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Abstract

This paper examines the potential welfare effects of storage under different market structures. This includes combinations
of perfectly competitive and strategic generation and storage sectors, and standalone and generator-owned storage. We
demonstrate that if the generation sector is perfectly competitive and does not own storage, then storage cannot be
welfare-diminishing. Otherwise, generator-owned storage or standalone storage in a market with strategic generating
firms can reduce welfare compared to the no-storage case. This contradicts conventional wisdom that adding firms to
an imperfectly competitive market typically reduces welfare losses.
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1. Introduction

Recent developments in the electricity industry have
increased interest in energy storage. This includes the in-
troduction of markets that provide prices that signal the
value of many of the services that storage can provide, and
the ability of storage to ease the integration of renewables
into power systems. EPRI (1976) provides an early discus-
sion of storage technologies and their relative performance.
Since it is framed by the 1970s, before the introduction
of restructured electricity markets, it focuses on storage
use by a vertically integrated utility to replace peaking
generation capacity. More recent works, including those
of EPRI-DOE (2003); Eyer et al. (2004); Eyer and Corey
(2010); Denholm et al. (2010), recognize and discuss the
broader array of services that storage can provide. This
includes generation, transmission, and distribution capac-
ity deferral, ancillary services, ramping, renewable curtail-
ment, and end-user applications.

These discussions of potential storage uses are also sup-
plemented by empirical and other analyses attempting to
value these services. One of the most studied storage appli-
cations is energy arbitrage—charging storage when energy
prices are low and discharging when prices are high. A
number of works, including those of Graves et al. (1999);
Figueiredo et al. (2006); Sioshansi et al. (2009, 2011), use
historical price data and optimization models to estimate
the value of storage. Walawalkar et al. (2007) estimate ar-
bitrage value using historical price duration curves. These
works find arbitrage values ranging between $29/kW-year
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and $240/kW-year in the markets examined, with the dif-
ferences mainly stemming from the mix of generators that
are marginal on- and off-peak. These analyses implicitly
assume that the storage plant is sufficiently small com-
pared to the market that its charging and discharging de-
cisions do not affect prices. Sioshansi et al. (2009) explore
the effects of relaxing this assumption, showing that arbi-
trage values diminish if prices respond to storage use. This
is because off-peak prices rise and on-peak prices fall when
storage is used, since it results in greater off-peak and less
on-peak generation.

Other works expand on these by examining the effects
of storage in a setting with responsive prices, from both
a private value and social welfare standpoint. Sioshansi
(2010) uses a stylized model, in which the generation sector
is perfectly competitive, to explore the effects of ownership
on storage use and welfare. He shows that regardless of
who owns it (generator-, load-, and standalone-ownership
cases are examined), storage is used in a suboptimal man-
ner, insomuch as the welfare gains are less than what a
social planner would achieve. Moreover, in some cases
the addition of storage can reduce social welfare com-
pared to the no-storage case. Sioshansi (2011) uses a case
study, based on the Texas system, to examine storage and
wind together in a market in which generators compete
a la the supply function equilibrium model proposed by
Klemperer and Meyer (1989). His work is motivated by
the fact that wind can suppress energy prices by displacing
high-cost generation. This price suppression can reduce
wind profits and investment incentives since the effect is
concentrated during hours with high wind availability. He
demonstrates that storage can increase the selling price of
wind, by charging storage when wind unduly suppresses
prices and discharging during hours with lower wind avail-
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ability. He also shows that this use of storage results in
social welfare losses, compared to not having storage in the
market. Schill and Kemfert (2011) examine the profit and
welfare effects of storage in the German electricity mar-
ket. Using actual market data, they consider cases with
generator-owned and standalone storage, assuming that
the players follow Nash-Cournot equilibria. They also find
cases in which storage reduces social welfare compared to
a no-storage case.

The cases in which storage reduces social welfare can
be unexpected, insomuch as adding firms to an imper-
fectly competitive market typically improves allocative ef-
ficiency. Moreover, these findings are different from those
of Sioshansi et al. (2009) who also examine storage use
with responsive prices, but do not find welfare losses. This
raises the question of what role market structure plays in
these welfare losses, since these analyses study storage un-
der different settings. Sioshansi et al. (2009); Sioshansi
(2010) assume perfectly competitive generation, whereas
Sioshansi (2011); Schill and Kemfert (2011) assume strate-
gic behavior. The latter two analyses differ, however, in
the specifics of the market structure considered. Sioshansi
(2011) studies a high-wind case, in which strategic conven-
tional generators compete in supply functions and strate-
gic storage competes in quantities. Schill and Kemfert
(2011), on the other hand, use the existing generator fleet
with relatively little wind and assume that strategic con-
ventional generators and strategic storage compete in quan-
tities. Sioshansi (2011) further assumes storage to be stan-
dalone or owned by wind generators, whereas Schill and Kemfert
(2011) study storage owned by conventional generators.
Understanding what types of market and asset-ownership
structures can potentially result in welfare losses is impor-
tant and can help guide important policy decisions given
today’s storage renaissance.

The aim of this paper is to study these issues more
methodically. We use a stylized model to examine what
market and ownership structures can lead to storage hav-
ing welfare-diminishing effects. We consider cases with
different combinations of perfect competition or strate-
gic behavior in the generation and storage sectors, and
generator-owned and standalone storage, and arrive at
four main findings. First, if the generation sector is per-
fectly competitive, standalone storage that is not owned
by generators cannot be welfare-diminishing. However,
strategic storage delivers less welfare benefits than per-
fectly competitive storage under such a market structure.
Second, if generators behave strategically with respect to
their production decisions, then storage can be welfare-
diminishing. Under such conditions, perfectly competi-
tive storage delivers greater welfare losses than strategic
storage. Third, if storage is owned by a monopolist gen-
erating firm that makes perfectly competitive generation
but strategic storage decisions, there can be welfare losses.
If there are, instead, multiple symmetric storage-owning
generators that make perfectly competitive generation but
strategic storage decisions, the addition of storage cannot

give welfare losses. Finally, we show that storage owned
by generating firms making strategic generation and stor-
age decisions can lead to welfare losses with any number
of firms.

The case of generating firms that make perfectly com-
petitive generation but strategic storage decisions can ap-
pear unrealistic. This structure could arise in some mar-
kets, however. For instance, the California ISO places
restrictions, based on tested heat rates, on the offers of
conventional generators in its wholesale markets. Hydro-
electric generators, which have a storage capability inso-
much as water can be withheld in one period to be used
in another, are not subjected to such restrictions due to
complex watershed constraints on their operations. This
could give rise to the final set of cases that we examine.

The remainder of this paper is organized as follows.
Section 2 details our generation and storage model and the
various cases that we consider. Section 3 studies cases with
perfectly competitive generation while Section 4 studies
strategic generator cases with standalone (non generation-
owned) storage. Section 5 considers cases of generator-
owned storage and Section 6 concludes.

2. Basic Model

We study interactions between generation and storage
and their effects on prices and welfare using a two-period
model. The two periods modeled represent off- and on-
peak periods. Demand is assumed to be price-responsive,
with period-t demand given by:

Dt(pt) = Nt − γtpt,

where Dt is measured in MW and pt in $/MW. We assume
Nt, γt > 0, implying that demand is strictly decreasing in
price but positive for some range of prices. We use the
convention that period t = 1 is the off-peak period and
t = 2 on-peak. Thus, we assume that:

D2(p) ≥ D1(p), ∀ p such that D1(p) ≥ 0.

These functions can also be inverted, giving the inverse
demand functions:

Pt(dt) =
Nt − dt

γt

.

We study storage use under two generation market
structures. One assumes a perfectly competitive genera-
tion market, while the other assumes strategic generators
that follow Nash-Cournot equilibria. We assume that the
same generator fleet, with the same cost, is available in
both the off- and on-peak periods. The total per-period
generation cost of the fleet in the perfectly competitive
case is given by:

c(gt) = b · gt +
1

2
c · g2

t ,
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where b, c ≥ 0 and gt and cost are measured in MW and
dollars, respectively. We further assume that:

Pt(0) > c′(0), ∀ t,

or that there are always some strictly positive gains from
trade. The per-period marginal generation cost is given
by:

c′(gt) = b + c · gt.

Inverting the marginal cost function gives the perfectly
competitive supply function:

s(pt) =
pt − b

c
.

The strategic generation cases assume that the gener-
ation fleet is divided between G symmetric firms, each of
which has a per-period operating cost of:

ĉ(gt) = b̂ · gt +
1

2
ĉ · g2

t .

This implies that each firm has a per-period marginal gen-
eration cost of:

ĉ′(gt) = b̂ + ĉ · gt.

Each generator’s perfectly competitive supply function is
found by inverting these marginal cost functions, giving:

ŝ(pt) =
pt − b̂

ĉ
,

which yields the sector-wide perfectly competitive supply
function:

G · ŝ(pt) = G
pt − b̂

ĉ

For our cases with perfect and imperfect competition to
be comparable, we choose b̂ and ĉ to have equal sector-
wide perfectly competitive supply, or such that G · ŝ(pt) =

s(pt), ∀ p. This implies that b̂ = b and ĉ = G · c, meaning
that each firm’s cost function in the strategic generation
cases is given by:

ĉ(gt) = b · gt +
1

2
G · c · g2

t .

We assume that the storage has a roundtrip efficiency
ǫ ∈ (0, 1). For notational convenience, we define η = 1/ǫ.
Because we only model a two-period problem, we can ab-
stract away energy constraints on storage. We, instead,
assume that storage is potentially charged during the off-
peak period and discharged in the subsequent on-peak pe-
riod, only. Due to the efficiency losses, ηδ MWh of energy
must be stored off-peak in order to discharge δ MWh on-
peak. We assume a total of δ̄ MW of storage is installed in
the system, meaning at most ηδ̄ MW can be charged off-
peak and δ̄ discharged on-peak. This storage is assumed
to be owned by a single firm, however we consider cases in
Section 5 in which the storage assets are divided (evenly)
among the G symmetric generating firms.

3. Effects of Storage with Perfectly Competitive

Generation

We analyze the case with perfectly competitive gener-
ation by first deriving equilibrium generation and prices in
the two periods as a function of storage use. We next de-
rive the equilibrium level of storage use and then examine
the welfare effects of this storage use.

3.1. Generation Equilibrium

Since the generation sector is perfectly competitive,
quantities and prices during the two periods are given by
the intersection of marginal cost and inverse demand. If we
let gt denote period-t generation, these equilibrium condi-
tions are:

P1(g1 − ηδ) = c′(g1), (1)

and
P2(g2 + δ) = c′(g2). (2)

The g1 − ηδ and g2 + δ terms in (1) and (2) explicitly
account for energy that is stored off-peak not being con-
sumed whereas energy that is discharged on-peak is. Sub-
stituting the marginal cost and inverse demand functions
into (1) and (2) and manipulating them gives the following
equilibrium generation levels as a function of storage use:

g1(δ) =
N1 − bγ1 + ηδ

1 + cγ1
, (3)

and

g2(δ) =
N2 − bγ2 − δ

1 + cγ2
. (4)

Moreover, substituting g1(δ)−ηδ and g2(δ)+δ into the
inverse demand functions gives the following equilibrium
prices in each period as a function of storage use:

p1(δ) =
N1c + b + cηδ

1 + cγ1
, (5)

and

p2(δ) =
N2c + b − cδ

1 + cγ2
. (6)

3.2. Storage Equilibrium

We model two different types of storage equilibria, the
first assumes that storage behaves perfectly competitively
while the second assumes strategic storage use.

3.2.1. Perfectly Competitive Storage

Perfectly competitive storage is used on the basis of
off- and on-peak prices, but does not regard its effect on
prices. Thus, perfectly competitive storage stores off-peak
energy so long as it costs less than the on-peak price (net
of efficiency losses) at which it is sold. This amounts to
storage choosing δ ∈ [0, δ̄] such that p2(δ) = ηp1(δ), if such
a δ exists. The derivatives of price functions (5) and (6)
are:

p′1(δ) =
cη

1 + cγ1
> 0,
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and:

p′2(δ) =
−c

1 + cγ2
< 0.

Thus, equilibrium storage use, δC,C ,1 can take on one of
three possible values. If p2(0) < ηp1(0) then δC,C = 0,
since the net on-peak energy price is less than the off-peak
price. If p2(δ̄) > ηp1(δ̄) then δC,C = δ̄. Since p1(δ) and
p2(δ) are linear in δ, we can write these as first-order Taylor
expansions, in which case this latter condition becomes
δC,C = δ̄ if:

p2(0) + δ̄p′2(0) > η[p1(0) + δ̄p′1(0)],

or if:
p2(0) − ηp1(0)

ηp′1(0) − p′2(0)
> δ̄.

The third possibility is that δC,C is an interior solution
(i.e., not equal to either of its bounds) and is given by the
unique value that solves:

p2(δC,C) = ηp1(δC,C).

Again, we can write p1(δ) and p2(δ) as their first-order
Taylor expansions:

p2(0) + δC,C · p′2(0) = η[p1(0) + δC,C · p′1(0)],

which gives the solution:

δC,C =
p2(0) − ηp1(0)

ηp′1(0) − p′2(0)
.

3.2.2. Strategic Storage

A strategic storage operator determines storage opera-
tions from a profit-maximization problem of the form:

max
δ

ΠS(δ) = [p2(δ) − ηp1(δ)]δ (7)

s.t. 0 ≤ δ ≤ δ̄

The Karush-Kuhn-Tucker (KKT) conditions for an op-
timum are:

[ηp′1(δ) − p′2(δ)]δ + ηp1(δ) − p2(δ) − µ− + µ+ = 0,

0 ≤ δ ⊥ µ− ≥ 0,

δ ≤ δ̄ ⊥ µ+ ≥ 0,

where µ− and µ+ are Lagrange multipliers associated with
the inequality constraints. Solving these conditions gives:

δS,C =











0, if p2(0) < ηp1(0),

δ̄, if p2(0)−ηp1(0)
2[ηp′

1
(0)−p′

2
(0)] ≥ δ̄,

p2(0)−ηp1(0)
2[ηp′

1
(0)−p′

2
(0)] , otherwise.

1We use the notational convention that δ’s are subscripted by
two letters, both either a ‘C’ or an ‘S.’ The first indicates perfectly
competitive or strategic storage and the second perfectly competitive
or strategic generation.

If we compare these conditions to those derived for per-
fectly competitive storage, it is clear that δS,C ≤ δC,C ,
with strict inequality for some values of Nt and γt, which
is consistent with the findings of Sioshansi et al. (2009);
Sioshansi (2010).

Since we also have that:

∂2

∂δ2
[ΠS(δ)] = −2c

(

η2

1 + cγ1
+

1

1 + cγ2

)

< 0,

the storage profit function is concave and the KKT condi-
tions are sufficient for a global optimum.

3.3. Welfare Effects of Storage

Storage use has consumer and producer welfare effects,
which are illustrated in Figure 1. The figure shows exam-
ples of off- and on-peak demand functions without storage,
and the effect of storage use on these functions. Specifi-
cally, if ηδ MW is stored off-peak and discharged on-peak,
this shifts the off-peak demand function rightward by ηδ
and shifts the on-peak function leftward by δ. These de-
mand shifts change off- and on-peak prices, generation,
and consumption, giving welfare changes.

Quantity

P
ri
ce

d̂1 g1 ĝ1 ĝ2 g2 d̂2

p1

p̂1

p̂2

p2

A

B C

D E F

G H I J

K

L

M

 

 
Marginal Cost
Off−Peak Demand without Storage
Off−Peak Demand with Storage
On−Peak Demand without Storage
On−Peak Demand with Storage

Figure 1: Welfare effects of storage use with a perfectly competitive
generation sector.

Without storage use, the off-peak price is p1 and con-
sumption and generation are g1. When storage is added,
off-peak generation increases to ĝ1, increasing the price to
p̂1 and decreasing consumption to d̂1. This gives a con-
sumer surplus loss during the off-peak period—without
storage consumer welfare is equal to the sum of the ar-
eas denoted ‘B’ and ‘D’ whereas with storage it is equal to
the area denoted ‘D’ only. Storage has the opposite effect
on-peak. Without storage, the on-peak price is p2 and con-
sumption and generation are g2. When storage is used, on-
peak generation decreases to ĝ2, decreasing the price to p̂2

and increasing consumption to d̂2. These changes yield an
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on-peak consumer welfare increase—without storage con-
sumer surplus is equal to the sum of the areas denoted ‘K,’
‘L,’ and ‘M’ whereas it increases to the sum of the areas
denoted ‘G,’ ‘H,’ ‘I,’ ‘J,’ ‘K,’ ‘L,’ and ‘M’ with storage.
Thus the net consumer welfare effect of storage is given by
the sum of the areas denoted ‘G,’ ‘H,’ ‘I,’ and ‘J,’ less the
area denoted ‘B’. We can compute the consumer welfare
change in each period as the integral of the difference be-
tween the inverse demand function and the price of energy,
or as:

CW (δ) =

∫ g1(δ)−ηδ

0

[P1(x) − p1(δ)]dx

+

∫ g2(δ)+δ

0

[P2(x) − p2(δ)]dx

=
1

2γ1
[g1(δ) − ηδ]2 +

1

2γ2
[g2(δ) + δ]2.

These price and generation changes also affect pro-
ducer (generator) surplus. Off-peak generator profit with-
out storage is given by the area denoted ‘A’ and this in-
creases to the sum of the areas denoted ‘A,’ ‘B,’ and ‘C’
with storage use. Conversely, on-peak generator profit is
given by the sum of the areas denoted ‘A,’ ‘B,’ ‘C,’ ‘D,’ ‘E,’
‘F,’ ‘G,’ ‘H,’ and ‘I,’ without storage and decreases to the
sum of the areas denoted ‘A,’ ‘B,’ ‘C,’ ‘D,’ ‘E,’ and ‘F’ with
storage. Thus the net producer welfare effect of storage is
given by the sum of the areas denoted ‘B’ and ‘C’ less the
sum of the areas denoted ‘G,’ ‘H,’ and ‘I.’ We can compute
this producer welfare change as the integral of the differ-
ence between the price of energy and the marginal cost of
generation, or as:

PW (δ) =

∫ g1(δ)

0

[p1(δ) − c′(x)]dx

+

∫ g2(δ)

0

[p2(δ) − c′(x)]dx

=
c

2
[g1(δ)

2 + g2(δ)
2]

Sioshansi (2010) notes that in addition to the consumer
and producer surplus changes, storage profits represent a
true welfare effect, and is not merely a wealth transfer to
the storage owner. This is because storage displaces high-
cost on-peak energy with low-cost off-peak energy. Storage
profit measures the net value of this intertemporal gen-
eration shifting, including energy lost due to the storage
process. Storage profit, ΠS(δ) is defined in (7), and thus
total social welfare, as a function of storage use, is given
by:

W (δ) = CW (δ) + PW (δ) + ΠS(δ). (8)

We now show in the following lemmas and corollaries
that perfectly competitive storage maximizes social wel-
fare, whereas strategic storage use can result in less wel-
fare than the perfectly competitive case. We also show
that standalone storage, whether behaving perfectly com-
petitively or strategically, can never yield net social welfare

losses compared to a case without storage, when genera-
tion is perfectly competitive as assumed here.

Lemma 1. If the generation sector is perfectly competi-

tive and storage is owned by a perfectly competitive stan-

dalone firm, the resulting generation and storage use give

the unique global welfare-maximizer.

Proof. Substituting in the terms defining W (δ) gives:

W (δ) = δ

[

N2c + b − cδ

1 + cγ2
− η

N1c + b + cηδ

1 + cγ1

]

+
1

2

{

(N1 − bγ1)
2 + cγ1η

2δ2

γ1 · (1 + cγ1)
+

(N2 − bγ2)
2 + cγ2δ

2

γ2 · (1 + cγ2)

}

.

Thus we have:

W ′(δ) = −
cδ

1 + cγ2
+

N2c + b − cδ

1 + cγ2
−

cη2δ

1 + cγ1

−η
N1c + b + cηδ

1 + cγ1
+

1

2

[

2cγ1η
2δ

γ1 · (1 + cγ1)
+

2cγ2δ

γ2 · (1 + cγ2)

]

= p2(0) − ηp1(0) − δ · [ηp′1(0) − p′2(0)]

The welfare-maximization problem is defined as:

max
δ

W (δ)

s.t. 0 ≤ δ ≤ δ̄.

Thus, the KKT conditions for a maximum are:

[ηp′1(0) − p′2(0)]δ + ηp1(0) − p2(0) − µ− + µ+ = 0,

0 ≤ δ ⊥ µ− ≥ 0,

δ ≤ δ̄ ⊥ µ+ ≥ 0,

where µ− and µ+ are Lagrange multipliers associated with
the inequality constraints. Solving these conditions gives:

δ∗ =











0, if p2(0) < ηp1(0),

δ̄, if p2(0)−ηp1(0)
ηp′

1
(0)−p′

2
(0) ≥ δ̄,

p2(0)−ηp1(0)
ηp′

1
(0)−p′

2
(0) , otherwise,

which are the same conditions defining δC,C . Since we also
have that:

W ′′(δ) = −

(

c

1 + cγ2
+

cη2

1 + cγ1

)

< 0,

we know that the welfare-maximization problem is convex
and the KKT conditions are sufficient for the unique global
maximum.

We now show that with perfectly competitive genera-
tion, strategic standalone storage yields less social welfare
than perfectly competitive storage. It can never, however,
yield social welfare losses compared to not having storage
in the market.
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Corollary 1. If the generation sector is perfectly compet-

itive and storage is owned by a strategic standalone firm,

the resulting generation and storage use yield less social

welfare than the perfectly competitive storage case.

Proof. Since W (δ) is strictly concave in δ, W (δS,C) <
W (δC,C) whenever δS,C 6= δC,C .

Corollary 2. If the generation sector is perfectly compet-

itive, storage use by a standalone storage firm never yields

a net social welfare loss compared to not having storage in

the market.

Proof. By definition, δC,C cannot result in social welfare
losses compared to not having storage, since δC,C = 0 is
feasible and δC,C is welfare-maximizing.

To show that strategic storage cannot yield social wel-
fare losses, note that δS,C > 0 if and only if:

p2(0) − ηp1(0) = W ′(0) > 0.

Moreover, since δS,C ≤ δC,C and W (δ) is concave in δ, we
know that a strategic storage firm uses storage if and only
if it is strictly welfare-enhancing.

We further show that in the special case in which γ1 =
γ2 = γ, storage use always results in a consumer welfare
increase and producer surplus loss.

Lemma 2. If the generation sector is perfectly competitive

and γ1 = γ2 = γ, storage use by a standalone storage firm

always results in a consumer welfare increase.

Proof. Substituting in the terms defining CW (δ) and dif-
ferentiating gives:

CW ′(0) =
N2c − bcγ2

(1 + cγ2)2
− η

N1c − bcγ1

(1 + cγ1)2

=
1

1 + cγ2
[p2(0) − b]

−η
1

1 + cγ1
[p1(0) − b],

and

CW ′′(δ) =
c2γ1η

2

(1 + cγ1)2
+

c2γ2

(1 + cγ2)2
> 0.

Thus, consumer welfare is convex in δ. If CW ′(0) ≥

0 whenever storage is used, then storage use is always
consumer-welfare-enhancing and δ = δ̄ maximizes con-
sumer welfare. If we take the special case in which γ1 =
γ2 = γ we have:

CW ′(0) =
1

1 + cγ
[p2(0) − ηp1(0) + b · (η − 1)]

By definition of b and η we have that b · (η − 1) > 0. Fur-
thermore, we know that perfectly competitive and strate-
gic storage are only used if p2(0)−ηp1(0) > 0, thus storage
is only used if CW ′(0) > 0 and always increases consumer

welfare. We further know, due to the convexity of the
consumer welfare function that:

CW (0) ≤ CW (δS,C) ≤ CW (δC,C) ≤ CW (δ̄).

Corollary 3. If the generation sector is perfectly compet-

itive and γ1 = γ2 = γ, storage use by a standalone storage

firm always results in a producer welfare loss.

Proof. Substituting in the terms defining PW (δ) and dif-
ferentiating gives:

PW ′(δ) = c ·

[

η
N1 − bγ1 + ηδ

(1 + cγ1)2
−

N2 − bγ2 − δ

(1 + cγ2)2

]

=
η

1 + cγ1
[p1(0) − b]

−
1

1 + cγ2
[p2(0) − b]

+δ

[

η

1 + cγ1
p′1(0) −

1

1 + cγ2
p′2(0)

]

,

and:

PW ′′(δ) =
cη2

(1 + cγ1)2
+

c

(1 + cγ2)2
> 0.

We further have that:

PW ′(0) =
η

1 + cγ1
[p1(0) − b]

−
1

1 + cγ2
[p2(0) − b]

= −CW ′(0).

Since we know CW ′(0) > 0 if storage is used, we have that
PW ′(0) < 0. Since producer welfare is convex in δ, it is
possible for storage use to increase generator profits if δ is
sufficiently large. A necessary condition for this to occur
is that there exists a δ ≤ δ̄ for which PW ′(δ) ≥ 0. Note,
however, that solving PW ′(δ) = 0 gives:

δ =

η
1+cγ1

[p1(0) − b] − 1
1+cγ2

[p2(0) − b]
1

1+cγ2

p′2(0) − η
1+cγ1

p′1(0)
,

which simplifies to:

δ =
p2(0) − ηp1(0)

ηp′1(0) − p′2(0)
+ b

η − 1

ηp′1(0) − p′2(0)
,

if γ1 = γ2 = γ. Since:

b
η − 1

ηp′1(0) − p′2(0)
> 0,

this quantity is greater than both δS,C and δC,C , implying
that storage use always reduces producer welfare. Since
PW ′(δ) < 0 for δ ≤ δC,C , we can further conclude that:

PW (0) ≥ PW (δS,C) ≥ PW (δC,C).
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4. Effects of Storage with Strategic Generation

We now consider a case in which the generation sec-
tor consists of G symmetric strategic firms and a single
perfectly competitive or strategic storage firm. We pro-
ceed with this case as before, by first deriving equilibrium
generation decisions in the two periods, as a function of
storage use, and resulting prices. We then derive equilib-
rium storage use and determine its welfare effects.

4.1. Generation Equilibrium

We assume that the generators follow Nash-Cournot
strategies by making generation decisions in the off- and
on-peak periods. We let gi,t denote generator i’s period-t
production, which gives the following profit-maximization
problem for generator i:

max
gi,t

ΠG
i (g) = P1(g

G
1 − ηδ) · gi,1 − ĉ(gi,1)

+ P2(g
G
2 + δ) · gi,2 − ĉ(gi,2),

where gG
t =

∑G
i=1 gi,t denotes total period-t generation.

The KKT conditions for generator i’s problem are:

P1(g
G
1 − ηδ) + P ′

1(g
G
1 − ηδ) · gi,1 − ĉ′(gi,1) = 0,

P2(g
G
2 + δ) + P ′

2(g
G
2 + δ) · gi,2 − ĉ′(gi,2) = 0.

To show that any Nash-Cournot equilibrium is symmetric,
we first note that by definition we must have:

∂

∂gi,t

ΠG
i (g) −

∂

∂gj,t

ΠG
j (g) = 0,

which implies that:

(gj,t − gi,t)

(

1

γt

+ G · c

)

= 0.

Since 1/γt + G · c > 0 we must have gi,t = gj,t ∀ i, j =
1, 2, . . . , G and t = 1, 2. Due to the symmetry of the equi-
librium, we can rewrite the KKT conditions as:

N1 − gG
1 + ηδ

γ1
−

gG
1

Gγ1
− b − c · gG

1 = 0,

and:
N2 − gG

2 − δ

γ2
−

gG
2

Gγ2
− b − c · gG

2 = 0.

Manipulating these KKT conditions gives the equilibrium
generation levels as:

gG
1 (δ) =

G · (N1 − bγ1 + ηδ)

1 + G · (1 + cγ1)
,

and:

gG
2 (δ) =

G · (N2 − bγ2 − δ)

1 + G · (1 + cγ2)
.

Substituting gG
1 (δ)− ηδ and gG

2 (δ) + δ into the inverse
demand functions also gives periods-1 and -2 prices as:

pG
1 (δ) =

(N1 + ηδ)(1 + Gcγ1) + G · bγ1

γ1 · (1 + G · (1 + cγ1))
,

and:

pG
2 (δ) =

(N2 − δ)(1 + Gcγ2) + Gbγ2

γ2 · (1 + G · (1 + cγ2))
.

Finally, we have that:

∇2ΠG
i (g) =

[

− 2
γ1

− Gc 0

0 − 2
γ2

− Gc

]

,

which is negative definite, meaning that the KKT condi-
tions are sufficient for a unique global maximum to each
generator’s profit-maximization problem.

4.2. Storage Equilibrium

As before, we model two types of storage equilibria.
The first assumes perfectly competitive storage while the
second assumes strategic behavior.

4.2.1. Perfectly Competitive Storage

Perfectly competitive storage takes prices as given and
chooses δ as a function of prices. In equilibrium, prices
adjust such that pG

2 (δ) = ηpG
1 (δ), if such a δ exists. As in

the perfectly competitive generation case, we have that:

pG
1

′

(δ) =
η · (1 + Gcγ1)

γ1 · (1 + G · (1 + cγ1))
> 0,

and

pG
2

′

(δ) = −
1 + Gcγ2

γ2 · (1 + G · (1 + cγ2))
< 0.

Therefore, equilibrium storage use, δC,S , can take on one
of three possible values. If pG

2 (0) < ηpG
1 (0) then δC,S = 0

whereas if pG
2 (δ̄) > ηpG

1 (δ̄) then δC,S = δ̄. Otherwise:

δC,S =
pG
2 (0) − ηpG

1 (0)

ηpG
1
′

(0) − pG
2
′

(0)
.

4.2.2. Strategic Storage

The storage profit-maximization problem is defined as:

max
δ

ΠG
S (δ) = [pG

2 (δ) − ηpG
1 (δ)]δ (9)

s.t. 0 ≤ δ ≤ δ̄.

The KKT conditions for an optimum are:

[ηpG
1

′

(δ) − pG
2

′

(δ)]δ + ηpG
1 (δ) − pG

2 (δ) − µ− + µ+ = 0,

δ ≥ 0 ⊥ µ− ≥ 0,

δ ≤ δ̄ ⊥ µ+ ≥ 0,
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where µ− and µ+ are Lagrange multipliers associated with
the two inequality constraints. Solving these conditions
gives:

δS,S =















0, if pG
2 (0) < ηpG

1 (0),

δ̄, if
pG
2

(0)−ηpG
1

(0)

2[ηpG
1

′(0)−pG
2

′(0)]
≥ δ̄,

pG
2

(0)−ηpG
1

(0)

2[ηpG
1

′(0)−pG
2

′(0)]
, otherwise.

We also note that since:

ΠG
S

′′

(δ) = 2[pG
2

′

(δ) − ηpG
1

′

(δ)] < 0,

the KKT conditions are sufficient for a unique global max-
imum of the storage firm’s problem.

4.3. Welfare Effects of Storage

As in the perfectly competitive generation case, stor-
age use has three welfare impacts. Consumer welfare is de-
fined by the integral of the difference between the inverse
demand functions and energy prices in the two periods:

CWG(δ) =

∫ gG
1

(δ)−ηδ

0

[P1(x) − pG
1 (δ)]dx

+

∫ gG
2

(δ)+δ

0

[P2(x) − pG
2 (δ)]dx

=
1

2γ1
[gG

1 (δ) − ηδ]2 +
1

2γ2
[gG

2 (δ) + δ]2.

Producer surplus is defined by the integral of the difference
between the energy prices and marginal generation costs
in the two periods:

PWG(δ) =

∫ gG
1

(δ)

0

[pG
1 (δ) − c′(x)]dx

+

∫ gG
2

(δ)

0

[pG
2 (δ) − c′(x)]dx

=
2 + Gcγ1

2Gγ1
gG
1 (δ)2 +

2 + Gcγ2

2Gγ2
gG
2 (δ)2.

Storage profit is defined in (9).
Taking the special case in which γ1 = γ2 = γ, we now

show that with strategic generation it is generally possible
for storage to be used when it is social welfare-diminishing.

Lemma 3. If the generation sector consists of G sym-

metric firms following Nash-Cournot equilibrium strategies

and γ1 = γ2 = γ, storage use can yield a social welfare loss

compared to not having storage in the market.

Proof. See appendix.

5. Effects of Generator-Owned Storage

We finally consider a case in which storage is owned by
the generators themselves, as opposed to the standalone
case considered thus far. As in Section 4, we assume that

there are G symmetric generating firms, and that genera-
tor i’s period-t cost is given by ĉ(gi,t). We assume the total
discharging capacity of all storage assets in the market to
be δ̄ MW and that these are evenly divided among the G
generating firms. This means each generating firms owns
δ̄/G MW of discharging capacity.

We examine two different firm-behavior cases. The
first assumes that the firms behave perfectly competitively
with respect to their generation decisions, but use storage
strategically. The second assumes that the firms use both
generation and storage strategically.

5.1. Perfectly Competitive-Generation Equilibrium

In the perfectly competitive-generation case, equilib-
rium energy prices and total generation, as functions of
total storage use, are given by equations (3) through (6).
Each generator determines how much energy to store off-
peak and discharge on-peak to maximize total firm profits
from generation and storage use. We assume that in doing
so the generators follow Nash-Cournot equilibrium strate-
gies. If we let δi denote the amount of energy discharged
on-peak by generator i (implying ηδi is stored off-peak),
then generator i’s profit-maximization problem is defined
as:

max
δi

ΠC,O
i (δ) = p1(δ)

g1(δ)

G
+ p2(δ)

g2(δ)

G

+ δi[p2(δ) − ηp1(δ)]

s.t. 0 ≤ δi ≤ δ̄/G,

where δ =
∑G

i=1 δi is total storage use and the added ‘O’
superscript on Π denotes the fact that storage is owned by
generator firms that make perfectly competitive generation
decisions. The KKT conditions for generator i’s problem
are:

− p1(δ)
g′1(δ)

G
− p′1(δ)

g1(δ)

G
− p2(δ)

g′2(δ)

G

− p′2(δ)
g2(δ)

G
+ δi[ηp′1(δ) − p′2(δ)] (10)

+ ηp1(δ) − p2(δ) − µ−

i + µ+
i = 0,

δi ≥ 0 ⊥ µ−

i ≥ 0,

δi ≤ δ̄/G ⊥ µ+
i ≥ 0,

where µ−

i and µ+
i are the Lagrange multipliers associated

with the inequality constraints in generator i’s problem.
We next show, in the following lemma, that the equilib-
rium must be symmetric.

Lemma 4. If the market consists of G symmetric storage-

owning generating firms that use generation perfectly com-

petitively and storage strategically, any storage-use Nash-

Cournot equilibrium is symmetric.

Proof. See appendix.
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Since the equilibrium is symmetric, the KKT condi-
tions can be rewritten as:

− p1(δ)
g′1(δ)

G
− p′1(δ)

g1(δ)

G
− p2(δ)

g′2(δ)

G
− p′2(δ)

g2(δ)

G

+
δ

G
[ηp′1(δ) − p′2(δ)] + ηp1(δ) − p2(δ) − µ− + µ+ = 0,

where µ− and µ+ are Lagrange multipliers associated with
the constraints on total storage use. The KKT conditions
imply that δO

C = 0 if:

p2(0)[1 − 1/φ2] +
p′2(0)g2(0)

G
(11)

< ηp1(0)[1 − 1/φ1] −
p′1(0)g1(0)

G
,

where φt = G · (1 + cγt), δO
C = δ̄ if:

p2(0)[1 − 1
φ2

] − ηp1(0)[1 − 1
φ1

] +
p′

1
(0)g1(0)+p′

2
(0)g2(0)

G

ηp′1(0)[1 + cγ1−1
φ1

] − p′2(0)[1 + cγ2−1
φ2

]
> δ̄,

and that:

δO
C =

p2(0)[1 − 1
φ2

] − ηp1(0)[1 − 1
φ1

] +
p′

1
(0)g1(0)+p′

2
(0)g2(0)

G

ηp′1(0)[1 + cγ1−1
φ1

] − p′2(0)[1 + cγ2−1
φ2

]

otherwise. We further have that:

ΠC,O
i

′′

(δ) =
2cη2 · (1 − φ1)

φ1 · (1 + cγ1)
+

2c · (1 − φ2)

φ2 · (1 + cγ2)
< 0.

Thus, ΠC,O
i (δ) is strictly concave in δ and the KKT con-

ditions are sufficient for a unique global maximum.

5.2. Strategic-Generation Equilibrium

In this case generators are assumed to co-optimize their
generation quantity and storage decisions to maximize to-
tal firm profits, while accounting for the effect of their de-
cisions on prices. We, again, assume that in doing so they
follow Nash-Cournot equilibrium strategies. Letting gi,t

denote firm i’s period-t generation and δi the amount of en-
ergy discharged on-peak, generator i’s profit-maximization
problem is defined as:

max
gi,t,δi

ΠS,O
i (g, δ) = P1(g

G
1 − ηδ) · (gi,1 − ηδi) − ĉ(gi,1)

+ P2(g
G
2 + δ) · (gi,2 + δi) − ĉ(gi,2)

s.t. 0 ≤ δi ≤ δ̄/G,

where gG
t =

∑G
i=1 gi,t is total period-t generation and δ =

∑G
i=1 δi is total storage use. The KKT conditions for an

optimum to generator i’s problem are:

−P1(g
G
1 −ηδ)−(gi,1−ηδi)·P

′

1(g
G
1 −ηδ)+ ĉ′(gi,1) = 0, (12)

−P2(g
G
2 + δ)− (gi,2 + δi) ·P

′

2(g
G
2 + δ) + ĉ′(gi,2) = 0, (13)

ηP1(g
G
1 − ηδ) + η · (gi,1 − ηδi) · P

′

1(g
G
1 − ηδ) − P2(g

G
2 + δ)

− (gi,2 + δi) · P
′

2(g
G
2 + δ) − µ−

i + µ+
i = 0, (14)

δi ≥ 0 ⊥ µ−

i ≥ 0,

δi ≤ ¯δ/G ⊥ µ+
i ≥ 0,

where µ−

i and µ+
i are Lagrange multipliers associated with

the inequality constraints in generator i’s problem. We
next show, in the following lemma, that the equilibrium
must be symmetric.

Lemma 5. If the market consists of G symmetric storage-

owning generating firms that make strategic generation and

storage decisions, any generation and storage-use Nash-

Cournot equilibrium is symmetric.

Proof. See appendix.

Due to the symmetry of the equilibrium, the KKT sta-
tionarity conditions can be rewritten as:

−P1(g
G
1 − ηδ) −

gG
1 − ηδ

G
P ′

1(g
G
1 − ηδ) + ĉ′(gG

1 /G) = 0,

−P2(g
G
2 + δ) −

gG
2 + δ

G
P ′

2(g
G
2 + δ) + ĉ′(gG

2 /G) = 0,

ηP1(g
G
1 − ηδ) + η

gG
1 − ηδ

G
P ′

1(g
G
1 − ηδ) − P2(g

G
2 + δ)

−
gG
2 + δ

G
P ′

2(g
G
2 + δ) − µ− + µ+ = 0,

where µ− and µ+ are Lagrange multipliers associated with
the inequality constraints on total storage use. The first
two stationarity conditions define total period-t generation
as:

gS,O
1 (δ) =

G · (N1 − bγ1) + (G + 1)ηδ

1 + G · (1 + cγ1)
,

and

gS,O
2 (δ) =

G · (N2 − bγ2) − (G + 1)δ

1 + G · (1 + cγ2)
.

Substituting gS,O
1 (δ)− ηδ and gS,O

2 (δ) + δ into the inverse
demand functions gives equilibrium energy prices:

pS,O
1 (δ) =

(N1 + ηδ)(1 + Gcγ1) + Gbγ1 − ηδ

γ1 · (1 + G · (1 + cγ1))
,

and

pS,O
2 (δ) =

(N2 − δ)(1 + Gcγ2) + Gbγ2 + δ

γ2 · (1 + G · (1 + cγ2))
,

as a function of storage use. We can also substitute the
first two stationarity conditions into the third, which shows
that equilibrium storage use is δO

S = 0 if:

GpS,O
2 (0) − gS,O

2 (0)/γ2 < ηGpS,O
1 (0) − ηgS,O

1 (0)/γ1,

δO
S = δ̄ if:

G[pS,O
2 (0) − ηpS,O

1 (0)] + ηgS,O
1 (0)/γ1 − gS,O

2 (0)/γ2

η · (G + 1)pS,O
1

′

(0) − (G + 1)pS,O
2

′

(0)
> δ̄,
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and that:

δO
S =

G[pS,O
2 (0) − ηpS,O

1 (0)] + ηgS,O
1 (0)/γ1 − gS,O

2 (0)/γ2

η · (G + 1)pS,O
1

′

(0) − (G + 1)pS,O
2

′

(0)

otherwise.
We also have that:

∇2ΠS,O
i (g, δ) =







− 2
γ1

− Gc 0 2η
γ1

0 − 2
γ2

− Gc − 2
γ2

2η
γ1

− 2
γ1

− 2η2

γ1

− 2
γ2






.

Pre- and post-multiplying this by (gi,1, gi,2, δi) gives:

−Gc · (g2
i,1 + g2

i,2) −
2

γ1
(gi,1 − ηδ)2 −

2

γ2
(gi,2 + δ)2,

which is non-positive. Thus, generator i’s objective is con-
cave and the KKT conditions are sufficient for a global
optimum.

5.3. Welfare Effects of Storage

Taking the special case in which γ1 = γ2 = γ, we
next show conditions under which generator-owned stor-
age can reduce social welfare. We first examine the case in
which the generating firms behave perfectly competitively
with respect to generation but strategically with respect
to storage decisions. Note that because equilibrium gen-
eration and prices (as a function of storage) in this case
are given by the same expressions derived in the perfectly
competitive-generation case considered in Section 3, social
welfare is given by (8).

Lemma 6. If the market consists of G symmetric storage-

owning generating firms that behave perfectly competitively

with respect to generation and follow a Nash-Cournot stor-

age equilibrium and γ1 = γ2 = γ, storage use can yield a

social welfare loss compared to not having storage in the

market if G = 1. Otherwise, if G ≥ 2, storage use cannot

yield a social welfare loss.

Proof. Differentiating welfare function (8) gives:

W ′(0) = p2(0) − ηp1(0)

and:

W ′′(δ) = −

(

c

1 + cγ2
+

cη2

1 + cγ1

)

< 0.

Thus, if δO
C > 0 when p2(0) − ηp1(0) < 0, having storage

in the market is strictly welfare-decreasing. If γ1 = γ2 = γ
we have:

p2(0) − ηp1(0) =
N2c + b − η · (N1c + b)

1 + cγ
,

which is negative if and only if N2c + b− η · (N1c + b) < 0.
We further know from (11) that δO

C > 0 if and only if:

p2(0)[1 − 1/φ2] +
p′2(0)g2(0)

G

> ηp1(0)[1 − 1/φ1] −
p′1(0)g1(0)

G
,

which becomes:

[G · (1 + cγ) − 2][N2c + b − η · (N1c + b)]

+ b · (1 − η)(1 + cγ) > 0. (15)

Since:
b · (1 − η)(1 + cγ) < 0,

condition (15) only holds if:

[G · (1 + cγ) − 2][N2c + b − η · (N1c + b)] > 0.

Thus, for storage to be used when p2(0) − ηp1(0) < 0, we
must have:

G · (1 + cγ) − 2 < 0.

If G = 1, then:

G · (1 + cγ) − 2 = cγ − 1,

which can be negative, depending on the magnitude of cγ.
On the other hand, if G ≥ 2, then:

G · (1 + cγ) − 2 ≥ Gcγ > 0.

This, thus, shows that if G = 1 it possible for storage
to be used when it reduces social welfare, whereas this is
impossible if G ≥ 2.

We finally examine the case in which the generators
both strategically determine their generation levels and
storage use. Analogously to the case examined in Sec-
tion 4, consumer welfare is computed as:

CWS,O(δ) =

∫ g
S,O
1

(δ)−ηδ

0

[P1(x) − pS,O
1 (δ)]dx

+

∫ g
S,O
2

(δ)+δ

0

[P2(x) − pS,O
2 (δ)]dx

=
1

2γ1
[gS,O

1 (δ) − ηδ]2 +
1

2γ2
[gS,O

2 (δ) + δ]2,

producer surplus as:

PWS,O(δ) =

∫ g
S,O
1

(δ)

0

[pS,O
1 (δ) − c′(x)]dx

+

∫ g
S,O
2

(δ)

0

[pS,O
2 (δ) − c′(x)]dx

=
2 + Gcγ1

2Gγ1
gS,O
1 (δ)2 +

2 + Gcγ2

2Gγ2
gS,O
2 (δ)2,

and storage profits are given by:

ΠS,O
S (δ) = δ[pS,O

2 (δ) − ηpS,O
1 (δ)].

We now show, in the following lemma, that generator-
owned storage can result in welfare losses, regardless of the
number of firms, when they strategically make generation
and storage decisions.
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Lemma 7. If the market consists of G symmetric storage-

owning generating firms that follow a Nash-Cournot gener-

ation and storage use equilibrium and γ1 = γ2 = γ, storage

use can yield a social welfare loss compared to not having

storage in the market.

Proof. The KKT conditions show that δO
S > 0 if and only

if:

G[pS,O
2 (0) − ηpS,O

1 (0)] + ηgS,O
1 (0)/γ1 − gS,O

2 (0)/γ2 > 0.

If γ1 = γ2 = γ this condition becomes:

Gcγ · (N2 − ηN1) + bγ · (G + 1)(1 − η) > 0. (16)

Since bγ · (G+1)(1− η) < 0, (16) holds if and only if Gcγ ·

(N2 − ηN1) is positive and sufficiently large in magnitude
compared to bγ · (G + 1)(1 − η).

Differentiating the welfare function gives:

WS,O′

(0) = pS,O
2 (0) − ηpS,O

1 (0)

+
1

Gγ
·

(

1 +
G + 1

1 + G · (1 + cγ)

)

· (ηgS,O
1 (0) − gS,O

2 (0))

=
Gcγ · (N2 − ηN1) + bγ(G + 1)(1 − η)

γ · (1 + G · (1 + cγ))

+ (G + 1) ·
bγ · (1 − η) − N2 + ηN1

γ · (1 + G · (1 + cγ))2
. (17)

If δO
S > 0 then (16) implies that the first term in (17):

Gcγ · (N2 − ηN1) + bγ(G + 1)(1 − η)

γ · (1 + G · (1 + cγ))
,

is positive. Condition (16) also implies that −N2+ηN1 < 0
and by assumption we have that bγ · (1 − η) < 0. Thus,
the second term in (17) is negative, and if this term is suf-
ficiently large in magnitude compared to the first, storage
may be used when it is strictly welfare-diminishing.

Since WS,O′′

(δ) is not necessarily non-positive, it may
be the case that with sufficiently great storage capacity,
storage use is welfare enhancing. We have, however, found
numerical cases in which storage use is welfare-diminishing
under this market structure.

6. Conclusions

This paper examines the welfare effects of storage un-
der a multitude of market structures. This includes combi-
nations of generators behaving perfectly competitively or
as Cournot oligopolists, storage behaving perfectly com-
petitively or a la Cournot, and standalone and generator-
owned storage. We demonstrate that under some condi-
tions, storage reduces allocative efficiency relative to not
having storage in the market. This is noteworthy, since
adding firms to an imperfectly competitive market typi-
cally reduces the extent to which the exercise of market
power results in welfare losses. Importantly, we show that

under most market structures, market power in the gener-
ation sector is necessary for storage to be welfare diminish-
ing. These findings have important implications for stor-
age development and how storage-related policy should be
targeted to maximize its social value.

It is important to note, however, that we examine a
highly stylized model that assumes a simple two-period in-
teraction among the generation and storage firms. Further
study, either using similar stylized models or numerical
case studies, is needed to fully explore the welfare impli-
cations of storage. Important questions that must be ad-
dressed include whether these findings hold with different
strategic interactions between the firms, such as competi-
tion in supply functions or prices, and the implications of
the generation mix on storage and welfare. Moreover, most
existing storage studies are short-run analyses, which take
the generation and storage mix as fixed. An equally impor-
tant question is what incentives generating and standalone
storage firms have to invest in storage, and the associ-
ated social welfare implications. Indeed, although storage
cannot yield welfare losses in the perfectly competitive-
generation case, this only considers short-run impacts and
does not account for the potentially large investment cost
in most storage technologies. Thus, long-term incentives
for storage investment and subsequent use is an important
topic needing further research.

A. Proofs of Lemmas

Proof of Lemma 3. Social welfare, as a function of storage
use, is defined as:

WG(δ) = CWG(δ) + PWG(δ) + ΠG
S (δ)

=
1

2γ1
[gG

1 (δ) − ηδ]2 +
1

2γ2
[gG

2 (δ) + δ]2

+
2 + Gcγ1

2Gγ1
gG
1 (δ)2

+
2 + Gcγ2

2Gγ2
gG
2 (δ)2

+δ[pG
2 (δ) − ηpG

1 (δ)].

Noting that by definition we have:

gG
1 (δ) = N1 − γ1p

G
1 (δ) + ηδ,

and
gG
2 (δ) = N2 − γ2p

G
2 (δ) − δ,

the welfare function can be rewritten as:

WG(δ) =
1

2γ1
[N1 − γ1p

G
1 (δ)]2 +

1

2γ2
[N2 − γ2p

G
2 (δ)]2

+
2 + Gcγ1

2Gγ1
[N1 − γ1p

G
1 (δ) + ηδ]2

+
2 + Gcγ2

2Gγ2
[N2 − γ2p

G
2 (δ) − δ]2

+ δ[pG
2 (δ) − ηpG

1 (δ)].

11



Differentiating the welfare function gives:

WG′

(δ) = −pG
1

′

(δ)[N1 − γ1p
G
1 (δ)] − pG

2

′

(δ)[N2 − γ2p
G
2 (δ)]

+
2 + Gcγ1

Gγ1
[η − γ1p

G
1

′

(δ)][N1 − γ1p
G
1 (δ) + ηδ]

−
2 + Gcγ2

Gγ2
[1 + γ2p

G
2

′

(δ)][N2 − γ2p
G
2 (δ) − δ]

+ δ[pG
2

′

(δ) − ηpG
1

′

(δ)] + pG
2 (δ) − ηpG

1 (δ).

If we let γ1 = γ2 = γ and fix δ = 0 this gives:

WG′

(0) = pG
2 (0) − ηpG

1 (0)

+ [N1 − γpG
1 (0)]

[

2 + Gcγ

Gγ
[η − γpG

1

′

(0)] − pG
1

′

(0)

]

− [N2 − γpG
2 (0)]

[

2 + Gcγ

Gγ
[1 + γpG

2

′

(0)] + pG
2

′

(0)

]

=
ηN1 − N2 + [2 + G · (1 + cγ)][γpG

2 (0) − ηγpG
1 (0)]

γ · (1 + G · (1 + cγ))

=
(1 + G · (1 + cγ))[Gcγ · (N2 − ηN1) + Gbγ · (1 − η)]

γ · (1 + G · (1 + cγ))2

+
(1 + Gcγ)(N2 − ηN1) + Gbγ · (1 − η)

γ · (1 + G · (1 + cγ))2
.

We then have that WG′

(0) ≤ 0 if and only if:
(

1

2 + G · (1 + cγ)
+ Gcγ

)

(N2 − ηN1)

+ Gbγ · (1 − η) < 0. (18)

Storage is used, in both the perfectly competitive and
strategic cases, if and only if pG

2 (0) − ηpG
1 (0) > 0. This

condition can be rewritten as:

N2 · (1 + Gcγ) + Gbγ

γ · (1 + G · (1 + cγ))
− η

N1 · (1 + Gcγ) + Gbγ

γ · (1 + G · (1 + cγ))
> 0,

or as:

(1 + Gcγ)(N2 − ηN1) + Gbγ · (1 − η) > 0. (19)

Since 1 − η < 0, condition (19) can only be true if N2 −

ηN1 > 0. Since:

1

2 + G · (1 + cγ)
≤

1

3
,

the left-hand side of (18) is less than that of (19), meaning

that storage can be used when WG′

(0) ≤ 0. We further
have that:

WG′′

(δ) = γpG
1

′

(δ)2 + γpG
2

′

(δ)2

+
2 + Gcγ

Gγ
[η − γpG

1

′

(δ)]2 +
2 + Gcγ

Gγ
[1 + γpG

2

′

(δ)]2

+ 2[pG
2

′

(δ) − ηpG
1

′

(δ)]

= η2 G − (1 + Gcγ)(1 + G · (1 + cγ))

γ(1 + G · (1 + cγ))2

+
G − (1 + Gcγ)(1 + G · (1 + cγ))

γ(1 + G · (1 + cγ))2
.

Since 1 + G · (1 + cγ) > G and 1 + Gcγ > 1, we have that

WG′′

(δ) < 0 and WG is concave in δ.
Thus, if (18) holds when pG

2 (0) − ηpG
1 (0) > 0, the con-

cavity of the welfare function implies that storage use re-
duces welfare compared to not having storage. Moreover,
since δS,S ≤ δC,S we can further conclude that:

WG(0) ≥ WG(δS,S) ≥ WG(δC,S),

meaning that perfectly competitive storage yields greater
welfare losses than strategic storage does.

Proof of Lemma 4. Subtracting condition (10j) from (10i)
gives:

(δi − δj)

[

cη2

1 + cγ1
+

c

1 + cγ2

]

(20)

− µ−

i + µ+
i + µ−

j − µ+
j = 0.

Note that if δi > δj (20) becomes:

(δi − δj)

[

cη2

1 + cγ1
+

c

1 + cγ2

]

+ µ+
i + µ−

j = 0,

which cannot hold, since (δi − δj) > 0 and µ+
i , µ−

j ≥ 0.
Conversely, if δi < δj , then (20) becomes:

(δi − δj)

[

cη2

1 + cγ1
+

c

1 + cγ2

]

− µ−

i − µ+
j = 0,

which also cannot hold, since (δi − δj) < 0 and µ−

i , µ+
j ≥

0.

Proof of Lemma 5. Subtracting (12j) and (13j) from (12i)
and (13i) gives:

(gG
i,1 − gG

j,1)

(

1

γ1
+ Gc

)

=
η

γ1
(δi − δj), (21)

(gG
i,2 − gG

j,2)

(

1

γ2
+ Gc

)

=
1

γ2
(δj − δi). (22)

We also subtract (14j) from (14i), and use (21) and (22)
to substitute for the δi − δj terms, which gives:

ηGc · (gG
i,1 − gG

j,1) − Gc · (gG
i,2 − gG

j,2) (23)

+ µ+
i − µ+

j − µ−

i + µ−

j = 0.

We first demonstrate that gG
i,1 = gG

j,1 and gG
i,2 = gG

j,2 for all
i and j by examining all of the cases in which they are not
equal and arriving at contradictions.

Suppose first that gG
i,1 > gG

j,1, (21) then implies that

δi > δj , which combined with (22) implies that gG
i,2 < gG

j,2.
Substituting these into (23) then implies that at least one
of µ+

j or µ−

i is positive, contradicting δi > δj .

Suppose next that gG
i,1 < gG

j,1, (21) implies that δi < δj ,

which combined with (22) implies that gG
i,2 > gG

j,2. Substi-
tuting these into (23) finally implies that at least one of
µ+

i or µ−

j is positive, which contradicts δi < δj .
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If gG
i,2 > gG

j,2, then (22) implies that δj > δi. Equa-

tion (21) then gives gG
i,1 < gG

j,1, which when substituted

into (23) forces at least one of µ+
i or µ−

j to be positive,
contradicting δj > δi.

Finally, if gG
i,2 < gG

j,2 then (22) gives δj < δi, and (21)

implies that gG
i,1 > gG

j,1. Equation (23) then forces at least

one of µ+
j or µ−

i to be positive, which contradicts δj < δi.

This, thus, shows that gG
i,1 = gG

j,1 = gG
1 /G and gG

i,2 =

gG
j,2 = gG

2 /G for all i and j. Substituting these into (21)
gives:

0 =
η

γ1
(δi − δj),

which implies that δi = δj = δ/G for all i and j.
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