any energy available in storage at the
beginning of timet, the storage plant discharges up to its
physical capacity limits. Since we noted in Section III-C that
the values oflt in an optimal policy are integer multiples of
R̄, the amount discharged iflt > 0 must equalR̄. Thus, when
accounting for system shortages,lt transitions according to:

lt+1 =







max{0, lt − R̄}, if a time-t shortage
occurs,

lt + s∗t (lt) − d∗t (lt), otherwise.
(21)

Although we model the effect of shortages on the storage
level, the storage operator is assumed to follow the same
arbitrage profit-maximization given by the dynamic program
in Section III, which neglects shortages. If a shortage occurs
at time t, resulting in the time-(t + 1) storage level being
lt+1 = max{0, lt−R̄}, the storage device is assumed to follow
a new storage policy that is optimal from timet + 1 forward
based on the new storage level.

Note, however, that when a time-t shortage occurs, the
resulting storage level,lt+1, takes on a value that is in the
same finite state space, given by (18), of the original dynamic
program. Thus, if the original dynamic program is solved
using the dynamic programming algorithm, one knows how
the future operation of the storage plant changes if a shortage
occurs at timet. Namely, the new time-(t+1) storage decisions
are given bys∗t+1(max{0, lt−R̄}) andd∗t+1(max{0, lt−R̄}),
where the new time-(t + 1) storage level resulting from the
time-t shortage is substituted in the policy.

2) Storage Energy Availability Probability: We define:

It+1(y) = {lt : lt + s∗t (lt) − d∗t (lt) = y}, (22)

as the set of time-t storage levels that yield optimal time-t

storage policies which give a time-(t + 1) storage level of
y. If there is not a time-t shortage, any time-t storage level
contained in the setIt+1(y) results in a time-(t + 1) storage
level equal toy. Otherwise, if a shortage occurs at timet, we
know from (21) that the time-(t+1) storage level equalsy only
if lt = y + R̄. We further know that the probabilities of the
random transitions in (21) are given by the system LOLPs,
computed using (1). Thus, a time-t shortage does and does
not occur with probabilitiespt and 1 − pt, respectively. We
can, thus, compute the distribution of the time-t storage level
recursively as:

ξ1(y) =

{

1, if y = l̄1,

0, otherwise,
(23)

and:

ξt+1(y) = pt · ξt(y + R̄) + (1 − pt) ·
∑

λ∈It+1(y)

ξt(λ). (24)

We finally know that by the assumptions discussed in
Section IV-B1, if a shortage occurs at timet and lt > 0, the
storage device providesη · R̄ MW (in net) to help mitigate
the shortfall. Otherwise, if a shortage occurs andlt = 0,
the storage device provides0 MW. Since ξt(y) gives the
distribution of the time-t storage level, we know thatlt = 0
with probability ξt(0) and that lt > 0 with probability
1 − ξt(0). Thus, we can model the storage device in any
capacity value estimation technique, including the reliability-
based methods outlined in Section II-A, as a resource with a
a η · R̄ MW capacity and a time-t EFOR ofξt(0).

V. CASE STUDY AND DATA

We estimate the capacity value of storage in five utility
systems—Pacific Gas and Electric (PG&E), Southern Califor-
nia Edison (SCE), NV Energy (NE), Public Service Company
of New Mexico (PNM), and FirstEnergy (FE). We use both our
proposed method and the maximum generation approximation
to estimate the capacity values. We model LOLPs and storage
operations at hourly timesteps and estimate capacity values for
each year independently. Our analysis considers a small device
with a R̄ = 100 MW power capacity, anη = 0.8 roundtrip
storage efficiency, between̄h = 1 andh̄ = 10 hours of storage
capacity, and a starting storage level (at the beginning of each
year) of l̄1 = 0.

Our analysis uses eight years of hourly historical conven-
tional generator, load, and price data from 1998 to 2005.
Table I provides summary data regarding each utility, including
the range of annual load factors, installed generation capac-
ity, and capacity-weighted fleet-average EFORs. We model
generator outages using a simple two-state (up/down) model.
LOLPs are estimated by computing the system’s capacity
outage table, which assumes that generator outages follow
serially and jointly independent Bernoulli distributions[3].
Data requirements and sources used for our analysis are
detailed below.
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TABLE I
UTILITIES STUDIED (DATA FROM 1998 TO 2005)

Load Installed Generator Fleet
Utility Factor [%] Capacity [GW] Average EFOR [%]
PG&E 52.1–56.7 6.0–6.0 3–5
SCE 52.3–60.1 5.0–5.0 3–5
NE 44.3–48.0 1.6–2.3 8–11
PNM 64.1–69.5 2.0–2.3 7–11
FE 58.5–65.2 9.9–9.9 6–7

A. Conventional Generators

We model each conventional generator owned by each
utility, as reported in Form 860 data filed with the U.S.
Department of Energy’s Energy Information Administration.
Form 860 also provides rated winter and summer capacity
data for each generator.

We estimate generator EFORs using the North American
Electric Reliability Corporation’s Generating Availability Data
System (GADS). The GADS specifies historical annual av-
erage generator EFORs based on generating capacity and
technology. We combine these with Form 860 data, which
specify generator prime mover and generating fuel, to estimate
EFORs. The EFORs used range between 2.2% and 13.3%. We
use a natural gas-fired combustion turbine as the benchmark
unit in ECP calculations, since such generators are often built
for peak-capacity purposes. We assume a 7% EFOR for the
combustion turbine, based on the GADS.

B. Loads

Hourly historical load data for each utility in each year
are obtained from Form 714 filings with the Federal Energy
Regulatory Commission. We assume loads are fixed and
deterministic based on these data. Most of the utilities had
less generation installed during the study period than their
peak loads. This is because the utilities are interconnected with
larger balancing authorities, independent system operators, or
regional transmission organizations that trade generation ca-
pacity among the constituent utilities. For example, PG&E and
SCE purchase energy and capacity from merchant generators
in the California ISO market and elsewhere in the Western
Electricity Coordinating Council. Thus, these resources con-
tribute to PG&E and SCE system reliability.

Since details of these transactions are not available, we
instead account for the generation and load mismatch by
adjusting the load profiles in each year so that the LOLPs of
the base system in each year sum to 2.4. This corresponds to
the standard planning target of one outage-day every 10 years
[28]. This load adjustment is done by scaling all of the hourly
loads by a fixed percentage, ranging between 32% and 71%
in the different utilities and years. This load scaling can be
thought of as accounting for the amount of capacity that each
utility should contract to purchase in each hour to supplement
its installed capacity and meet its reliability target.

C. Energy Prices

Storage operations are optimized to maximize net energy
sales profits. Hourly day-ahead prices from the California

ISO markets are used to optimize storage devices in the two
California utility service territories. Specifically, prices for the
SP15 zone are used for SCE and the NP15 zone for PG&E.
Hourly day-ahead prices for the AEP GEN hub, obtained from
PJM Interconnection, are used for FE. Hourly system lambda
data, obtained from Form 714 filings by NE and PNM, are
used for the other two locations.

VI. STORAGE CAPACITY VALUE

A. Dynamic Program-Based Method

Fig. 2 summarizes average annual ECPs of storage devices
with different energy capacities in the five utility systems. The
capacity values are reported as percentages of the assumed
80 MW net (of efficiency losses) discharging capacity. The
figure also shows the minimum and maximum ECP estimates
among the five utilities and eight study years. Storage’s
capacity value is closely tied to its energy capacity, however
the relationship between energy prices and system LOLPs also
plays an important role. This is because the capacity value
is highly sensitive to storage dispatch decisions, which are
governed by energy prices.
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Fig. 2. Average annual ECP estimates for storage devices over the study
years 1998–2005.

For instance, the ECP of storage with four hours of capacity
in the PG&E system ranges from a low of 60% in 1999 to a
high of 99% in 2004. Figs. 3 and 4 show hourly prices and
storage dispatch on the day from each of these two years with
the highest LOLPs. The figures show the beginning storage
level in each hour if no outages occur and theξt(0) values
computed from recursion (24). Energy prices on 12 July, 1999
peak in hours 12 through 16 whereas the highest LOLPs occur
later in hours 17 and 18. Thus, a profit-maximizing storage
operator opts to discharge the device in hours 12 through 16
to exploit the relatively high energy prices. This results in
no stored energy being available in hours 17 and 18 and a
modeled EFOR ofξ17(0) = ξ18(0) = 1 for the storage device
when it is most needed to improve system reliability.

The energy price pattern is markedly different on 9 Septem-
ber, 2004. On this day, prices peak in hours 16 and 20
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Fig. 3. Hourly energy prices, LOLPs, and storage dispatch inPG&E system
on 12 July, 1999.
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Fig. 4. Hourly energy prices, LOLPs, and storage dispatch inPG&E system
on 9 September, 2004.

through 22 while LOLPs peak in hours 14 through 20.
Although this price pattern results in the storage device
discharging in hour 16, some energy is kept in storage during
hours 17 through 22 to exploit future high prices. Thus, even
when the LOLPs in the preceding hours are taken into account,
ξt(0) is nearly zero in hours 14 through 20, when the LOLPs
are highest. This means that the storage device is able to
provide nearly 100% of its capacity during these crucial hours.

These results point to a potential shortcoming of relying
on energy prices only to signal the need for capacity in a
system with storage. In theory, spot electricity prices increase
as capacity becomes more scarce [29]. If prices are suffi-
ciently high, meaning capacity is scarce, they signal generating
capacity to enter the market. A cursory examination of the
market data show that the energy prices roughly provide this
signal, insomuch as energy prices and LOLPs are positively
correlated. However, the capacity value of storage, especially
highly energy-constrained devices, is sensitive to diurnal price
peaks being coincident with LOLPs, with potentially large

capacity value reductions without such coincidence.
Madaeniet al. [22] note the same issue with relying on

energy prices to signal the operation of a CSP plant with
TES for capacity purposes. They explore the use of a capacity
payment [30] to provide stronger incentives for a CSP plant to
have stored energy available during high-LOLP periods. This
mechanism provides generators with supplemental payments
that depend on their ability to provide generating capac-
ity during system operator-designated shortage events. They
demonstrate that a capacity payment reduces interannual vari-
ability in the capacity value of CSP relative to the energy-only
case. They further show that a capacity payment increases the
average capacity value of CSP plants with energy-constrained
TES systems. A capacity payment is, thus, likely to have
similar effects on the capacity value of pure storage devices.
Moreover, our proposed capacity value estimation technique
can be adapted to include a supplemental capacity payment.
Doing so simply requires profit contribution function (15) to
be changed to include the capacity payment. Madaeniet al.
[22] show how their mixed-integer programming model of a
CSP plant in an energy-only market is adapted to include a
capacity payment. The same approach can be used for our
dynamic program.

Alternatively, real-time (as opposed to day-ahead) energy
prices may have greater coincidence with LOLPs. This is
because real-time prices are generated closer to market set-
tlement, and reflect the most up-to-date load and capacity
availability data. Day-ahead prices may not signal capacity
shortages efficiently, since forced generator outages often
manifest when units are started up and operated in real-time.
One could also augment the dynamic program model to have
storage operations optimized against day-ahead prices, but
allow for interim schedule adjustments based on new capacity
availability information that becomes available between day-
ahead and real-time. Either of these steps could improve
capacity values without the need for supplemental payments.
An issue with optimizing against real-time prices is that one
may have to model price uncertainty, since real-time prices
can be more difficult to predictex ante than day-ahead prices
[26].

These results also demonstrate that storage’s capacity value
is dependent on the broader optimization criteria used. Ca-
pacity value estimations done to date assume energy-based
profit-maximization or cost-minimization [11], [12], [22]. We
use the same approach here, since there are no other obvious
optimization criteria for which required data are available from
all of the systems examined. Nevertheless, storage can be
put to many different uses (e.g., frequency regulation, voltage
control) [23], resulting in very different operating patterns and
capacity values.

B. Maximum Potential Generation Method

We compare our proposed method to the maximum gener-
ation approximation. We approximate the capacity values by
considering the 10, 100, and 1000 hours of each year with
the highest loads, since capacity factor approximations can
be sensitive to this parameter [15], [20]. Table II summarizes
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the capacity value estimates given by our proposed method
and the approximation. The numbers in the table are average
annual capacity values over all of the utility systems and years
studied. The capacity values are given as percentages of the
assumed 80 MW net storage discharging capacity.

TABLE II
AVERAGE ANNUAL CAPACITY VALUE ESTIMATES [%]

Hours of DP Method Maximum Generation Approximation
Storage ECP ELCC Top-10 Top-100 Top-1000
1 40.74 36.26 57.83 53.75 52.24
2 55.53 49.76 73.16 68.54 66.53
4 74.63 66.75 86.46 84.38 80.60
8 93.74 84.74 96.83 95.26 92.59
10 97.92 89.48 99.00 97.28 95.09

Our results show that the approximation overestimates ca-
pacity values relative to our method. The overestimation is
due to the limitation of the approximation discussed before—
it does not account for the effect of a time-t shortage on the
subsequent storage level at timet′ > t. Figs. 3 and 4 show
that power systems can have multiple consecutive high-LOLP
hours. Even if the storage operator plans to store energy during
a high-LOLP period, the expected storage level at the end
of a consecutive block of high-LOLP hours may be lower
than thed

µ
t values suggest. For instance,d

µ
16 = 100 MW

on the day shown in Fig. 3. Thus, the maximum generation
approximation assumes that the storage plant provides a full
80 MW of capacity (net of efficiency losses) during this hour.
Our dynamic program recursion shows that when accounting
for the likelihood of outages earlier in the day, the storageplant
only has about a 94% probability of having energy available
during this hour. These differences result in the maximum
generation approximation overestimating the capacity value.

The approximation method provides better ECP estimates
for relatively energy-unconstrained storage (i.e., eight and 10
hours of storage). This is because such storage devices have
a relatively low probability of being depleted at the end of a
block of high-LOLP hours. This result is, of course, dependent
on the load and generation outage patterns in the historicaldata
used in our analysis. Future power systems may have different
LOLP patterns, that may be governed to a large extent by the
availability of variable renewable resources.

The approximation is also rather sensitive to the number
of hours considered. Using the 1000 highest-load hours of
the year provides the closest approximation for an eight-hour
storage device whereas considering the 100 highest-load hours
provides the best approximation for a 10-hour device. This
suggests that if these methods are to be applied to storage,
one must be judicious in selecting the number of hours to
consider.

VII. C ONCLUSIONS

This paper presents a dynamic program-based method to
estimate the capacity value of storage. This method properly
accounts for system shortages on subsequent storage levels
and the amount of energy that storage can provide to mitigate
shortages. Using a numerical case study, we demonstrate its
use and provide baseline capacity value estimates. We show

that the capacity values of storage devices with between one
and 10 hours of discharging capacity range between 40%
and 100% of nameplate capacity. The capacity values are
shown to be sensitive to the coincidence of energy prices and
LOLPs. This gives rise to considerable interannual capacity
value variability of up to 40%, since LOLP and diurnal price
peaks may not be perfectly coincident. We also demonstrate
that the only existing approximation method overestimates
capacity values for energy-limited storage by up to 22%. While
approximations are better for less energy-constrained storage,
they are not robust insomuch as the capacity value estimate is
sensitive to the number of periods included in the calculation.

The method we outline and our numerical examples only
consider the effect of storage’s state of charge on its availabil-
ity. Thus, we implicitly assume that the device does not suffer
mechanical failures. Recursive equations (23) and (24) canbe
easily adapted to account for unplanned storage failures that
are unrelated to state of charge. Doing so captures the effect
of such failures on the capacity value. Our case study also
neglects the effects of transmission constraints and assumes
that the system has sufficient capacity to deliver stored energy
wherever it is needed. If transmission constraints or outages
prevent this, actual capacity values could be lower than our
estimates suggest [19].

Although our case study examines a single storage device,
our method could be applied to multiple devices. If the devices
are operated independently, the dynamic program model can
be applied to each device individually. In this case, there is no
curse of dimensionality due to having multiple devices. If,on
the other hand, there is some interaction between the devices
(e.g., they are owned and operated by a single entity that seeks
to maximize portfolio profits), one would instead have to solve
a larger integrated dynamic program. In this case, there may
be scaling issues.

Our model and case study assume that storage is naı̈vely
operated to maximize energy profits only, without accounting
for the possibility of shortages and their effect on subsequent
storage dispatch. We make this assumption so our underlying
behavioral model mimics that used in the maximum gen-
eration approximation, providing a meaningful comparison.
Our model is, however, agnostic to the specific objective.
Tuohy and O’Malley [11], [12] examine PHS that is operated
by the system operator to minimize system operation costs.
This optimization criterion may result in more stored energy
being available during high-LOLP periods, resulting in higher
capacity values than our results suggest. Using the maximum
generation approximation would nevertheless overestimate the
capacity value, due to the inherent limitations discussed before.

Other criteria, such as capacity payments, could be incor-
porated into the model. Based on our findings, a capacity
payment may increase the capacity value of limited-energy
storage devices and reduce interannual variability. One could
also model non-convex storage startup costs, which may be
applicable to certain technologies. Our dynamic program could
also be extended to explicitly model shortage probabilities and
include future price uncertainty in optimizing storage dispatch.
Indeed, if one models a high energy price (e.g., equal to
an assumed VOLL) during outage events, this may provide
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the same incentive to limited-energy storage devices to have
energy stored during high-LOLP periods. This could avert the
need for a capacity payment mechanism.
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