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Abstract We develop a stochastic dynamic programming model that co-
optimizes the use of energy storage for multiple applications, such as energy,
capacity, and backup services, while accounting for market and system un-
certainty. Using the example of a battery that has been installed in a home
as a distributed storage device, we demonstrate the ability of the model to
co-optimize services that ‘compete’ for the capacity of the battery. We also
show that these multiple uses of a battery can provide substantive value.
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1 Introduction

Developments in the electricity industry over the past few years have increased
interest in energy storage. One of the reasons for this interest is the introduc-
tion of markets that signal the cost and value of the services that storage can
provide. Another is the increasing strains that renewable energy is placing on
electric power systems and the role that storage can play in mitigating these
integration issues.

A number of papers study potential uses of storage and estimate the value
of some of those applications based on historical data. EPRI [10] provides one
of the first discussions of storage. Because the discussion is framed in the 1970s,
before the advent of restructured electricity markets, it focuses on storage use
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by a vertically integrated utility to avert the need for peaking generation ca-
pacity by shifting on-peak loads to off-peak periods. More recent discussions
of storage focus on the role of markets [11,13]. These papers provide compre-
hensive overviews of storage technologies and uses, including energy, capacity,
renewable-related, transmission, distribution, and consumer applications.

One of the most commonly studied storage applications is what is often
called ‘energy arbitrage’—charging storage when wholesale energy prices are
low and discharging when high to take advantage of diurnal price differences
[16,3,14]. Many of these analyses use a perfect-foresight assumption, under
which prices are assumed to be known perfectly when making storage deci-
sions. This assumption allows the value of arbitrage (and other) services to be
estimated using historical price data and patterns.

Other analyses expand these works by relaxing the perfect-foresight as-
sumption or by considering arbitrage in conjunction with other uses. Mokrian
and Stephen [24] describe a stochastic dynamic programming (SDP) model
to maximize expected arbitrage revenues while accounting for energy price
uncertainty. Sioshansi et al. [35,34] relax the perfect-foresight assumption by
examining a ‘backcasting’ heuristic whereby storage is dispatched using his-
torical price patterns that are assumed to repeat themselves. Walawalkar et

al. [39] examine storage economics in the New York ISO market, considering
both arbitrage and ancillary services (AS). AS are excess generating capacity
that a utility or system operator (SO) reserves in order to provide a buffer
for real-time deviations between actual and forecasted demand or supply of
energy. They find that storage has a high probability of yielding a positive net
present value if installed in New York City. Drury et al. [9] examine the value
of arbitrage and AS from storage in a number of markets in the United States.
Other papers examine interactions between storage and renewables. This in-
cludes the use of storage to mitigate renewable variability and uncertainty [26,
1,15]; the economic and emissions impacts of storage and renewables [6,17,32,
31]; and using storage to reduce the need for dedicated transmission to deliver
renewable energy to load centers [7,33].

There are, however, numerous issues and nuances of storage that are not
well addressed by this literature. One is that most analyses consider only a
single storage application and do not co-optimize multiple storage uses. Eval-
uating multiple uses of storage is critically important, given the high capital
costs of most storage technologies. Most storage analyses that consider only
one application find that storage is not economic on the basis of that single
use. Since different storage applications can conflict with each other, determin-
ing the value of multiple storage applications requires those applications to be
co-optimized. For instance, if storage is discharged at time t to earn arbitrage
revenue this can conflict with its ability to provide AS at time s ≥ t, since
there may be less energy in storage in the future. Although Walawalkar et al.
[39] analyze the value of AS and arbitrage, they do not employ an optimiza-
tion method in their analysis. Rather, they rely on heuristics based on price
duration curves and patterns. Similarly, the analysis of Drury et al. [9] is lim-
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ited in that they do not fully account for the uncertain interactions between
providing energy and AS.

The effects of price and system uncertainty are also often neglected in
storage analyses. Price uncertainty can impact storage use, since charging,
discharging, and other decisions may not be value-maximizing depending on
the stream of realized prices. Although Mokrian and Stephen [24] develop a
model that maximizes expected arbitrage revenue while accounting for price
uncertainty, this neglects other forms of uncertainty that can also impact stor-
age. For instance, if storage provides AS at time t, the amount of energy in
storage at time s > t varies depending on how much energy must actually be
provided as a result of the reserved capacity being called. This can affect the
ability of storage to provide other services in the future.

Another important facet of storage is the potential scale of the technol-
ogy. Many storage analyses consider ‘utility-scale’ storage—devices that can
charge and discharge hundreds of MW for multiple (in some cases more than
20) hours. Although most storage is currently utility-scale,1 smaller-scale stor-
age is also becoming an attractive option, due to the ability of such distributed
storage to provide services that utility-scale storage cannot. For example,
American Electric Power (AEP) installed a 1 MW sodium-sulfur (NaS) bat-
tery facility in a community in West Virginia to relieve a constraint on a
distribution-level transformer [25].

Given these limitations of existing storage modeling techniques, this paper
describes an SDP model that co-optimizes multiple storage applications while
accounting for market and system uncertainty. Using this model we study the
value of a battery that is installed in a residential home as a stationary storage
device. We use a discretization-based approach to derive near-optimal policies
and provide bounds on the optimality gap. This analysis demonstrates how
the operation and value of the battery varies depending on the combination
of applications considered. Although our case study focuses on small-scale
distributed storage, our model is sufficiently general that it can be applied to
other cases, including utility-scale storage.

The remainder of this paper is organized as follows. Section 2 describes in
further detail services that storage, particularly distributed storage, can pro-
vide. This discussion also motivates the storage applications that we focus on
in our analysis. Section 3 provides the formulation of our model and Section 4
discusses the discretization technique that we use to find near-optimal solu-
tions. Section 5 discusses the assumptions and data underlying the case study
that we examine. Section 6 summarizes our results, and Section 7 concludes.

1 Pumped hydroelectric storage (PHS) accounts for most currently installed storage ca-
pacity [5] and interest in compressed-air energy storage (CAES) is increasing [36]. Due to
their physical attributes and geological requirements, PHS and CAES are both utility-scale
storage technologies.
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2 Uses of Distributed Storage

Our model assumes distributed storage, whereby batteries are installed in res-
idential homes. We do not make an explicit assumption regarding battery
ownership—they could in principle be owned by the homeowner, utility, or an
aggregator that provides storage using batteries deployed in multiple homes.
We assume that the decision maker that optimizes battery use (which can
be a different entity than the battery owner) is exposed to wholesale market
price signals, for instance real-time energy and AS prices. The homeowner
does not have to be exposed to or pay such prices, however. For example,
the batteries could be owned by the utility, which optimizes their use against
real-time prices, while the homeowner pays a fixed time-invariant retail elec-
tricity rate. We assume that the battery pack includes an automated control
system that charges and discharges the battery, or a communication system
that allows centralized control by the decision maker. Although they are not
currently ubiquitous, such systems have existed for some time. Examples in-
clude the automated air conditioning cycling system implemented by Southern
California Edison beginning in 1980 [12], and the communication and control
systems used by the NaS battery deployed by AEP in West Virginia. Given
these assumptions utility or aggregator ownership may be the easiest contrac-
tually, although other ownership structures could be used. For example, the
homeowner could own the battery and lease it to the utility, which provides
the homeowner with an electricity bill rebate. The battery pack would include
a communication system that allows the utility to operate it remotely. The
homeowner continues to pay a fixed retail rate for its electricity, while the
utility optimizes battery charging and discharging.

Although storage can provide many services, we focus on four that are
particularly conducive to this case: energy arbitrage, AS, backup energy, and
relief of distribution constraints. We discuss in Section 3 how our model can
capture other uses that we do not consider here. An entity that sells capacity
in the AS market is contractually obligated to provide energy in real-time if
called upon by the SO. AS are typically given two-part payments. One is a
capacity payment, which is paid regardless of whether the reserved capacity
is actually needed in real-time. The other is an energy payment, which is paid
if energy is called in real-time. An entity that sells AS capacity but cannot
provide called energy is penalized for its shortfall. The penalty rate is typically
a fixed percentage premium over the real-time energy price. AS are categorized
into different quality levels, depending on the rate at which the provider is
obligated to respond to a call for energy in real-time. Three common types
of AS are regulation, and spinning and non-spinning reserves. Regulation is
the highest-quality of all AS, which is used to fine-tune the frequency and
voltage of the grid by exactly matching real-time energy demand and supply.
Thus, regulation requires the greatest flexibility on the part of the supplier.
Regulation is further subdivided into regulation-up and -down services. A
provider of regulation up must increase its output from a baseline level if called
in real-time, whereas a regulation down provider must decrease it. Some SOs



Stochastic Dynamic Program for Optimization of Energy Storage 5

treat regulation up and down as two separate capacity products, and in such
a market an entity could sell different amounts of the two capacities. Others
treat them as a single product, and an entity that sells regulation capacity in
such a market is obligated to provide both regulation-up and -down energy,
if required. Although energy storage can provide different AS, regulation is
significantly more valuable than other AS [37]. Thus we focus on regulation
services only in our analysis.

Backup energy refers to using the battery as an energy source for the
home in the event of a supply disruption, such as a generation, transmission,
or distribution outage. This storage application could be of great value to both
the end user and the utility. Electricity service disruptions are inconvenient
and costly to end users and customers derive value from averting an outage.
For instance, the cost of the blackout that affected the northeastern United
States and Canadian province of Ontario in 2003 is estimated to be between
$6.4 billion and $10 billion [18]. A utility could also derive value since the
battery could help it meet reliability standards. This is one of the ancillary
benefits of the NaS batteries that AEP installed in West Virginia [25]. Even if a
battery does not have sufficient storage capacity to provide energy throughout
a prolonged outage, a limited energy supply could reduce the severity of an
outage.

The final application that we consider is the use of batteries to relieve
distribution constraints. Increasing use of electronic devices can create bottle-
necks and strains on distribution systems. The introduction of plug-in electric
vehicles (PEVs), which can require high-power fast charging, can exacerbate
this issue. Mohseni and Stevie [23] examine PEV integration in two regions
of the United States and predict significant risks to utilities due to poten-
tial geographic clustering of PEV owners. For instance, if several PEVs in a
neighborhood begin charging in the early evening when they arrive home, the
total vehicle and building loads can overload a distribution-level transformer.
Batteries installed in-home can relieve these strains by shifting loads to peri-
ods with lower distribution-level loads. This can also be useful without PEVs,
since increasing use of electric devices can overload the electric circuit leading
into a home, which a battery could relieve.

3 Model Formulation

With the applications that we study, storage decisions depend on two markets,
energy and regulation, the state of the system (i.e., whether there is an outage
or not), and an exogenous building energy demand. In each time period, the
storage operator makes battery charging, discharging, and regulation sales
decisions. If the system is not in an outage state, the battery can be charged
or discharged from the grid and can provide regulation. Otherwise, the battery
can only be discharged to serve the building load. We assume in our analysis
that all decisions are made at hourly timesteps, although this can be relaxed by
appropriately scaling the parameters and variables. The model assumes that
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the battery is sufficiently small compared to the total market that storage
decisions do not impact prices or otherwise affect the system.

Our model formulation follows the conventions and notation that Powell
[27] uses. We give the formulation by first defining the relevant parameters and
variables, and then giving state-transition and objective functions. We use the
convention that variables with a subscript t are unknown (stochastic) before
hour t and become known (deterministic) at hour t.

3.1 Parameters

P
b
: maximum charging and discharging power capacity of the battery [kW]

R: maximum storage level of the battery [kWh]
R: minimum storage level of the battery [kWh]
ηc: charging efficiency of the battery
ηd: discharging efficiency of the battery

P
h
: maximum power capacity of the home [kW]

V L: penalty for unserved building energy [$/kWh]
V R: penalty for unserved regulation call

γ: discount factor

The power capacity of the battery, P
b
, typically reflects power limits of the

inverter in the battery pack or thermal limits of the electrochemical storage
medium of the battery (batteries generate heat when charged and discharged).
The minimum storage level, R, arises because some battery technologies suffer
extreme cycle-life degradation if the state of charge (SOC) falls too low. For
instance, lithium-ion batteries can typically only cycle down to a 30% SOC,
and this type of a restriction is included in our model. The unitless ratios,
ηc and ηd, reflect efficiency losses from battery charging and discharging. The
product of these two terms, ηc ·ηd, gives the roundtrip efficiency of the battery
(i.e., kWh of energy that can be discharged in net per kWh of energy charged

into the battery). P
h

is the total power capacity of the building circuit. V L

is the cost associated with unserved building load. V R captures the penalty
imposed by the SO for an unserved regulation call, which is modeled as being
a fixed percentage of the prevailing wholesale energy price.

3.2 Decision (Action) Variables

ed
t : energy discharged from battery in hour t for energy sales [kWh]

ec
t : energy charged into battery in hour t [kWh]

el
t: energy discharged from battery in hour t to serve building load [kWh]
lt: building load met in hour t [kWh]

ku
t : regulation-up capacity sold in hour t [kW-h]

kd
t : regulation-down capacity sold in hour t [kW-h]

We also define at = (ed
t , e

c
t , e

l
t, lt, k

u
t , kd

t ) as a vector of hour-t decision variables.
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3.3 State Variables

xt: total energy in storage at the beginning of hour t [kWh]
pe

t : hour-t market price of energy [$/kWh]
pu

t : hour-t regulation-up capacity price [$/kW-h2]
pd

t : hour-t regulation-down capacity price [$/kW-h]
Dt: hour-t building energy demand [kWh]
It: hour-t outage state [1 if there is an outage, 0 otherwise]
δu
t : hour-(t− 1) dispatch-to-contract ratio of regulation up

δd
t : hour-(t− 1) dispatch-to-contract ratio of regulation down

We also define St = (xt, p
e
t , p

u
t , pd

t , Dt, It, δ
u
t , δd

t ) as a vector of hour-t state
variables.

We use the concept of a dispatch-to-contract ratio of regulation up and
regulation down to model the relationship between regulation capacity sales
and the amount of energy that the battery is obligated to provide as a result
of regulation energy being called by the SO [20]. The battery must either
charge or discharge energy to meet these obligations or pay the deviation
penalty for unserved energy. Kempton and Tomić [20] define the dispatch-
to-contract ratio of an AS product as the actual energy dispatched over its
contract period divided by the contracted capacity. For example, the hour-t
dispatch-to-contract ratio of regulation would be calculated by dividing the
total amount of regulation energy dispatched in the hour by the amount of
regulation capacity that the SO reserved. Thus, by definition, the terms δu

t+1·k
u
t

and δd
t+1 · k

d
t are the amount of regulation-up and -down energy, respectively,

that the battery must provide in hour t. Using historical data covering several
years, Kempton and Tomić [20] estimate a dispatch-to-contact ratio of 0.08
for regulation in the California ISO market. This value indicates that each kW
of regulation capacity sold in the market for one hour will result, on average,
in 0.08 kWh of net energy actually being called in real-time. The dispatch-to-
contract ratio approach can also be used to model other AS products, such as
spinning and non-spinning reserves.

The hour-t ratios are assumed to be unknown when the battery decides
how much regulation capacity to sell in hour t.3 Once the capacity decisions
are made, the ratios are then determined and the state of charge of the battery
changes or the battery incurs a deviation penalty. We define nu

t and nd
t as the

amount of regulation-up and -down energy, respectively, that is called by the
SO in hour t − 1 but is unserved. These are auxiliary variables used in our
state transition equations and objective function.

2 A kW-h, which is a unit for one kW of AS capacity provided for one hour, should be
distinguished from a kWh, which is a unit of energy.

3 This is also why we define δu
t and δd

t as the hour-(t−1) ratios, due to our time definition
convention.



8 X. Xi et al.

3.4 Exogenous Variables

We assume that the variables pe
t , pu

t , pd
t , Dt, It, δu

t , and δd
t evolve randomly

and independently of any of the decision variables, but may be dependent on
one another. We define p̂e

t , p̂u
t , p̂d

t , D̂t, Ît, δ̂u
t , and δ̂d

t as exogenous random
variables that define the change in the exogenous variables between hour t− 1
and hour t. These random variables may be dependent on one another. We also
define Wt = (pe

t , p
u
t , pd

t , Dt, It, δ
u
t , δd

t ) as a vector of hour-t exogenous variables.
Thus, we can define the vector of hour-t state variables as St = (xt, Wt),
where xt is the endogenous and Wt the exogenous variables. We assume the
random process, {Wt}

T
t=1 is Markovian, where T is the optimization horizon.

We let Prob {Wt+1|Wt} represent the hour-(t + 1) transition probabilities.
Our solution technique does not require any explicit assumption regarding the
dependence of the exogenous random variables.

3.5 State-Transition Function

The state variables, pe
t , pu

t , pd
t , Dt, It, δu

t , and δd
t , evolve randomly according

to the following transition equations:

pe
t+1 = p̂e

t+1 + pe
t ,

pu
t+1 = p̂u

t+1 + pu
t ,

pd
t+1 = p̂d

t+1 + pd
t ,

Dt+1 = D̂t+1 + Dt,

It+1 = Ît+1 + It,

δu
t+1 = δ̂u

t+1 + δu
t ,

and
δd
t+1 = δ̂d

t+1 + δd
t .

To define the state-transition function for the storage level of the battery,
we first define nu

t and nd
t as:

nu
t = max

{

0, δu
t ku

t−1 − ηd(xt−1 − R) + ed
t−1 + el

t−1 − ec
t−1

}

(1)

and
nd

t = max
{

0, δd
t kd

t−1 − (R − xt−1)/ηc − ed
t−1 − el

t−1 + ec
t−1

}

. (2)

These equations define unserved regulation energy as the difference between
the amount of regulation called by the SO and the maximum amount of reg-
ulation energy that the battery can feasibly provide. Equation (1) defines the
maximum amount of regulation-up energy that the battery can provide as
the maximum that can be discharged from the battery without violating en-
ergy constraints, plus the amount of energy that the battery charges in hour
t − 1 (since the battery can choose not to charge this energy, which provides
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more energy in net to the SO). Equation (2) defines the maximum amount of
regulation-down energy that the battery can provide as the maximum amount
that can be charged plus the amount of energy that the battery discharges in
hour t − 1.

The storage level of the battery evolves according to the function:

xt+1 = θ(xt, Wt+1, at)

= xt + ηc(ec
t + δd

t+1k
d
t − nd

t+1) − (ed
t + el

t + δu
t+1k

u
t − nu

t+1)/ηd.

This function defines the storage level at the beginning of hour t + 1 as the
starting storage level at hour t plus net energy charged into the device, less
efficiency losses. Energy charged into the battery at hour t equals the sum of
energy charged and the amount of regulation down energy that the battery
provides. Energy discharged is defined analogously.

3.6 Constraints

Total battery charging and discharging are both constrained to be less than
the power capacity of the battery:

0 ≤ ec
t + kd

t ≤ P
b
, (3)

and
0 ≤ ed

t + el
t + ku

t ≤ P
b
. (4)

The storage level of the battery is similarly constrained to be within its upper
and lower bounds:

R ≤ xt ≤ R. (5)

The total net power going into and out of the home is also constrained by the
power capacity of the building circuit. Moreover, there can only be net power
flows into or out of the house if there is not an outage:

−P
h
(1 − It) ≤ lt − el

t + ec
t − ed

t − ku
t , (6)

and
lt − el

t + ec
t − ed

t + kd
t ≤ P

h
(1 − It). (7)

The battery cannot be charged and arbitrage and regulation sales are not
possible if there is an outage:

ed
t , e

c
t , k

d
t , ku

t = 0, if It = 1. (8)

The building load served in each hour is constrained to be no greater than the
building demand:

lt ≤ Dt. (9)

The decision variables are also constrained to be non-negative:

ed
t , e

c
t , e

l
t, lt, k

u
t , kd

t ≥ 0. (10)
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Constraints (6), (7), and (8) together force the building load to be either
served by the battery or left unserved in any time period with an outage. We
let As denote the set of decision vectors, a, that are feasible in constraints (3)
through (10) when the system is in the state s.

3.7 Objective Function

The net profit earned in hour t is given by:

Ct(St, at) = pe
t (e

d
t − ec

t) − V L(Dt − lt) + pu
t ku

t + pd
t k

d
t

+ pe
t−1[δ

u
t ku

t−1 − (1 + V R)nu
t − δd

t kd
t−1 + (1 − V R)nd

t ].

The first term, pe
t (e

d
t −ec

t), is the revenue for energy sales. The term, V L(Dt −
lt), is the penalty associated with unserved building load. The third term,
pu

t ku
t + pd

t k
d
t , is the payment for regulation capacity sales. The final term,

pe
t−1[δ

u
t ku

t−1 − (1 + V R)nu
t − δd

t kd
t−1 + (1 − V R)nd

t ], is the revenue for net
regulation energy provided, less the penalty for unserved regulation energy.

Let Π denote the set of all feasible policies. A policy, Aπ
t (St), is a mapping

between an hour-t state, St, and a feasible hour-t decision, a ∈ As. For each
π ∈ Π define the total expected discounted profit from hour t as:

Gπ
t (St) = E

[

T
∑

τ=t

γτ−tCτ (Sτ , Aπ
τ (Sτ ))

∣

∣

∣

∣

∣

St

]

. (11)

The objective is then to find an optimal policy π∗ that satisfies:

Gπ∗

t (St) = sup
π∈Π

Gπ
t (St),

for all 0 ≤ t ≤ T .

4 Solution Technique

Finding exact solutions to our SDP is generally difficult due to the dimension
of the problem and the continuous state, decision, and random variables in the
model. Thus, we propose solving an approximate version of the SDP in a two-
phase manner. In the first phase, the exogenous state and decision variables
are discretized, and optimal policies and objective function values for each
state are found by solving the discretized SDP (DSDP) using backward induc-
tion. In the second phase a mixed-integer program (MIP), in which the value
function of the true SDP is approximated as piecewise-linear using the optimal
objective function values from the DSDP, is solved to obtain a near-optimal
policy. This MIP has a one-hour planning horizon and is solved in a rolling
fashion one hour at a time. This provides a feasible policy and can be used to
generate a statistical lower bound on the optimal objective function value of
the true SDP. We further use a backcasting heuristic to find feasible policies,
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which also provides lower bounds, and generate upper bounds using sample av-
erage approximation (SAA) and sample path averaging methods. Throughout
this discussion we use the notational convention that state and action vari-
ables without tildes are from the continuous state and action variable spaces,
whereas variables with tildes are from the corresponding discretization.

4.1 Approximation Algorithm

To give the formulation of the DSDP, we let Ãs̃ denote the set of decision
variables, ã, that are feasible in constraints (3) through (10) and satisfy the
discretization when the system is in state S̃. We define Jt as the set of possi-

ble values that S̃t can take. We also define Prob
{

W̃t+1|W̃t

}

as the transition

probabilities of the exogenous state variables in the discretized space. Further
details regarding the discretization and the transition probabilities for the dis-
crete exogenous state variables used in our case study are given in Section 5.4.

We can define the following Bellman equation for the DSDP:

F̃t(S̃t) = max
ãt∈Ã

S̃t

Ct(S̃t, ãt) + γE

[

F̃t+1(S̃t+1)|S̃t

]

,

= max
ãt∈Ã

S̃t

Ct(S̃t, ãt) (12)

+γ
∑

j∈Jt+1

Prob
{

W̃ j
t+1|W̃t

}

· F̃t+1(x̃
j
t+1, W̃

j
t+1). (13)

Since we assume that the exogenous random variables are all Markovian, Bell-
man equation (12) represents a Markov decision process, which can be solved
using backward induction. Solving the DSDP gives optimal objective function
values, F̃ ∗

t (S̃t), for each discretized state. These are used in the second phase
to construct a MIP, in which a piecewise-linear approximation of the value
function of the true SDP is used.

To formulate the MIP, we first define the piecewise-linear approximation
of the hour-t value function for a given state, W̃ j

t . This piecewise-linear func-
tion has breakpoints at the possible discrete values that x̃t can take. If we
define Mt as the number of values that x̃t can take, then the piecewise-linear
approximation for a given state, W̃ j

t , is given by:

F pl
t (xt, W̃

j
t ) =

Mt−1
∑

m=1

F̃ ∗
t (x̃m+1

t , W̃ j
t ) − F̃ ∗

t (x̃m
t , W̃ j

t )

x̃m+1
t − x̃m

t

· qm,j
t ,

where:
Mt−1
∑

m=1

qm,j
t = xt,

0 ≤ qm,j
t ≤ ym,j

t · (x̃m+1
t − x̃m

t ), ∀ m = 1, . . . , Mt − 1,
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and

ym,j
t ≤ ym+1,j

t ∈ {0, 1}, ∀ m = 1, . . . , Mt − 1.

The auxiliary variable, ym,j
t , indicates which piece of the approximation xt lies

in, and qm,j
t indicates how much storage capacity in each piece xt covers. For

ease of notation, we can also define the piecewise linear approximation as:

F pl
t (xt, W̃

j
t ) =

Mt−1
∑

m=1

σ̃m
t (W̃ j

t ) · qm,j
t ,

where:

σ̃m
t (W̃ j

t ) =
F̃ ∗

t (x̃m+1
t , W̃ j

t ) − F̃ ∗
t (x̃m

t , W̃ j
t )

x̃m+1
t − x̃m

t

,

are the slopes of the piecewise-linear approximation. The formulation of the
hour-t MIP is then given by:

max
at∈ASt

FMIP
t (St, at) = max

at∈ASt

Ct(St, at) (14)

+ γ
∑

j∈Jt+1

Prob
{

W̃ j
t+1|Wt

}

· F pl
t+1(θ(xt, W̃

j
t+1, at), W̃

j
t+1).

This MIP uses a piecewise linear approximation of the true cost-to-go function
of the SDP, which is constructed from the optimal value of the DSDP. The
expected cost-to-go, E [Ft+1(St+1)|St], is computed numerically by averaging
over the set of discrete values that W̃t+1 is assumed to take in the DSDP.
Given an exogenous hour-t state, Wt, from the continuous space, we compute

conditional transition probabilities, Prob
{

W̃ j
t+1|Wt

}

, to the discrete states,

W̃ j
t+1, used in the DSDP. This is generally done by discretizing the conditional

distribution Prob{Wt+1|Wt}, and we describe in detail how this is in our case
study in Section 5.4. The term, θ(xt, W̃

j
t+1, at), represents the hour-(t+1) stor-

age level resulting from the chosen action, at, and the realized exogenous state,
W̃ j

t+1, We do not restrict xt+1 to take on a discretized value, since we interpo-
late on the storage variable. This also allows the action variables to be chosen
from the continuous space. Alternatively, one could also attempt interpolation
on the exogenous state variables. Our results in Section 6.5 suggest, however,
that interpolation on the storage level variable only is sufficient, insomuch
as this method provides policies with relatively small optimality gaps. Note
that this MIP only determines hour-t actions—our algorithm uses a forward-
rolling optimization method to find a policy over the full planning horizon.
The detailed formulation of the MIP, including all of the constraints, is given
in Appendix A.

An optimal solution of the MIP is feasible but not optimal in the true
SDP. This is because the only factors that are unknown when making hour-t
decisions and affect the system state at hour t+1 are the dispatch-to contract-
ratios. However, since regulation calls can go unserved, with a penalty, un-
served regulation energy can be defined accordingly to ensure feasibility of
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the solution. The pseudocode in Algorithm 1 summarizes the approximation
algorithm that we use to find near-optimal solutions to our SDP. Steps 1 and 2
represent the first phase of the algorithm, in which the SDP is discretized and
the resulting DSDP is solved exactly using backward induction. The second
phase of the algorithm works by iterating through the hours of the optimiza-
tion horizon. In each hour, the exogenous variables, Wt, are first observed
(step 5). Then the amount of unserved regulation energy in hour t − 1 is up-
dated, based on the actual hour-(t−1) dispatch-to-contract ratio (step 7) and
the resulting energy level of the battery is determined (step 8). Finally, the
MIP is solved to determine the hour-t actions, ât, (step 10) and the hour-t
profit contribution is calculated (step 11).

Algorithm 1 Approximation Algorithm Pseudocode

1: Initialize: Discretize state and action variables xt, pe
t , pu

t , pd
t , Dt, It, δu

t , δd
t , ed

t , ec
t , el

t,
lt, ku

t , and kd
t

2: Solve DSDP exactly using backward induction and obtain optimal objective function
values, F̃ ∗

t (S̃t), for each discretized state
3: Fix x1 equal to lowest discretized value of xt {assume battery starts empty}
4: for t = 1 to T do

5: Sample Wt from continuous random distribution
6: if t > 1 then

7: Let nu
t ← max

n

0, δu
t k̂u

t−1 − ηd(xt−1 −R) + êd
t−1 + êl

t−1 − êc
t−1

o

and nd
t ←

max
n

0, δd
t k̂d

t−1 − (R − xt−1)/ηc − êd
t−1 − êl

t−1 + êc
t−1

o

{update hour-(t − 1) unserved regulation}

8: Let xt ← xt−1 + ηc(êc
t−1 + δd

t k̂d
t−1 − nd

t )− (êd
t−1 + êl

t−1 + δu
t k̂u

t−1 − nu
t )/ηd

{update hour-t storage level}
9: end if

10: Let ât ← arg maxat∈ASt
F MIP

t (St, at) {solve the MIP}

11: Let Ct ← pe
t (ê

d
t − êc

t )− V L(Dt − l̂t) + pu
t k̂u

t + pd
t k̂d

t + pe
t−1[δ

u
t k̂u

t−1 − (1 + V R)n̂u
t −

δd
t k̂d

t−1
+ (1 − V R)n̂d

t ] {calculate hour-t profit contribution}
12: end for

4.2 Statistical Bounds

To evaluate the quality of the policies found by the approximation algorithm,
we compute two statistical lower and upper bounds on the optimized value of
the SDP. We say that an estimator, V̂N , is a valid statistical upper bound of the

true optimal value, V ∗, if V ∗ ≤ E

[

V̂N

]

, and similarly, V̂N is a valid statistical

lower bound if E

[

V̂N

]

≤ V ∗, where N is the number of replications of the

random variables underlying the calculation of V̂N . The statistical bound, V̂N ,
is consistent if V̂N → V ∗ as N → ∞.

We use implementable and feasible policies to generate lower bounds on
the optimized objective value of the SDP. A policy is implementable and fea-
sible if it satisfies the constraints of the problem and is nonanticipative. The
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resulting objective function value from using such a policy provides a statis-
tical lower bound on the optimal value of the true SDP [29]. One of the lower
bounds that we compute is found by randomly generating sample paths, ω, of
the exogenous random variables, W , and using the approximation algorithm,
outlined in Section 4.1, to derive a feasible policy. Because the approxima-
tion algorithm assumes that the hour s > t exogenous random variables are
unknown when hour-t decisions are made, the policy is nonanticipative. Let
GIF (ωi) denote the profit of the battery over the T -hour horizon given the
sample path, ωi, of exogenous state variables. This is computed as the sum
of the profit contributions calculated in step 11 of Algorithm 1 when using
an implementable and feasible policy derived using the algorithm (this also
gives rise to the superscript, IF , indicating that the bound is generated using
implementable and feasible policies). Note that step 11 of Algorithm 1 com-
putes the profit contributions using the ‘true’ values of the exogenous state
variables, drawn from the continuous space. Thus, GIF (ωi) is a lower bound
on the value of the optimal objective function value of SDP over the T -hour
horizon, given ωi. The statistical lower bound using I sample paths is given
by:

BIF
L =

1

I

I
∑

i=1

GIF (ωi).

We generate 100 of these statistical lower bounds, using a random sample of
1,000 i.i.d (independent and identically distributed) ωi’s for each. By generat-
ing 100 replications of the lower bound, we compute a sample standard error,
providing confidence intervals.

Our other statistical lower bound is also generated from implementable and
feasible policies, which are derived using a backcasting heuristic [35,34]. The
pseudocode in Algorithm 2 outlines the heuristic, which relies on the fact that
the exogenous random variables tend to exhibit diurnal patterns (we explicitly
model these types of patterns in our case study, as discussed in Section 5). The
heuristic determines decisions in a forward-rolling fashion. In each hour, the
exogenous state variables, Wt, are observed (step 2) and the starting storage
level of the battery is updated based on the amount of regulation energy called
in the previous hour (steps 4 and 5). The exogenous random variables in hours
t + 1 through t + 23 are assumed to equal the actual values from the previous
day (step 7), and a deterministic linear program with a 24-hour optimization
horizon is solved (step 8). Appendix B gives the detailed formulation of this
linear program. The hour-t action variables from the linear program solution
are used (step 9) and the hour-t profit contribution is computed based on these
actions (step 10).

As with our approximation algorithm, the backcasting heuristic generates
implementable and feasible policies. This is because hour-t decisions are deter-
mined based solely on historical information that is available at that time. The
policy is feasible because we compute the unserved regulation energy based
on the actual dispatch-to-contract ratio in each hour. Let GBC(ωi) denote the
profit of the battery over the T -hour horizon given the sample path, ωi (the
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Algorithm 2 Backcasting Heuristic Pseudocode
1: Let x1 ← R {assume battery starts empty}
2: for t = 1 to T do

3: Sample Wt from continuous random distribution
4: if t > 1 then

5: Let nu
t ← max

n

0, δu
t k̂u

t−1
− ηd(xt−1 −R) + êd

t−1
+ êl

t−1
− êc

t−1

o

and nd
t ←

max
n

0, δd
t k̂d

t−1
− (R − xt−1)/ηc − êd

t−1
− êl

t−1
+ êc

t−1

o

{update hour-(t − 1) unserved regulation}

6: Let xt ← xt−1 + ηc(êc
t−1

+ δd
t k̂d

t−1
− nd

t )− (êd
t−1

+ êl
t−1

+ δu
t k̂u

t−1
− nu

t )/ηd

{update hour-t storage level}
7: end if

8: Let Wτ ←Wτ−24 ∀ τ = t + 1, . . . , t + 23 {assume previous day’s exogenous random
variables repeat themselves}

9: Solve the 24-hour deterministic linear program given in B, let {ȧτ }
t+23
τ=t denote opti-

mized values of the decision variables
10: Let ât ← ȧt {save hour-t decision variables from the deterministic linear program

solution only}

11: Let Ct ← pe
t (ê

d
t − êc

t )− V L(Dt − l̂t) + pu
t k̂u

t + pd
t k̂d

t + pe
t−1[δ

u
t k̂u

t−1 − (1 + V R)n̂u
t −

δd
t k̂d

t−1
+ (1 − V R)n̂d

t ] {calculate hour-t profit contribution}
12: end for

superscript, BC, indicates that this bound is generated using the backcasting
technique). This is given by the sum of profits over the T -hour horizon using
the policy derived by using Algorithm 2, as computed in step 11 of the al-
gorithm. The statistical lower bound generated by applying the backcasting
heuristic to I sample paths is given by:

BBC
L =

1

I

I
∑

i=1

GBC(ωi).

As before, we generate 100 of these bounds using a random sample of 1,000
ωi’s for each.

We generate one set of upper bounds using a two-stage SAA technique.
This is done by solving a stochastic program, the formulation of which is
given in Appendix C, in which the expected profit of the battery is maximized
with uncertain future exogenous random variables. Specifically, the stochastic
program has a two-stage scenario tree, in which the first stage is hour 1 and the
second stage is hours 2 through T . Thus, the scenario tree assumes that hour-1
decisions are made without knowledge of the exogenous random variables in
hours 2 through T , while subsequent decisions are made with full knowledge of
future states. Let BSAA

U denote the optimal expected objective function value
of the problem in stage one (the superscript, SAA, indicates that this bound is
generated using an SAA). BSAA

U provides a valid statistical upper bound on the
optimized objective function value of the true SDP with a T -hour planning
horizon [29]. The scenario tree used has 20 sample paths and is randomly
generated by sampling from the exogenous random variable distributions.4

4 The scenario tree only has 20 sample paths because the resulting two-stage model is
computationally intractable with a larger tree.
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We generate and solve 1,000 of these stochastic programs in order to compute
a standard error for the upper bound.

Our other set of upper bounds is generated using a sample path averaging
technique. This bound is computed by randomly generating sample paths of
the exogenous random variables. For each sample path, ωi, of exogenous state
variables we solve a deterministic linear program in which the full sequence of
random variable realizations is known in hour 1. The linear program has the
same structure as that used for the backcasting heuristic, and the formulation
is given in Appendix B. Let GDET (ωi) denote the profit of the battery over the
T -hour horizon with the sample path, ωi (the superscript, DET , indicates that
this bound is generated using deterministic problems). The statistical upper
bound generated by applying the averaging technique to I sample paths is
then given by:

BDET
U =

1

I

I
∑

i=1

GDET (ωi).

We generate 100 of these bounds using a random sample of 1,000 ωi’s for each.
SAA gives a consistent statistical upper bound when the random variables

are mutually and serially independent [29]. Otherwise, applying a conditional
sampling scheme yields consistency with dependent random variables. In our
case study, the random variables, It, are serially dependent. We do not apply a
conditional sampling scheme, however, since even two conditional samples at
each stage yields 2167 sample paths, making the problem intractable. Hence,
our SAA technique does not guarantee consistent upper bounds.

5 Case Study

To provide a numerical example of our model we study a case in which a single
battery is installed in a home in the state of Ohio. We assume that the home
is in the PJM Interconnection system, and use PJM market rules and data
to set the parameter values and the distribution of the random variables. In
doing so, we use market and system data from the summer of 2009 to study
battery use and values over a ‘typical’ summer week (a 168-hour horizon).

5.1 Battery Characteristics

We assume that the battery has an energy storage capacity of R = 11.2 kWh
and a minimum energy level of R = 3 kWh. The battery is also assumed to

have a charging and discharging capacity of P
b

= 7.2 kW, which implies that
it is connected to a 240 V/30 A appliance circuit. We assume 10% efficiency
losses when charging and discharging the battery, meaning ηc = ηd = 0.9. This
further implies that the battery has a roundtrip efficiency of ηc · ηd = 0.81.

The building is assumed to have a power capacity of P
h

= 10 kW, which is
typical of homes in the region that we model.
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5.2 Market Assumptions

The PJM market treats regulation up and down as a single capacity product
with a single price, and we use this convention in our case study. In terms
of our model, this means that the state variables, pu

t and pd
t , are fixed equal

to each other in every hour (we define the value of these state variables as
pu

t = pd
t = pr

t /2, where pr
t is the regulation capacity price in hour t, so as not

to double-count capacity payments). The decision variables, ku
t and kd

t , are
also constrained to equal each other in every hour, since the battery cannot
differentiate between sales of regulation-up and -down capacity. We let kt =
ku

t = kd
t denote the amount of regulation capacity sold in hour t. The dispatch-

to-contract ratios, δu
t and δd

t , are not fixed equal to one another, because the
system may need more regulation energy in one direction than the other.

We assume that an unserved regulation deployment by the battery incurs
a penalty of V R = 0.15, based on PJM tariffs. This means that if the battery
cannot supply regulation-up energy, it must purchase replacement energy from
the market at 115% of the real-time energy price. Likewise, if it cannot provide
regulation-down energy, then it must sell its excess energy to the market at
85% of the real-time energy price. We use a penalty cost of V L = $3.72/kWh
on any unserved building load [19]. Because we only model a single week, we
assume a discount factor of γ = 1.

5.3 Exogenous Random Variables

Although our model does not require any specific correlation structure among
the exogenous random variables, p̂e

t , p̂u
t , p̂d

t , D̂t, Ît, δ̂u
t , and δ̂d

t , are all assumed
to be mutually independent in our case study. We further assume that the
price, load, and dispatch-to-contact ratio variables are serially independent
through time. These assumptions are based on empirical analyses of historical
PJM and Ohio power system data.

Historical energy and regulation capacity prices have little correlation—
e.g., during 2009 these prices had a correlation of about -0.15. This is because
high energy prices signal less generating capacity being available and higher-
cost generation having to be used to serve the load, whereas high regulation
prices signal a lack of fast-responding generation. Indeed, energy prices tend
to peak during the day when electricity demand is the highest, whereas reg-
ulation prices can peak overnight when loads are low and only baseload gen-
erators with slow ramping rates are online. These differences in the diurnal
price patterns also explain the slightly negative correlation between energy
and regulation prices. Tests of historical price data from the California ISO
and Singapore electricity markets show that energy price patterns best fit a
log-normal distribution [21,30]. Our own examination of 2009 PJM energy
prices show similar results, and as such we assume that the energy prices have
a log-normal distribution. Although the distribution of regulation prices has
not been examined, our analysis of 2009 PJM data shows that these prices
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also fit a log-normal distribution, which we assume. In order to capture diur-
nal energy and regulation price patterns, we allow for different location and
scale parameters in the log-normal distributions for each of the 24 hours of
the day. We fit these parameters using least-square estimation based on price
data from the PJM market in the summer of 2009.

Seppala [28] examines the statistical properties of the electricity demand
of residential homes. He compares several parametrized distribution functions
and finds that a log-normal distribution provides the best fit. Thus, we assume
that the building demand has a log-normal distribution and allow the location
and scale parameters to vary in each of the 24 hours of the day. We fit these
parameters using least-square estimation based on historical residential load
data for the summer of 2009 provided by AEP for a set of its customers in
Ohio. The loads correspond to a home that is approximately 200 m2 (2200 ft2)
in size. Although there is a relationship between energy prices and loads, we
are modeling a single building which has only a marginal effect on the system.
Moreover, since we allow the distribution of the hourly prices and loads to
vary, this captures any coincidence in energy prices and building demand.

The distributions of the dispatch-to-contract ratios for regulation up and
down are estimated using least-square estimation based on historical PJM
data from the summer of 2009. These data specify the amount of regulation
capacity reserved in each hour and the amount of regulation energy deployed
in real-time. The data do not show any diurnal patterns in the ratios. As such,
we assume that the distributions are time-invariant. Hypothesis testing shows
that a Gaussian distribution best fits the historical data, which we use in our
case study.

A number of approaches are used to model power system reliability, with
Markov-based models being the most common. The mechanics of component
failure and repair suggest that power system failure follows a Markov process
with exponentially distributed time between failures [8]. Semi-Markov mod-
els are also used, however [2,4]. We model system outages using a two-state
Markov chain in which the system can either be in an outage or non-outage
state. Transitions between these states depend solely on the present state of
the system, and the transition probabilities are time-invariant. We use sys-
tem reliability data reported by FirstEnergy in 2009, which had an average of
1.24 outages per customer during the year which lasted an average of 2 hours,
to estimate the transition probabilities. Based on these values, we assume a
probability of 0.000142 that the system has an outage at hour t + 1 if it is in
a non-outage state at hour t, and a probability of 0.5 that it recovers from an
outage in each hour.

5.4 Model Discretization and Algorithm Implementation

Table 1 summarizes the discretization of the state variables used in our ap-
proximation algorithm. The underlying distributions of the p̂e

t , δ̂u
t , and δ̂d

t

variables are discretized into five possible outcomes using bracket medians.
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The distributions of the p̂u
t , p̂d

t variables are similarly discretized into four
possible outcomes and the distribution of the D̂t variables into three possi-
ble outcomes. The outage variable, It, is assumed to only take on two values,
thus no further discretization of this variable is done. The storage level state
variable, xt, is discretized into 21 possible values with equal interval widths
between R and R. Because we assume that the regulation capacity prices, pu

t

and pd
t , equal each other in each hour, this eliminates one dimension of the

state space giving 63,000 possible states in each hour.

Table 1 Discretization of state variables in approximation algorithm.

Number of
Variable Type Distribution Values

p̃e
t Exogenous Log-normal 5

p̃u
t = p̃d

t Exogenous Log-normal 4

D̃t Exogenous Log-normal 3
It Exogenous Bernoulli 2

δ̃u
t Exogenous Gaussian 5

δ̃d
t Exogenous Gaussian 5

x̃t Endogenous n/a 21

Since we use bracket medians to discretize the price, building demand, and
dispatch-to-contract ratio variables, each discretized value is equally likely.
Moreover, since we assume that these variables and the outage state are mu-
tually independent, we have the following state-transition probabilities:

Prob
{

W̃t+1|Wt

}

= Prob
{

p̃e
t+1

}

· Prob
{

p̃u
t+1(= p̃d

t+1)
}

· Prob
{

D̃t+1

}

·Prob{It+1|It} · Prob
{

δ̃u
t+1

}

· Prob
{

δ̃d
t+1

}

=
1

5
·
1

4
·
1

3
· Prob{It+1|It} ·

1

5
·
1

5

=
1

1500
· Prob {It+1|It} ,

where the term, Prob
{

p̃u
t+1(= p̃d

t+1)
}

, highlights the fact that we restrict the
regulation prices to equal each other in each hour and Prob{It+1|It} depends
on the hour-t outage state.

The assumption that x̃t takes on only 21 possible values implies that the
charging and discharging variables, ẽd

t , ẽc
t , and ẽl

t, can take at most 21 values,
corresponding to possible state transitions between x̃t and x̃t+1. We discretize
the regulation capacity variables, k̃t, using 1 kW interval widths, which implies
that these variables can take on at most 8 values. Table 2 summarizes the
number of possible values that the state variables can take in our discretization.
Again, because we assume that the action variables k̃u

t and k̃d
t must equal each

other in each hour, this eliminates one dimension of the action variable.
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Table 2 Discretization of action variables in approximation algorithm.

Variable Number of Discretized Values

ẽd
t 21

ẽc
t 21

ẽl
t 21

l̃t 21

k̃t = k̃u
t = k̃d

t 8

When solving the DSDP, we go through the action space and enumerate all
feasible combinations of action variables. However, the actual number of values
that these variables can take is significantly less than the product of the values
in Table 2, due to the power capacity constraints. Moreover, as it is suboptimal
to charge and discharge energy simultaneously for non-regulation sales (due to
the efficiency losses), we can eliminate action vectors in which both ẽc

t and ẽd
t

are simultaneously positive from consideration. The starting storage level, x̃t,
and the outage state, It, also limit the number of possible state transitions.
Algorithm 3 summarizes the steps used for such action enumeration, which
reduces the total number of feasible actions in each hour to 170 (18 when
there is an outage and 152 otherwise). In the algorithm, we define ∆ as the
width of the intervals between the discrete values which the ẽd

t , ẽc
t , and ẽl

t

variables can take. In our case study, ∆ = 0.41 kW. Note that due to the
high penalty on unserved building loads, the value of l̃t can be determined by
constraints (6), (7), and (9) and the values of It, ẽc

t , ẽd
t , ẽl

t, and k̃t. Specifically,

if It = 1, then l̃t = min{D̃t, ẽ
l
t}. Otherwise, if It = 0 and D̃t ≤ P

h
, then

l̃t = D̃t. These two conditions are true due to the high penalty on unserved

building loads. Finally, if It = 0 and D̃t > P
h

then we let:

l̃t = P
h

+ ẽl
t.

6 Case Study Results

We study the interactions between and values of different storage applica-
tions by examining four cases, which allow the battery to be used for dif-
ferent storage applications. We examine (i) arbitrage-only; (ii) arbitrage and
backup-energy; (iii) arbitrage, backup-energy, and regulation; and (iv) arbi-
trage, backup-energy, regulation, and distribution-relief cases. Since storage
use depends on the realization of the exogenous random variables, we use a
common randomly generated sample path (which is drawn from the continuous
distributions) in our comparison between the four different cases.
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Algorithm 3 State Reduction Procedure Pseudocode
1: for t = 1 to T do

2: if It = 0 then

3: for k̃t = 0 to 7 do

4: Let αt ← R− k̃t {remaining power capacity for services other than regulation}
5: for ẽc

t = ∆ to αt in increments of ∆ do

6: Let ẽd
t , ẽl

t ← 0 {suboptimal to charge and discharge simultaneously}
7: end for

8: for ẽd
t = ∆ to αt in increments of ∆ do

9: for ẽl
t = ∆ to αt − ẽd

t in increments of ∆ do

10: Let ẽc
t ← 0 {suboptimal to charge and discharge simultaneously}

11: end for

12: end for

13: end for

14: else

15: for ẽl
t = 0 to P

b
in increments of ∆ do

16: Let ẽd
t , ẽc

t , k̃t ← 0 {no grid services during outage}
17: end for

18: end if

19: end for

6.1 Arbitrage-Only

We first examine a case in which the battery is used solely for energy arbitrage.
In this case we assume that the system does not experience outages (i.e., we fix
It = 0 with probability 1 for all t), that the battery cannot provide regulation
(i.e., we fix ku

t , kd
t = 0 ∀ t), and that the distribution system is not overloaded

(i.e., Dt ≤ P
h

with probability 1 for all t). Figure 1 shows hourly energy prices
and net energy sales by the battery in the arbitrage-only case on a single day.
Because the battery is used solely for arbitrage, the value generated by the
battery is relatively low—the actual realized value of the battery over the week
amounts to about $1.85.

6.2 Backup Energy

In the backup-energy case we relax the restriction that It be fixed equal to
zero in every hour and allow the system to experience outages according to the
probabilities given in Section 5.3. We still assume in this case that the battery
cannot provide regulation and that the distribution system is not overloaded
by the building load. Figure 2 shows the starting storage level of the battery
in the arbitrage-only and arbitrage and backup cases. The results are for the
same day shown in Figure 1. Comparing the two cases shows that the storage
level of the battery is kept higher in the backup-energy case, in order to provide
a safety stock of energy in case of an outage. This is done at the expense of
arbitrage profits since the battery is charged using higher-priced energy in
hour 3.

These battery usage patterns persist over the week—on average about
6.8 kWh of energy is kept in storage in each hour in the backup-energy case as
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Fig. 1 Net energy discharged from battery in arbitrage-only case.

opposed to only 6.6 kWh in the arbitrage-only case. This higher storage level
in the backup-energy case translates into a very slight reduction in arbitrage
profits of about a cent, since the battery does less arbitrage. The energy in
the battery provides about $0.20 of expected benefit in averting the cost of a
system outage (there are no outages during the week that we simulate, thus
we report the expected benefit based on the expected cost of lost load in each
hour). If the optimized policy from the arbitrage-only case is used in a system
in which outages can occur, the energy in storage provides a benefit of about
$0.18 in averting expected lost load. Thus optimized battery use in the backup
energy case forgoes less than a cent of arbitrage profit to gain about two cents
of expected backup energy value.

6.3 Regulation Services

In this case we allow the battery to provide regulation, by relaxing the con-
straint that ku

t , kd
t = 0 ∀ t, as well as arbitrage and backup-energy services.

When the battery can provide regulation it almost exclusively provides this
service and very little arbitrage. This is because regulation is primarily a ca-
pacity service with little net charging of energy, meaning that providing this
service incurs very little cost and comparably high revenue. Although the
dispatch-to-contract ratio in a particular hour can be high—we find cases of



Stochastic Dynamic Program for Optimization of Energy Storage 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

2

4

6

8

10

12

Hour

B
eg

in
ni

ng
 S

to
ra

ge
 L

ev
el

 (
kW

h)

 

 

10

20

30

40

50

60

70

80

90

A
ct

ua
l E

ne
rg

y 
P

ric
e 

($
/M

W
h)

 

 

Arbitrage−Only
Arbitrage and Backup

Energy Price

Fig. 2 Starting storage level of battery in arbitrage-only and arbitrage and backup-energy
cases.

up to 0.35 in the historical PJM data—the regulation-up and -down signals
tend to cancel out in the long run. Our simulation has high ratios of up to 0.30,
but the average ratio over the week is much lower at -0.06, which is consistent
with the historical PJM data. Thus, on average, providing regulation results
in small net charging of the battery. This use of the battery reduces arbitrage
profits even further compared to the other two cases—the battery earns $1.25
over the course of the week when regulation services are allowed—but the
regulation profits of $23.90 more than compensate for this.

6.4 Distribution Relief

In this case we assume that an added plug-in hybrid electric vehicle (PHEV)

charging load can overload the P
h

= 10 kW power constraint of the electric
circuit connected to the home. We assume that the on-board PHEV battery
has an energy capacity of 14 kWh and is charged using a 7.2 kW appliance
circuit when parked at home. The PHEV driving and charging patterns are
assumed to be fixed and deterministic, and are based on actual vehicle use
data taken from an empirical fleet study [22]. The amount of battery energy
used when the PHEV is driven, which determines the overnight charging load,
is estimated using a dynamic vehicle simulator [38].
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Figure 3 shows the hourly load profile of the home with and without the
PHEV. The loads are shown for two days on which the total load of the home
exceeds the 10 kW capacity with the addition of the PHEV. Figure 3 also
shows the starting storage level of the battery in each hour with and without
the PHEV. When the PHEV is added, extra energy is stored in the battery
to relieve the building power constraint, which is violated in hours 22 and 44.
This use of the battery allows the home to avoid $18.81 in costs associated with
loads that would otherwise not be served due to the distribution constraint
during the week. As with the backup energy case, this reduces the market value
of the battery due to reduced arbitrage and regulation profits. For instance, to
keep a high SOC the battery buys an additional 2.7 kWh of energy during the
two days shown when the PHEV load is added. Moreover, the battery provides
2 kW-h less regulation capacity in hours 22 and 44, since the higher net load
of the home may prevent it from providing regulation down in real-time.
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Storage Level With PHEV (kWh)
Load Without PHEV (kW)
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Fig. 3 Total load of home and starting storage level of battery with and without PEV.
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6.5 Solution Quality

Table 3 summarizes the mean upper and lower bounds on the optimal value
of the SDP for the four storage application cases that we consider. It also
provides standard errors for the bounds and an average optimality gap bound.
The optimality gap bound is defined as the difference between the mean up-
per and lower bounds, as a percent of the lower bound. Since the expected
averted cost savings from providing backup energy and distribution relief is
not included in the objective function (rather, these costs are subtracted if in-
curred), the objective function values decrease between the arbitrage-only and
backup energy and the regulation and distribution relief cases. The optimality
gaps are relatively small, showing that our approximation algorithm provides
relatively good near-optimal policies. Moreover, the gaps tend to be smaller
in the cases in which regulation service is provided. This is because the high
profits from regulation imply that an optimal policy is relatively insensitive to
accurately forecasting future prices. The gaps are higher in the arbitrage-only
and backup energy cases since arbitrage profits are more sensitive to accu-
rately estimating energy price patterns. On the other hand, the arbitrage-only
and backup energy cases are less complex than the regulation models, thus
a finer discretization could be used which could provide better policies with
little incremental computational cost.

Table 3 Upper and lower bounds on optimized value of week-long SDP.
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BIF
L
Mean 1.77 1.76 25.14 24.47
SE 0.0034 0.0034 0.0065 0.0077

BBC
L
Mean 0.86 0.86 24.87 23.33
SE 0.0864 0.0864 0.2876 0.6419

BSAA
U
Mean 1.82 1.82 25.42 24.73
SE 0.128 0.128 0.342 0.407

BDET
U
Mean 1.82 1.82 25.42 24.73
SE 0.0021 0.0021 0.0075 0.0069

Gap [%] 2.6 3.1 1.1 1.0

The results also show that the backcasting heuristic performs worse than
our approximation algorithm. In cases with regulation, the optimality gaps
are reasonable, ranging between 2% and 6%. In the other cases, however, the
optimality gaps are greater than 100%. This suggests that the backcasting
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heuristic is considerably less reliable in cases involving energy arbitrage only.
Nevertheless, the backcasting heuristic is significantly less computationally
expensive than our approximation algorithm, since the method requires only
solving a deterministic linear program. Thus the method may be valuable, even
in cases involving energy arbitrage only, due to the simplicity of implementing
it.

7 Conclusions

This paper introduces an SDP model that co-optimizes the use of a storage
device that is put to multiple uses, such as energy arbitrage, AS, backup
energy, and distribution relief. The model is applied to a case study in which
a battery is installed in a residential home. Although our example assumes a
small battery used as distributed storage, the model we develop can be applied
to other settings and applications that we do not consider. This can include
large utility-scale storage that can charge and discharge multiple consecutive
hours on a MW scale.

Our results demonstrate that putting storage to multiple applications can
introduce tradeoffs between the uses. Some storage applications can interfere
with others giving subadditive values. In other cases, however, one application
may increase the value of another use. Table 4 summarizes the value of the
battery over the week that we simulate, and also annualizes this value on a
$/kWh-year basis. This annualized value computes the total value of the bat-
tery over a year, assuming that the week we examine is representative of the
year, and normalizes the value based on the 11.2 kWh storage capacity of the
battery. Table 4 also shows that distributed energy storage can be valuable,
provided the value can be captured. Some of the value streams, for instance
arbitrage and regulation, are easy to capture and quantify since these services
are priced in wholesale markets. Avoided outage and curtailment costs can
be more difficult to quantify, however, since they are averted costs that the
customer does not bear. The value of these applications is also sensitive to the
value of lost load, which may vary between customers. Avoided outages and
curtailments can also provide value to the utility, which we do not consider.
Using a battery to avoid a customer outage can help a utility meet its reliability
requirements, while distribution relief can reduce loading on distribution-level
transformers, potentially extending their lives. These value streams could fur-
ther increase the value of distributed storage. While the design of contracts
and incentive mechanisms that capture such value and allocate it to the owner
is an important issue, it is beyond the scope of our work.
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Table 4 Weekly and annualized value of battery under different cases.

One-Week Annualized Value
Value [$] [$/kWh-year]

Arbitrage-Only 2.03 9.45
Backup Energy 2.05 9.54
Regulation 25.52 118.83
Distribution Relief 44.52 207.26

A Formulation of MIP

The formulation of the MIP, with the piecewise-linear approximation of the SDP value
function, is given by:

max
a,x,n,q,y

Ct(St, at) + γ
X

j∈Jt+1

Prob
n

W̃ j
t+1
|Wt

o

·
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;
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Constraints (15) through (26) are the same set of constraints in the original SDP, except

that (15), (16), (21), (22), and (26) must hold for each possible realization of W j
t+1

. This is
also why the hour-(t + 1) storage level is indexed by j, even though we do not restrict it to

any discretization. Rather, xj
t+1

represents the hour-(t + 1) storage level resulting from the

decisions chosen if the exogenous state, W̃ j
t+1

, is realized, as defined by (15).
We linearize the max operators in constraints (21) and (22) by representing the right-

hand-side of the equalities as piecewise-linear functions. Specifically, define Υ j
t+1

and Υ
j
t+1

as the minimum and maximum value that the term δ̃u,j
t+1

ku
t − ηd(xt −R) + ed

t + el
t − ec

t can
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take. We can then define two sets of auxiliary variables, zζ,j
t+1

and vζ,j
t+1

, where ζ ∈ {1, 2}
and replace constraints (21) with:

nu,j
t+1

= Υ
j
t+1z2,j

t+1
,

and add the constraints:

2
X
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, ∀ j ∈ Jt+1;

0 ≤ z2,j
t+1
≤ v2,j

t+1
· Υ

j
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v1,j
t+1
≤ v2,j

t+1
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Constraints (22) are linearized in the same manner. Constraints (27) through (29) define
the piecewise-linear approximation of the cost-to-go function.

B Formulation of Deterministic Linear Program

The formulation of the deterministic linear program, which is used for the backcasting
heuristic and the sample path average upper bound, is given by:
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The constraints of the LP are the same as those of the SDP, except that they are only
enforced for a single sample path of exogenous random variable realizations, since the LP
is deterministic. The max operators in constraints (31) and (32) are linearized in the same
manner used for the MIP outlined in Appendix A.

C Formulation of Two-Stage Stochastic Program

We present the deterministic equivalent of the two-stage stochastic program used to generate
the SAA upper bounds. We define J as the number of leaves in the two-stage scenario tree
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underlying the problem. A state variable with the superscript j and the subscript t denotes
the value of that variable in hour t if the sample path leading to the jth leaf of the scenario
tree is realized. Similarly, a decision variable with the superscript j and the subscript t
denotes the hour-t action taken if the sample path leading to the jth leaf of the scenario
tree is realized. The formulation of the stochastic program is given by:
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The stochastic program includes the same set of constraints in the original SDP. The
max operators in constraints (33) and (34) are represented as piecewise-linear functions in
the same manner used for the MIP outlined in Appendix A. Constraints (35) through (40)
are nonanticipativity constraints, which force the stage-1 decisions in hour 1 to be the same
for all J leaves of the scenario tree. Constraints (41) initialize the battery’s starting storage
level to be empty.
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