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Abstract—We present a method to estimate the capacity value © LOLE with benchmark unit added in ECP calculation.
of storage. Our method uses a dynamic program to model Wt time< weight used in capacity factor-based approxi-
the effect of power system outages on the operation and state mation.

of charge of storage in subsequent periods. We combine the

optimized dispatch from the dynamic program with estimated oL

system loss of load probabilities to compute a probability - B. Storage Optimization Model Parameters
tribution for the state of charge of storage in each period. his 7, time-t energy price.

probabilit.y distribution can .b.e used as a for.ced outage r.ate.for n roundtrip efficiency of storage device.

storage in standard reliability-based capacity value esthation 5 - .

methods. Our proposed method has the advantage over existn ﬁ power capacn_y of storage ‘?'ev'ce- .
approximations that it explicitly captures the effect of system 7 energy capacity, as a multiple of power capacity, of
shortage events on the state of charge of storage in subseqtie storage device.

periods. We also use a numerical case study, based on five ifil [, starting timei storage level.

systems in the U.S., to demonstrate our technique and compar
it to existing approximation methods.

. . _— C. Storage Optimization Model Variables
Index Terms—Capacity value, reliability theory, approximation

techniques, energy storage Iy beginning timet storage level.

Sy energy stored in period

dy energy discharged in periad

NOMENCLATURE
A. Capacity Value Estimate Parameters and Variables . INTRODUCTION
T number of time periods in planning horizon. N important issue in long-run power system planning
T subset of periods used in capacity factor-based & is the contribution of installed resources to reliably
proximation _ . meeting demand. Generator outages, which can occur due

Gy time-¢ generating capacity available. to mechanical failures or planned maintenance, may leave
GY time- generating capacity available from generafor {he system with insufficient generating capacity to meedloa
By time-t generating capacity available from benchmarlenewable generators have the added complication of Variab

unit in equivalent conventional power (ECP) calculareg|-time resource availability affecting their contriiom to

tion.. o ~ serving load. Capacity value is the metric typically used to
dy maximum potential time-output from storage device. qantify a resource’s effect on system reliability and fumg-
& (l:)  probability that beginning time-storage level iS;.  ryn resource adequacy planning [1]-[3]. Capacity value is
Ly time- load. _ o _ often estimated using reliability-based methods. Suchhmet
L constant load added in each period in effective loadiys model resource outages probabilisticatig., using an
carrying capability (ELCC) calculation. effective forced outage rate (EFOR). EFORs are used to
Pt time- loss of load probability. compute the likelihood of a system capacity shortfall inteac
e loss of load expectation (LOLE) of base system.  time period, which is typically measured by the loss of load
e” LOLE with g and loads added in ELCC calculation.propapility (LOLP). A resource’s capacity value is detemed
e9 LOLE with g added in ECP calculation. by its effect on LOLPs.

. _ Energy storage also contributes capacity to the systens. Thi
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Commission opened a rulemaking process to set policy foration is better for less energy-constrained storage,vieig
California utilities and load-serving entities to procamergy sensitive to the subset of hours considered.
storage systenfs.The assigned commissioner's ruling lists The remainder of this paper is organized as follows: Sec-
capacity among the benefits that storage can provide. tion [ discusses standard reliability-based and apprasion
Despite recognition of this role that storage can play, metmethods used to estimate capacity values. Sefidn Il gives
ods to robustly estimate storage’s capacity value are #algn the formulation of our storage operation model. Secfioh IV
non-existent in the literature. A difficulty in estimatingps describes our proposed technique and further details thke ma
age’s capacity value is that it is an energy-limited and fimémum generation approximation. Sectibh V summarizes our
dependent resource. Thus, its ability to serve load at timenumerical case study and the data used. We present ouisresult
depends on its prior operation. Moreover, one must considerSectionf¥] and Sectioi_MIl concludes.
both the planned operation of the device at timand the
amount of energy in storage. This is because if the system
experiences a capacity shortfall at timestored energy that [1. CAPACITY VALUE ESTIMATION TECHNIQUES
would otherwise not be discharged could be used to serve load
Tuohy and O'Malley [11], [12] propose a capacity valué® Reliability-Based Methods for Generators

approximation technique, which we refer to as the maximum Reliability-based methods are among the most robust and
generation approximation, that overcomes these issuss. T\Didely accepted techniques to estimate generator capality
approximation first determines an optimal dispatch of thg,g [3], [13], [14]. These techniques use a standard rétjabi
storage plant subject to technical constraints, assuntiag tingex LOLP, to determine how a generator affects system
no system shortages occur. While different objectives Cagjiapility. LOLP is defined as the probability that outages
be used, maximizing net profits from wholesale energy salgs, e the system with insufficient capacity to serve the load
and purchases is commonly assumed. The approximation ther, given time period. A related reliability index, loss of
determines, based on the d.|spatch, the maximum amountl&j{d expectation (LOLE), is defined as the sum of LOLPs
energy that the storage device could feasibly generateduspyer some planning horizon. LOLE gives a proportion of time
stored energy) in each time period. This maximum potentigdinin the planning horizon that capacity shortages occur.
generation is used to estimate the plant’s capacity value. g, instance, if the planning horizon is one year and the
An issue with this approximation is that it may overestimatgodeled time periods are hours, the LOLE can be interpreted
storage’s capacity value. To see this, consider two periogs the sum of expected outage hours over the year. Reabilit
t < t', that are in quick succession and have high LOLPS. {hsed methods determine a generator’s capacity value by
real-time, there may be less stored energy available at timgy it affects the system's LOLE. Standard reliability-eds
¢’ than the optimized dispatch suggests, since energy mayRgtrics include the effective load-carrying capability (EC)
used to mitigate a time-system shortage. Should a shortaggng equivalent conventional power (ECP). We detail these
occur, and since andt’ are in quick succession, there maystaplished reliability-based methods [3] below.
be insufficient time for the storage device’s state of chdege  iher reliability metrics, such as loss of energy probabili

increase before'. _ or expected unserved energy, can also be used. It may also be
In this paper we propose an approach to estimate storaggsrable to place a cost on capacity shortages, for instanc
capacity value. We use a dynamic program to determifg \yeighting expected unserved energy by an assumed value
how storage operations are affected by system shortag§sost load (VOLL), which may be time- and customer class-
The resulting operational schedules are used to determée {5 iant. These metrics capture the severity of an outagfeera
probability that the storage device has energy available gian, treating all outages equivalently. These metrics ese |
each period, accounting for the probability of system SigBS  common, however, and we focus on LOLE-based methods, to
in previous periods. These estimated probabilities ar@ usgake our results directly comparable to previous works411]
as EFORs to model storage availability in reI|ab|I|ty—l:xase[22]'
models. Thus, these EFORs fully capture the effect of previo 1) Effective Load-Carrying Capability: The ELCC of a
outages on storage’s state of charge at any given time. generator,g, is defined as the amount by which the sys-
In addition to detailing this estimation technique, we demotem,s load can increase, when the generator is added, while

strate its use through a numerical case study of five Uti“t}ﬁaintaining the same LOLE. The ELCC is calculated by first
systems in the U.S. We show that storage with one to 10 ho\:{fﬁfnputing the system's LOLPs withogtas:

of discharging capability has capacity values ranging betw
40% and 100% of nameplate capecity. We also demonstrate pe = Prob{G, < L,}, Vit=1,.
that there can be considerable interannual capacity value

variability. We compare the capacity value estimates giVehhere the probability function accounts for the likelihoofl
by our technique to the maximum generation approximatiogenerator or other failures and stochastic loads or reriewab

showing that the approximation overestimates capacityesal regoyrce availability. The base system’s LOLE is defined as:
for devices with small energy capacities. While the approxi

T (1)

T

1Details are available from the California Public Utilitie@ommission’s e= Zpt. (2)
website| http://www.cpuc.ca.gov/PUC/energy/electtarage.htm. —1


http://www.cpuc.ca.gov/PUC/energy/electric/storage.htm

Generatorg is added to the system and a fixed lodd, is An important question when applying these techniques is

added to each period, giving a new LOLE: the number of periods to consider. Milligan and Parsons [15]
T show that when applied to wind, the approximation should

ol — Z Prob{G, + GY < L, + L}, (3) consider the 10% of periods with the highest loads. Madaeni

=1 et al. [20] apply the approximation to a concentrating solar

The value ofL is iteratively adjusted until the LOLE of the power (CSP) plant, showing tha_t only the 10 hl_g_h_est—load
o hours of the year should be considered. The sensitivity ®f th
system withg is the same as that of the base system, or untrll. - . . :
approximation stems from different wind and solar genersati
e=el. (4) patterns and the extent to which they are coincident with

. ) _ . system loads.
Generatow’s ELCC is defined as the value éfthat achieves 4

equality [3).

2) Equivalent Conventional Power: The ECP of a gener- Ill. STORAGE OPERATION MODEL
ator, g, is defined to be the capacity of a benchmark unit Models to optimize storage operations are abundant in the
that can replacgy while maintaining the same LOLE. Theliterature. Although storage can be put to a multitude ofsuse
benchmark unit is assumed to have a positive EFOR. The E(R], most models focus on so-called energy arbitraige, (
is calculated by first computing the LOLE of the system whegharging energy when the price or cost is low and discharging

g is added as: when high). This can either be done by an integrated utility
T or system operator minimizing total system costs [4], [12] o
ed = Z Prob{G; + GJ < L;}. (5) by a profit-maximizing firm reacting to prices [24]-[26].

t=1

The LOLE of the system when only the benchmark uné( A, Storage Operation Model Assumptions

without g) is added is also computed as:
T

For ease of exposition, we assume that storage is used
by a profit-maximizing firm for energy arbitrage only. The
e” = Z Prob{G¢ + By < Lt} . (6) firym isp assumed to h%ve perfect for‘ge}fsight ofgfutureyenergy
=1 prices and naively maximize energy profits, without consid
The nameplate capacity of the benchmark unit is iterativeliting the possibility of future system shortages or thefieaf
adjusted until the LOLE of the system with the benchmarn storage operations. Sioshamsial. [26] show that this
unit is the same as that withy or until: perfect foresight assumption has a relatively small eftect
09 — B @) operational decisions, since prices tend to follow predilet
diurnal and seasonal patterns. We, thus, use a deterministi
Generatol’s ECP is defined as the nameplate capacity of thgofit-maximization to model storage operations. Our cépac

benchmark unit that achieves equalify (7). value estimation method is agnostic to the objective fmcti
however. We discuss the implications of this assumed opti-
B. Capacity Factor Approximations mization criterion on storage’s capacity value in Sectidfis

Approximations are also used to estimate capacity valu@é‘.dm' _ -
Traditionally, approximations were used due to the compu- YWé further assume that the energy capacity paraméfer,

tational cost of iteratively computing LOLPs, although tthd> inFeger and that the starting storage level,is an integer
is less of an issue today [18]. Approximations are still uségultiple of £.

due to reduced data needs or because they provide insights
into the factors that affect capacity value [19]. One methog. Storage Operation Model Formulation

which is applied to wind [15], [16] and solar [17], [20]- We formulate our model as a dynamic program, as it

[22], approximates the capacity value of a resource as.g%s our capacity value estimation. This model is identical

weighted capacity factor over a subset of periods during]:lwmhowever to the linear program proposed by Sioshansi.

the system has a high likelihood of experiencing a shorta 36] We follow the notational conventions used by Powell
These approximations commonly focus on periods with t %7]'

highest loads and use the base system’s LOLPs, givellby 1)' Variables: Our model has one set of endogenous state

as weights. variables,;, and two sets of action variables; and d

With this approximation, the weights are defined as: b ; . ¢ ¢

We could also define the energy prices as exogenous state
wy = bt ., VteT, (8) Vvariables, but do not do so to simplify notation.
T;p/pT 2) Sate-Transition Functions. The endogenous state vari-
_ ) ) ables evolve according to:
where T/ C {1,---,T} is the subset of periods with the
highest loads. The capacity value approximation for genera lig1 =l + 8¢ — dy, Vi=1,---,T; (10)
g is given by:
S w6 @ and .
L=1. (11)

teT”



3) Constraints. Gross charging and discharging are cormA. Maximum Generation Approximation

strained to be within the storage device's power capacity:  The maximum generation approximation uses the optimized

storage dispatch policy to compute the maximum amount of
energy that the storage device could feasibly provide ifheac
and: period as:

0<s <R, Vi=1,---,T; (12)

)

P d* =n- -min{R,l,_}. 20
0<di <R, Vi=1,---,T. (13) Y =mn-min{R,l;_1} (20)

These d}' values are intended to represent the maximum
We also constrain the storage level to be within the deViCQi‘ﬁnount of energy the storage device could provide at time
energy capacity: should a system shortage occur, and are used to estimate the
- capacity value. Tuohy and O’'Malley [11], [12] approximate
0<l<h R, vi=1,--.T (14)  the capacity value of PHS that is operated by a utility using
a capacity factor approximationd., by substitutingzy = d}’
in @)). Madaeniet al. [22] apply the same method to a CSP
plant with thermal energy storage (TES).

4) Objective Function: The time# profit contribution is
given by:

Ci(ls; 8¢, di) = 7 - (1 - dy — 5¢). (15)

The parameter; € [0,1], represents a constant roundtrif?- Proposed Siorage Capacity Value Estimation Technique
device efficiency. Letd denote the set of all feasible policies. A limitation of the maximum generation approximation is
A policy, a.(1;), is @ mapping between a timestate,l;, and a that it does not capture the effect of a timeystem shortage
feasible timet decision,(s;,d;). For each policya € A, we on the storage level in subsequent hours. Blg. 1 illustrates

define the total profit from time forward as: the effect of shortages on storage operations by showing the
optimized hourly dispatch of a 100 MW storage device with

d 8 hours of storage capacity. The dashed line in the figure

Gi(le) = Ztct(lf;aT(l ) (16) represents hourly energy prices and the unmarked solid line

represents an optimized dispatch policy if no shortagesrocc
The objective is to find an optimal policy,", that satisfies: The remaining marked solid lines represent optimal digpatc
N policies after some combination of shortages. A shortage
GY (Ie) = sup G¢ (Iy), (17) results in a lower state of charge, since the storage device
aeA provides energy it otherwise wouldn't to mitigate the shgg.
forall0 <t < T.We lets}(l;) andd;(I;) denote the charging For instance, the solid line marked with ‘x’s represents the
and discharging decisions given by such an optimal policy.resulting storage policy if a shortage occurs during hour 2.
This reduces the ending hour-2 storage level from 200 MWh
to 0 MWh, since the storage device does not charge during
C. Properties of an Optimal Policy hour 2 and instead discharges stored energy to mitigate the

It is straightforward to show that if the timeenergy price shortage.

makes it optimal to charge or discharge at titné is optimal e
to charge or discharge until either the timeower or energy
capacity is exhausted. This is due to the linearity of tr °°| o
dynamic program’s objective and constraints. Since weragssu  1°f / !
that & is integer andl; is an integer multiple ofR, it is 18
straightforward to show that there is an optimal policy ineth
the storage level in each period is an integer multipl&ofVe
hereafter assume that storage is operated using such &.pog
This assumption also allows storage operations to be c‘; 15
timized using the dynamic program algorithm, since we czg 14
restrict ourselves to the finite state space:
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Fig. 1. Optimized storage dispatch with different begignstiorage levels.

and the finite action space:

IV. CAPACITY VALUE ESTIMATION FOR STORAGE . ) -
The remaining marked lines in Fifl 1 represent the re-

We now detail the maximum generation approximation arglilting storage level after some combination of shortages.
our proposed estimation technique. For instance, if a shortage occurs during hour 2, the line



marked with ‘x’s tells us that the ending hour-2 storage lleve 2) Sorage Energy Availability Probability: We define:

is 0 MWh. Suppose no other shortages occur until hour 7. . N

The state of charge would follow the line marked with ‘x’s, Lepa(y) = {le s le + 57 (1) — di () = i}, (22)

until hour 7, when the state of charge falls to 300 MWh (sincgs the set of time-storage levels that yield optimal tinte-

storage would not be charged during hour 7 and would instest@rage policies which give a timg-+ 1) storage level of

discharge 100 MWh to mitigate the shortage). Thus, the statelf there is not a time- shortage, any time-storage level

of charge would thereafter follow the line marked with s@sar contained in the sef; 1 (y) results in a timeg+ + 1) storage
The maximum generation approximation uses the unmarklesiel equal toy. Otherwise, if a shortage occurs at timewve

solid line to estimate the capacity value. For instancegesinknow from [21) that the timét+1) storage level equalsonly

the optimized policy results in 200 MWh of energy beindgf I, = y + R. We further know that the probabilities of the

stored at the end of hour 2, the storage device is modeleshdom transitions in[{21) are given by the system LOLPs,

as contributing 100 MW (less efficiency losses) to mitiggtincomputed using[{1). Thus, a timieshortage does and does

an hour-3 shortage. The solid line marked with ‘x’s show#ot occur with probabilitieg, and 1 — p;, respectively. We

however, that if a shortage occurs during hour 2, the storagan, thus, compute the distribution of the timstorage level

device is completely depleted at the beginning of hour 3 amecursively as:

contributes 0 MW to system reliability. Thus, to accurately 1, ify=10

determine the time-reliability impact of storage, one must §i(y) = { 0’ otherwis’e (23)
account for the effect of earlier shortages on the expected ’

time+ storage level. and:

Consideration of these shortages is the contribution of ourg, .\ () = p, - &,(y + R) + (1 — p;) - Z &), (24)
proposed capacity value estimation technique, which we now o Nl ()
detail. We proceed by discussing two additional assumgption ‘

: : .. We finally know that by the assumptions discussed in
regarding shortage events and then show how optimal pslicie " "* . :
derived from the dynamic program are combined with systeﬁ?cuo' DE. , if a s_hortag_e oceurs at timeand !, > Q,_the
fprage device provides- & MW (in net) to help mitigate

LOLPs to compute the probability that the storage device ¢ ; ;
provide energy if a shortage is to occur in each period. ﬁ"e shortfall. Otherwise, if a shortage occurs dnd= 0,

1) System Shortage Assumptions. We assume that if athe storage device providegs MW. Since &(y) gives the

system shortage occurs at time any planned (based Ondistribution of the time: storage level, we know thdt = 0
y 9 eany p with probability &(0) and thatl, > 0 with probability

the operational policy) timeé-charging does not take place.1 — £(0). Thus, we can model the storage device in any

Moreover, if there is any energy available in storage at tr(]:%\pacity value estimation technique, including the rdliigb

beginning of timet, the storage plant discharges up to it%ased methods outlined in SectionlI-A, as a resource with a
physical capacity limits. Since we noted in Section1lI-@tth an- R MW capacity and a time-EFOR 'ofg ()
. - +(0).

the values ofi; in an optimal policy are integer multiples of
R, the amount dischargediif > 0 must equalR. Thus, when

. o . V. CASE STUDY AND DATA
accounting for system shortagéstransitions according to:

We estimate the capacity value of storage in five utility

max{0,l; — R}, if a time+ shortage systems—~Pacific Gas and Electric (PG&E), Southern Califor-
lyp1 = occurs (21) nia Edison (SCE), NV Energy (NE), Public Service Company
Iy + s;(ly) — di (), otherwise of New Mexico (PNM), and FirstEnergy (FE). We use both our

proposed method and the maximum generation approximation
Although we model the effect of shortages on the storage estimate the capacity values. We model LOLPs and storage
level, the storage operator is assumed to follow the samperations at hourly timesteps and estimate capacity sdtire
arbitrage profit-maximization given by the dynamic programach year independently. Our analysis considers a smadedev
in Section[l, which neglects shortages. If a shortage Ecuith a R = 100 MW power capacity, am = 0.8 roundtrip
at time ¢, resulting in the timg+ + 1) storage level being storage efficiency, betwedn= 1 andh = 10 hours of storage
li+1 = max{0,l;— R}, the storage device is assumed to followtapacity, and a starting storage level (at the beginningiohe
a new storage policy that is optimal from time- 1 forward year) ofl; = 0.
based on the new storage level. Our analysis uses eight years of hourly historical conven-
Note, however, that when a tinmteshortage occurs, thetional generator, load, and price data from 1998 to 2005.
resulting storage level, ., takes on a value that is in theTabld] provides summary data regarding each utility, idtig
same finite state space, given hyl(18), of the original dynanthe range of annual load factors, installed generation @apa
program. Thus, if the original dynamic program is solveily, and capacity-weighted fleet-average EFORs. We model
using the dynamic programming algorithm, one knows hogenerator outages using a simple two-state (up/down) model
the future operation of the storage plant changes if a shertd. OLPs are estimated by computing the system’s capacity
occurs at time¢. Namely, the new timé¢+1) storage decisions outage table, which assumes that generator outages follow
are given bys;, | (max{0,l, — R}) andd;, , (max{0,l,— R}), serially and jointly independent Bernoulli distributiofi3].
where the new timét + 1) storage level resulting from the Data requirements and sources used for our analysis are
time-t shortage is substituted in the policy. detailed below.



TABLE |

UTILITIES STUDIED (DATA FROM 1998 To 2005) ISO markets are used to optimize storage devices in the two
California utility service territories. Specifically, pgs for the
N Load . Installed Generator Fleet . SP15 zone are used for SCE and the NP15 zone for PG&E.
Dy | Factor 6] Capacly [OW] Average EFOR [%] Hourly day-ahead prices for the AEP GEN hub, obtained from
SCE | 52.3-60.1 5.0-5.0 35 PJM Interconnection, are used for FE. Hourly system lambda
E‘EM gj-i—gg-g ;-8—2-2 g—ﬁ data, obtained from Form 714 filings by NE and PNM, are
FE 585-652 9.9-99 6-7 used for the other two locations.

VI. STORAGE CAPACITY VALUE
A. Conventional Generators A. Dynamic Program-Based Method

We model each conventional generator owned by eachFig'_lz summarizes average a_nnual _ECPs_ pf storage devices
utility, as reported in Form 860 data filed with the U.SWith different energy capacities in the five utility systeritbe
Department of Energy's Energy Information Administratiorc@Pacity values are reported as percentages of the assumed

Form 860 also provides rated winter and summer capacfty MW net (of efficiency losses) discharging capacity. The
data for each generator. figure also shows the minimum and maximum ECP estimates

We estimate generator EFORs using the North Americ@ong the five utilities and eight study years. Storage’s
Electric Reliability Corporation’s Generating Availaibji Data  CaPacity value is closely tied to its energy capacity, harev
System (GADS). The GADS specifies historical annual af?€ refationship between energy prices and system LOLBs als
erage generator EFORs based on generating capacity Blﬂi’s an |mpo_rFant role. This is because the_ capacny value
technology. We combine these with Form 860 data, whidh Nighly sensitive to storage dispatch decisions, whiah ar
specify generator prime mover and generating fuel, to es&im 9°Verned by energy prices.

EFORs. The EFORs used range between 2.2% and 13.3%. ‘*,,

use a natural gas-fired combustion turbine as the benchm

unit in ECP calculations, since such generators are oftdn bi  °or

for peak-capacity purposes. We assume a 7% EFOR for 1

combustion turbine, based on the GADS. sor -
70

B. Loads

Hourly historical load data for each utility in each yea
are obtained from Form 714 filings with the Federal Enercg *°
Regulatory Commission. We assume loads are fixed ad
deterministic based on these data. Most of the utilities hi
less generation installed during the study period thanrthi 30
peak loads. This is because the utilities are intercondeité
larger balancing authorities, independent system opes,abo ax
regional transmission organizations that trade generatso o & Minimum
pacity among the constituent utilities. For example, PG&H a 1 2 4 Hours of Storage 8 10
SCE purchase energy and capacity from merchant generators
in the California ISO market and elsewhere in the Westery. 2. Average annual ECP estimates for storage devices theestudy
Electricity Coordinating Council. Thus, these resources-c years 1998-2005.
tribute to PG&E and SCE system reliability. ) ) .

Since details of these transactions are not available, weOF instance, the ECP of storage with four hours of capacity
instead account for the generation and load mismatch Bythe PG&E system ranges from a low of 60% in 1999 to a
adjusting the load profiles in each year so that the LOLPs 3gh of 99% in 2004. Figsl]3 arld 4 show hourly prices and
the base system in each year sum to 2.4. This correspondSi®§age dispatch on the day from each of these two years with
the standard planning target of one outage-day every 1Gyefie highest LOLPs. The figures show the beginning storage
[28]. This load adjustment is done by scaling all of the hpurll€ve! in each hour if no outages occur and §i€0) values
loads by a fixed percentage, ranging between 32% and 7 £§nputed from recursioi(R4). Energy prices on 12 July, 1999
in the different utilities and years. This load scaling can BP€2K in hours 12 through 16 whereas the highest LOLPs occur
thought of as accounting for the amount of capacity that eald€r in hours 17 and 18. Thus, a profitmaximizing storage

utility should contract to purchase in each hour to suppremePPerator opts to discharge the device in hours 12 through 16
its installed capacity and meet its reliability target. to exploit the relatively high energy prices. This results i
no stored energy being available in hours 17 and 18 and a

. modeled EFOR of;7(0) = &5(0) = 1 for the storage device
C. Energy Prices when it is most needed to improve system reliability.
Storage operations are optimized to maximize net energyThe energy price pattern is markedly different on 9 Septem-
sales profits. Hourly day-ahead prices from the Californkzer, 2004. On this day, prices peak in hours 16 and 20
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capacity value reductions without such coincidence.
Madaeniet al. [22] note the same issue with relying on
energy prices to signal the operation of a CSP plant with
TES for capacity purposes. They explore the use of a capacity
payment [30] to provide stronger incentives for a CSP plant t
have stored energy available during high-LOLP periodssThi
mechanism provides generators with supplemental payments
that depend on their ability to provide generating capac-
’-"\ 008 ity during system operator-designated shortage eventsy Th
1006, Oemonstrate that a capacity payment reduces interannaal va
g ability in the capacity value of CSP relative to the energyyo
case. They further show that a capacity payment increases th
1992 average capacity value of CSP plants with energy-congtmain
. L Hem i TES systems. A capacity payment is, thus, likely to have
12 3 45 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 .. . .
Hour similar effects on the capacity value of pure storage davice
Moreover, our proposed capacity value estimation teckeniqu
can be adapted to include a supplemental capacity payment.
Doing so simply requires profit contribution functidni1%) t
be changed to include the capacity payment. Madetal.
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Starting Storage Level [MWh]

. 061
S
&

e]
0.4} =0.04

0.2

Fig. 3. Hourly energy prices, LOLPs, and storage dispatdAG&E system
on 12 July, 1999.

D
o

_ _{@ ‘ ‘lf o Y2 [22] show how their mixed-integer programming model of a
é 50’ ’ 300% CSP plant in an energy-only market is adapted to include a
%40’ ! ! ' 1 % capacity payment. The same approach can be used for our
£ 30p \ 1?2 dynamic program.
8207 kY 1100 2 Alternatively, real-time (as opposed to day-ahead) energy
@ 10f, '\ 1 £ prices may have greater coincidence with LOLPs. This is
ot~ o » pecause real-time prices are generated closer to market set
1 ‘ L 0.05 tlement, and reflect the most up-to-date load and capacity
08l e ©) 40.04 availability data. Day-ahead prices may not signal capacit
06 - ™ shortages efficiently, since forced generator outagesn ofte
% 3 manifest when units are started up and operated in real-time
04 1°27  One could also augment the dynamic program model to have
g y prog
0.2 40.01 storage operations optimized against day-ahead pricds, bu
S allow for interim schedule adjustments based on new capacit

o o
1 23 456 7 8 9 1011121314151617 18 19 2021 22 23 24
Hour

availability information that becomes available betweery-d

ahead and real-time. Either of these steps could improve

Fig. 4. Hourly energy prices, LOLPs, and storage dispatdRG&E system capacity values without the need for supplemental payments

on 9 September, 2004. An issue with optimizing against real-time prices is thaeon
may have to model price uncertainty, since real-time prices
can be more difficult to prediex ante than day-ahead prices

through 22 while LOLPs peak in hours 14 through 2Qpg.

Although this price pattern results in the storage device These results also demonstrate that storage’s capacitg val

discharging in hour 16, some energy is kept in storage duripgdependent on the broader optimization criteria used. Ca-

hours 17 through 22 to exploit future high prices. Thus, evecity value estimations done to date assume energy-based

when the LOLPs in the preceding hours are taken into accouRfefit-maximization or cost-minimization [11], [12], [22}Ve

&(0) is nearly zero in hours 14 through 20, when the LOLPgse the same approach here, since there are no other obvious

are highest. This means that the storage device is ablegj@timization criteria for which required data are avaitafsbm

provide nearly 100% of its capacity during these crucialrBou || of the systems examined. Nevertheless, storage can be

These results point to a potential shortcoming of relyingut to many different use.., frequency regulation, voltage

on energy prices only to signal the need for capacity in gontrol) [23], resulting in very different operating patts and

system with storage. In theory, spot electricity priceséase capacity values.

as capacity becomes more scarce [29]. If prices are suffi-

ciently high, meaning capacity is scarce, they signal ggtirey ) ) )

capacity to enter the market. A cursory examination of tHe Maximum Potential Generation Method

market data show that the energy prices roughly provide thiswe compare our proposed method to the maximum gener-

signal, insomuch as energy prices and LOLPs are positiveltion approximation. We approximate the capacity values by

correlated. However, the capacity value of storage, eaftgci considering the 10, 100, and 1000 hours of each year with

highly energy-constrained devices, is sensitive to diupnae the highest loads, since capacity factor approximatioms ca

peaks being coincident with LOLPs, with potentially largde sensitive to this parameter [15], [20]. Table || summesiz



the capacity value estimates given by our proposed methihet the capacity values of storage devices with between one
and the approximation. The numbers in the table are averagel 10 hours of discharging capacity range between 40%
annual capacity values over all of the utility systems aratye and 100% of nameplate capacity. The capacity values are
studied. The capacity values are given as percentages of shewn to be sensitive to the coincidence of energy prices and
assumed 80 MW net storage discharging capacity. LOLPs. This gives rise to considerable interannual capacit

value variability of up to 40%, since LOLP and diurnal price

peaks may not be perfectly coincident. We also demonstrate
that the only existing approximation method overestimates

TABLE I
AVERAGE ANNUAL CAPACITY VALUE ESTIMATES[%]

Hours of | DP Method Maximum Generation Approximation  capacity values for energy-limited storage by up to 22%.l&/hi
ftorage %37'34 g'e-gg E;pééo TS%P%OO 2029;000 approximations are better for less energy-constraingdgto

> 5553 4976 7316 6854 66.53 they are not robust insomuch as th_e capacn_y value estnsa_lte i
4 74.63 66.75 86.46  84.38 80.60 sensitive to the number of periods included in the calcomati

8 9374 8474  96.83  95.26 92.59 The method we outline and our numerical examples only
10 97.92 89.48 99.00  97.28 95.09

consider the effect of storage’s state of charge on its avikil

0 its show that th imai timat Clr%/ Thus, we implicitly assume that the device does notesuff
ur results snow that the approximation overestimales Gge -yanjical failures. Recursive equatiofis (23) (24)oean
pacity values relative to our method. The overestimation

L L . é%sily adapted to account for unplanned storage failurats th
.due o the fimitation of the apprOX|mat|qn discussed befere are unrelated to state of charge. Doing so captures thet effec
it does not account for the effect of a timeshortage on the

. X of such failures on the capacity value. Our case study also
subsequent storage level at timle> ¢. Figs.[3 and 4 show pacty y

that ‘ h il tive high-LO glects the effects of transmission constraints and assum
at power systems can have multipie consecuftive high- at the system has sufficient capacity to deliver storedggne
hours. Even if the storage operator plans to store enerdgyglur,

wherever it is needed. If transmission constraints or agag

a high-LOLP period, the ex_pected storage level at the eBgevent this, actual capacity values could be lower than our
of a consecutive block of high-LOLP hours may be loweéstimates suggest [19]

n i L
tha?hthzdt vr?lues _sulg:]_gesgt. _'Iz_ﬁr m?\ancél,s = 100 MW i Although our case study examines a single storage device,
on the day shown in Figl3. Thus, the maximum genera '%ﬁlr method could be applied to multiple devices. If the desic

approximation assumes that_the storage plant _provio_lesl a e operated independently, the dynamic program model can
80 MW of capacity (net of efficiency losses) during this hou[)e applied to each device individually. In this case, thened

Our dynamic program recursion shows that when accounting, e ' of dimensionality due to having multiple devicesoH,

for the likelihood of outages ear_li_er in the (jay, the Stomt he other hand, there is some interaction between the device
only has about a 94% probability of having energy avaﬂab%_g” they are owned and operated by a single entity that seeks

during t.h's hour. '_I'hes_e d|fferenc_es r_esult in the MaxXIMUF maximize portfolio profits), one would instead have tossol
generation approximation overestimating the capacityeval larger integrated dynamic program. In this case, there may
The approximation method provides better ECP estimatgg scaling issues

for relatively energy-unconstrained storage.( eight and 10

h f This is b h devi h Our model and case study assume that storage is naively
ours of storage). This is because such storage devices &Xgrated to maximize energy profits only, without accountin

a relatively low probability of being depleted at the end of or the possibility of shortages and their effect on subsequ

block of high-LOLP hou_rs. This result s, of t_:ourse,_dep_emdestorage dispatch. We make this assumption so our underlying
on the load and generation outage patterns in the histatatal behavioral model mimics that used in the maximum gen-
used in our analysis. Future power systems may have ditfer%

LOLP h b d | b Pation approximation, providing a meaningful comparison
. F"’?‘“ems’ t_at may be governed to a large extent by r model is, however, agnostic to the specific objective.
availability of variable renewable resources.

Tuohy and O’Malley [11], [12] examine PHS that is operated
The approximation is also rather sensitive to the numb lrJ Y y [11], [12] exami 'S op

6y the system operator to minimize system operation costs.
of hours considered. Using the 1000 highest-load hours % Y P 4 P

: o . is optimization criterion may result in more stored eryerg
the year prqwdes the closest_ apprOXImat|on fgr an e'gll]“r'holfJeing available during high-LOLP periods, resulting intreg
store_lge device whereas can|d_er|ng the 100 hIghGSt'!O"”’““i;ho(:apacity values than our results suggest. Using the maximum
provides the best approximation for a 10-hour device. Th neration approximation would nevertheless overestiat
suggests that .if t_h?se methOdS are to be applied to stor acity value, due to the inherent limitations discussgdre.
one must be judicious in selecting the number of hours © Other criteria, such as capacity payments, could be incor-
consider. porated into the model. Based on our findings, a capacity

payment may increase the capacity value of limited-energy
VII. CONCLUSIONS storage devices and reduce interannual variability. Ongdco
This paper presents a dynamic program-based methodateo model non-convex storage startup costs, which may be
estimate the capacity value of storage. This method prgpedpplicable to certain technologies. Our dynamic progranicto
accounts for system shortages on subsequent storage leatds be extended to explicitly model shortage probalslitied
and the amount of energy that storage can provide to mitigatelude future price uncertainty in optimizing storagepaitch.
shortages. Using a numerical case study, we demonstratendeed, if one models a high energy priceg(, equal to

use and provide baseline capacity value estimates. We shemvassumed VOLL) during outage events, this may provide



the same incentive to limited-energy storage devices t@ hgeo] S. H. Madaeni, R. Sioshansi, and P. Denholm, “Estingatite Capacity
energy stored during high-LOLP periods. This could avegt th
need for a capacity payment mechanism.
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