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Abstract

We present an empirical analysis of a supply function equilibrium model in the Texas spot electricity market.

We derive conditions for optimal bidding behavior in a spot market with ex ante bilaterally contracted sales.

By estimating costs, we are able to derive a set of ex post- and ex ante-optimal supply functions and use a

nonparametric behavioral model to compare our theoretically-optimal supply functions to actual offers made. Our

results show that with the exception of the largest generators, firms make offers with markups and markdowns

far in excess of what a model of profit-maximizing behavior suggests.

1 INTRODUCTION

With the recent move towards liberalized electricity markets, there has been a need for economic theory to predict

behavior in and performance of restructured markets. Industrial organization gives a wide variety of equilibrium

models based on varying behavioral assumptions, which have been used to this end. Proponents claim this type

of modeling can provide market participants a means of evaluating their past bidding behavior, market monitors a

means of examining the efficiency of their markets, and regulators a means of comparing different market designs.

Klemperer and Meyer’s (1989) supply function equilibrium (SFE) model is often touted as a good model of spot

electricity markets because it encapsulates the underlying structure of the market well. This can be seen in there

being many applications of the model to predict market performance, Green and Newbery (1992), Newbery (1998),

and Green (1996) being some of the seminal studies in this area.

In spite of the myriad applications of the SFE model, there has been limited empirical analysis showing the sound-

ness of the model in characterizing actual firm behavior. For example, Wolfram (1999) and Kim and Knittel (2006)
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attempt to provide this analysis for conjectural variations type models, showing them to generally be uninformative.

In this paper we use historical offer data from years 2002 and 2003 in the spot Balancing Electricity Service (BES)

market administered by the Electricity Reliability Council of Texas (ERCOT) to test the behavioral predictions of

an SFE model. Our work is related to that of Hortaçsu and Puller (2008) and Niu (2005). Hortaçsu and Puller

conduct an empirical analysis of the BES market by applying Wilson’s (1979) share-auction model and assuming each

firm’s contract price and position is private information. Their share-auction model is more robust than a standard

SFE due to its allowing firms to have this private information. To make their model analyzable, however, they

make an assumption that each firm’s optimal supply function will be additively-separable and linear in the private

information (AS-LPI). This assumption essentially amounts to rivals’ private contract information entering a firm’s

profit function as a horizontal shift in its residual demand curve, and their model becomes a standard SFE, yielding

the same inverse-elasticity markup rule. In their analysis they calculate each firm’s ex post -optimal supply function

(EOSF), which is the firm’s optimal response to the actual offers of its rivals, and test for consistency of the model

by comparing actual to potentially-achievable profits. Their results show the large incumbent utilities to perform

moderately well while most of the smaller power generating companies (PGCs) submit supply functions which are too

‘steep.’ They then show the efficiency losses from this observed behavior—both from the large PGCs exercising their

market power and the small PGCs withholding their generation from the market. Niu analyzes a linear SFE model

by comparing the actual market-clearing price for energy (MCPE) to that which would result from her theoretically

profit-maximizing benchmark. Her results show actual prices match her theoretical predictions well when the BES

clears for incremental energy, but there is a large gap when it clears for decremental service. These two studies of

the BES focus their analyses primarily on market outcomes. We take a different approach, which is to compare the

entire range of the actual and optimal offer curves. Moreover, we conduct our analysis by comparing both EOSFs as

well as a set of Nash equilibrium supply functions for what we term the strategic bidders in the market. Our results

turn out to be similar to the aforementioned studies, showing the two large PGCs (TXU and Reliant Energy) to

submit offer curves which are somewhat consistent with our derived EOSFs. The next largest PGC, Calpine, offers

with markups which are far in excess of what our ex post -optimal analysis predicts. By comparing Calpine’s offers

across different time periods, we provide evidence suggesting that these high markups are largely due to a period of

learning during the first quarter of 2002. As for the other PGCs, we find that they submit offer curves which are

too ‘steep,’ with markups and markdowns far in excess of our model’s predictions. We provide evidence suggesting

that these excessively high offers are meant to economically withhold their generation from the balancing market.

Finally, by restricting our analysis to the three large PGCs and calculating Nash equilibrium supply functions for

these firms alone, we show that the SFE model does a relatively good job of characterizing the bidding behavior of

what we term ‘strategic bidders’ for incremental balancing energy offers.

The remainder of this paper proceeds as follows: Section 2 describes the ERCOT markets and specifically the

BES spot market. Section 3 discusses our supply function model of the BES market, our assumptions underlying the

model, and the methodology for deriving our EOSFs. In section 4 we present our econometric analysis comparing

actual supply functions to our calculated EOSFs, and discuss some findings of learning and economic withholding

by various PGCs. Section 5 presents our methodology for deriving Nash equilibrium sets of ex ante-optimal supply

functions, and compares these to the actual offers of what we term the strategic bidders in the market. Section 6

concludes our analysis, discusses some implications for the efficient design of spot balancing markets, and highlights

some of the issues underlying the use of supply function models by regulators in market monitoring and design.
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2 THE ERCOT ELECTRICITY MARKETS

ERCOT acts as the system operator for the NERC region by the same name, which covers most of southern and

central Texas.1 Restructuring efforts in ERCOT began to take hold in 2001, with market-based trading and dispatch

beginning in late 2001. Wholesale electricity trading, procurement of ancillary services, and reliability are achieved

both through bilateral action on the part of market participants and a number of centrally-operated energy markets,

with the bulk of wholesale electricity traded bilaterally between parties. Prior to each day, market participants

submit resource and obligation schedules to ERCOT through Qualified Scheduling Entities (QSEs). The QSEs are

meant to act as intermediaries between stakeholders and the system operator, and they also act as aggregators for

smaller generators and utilities—by allowing multiple firms to submit schedules and bids through a single QSE. For

example, in 2001 the same QSE submitted schedules and bids for both Reliant Energy and City Public Service of

San Antonio.

Invariably, suppliers and consumers of electricity would need a market through which to buy and sell excess energy,

since load forecasts are never exactly correct and to account for real-time contingencies such as line or generator

outages. The BES is meant to serve as this spot market in which PGCs—through their QSEs—can submit bids to

increment (inc) and decrement (dec) their generation. Up until mid-2002, QSEs were required to submit balanced

day-ahead schedules. This balanced schedule requirement was intended to discourage the use of the BES as a market

to procure baseload resources, and help ensure that the PGCs and load-serving entities (LSEs) faithfully use it only

as a market of last resort in which to procure balancing energy. Since the balanced schedule requirement has been

dropped the BES now averages slightly higher balancing sales than it used to, although it is still used mainly as a

balancing market, with typically only 3-5% of total sales traded in the market. The market itself operates much

like a commodity spot market. For each hour, PGCs submit price/quantity offers specifying the amount of energy

they are willing to inc or dec at a given price, subject to a $1000 price cap.2 Absent transmission constraints, the

market clears as a single power pool—ERCOT aggregates the offers into a supply curve, and for each 15-minute

interval intersects an essentially price-inelastic demand for balancing energy3 with the supply curve to determine

the least-cost dispatch and a uniform MCPE. Participation in the BES market is voluntary, with the exception of a

regulatory rule imposed by the Public Utility Commission of Texas (PUCT) that all QSEs are required to offer to

decrement at least 15% of their scheduled energy at any price within the price caps. The PUCT’s rationale behind

this requirement was to ensure that adequate decremental energy is available due to a fear that the QSEs would

overschedule resources day-ahead.

Given the basic characteristics of the BES, an SFE-type model should be a theoretically sound representation. SFE

assumes firms commit themselves to supply functions—which is the equivalent of submitting quantity/price offers.

The market clearing mechanism intersects the aggregate supply of the firms with the market demand function, which

need not be price-elastic. In reality, generators will have excellent information regarding their competitors. Operating

costs are relatively easy to estimate using engineering techniques; the marginal generating cost of a fossil-fuel driven

plant can be estimated from its heat rate (a measure of its thermal efficiency), which can be determined by combining

institutional knowledge and a variety of commercial sources of heat rate information. Given that we as academicians

were able to estimate these costs, it is no leap of the imagination to assume that generators can do it as well. As

1A small portion of western Texas is part of the WECC, northern Texas is part of SPP, and the region east of Houston is part of

SERC.
2Note that negative offer prices are allowed, primarily for decremental energy, with a price floor of -$1000.
3Although ERCOT does allow demand-side bids, so few are submitted at such high prices that balancing load is for all intents and

purposes price-inelastic.
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for the actual operating status of a rival’s plants, a PGC will see a brief fluctuation in the power grid’s voltage

and frequency if a large generator is taken offline. Moreover, there are firms that monitor the operational status

of plants and sell this information on a real-time basis. Thus, a PGC should be able to predict which of its rival’s

plants are operating at any given time. Finally, generators interact in the BES market on an hourly basis everyday.

This repeated interaction essentially makes this an infinite-horizon repeated game. The SFE model assumes that

firms play Nash equilibrium strategies, which is often an unrealistic assumption in single-shot games due to bounded

rationality of players, difficulty in predicting rivals’ behavior, and other cognitive and behavioral limitations of the

parties involved. Due to the repeated nature of the BES market, it is possible that even if generators would not play

Nash equilibrium strategies in a single-shot game, they may be able to converge towards a Nash outcome through

the repeated interaction and its associated learning effects.4

3 A SUPPLY FUNCTION MODEL OF THE ERCOT BES

Based on the inherent characteristics of the ERCOT BES market it is a common belief that an SFE-type model

should well describe the behavior of the firms involved. The specific model we use is an SFE which takes into account

the contracted supply position of each generating firm, while allowing for uncertainty in demand for balancing energy.

Our derivation shows that contractual obligations affect optimal bidding only through the quantity contracted and

not the contract price.5

3.1 Derivation of Supply Function Model

To derive generator i’s optimal offer curve, we solve its profit-maximization problem for any realization of system

load. We define the notation sj(p) to be firm j’s supply function—specifying quantity supplied at each price—cj(qj)

to denote firm j’s total cost function, QDA
j to be the quantity that firm j has contractually obligated itself to supply

at the contracted price, pC
j ,6 and D(p, ǫ) to be the stochastic market demand for balancing energy. We assume that

this market demand has the separable form D(p, ǫ) = D(p) + ǫ, in which D(p) is a deterministic function of price,

and ǫ is a random shock with support ǫ ∈ [ǫmin, ǫmax]. Firm i’s objective is to maximize its profits:

max
p

Πi(p) = p · (D(p) + ǫ −
∑

j 6=i

(sj(p) + QDA
j )) − ci(D(p) + ǫ −

∑

j 6=i

(sj(p) + QDA
j )) − (p − pC

i )QDA
i

= p · RDi(p, ǫ) − ci(RDi(p, ǫ)) − (p − pC
i )QDA

i , (1)

where RDi(p, ǫ) = D(p)+ ǫ−
∑

j 6=i(sj(p)+QDA
j ) is firm i’s residual demand function, for any possible realization of

ǫ. Note that we have specified forward contracts to settle as contracts for differences based on the prevailing MCPE

in the BES market. Firm i sells all its generation through the BES market and reimburses (or is reimbursed by) its

4It it worth noting that the repeated interaction in the BES does also allow for supergame equilibria, especially a multitude of

cooperative or collusive equilibria in which suppliers raise the MCPE above what would result from repeated stage-game Nash behavior.

Based on our analysis of bidding behavior, however, we do not believe this to be the case in the BES.
5Specifically, our derivation shows optimal offers in the BES are independent of the contract price so long as that price is not a function

of the MCPE. Because bilateral contracts are meant to hedge against spot price volatility, contracts generally exhibit this type of price

independence.
6Because only the contract position and not the price affects the profit-maximizing behavior of a firm in the BES market, we assume

a single contract price for notational ease. One could reformulate the problem with multiple contract prices, although the result would

remain the same.
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contract counterparties for the difference between the ex post realization of the BES MCPE and the contracted price.

Differentiating equation (1) and setting the result equal to zero gives the first-order necessary condition (FONC) for

firm i’s profit-maximization problem:

p − c′i(RDi(p, ǫ)) = −
RDi(p, ǫ) − QDA

i
∂
∂pRDi(p, ǫ)

. (2)

Given the offers of its rivals, the FONC in (2) is a differential equation characterizing firm i’s optimal choice

of p for each possible ǫ. Moreover, our specification of the profit function as a contract for differences implicitly

defines a boundary condition on this differential equation. If RDi(p, ǫ) = QDA
i (firm i has zero dispatch in the

BES), then p = c′i(RDi(p, ǫ)). Furthermore, if firm i’s rivals bid non-decreasing supply functions (which they must

in the BES), we will have ∂
∂pRDi(p, ǫ) < 0. This then gives us RDi(p, ǫ) > QDA

i =⇒ p > c′i(RDi(p, ǫ)) and

RDi(p, ǫ) < QDA
i =⇒ p < c′i(RDi(p, ǫ)), i.e. each firm will markup its inc offers above marginal cost, and markdown

its dec offers below marginal cost. When a PGC is dispatched to inc generation, it is paid the MCPE and incurs

the marginal generating cost of increasing output. Symmetrically, if a PGC is dispatched to dec, it foregoes the cost

of generation but must pay ERCOT the MCPE (it essentially ‘buys’ its scheduled generation back from ERCOT).

Thus, the markup and markdown rules implied by equation (2) make intuitive sense.

3.2 Assumptions and Data

Derivation of optimal supply functions requires data on generation costs of the firms. Implicit in our derivation

is that firms decide their bidding at a firm-wide level—as opposed to generation plants or units making individual

offer decisions. Our analysis is confounded by an identification problem due to the QSE relationships between firms.

A number of PGCs interact with ERCOT through a QSE which is used by other PGCs. In most cases, however,

the schedules of individual PGCs can be identified because their generation assets and bids are located within a

congestion zone where no other PGC sharing the same QSE is present. Thus, although two PGCs may use a single

QSE, if their assets are in different zones, then the QSE schedules and offers from the two firms can be distinguished.

In some cases, however, multiple PGCs sharing congestion zones submit offers through a single QSE—in these cases

individual offers cannot be distinguished. We assume that if a single PGC represents more than 70% of the actual

electricity generated within a congestion zone for its QSE, then all offers and schedules from that QSE within that

congestion zone are for that single firm. As table 1 shows, we are able to cover the major PGCs and the vast majority

of the bidding assets in ERCOT. Optimal offers for firms which cannot be identified are not derived, but their actual

offers are used in conjunction with actual system load in deriving the deterministic portion of market demand, D(p).

To derive each firm’s cost function, we assume that plants in its generation portfolio are dispatched in economic

merit order. Thus, a firm that is generating 5,000MW will generate its 5,000 cheapest megawatts available. PGCs

dispatching resources out of merit order due to operational or other constraints is not captured in our analysis.

Because of their significant ramping constraints, we assume nuclear units do not bid strategically and are instead

run at 100% of available capacity. Finally, because of the difficulty in estimating resource availability, we exclude

hydroelectric, wind, and solar plants from the generation portfolios. We feel justified in making this simplifying

assumption since these renewables constitute less than 5% of ERCOT’s installed generation capacity.

For fossil fuel-driven plants, we assume that each unit has a constant marginal cost. The fuel cost is the product of

its heat rate and fuel price. We impute an average heat rate for each month using heat produced and net generation

for each plant as reported in EIA Form 906. For months in which that data is unavailable, the tested heat rate is

used instead. We realize that there is some endogeneity from using this average heat rate, as it is affected by bidding
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Table 1: Individually-Identified Generating Firms

PGC % Gen. Cap. PGC % Gen. Cap.

TXU 22 BP Energy < 1

Reliant Energy 17 Bryan Texas Utilities < 1

Calpine 8 City of Garland < 1

Central Power and Light 6 Rio Nogales Power Project < 1

City of San Antonio Public Service 6 Tenaska Gateway Partners < 1

City of Austin 4 Cogeneration Lyondell < 1

Lower Colorado River Authority 3 Bastrop Energy Partners < 1

West Texas Utilities 2 Mirant Wichita Falls Management < 1

Midlothian Energy 2 South Texas Electric Cooperative < 1

Guadalupe Power Partners 2 Brownsville Public Utility Board < 1

Lamar Power Partners 2 AES Deepwater < 1

Brazos Electric Power Cooperative 1 Gregory Power Partners < 1

Sweeny Cogeneration General < 1 Extex Laporte < 1

Hays Energy < 1 Denton Municipal Electric < 1

Tractabel Power < 1 Air Liquide < 1

Ingleside < 1

behavior through the actual dispatch of a given unit, but since the bulk of generation is traded bilaterally we believe

this effect to be minimal. Fuel prices for natural gas is estimated using the Henry Hub spot price plus $0.10/mmBTU

for transportation. Although it is common practice for PGCs to contract for fuel and pay a price different from the

spot price, it nonetheless represents the opportunity cost of burning the fuel. The cost of other fuels are estimated

using the heat content-weighted average of that fuel procured in each given month, as reported in EIA Form 423. In

addition to fuel costs, generators are also subject to emission fees from both the US Environmental Protection Agency

(EPA) and the Texas Commission on Environmental Quality (TCEQ). The TCEQ charges each polluting plant the

greater of a fixed fee to administer its monitoring program and a charge based on actual emissions of pollutants. For

plants paying the fixed fee, we assume no marginal emission cost. For plants subject to the variable emission-based

charges, we estimate the cost per megawatt by dividing the total charge for the year by the plant’s net generation

for the year. In addition to the TCEQ’s emission program, the EPA charges for SO2 emissions as part of its acid

rain program. The program is administered through an emissions trading program, whereby a polluter must obtain

emission credits for each ton of SO2 emitted. Using TCEQ data, we are able to estimate the average SO2 output

per megawatt-hour generated and multiply that by the cost of an emission permit as reported by Cantor-Fitzgerald

Environmental Trading Brokerage. Finally, we add an estimated variable operations and maintenance cost for each

plant based on its generating technology.

In determining a firm’s cost of providing inc and dec service, we assume that all units which had not experienced

an outage (as recorded in ERCOT’s outage scheduler) were available to ramp generation. Thus, we ignore ramping

constraints and any intertemporal constraints on a unit’s on or off time. Taking account of these constraints would

require detailed operational data not available to us.

Our derivation of the supply function model showed that a PGC’s forward contract position will affect its profit-

maximizing offer function only through the quantity contracted, QDA
i , and not the contract price. One difficulty
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in accounting for this impact is that, in general, a PGC’s contract position is private information which is not

available to us. In their analysis of the BES, Hortaçsu and Puller (2008) estimate each PGC’s contract position by

counterfactually applying the boundary condition of Equation (2), which states that a PGC’s optimal markup is

zero if its imbalance quantity is zero. That is, letting pDA
i be the price at which PGC i offers zero imbalance sales, if

PGC i is submitting offers in accordance with the supply function model then its contracted quantity should satisfy

c′i(Q
DA
i ) = pDA

i . Although this method of finding contracted sales is correct when PGCs are acting in accordance

with the supply function model, our aim is to analyze the extent to which firm behavior is consistent with the model

and as such would prefer to use a forward contract estimate which does not require us to assume that PGCs behave

as the model dictates. We therefore follow the approach seen in Niu (2005), which is to use a PGC’s day-ahead

schedule as a proxy for the contract position. Although a generator may wish to deviate from its contracted sales,

we implicitly assume any such deviation can be implemented through the BES and as such a PGC would schedule

its contracted position.

3.3 Derivation of Ex Post-Optimal Supply Functions

We begin our analysis by first deriving for each firm a set of EOSFs. That is, in each bidding period, for each firm, we

find a supply function satisfying equation (2) for every possible ǫ, given the actual realized offers of its rivals. We then

compare the actual offers of each firm to our theoretically EOSFs. One reason for conducting this ex post analysis

is to screen-out PGCs whose behavior is far from optimal in our subsequent evaluation of the Nash equilibrium

SFE model. Qualitative analysis of the offers shows that most PGCs, especially smaller municipalities, cooperatives,

and cogenerators, are reluctant to deviate from their scheduled generation by participating in the BES. These firms

will typically economically withhold their generation by making offers with substantial markups and markdowns to

minimize the odds of being dispatched except when there is extremely high demand for BES energy. Because the

EOSFs are the optimal reaction to the actual offers of each PGC’s rivals, it captures the degree to which a firm

is able to anticipate its rivals’ behavior and optimally react, even when rivals are not Nash players. By excluding

these obvious non-Nash players in our subsequent Nash calculation, we will effectively recognize that such persistent

behavior is accounted for by the strategic PGCs, whose behavior we try to model with our Nash equilibrium model.

One complication which arises in the supply function analysis is the format of offers into the BES. The differential

equations governing the optimal behavior of the firms assumes continuously differentiable supply functions. Offers

into the BES, however, are price/quantity pairs defining a step function. ERCOT limits each QSE to submitting

20 steps for each of the inc and dec side of its supply function (giving a total of 40 steps) in each bidding period.

von der Fehr and Harbord (1993) raise the issue of step functions confounding an SFE-type analysis, concluding that

only mixed-strategy equilibria will exist. Baldick and Hogan (2002) argue to the contrary saying that with enough

offer points a step function can closely resemble a continuously differentiable supply function. While ERCOT allows

a total of 40 steps in each offer curve, PGCs actually use around 5 to 10 steps, making the argument somewhat

tenuous. Nonetheless, in comparing offer curves, we ‘flatten’ our optimal offer curve into a step function to make

it conform to the actual offer curve submitted. In doing so, we assume the offer quantities to be fixed, based on

those quantities actually used by the firm. For instance, in the hour ending 3:00am on 4 August, 2002 Tenaska

Gateway Partners’ offer curve consisted of 10 steps—5 for inc and 5 for dec service. The inc offers had steps at 625,

626, 650, 651, and 768 megawatts. In deriving optimal supply functions we assume that the PGC uses the same

offer quantities, and we flatten the supply function by using the optimal prices at those quantities in each ‘flat.’

Furthermore, in constructing each firm’s residual demand curve, the step function format of the offer curves will

give a stepped residual demand function. Since it would be overly-zealous to assume that PGCs anticipate the exact
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location of these steps, we smooth-out the residual demand curve using a kernel function as seen, for instance, in

Wolak (2003). We estimate the derivative of the residual demand function using a finite difference method, as direct

differentiation of the kernel function proved highly sensitive with respect to the choice of the smoothing parameter.

Our period of study is 2002 and 2003, with all bid periods (24 per day) included. However, assuming the BES

clears as a simple power pool requires that there be no binding transmission constraints. Thus, any hour with a

congested transmission line would have to be removed from our sample, since the BES would clear with multiple

MCPEs for each congestion zone. In accounting for the effects of congestion, we removed any day in which there

was any interzonal congestion. The rationale for removing days with any congestion from the sample is that any

anticipation of congestion on the part of PGCs could likely lead to substantially different behavior on the part of

any PGCs with locational market power. We felt that excluding days with any interzonal congestion (even in a

few of the 15-minute-long clearing periods) would, to some extent, control for such a distortion of the bids.7 This

restriction does not, however, allow us to control for periods in which transmission lines were nearly congested.

Again, any anticipation of congestion in these instances could likely affect a PGC’s optimal offer decision. After

excluding congested days, our sample was reduced to 340 days, giving a total of 8160 bidding periods.

4 COMPARISON OF ACTUAL OFFERS TO EX POST -OPTIMAL

SUPPLY FUNCTIONS

In comparing the actual to optimal offer curves, our approach is to study the nature of the entire range of the supply

function as opposed to using pointwise tests of optimality, such as those seen in Hortaçsu and Puller or Niu’s study of

the BES. A simple qualitative comparison of the actual and theoretical offer curves suggests that the supply function

equilibrium model is a rather poor representation of the behavior of most firms. We find that almost all firms offer

dec service with substantial markdowns from marginal cost, which are much greater than can be explained by our

model. Furthermore, most firms overbid their inc service, with the exception of the two largest power producers:

TXU and Reliant Energy. The third major player in the market, Calpine, submits inc offers which are on average

about one order of magnitude greater than ex post -optimal, although we later show that this is due to substantially

overpriced offers early on in the infancy of the BES market. Figure 1 shows a sample actual offer curve and EOSF

for City of San Antonio. Note that in the particular bid period shown, inc offers (quantities greater than zero) match

rather closely, whereas the dec offers differ substantially with the offers in the middle of the curve being marked

down more than the optimal and the markdown being less than optimal for extreme decs.

4.1 Nonparametric Model of Firm Behavior

In order to compare the offers quantitatively we estimate an econometric model of firm behavior which posits that

generators, in making their offers, choose markups over marginal cost to be some multiple of the theoretically

optimal markup. Defining bi,t(q), b∗i,t(q), and c′i,t(q) to be firm i’s actual offers, optimal offers, and marginal cost

function (respectively) in bidding period t, we can define firm i’s actual and optimal markup in bidding period t as

MUi,t(q) = bi,t(q) − c′i,t(q) and MU∗
i,t(q) = b∗i,t(q) − c′i,t(q), respectively. Our model is then:

MUi,t(q) = φi · MU∗
i,t(q),

7Our sample selection criterion differs from that in Hortaçsu and Puller who use the same single hour in each day and exclude hours

during which congestion occurred. Thus if congestion occurred in periods adjacent to the sample period but not during the sample period

the sample was not excluded.
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Figure 1: Actual and Optimal Offers Example
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where the multiplier, φi, can be thought of as a measure of conduct. A value of φi close to zero yields zero markup or

perfectly competitive behavior. Higher values of φi would be indicative of more rational profit-maximizing behavior,

with φi = 1 being perfect rationality. Values of φi > 1 would be indicative of a firm trying to exclude itself from

the market, overly-zealous exercise of market power, collusion, or other behavior which is inconsistent with or not

accounted for by our model.

One possible estimation approach would be to assume the φi parameter fixed along the range of the supply

function, in which case the model could be estimated by standard parametric techniques such as least squares. We

believe this specification would be overly restrictive on firm behavior, by assuming constant ‘conduct’ in bidding

throughout their offer curves. The shape of actual offer curves suggests that some firms opt to ‘hockey-stick’ their

supply functions—offering most of their generation at reasonable prices and a small quantity at a very high price,

giving their offer curve a hockey-stick shape—even more than theoretically optimal. Furthermore, we find that most

PGCs submit dec offers with extremely high markdowns (suggesting a high value of φi), but some offer inc bids

with more reasonable markups (suggesting a lower value of φi). In view of such anecdotal evidence against a fixed

multiplier, we opt for a model with a variable conduct multiplier that varies with quantity:

MUi,t(q) = φi(q) · MU∗
i,t(q), (3)

where φi(q) is an unspecified smooth function of the offer quantity, q. In order to estimate this model, we divide

equation (3) through by the optimal markup, MU∗
i,t(q), to yield a standard nonparametric model:

MUi,t(q)

MU∗
i,t(q)

= φi(q) + ηi,t(q), (4)

9



where the error term, ηi,t(q), with E[ηi,t(q)] = 0 and Var(ηi,t(q)) < +∞, allows for the fact that a firm may

misestimate its rivals’ offers or miscalculate its own optimal reaction. We estimate the model in equation (4) using

a Nadaraya (1964)-Watson (1964) kernel estimator, in which φi(q) is estimated as:

φ̂(q) =

∑N
n=1

K( q−qn

h )φn

∑N
n=1

K( q−qn

h )
,

where φn and qn are observed markup ratios and corresponding imbalance quantity. The function, K(·), is called a

kernel or smoothing function, and we opt for the standard of using the normal density function. The parameter, h,

which is called the window width or bandwidth, controls the weight put on neighboring observations in estimating

φ̂(q). We use an optimal bandwidth, h∗ = O(N−1/4), which ensures the estimator is consistent.

In order to make offers between different periods comparable we normalize the offer quantities, q, to be the

fraction of the total offer amount that a firm makes in each given bid period, meaning q is restricted to q ∈ [−1, 1].

For example, in figure 1, San Antonio made 4 inc and 5 dec offers for that hour. Its inc quantities were for 15,

10, 25, and 25MW, giving a total offer of 75MW. Those bid points would correspond to q = {1/5, 1/3, 2/3, 1}.

Symmetrically, the dec bids would correspond to values of q ∈ [−1, 0). We make these normalizations because firms

may offer varying absolute quantities in different bid periods, yet our model attempts to capture how the markup

multiplier, φi,t(q), varies along a firm’s supply function.

4.2 Nonparametric Estimates

By using the offer data from each individual firm, we estimate the model in equation (4), comparing its actual offers

to a supply function which is an optimal response to the realized offers of its rivals. In making this comparison

we seek to determine the extent to which each PGC can conjecture the actual behavior of its rivals and optimally

react to that conjecture by submitting offers that maximizes its profits ex post. In general, this could prove to be

a complicated task as a firm would have to predict the behavior of each rival and take account of that in making

its own offer decision. Due to the repeated nature of the interaction, though, we surmise that over time a rational

generator may be able to anticipate its rivals’ behavior and adjust its pattern of offers to that behavior. As figure 1

shows, City of San Antonio has been able to make such an adjustment to some extent in submitting inc offers which

closely match its ex post -optimal supply function.

Figures 2 through 4 show the estimated φ̂NP (q) for the three largest PGCs participating in the BES, along

with an asymptotic pointwise 95% confidence interval, and a φ = 1 line which would correspond to ex post profit-

maximizing behavior. In addition, table 2 summarizes the estimated values and gives upper- and lower-confidence

interval bounds of φ̂NP (q) for the three major PGCs. Table 7 gives summary estimates for the conduct curves of all

PGCs. Our estimates show that with the exception of TXU and Reliant Energy, most PGCs’ markups are several

orders of magnitude above those predicted by our EOSF model. This result is consistent with anecdotal evidence as

well as other analyses of the BES market.

We note that many of the φ̂NP estimators have a peak in the neighborhood of q ≈ 0 with a corresponding wide

confidence interval band. Recall that offers with q ≈ 0 correspond to net balancing sales RDi(p, ǫ) − QDA
i ≈ 0,

which our derived optimality condition implies should have a markup or markdown close to zero. Thus, the ratio

φi = MUi,t(q)/MU∗
i,t(q) will be very sensitive to any error a firm makes in calculating its offers in this range or in

our estimating a firm’s marginal cost (which is subject to some uncertainty), giving the peak and the corresponding

wide variance band due to the heteroskedasticity of the errors at q ≈ 0.

The estimates of TXU’s conduct curve show their actual markups to be within a reasonable multiple of our
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Figure 2: TXU Conduct Function Estimates
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derived EOSFs, at between 10% and 120% of optimal. This is still somewhat surprising as TXU is a major holder

of generating assets within ERCOT (approximately 22% of nameplate capacity) and often a pivotal supplier in

the BES, which affords it much market power. One possible explanation for this apparent restraint is the fear of

regulatory action. After the inception of the BES market, the PUCT has revised the ERCOT tariffs several times,

adding various market mitigation rules such as: a ‘shame-cap,’ which immediately reveals the identity of any QSE

submitting an inc or dec bid into the BES above or below a certain price; and a ‘hockey-stick’ curtailment rule, which

Hurlbut, Rogas, and Oren (2004) designed to help mitigate price-gouging in bid periods where the BES offer stack is

exhausted. Moreover, the PUCT has been under political pressure from advocacy groups to impose further market-

mitigation rules due to the perceived persistence of unjustifiably high MCPEs. Many of these market-mitigation

procedures have been opposed by the PGCs, including TXU. Part of TXU’s restraint in its bidding behavior may

reflect a form of self-imposed mitigation to keep the MCPE sufficiently low to try and ward off further regulatory

action. Due to TXU’s position as the dominant PGC in the market, it was a pivotal supplier in many of the bidding

periods in 2002 and 2003, in which case it could have easily set the MCPE at the price cap of $1000. Such behavior,

however, would have triggered an investigation and potentially regulatory intervention. A second plausible rationale

for TXU’s bidding behavior is the native load served by TXU Energy—a subsidiary of the TXU Corporation which is

one of the largest LSEs in Texas. During the study period, TXU Energy’s retail rates were frozen by the PUCT, and

given TXU Energy’s large customer base of 2.9 million, an excessively high MCPE may have actually reduced the

holding company’s total profits as it could not recover the full cost of energy procurement through retail rates. The

effect of this restraint may eventually wear down, however, once the regulated ‘price to beat’ lapses in the ERCOT

market.
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Figure 3: Reliant Energy Conduct Function Estimates
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Similar to TXU, Reliant’s actual inc bids seem to match our theoretical optima rather closely, with the φ̂NP

estimator being relatively close to 1. In contrast to TXU, though, Reliant’s dec bids are on average marked down

far below what our model predicts. This pattern of high markdowns on dec bids, which is seen with most PGCs

has also been observed by others who have studied the BES. The behavior is attributed to both a reluctance on the

part of PGCs to ramp down their generation (especially combined-cycle gas turbines) due to heat rate and ramping

considerations, as well as other costs not accounted for in standard engineering estimates such as higher maintenance

costs and gas imbalance charges. Hortaçsu and Puller analyze the ‘bid-ask spread’ between the lowest inc and

highest dec bid and find that most PGCs have a spread which is wider than can be explained by the estimated cost

of adjusting output.

The most surprising behavior we find amongst the large generators is that of Calpine. Calpine is an independent

power producer with no native load obligation, less regulatory oversight than the incumbent investor-owned utilities

(IOUs) such as TXU and Reliant, and it has been increasing its share of asset holdings in Texas (both through

purchases and investments in new generation) to around 8% of nameplate capacity. In spite of its good position in

the market and potential for exercise of market power, our estimates show Calpine’s bid markups to average an order

of magnitude greater than theoretically optimal, effectively pricing its generation out of the BES market. We find

that Calpine’s seemingly irrational behavior took place mainly in the first quarter of 2002, and we are able to show

that there is a statistically significant difference in its bidding behavior during and after the first quarter of 2002.

This suggests that Calpine was either initially reluctant to participate in the BES market or that there were some

learning effects associated with participation in the BES market. Since the BES market began operation only in late

2001, by 2002 the PGCs had only been bidding in it for a few months, which suggests that Calpine may simply not
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Figure 4: Calpine Conduct Function Estimates
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have known how to bid.

The remainder of our estimates, which are summarized in table 7, show the other PGCs to fairly consistently

submit markups and markdowns far in excess of what is ex post -optimal. One possible explanation of these bidding

patterns is that they may be due to some form of anticompetitive of collusive behavior on the part of the PGCs. In

the context of the BES, collusion would manifest itself with firms submitting high inc and low dec offers in an effort

to raise the MCPE for incs and lower the MCPE for decs from what would result in a noncooperative equilibrium.

At first glance, the steep bids of the small PGCs may seem indicative of collusive behavior not accounted for in our

model. Our findings and other analyses of the BES, however, point against this conclusion. As we noted earlier,

the bulk of generating assets in the ERCOT control area are held by the three large PGCs. Furthermore, because

the vast majority of electricity sales are contracted forward of the BES market, the small PGCs hold a relatively

small percentage of balancing resources. Moreover, we find that on average the three large PGCs offer the bulk of

balancing resources into the BES—often over 60%. These facts, coupled with TXU and Reliant submitting offers

close to their EOSFs implies that a small PGC overpricing its incs and underpricing its decs would have little effect

on the MCPE since the PGC would essentially price itself out of the BES market. In fact, the excessive markups

and markdowns of the small PGCs is commonly explained by them wanting to exclude themselves from the market,

which we study further in the following section. In her study of the BES, Niu shows that actual inc prices and those

which would result from a linear SFE are on average within 3.9% of one another, indicating that even if the smaller

PGCs are colluding to drive up the price of incremental balancing energy, these attempts have met with little to no

success. Her analysis of dec prices, however, show the actual price to average twice her theoretical calculations. If the

excessively high dec markdowns represent ramping costs or constraints, gas imbalance charges, or other factors not
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Table 2: Summary Statistics of Conduct Function Estimators

q -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

TXU

φ̂NP (q) 0.410 0.298 0.155 0.272 0.712 1.247 0.235 0.089 0.109 0.167 0.226

ÛNP (q) 0.446 0.354 0.185 0.360 1.443 2.705 0.758 0.141 0.141 0.192 0.241

L̂NP (q) 0.373 0.242 0.125 0.184 -0.020 -0.211 -0.288 0.037 0.077 0.141 0.210

Reliant Energy

φ̂NP (q) 38.888 22.816 2.702 0.386 0.108 0.141 0.962 0.896 0.875 1.486 2.225

ÛNP (q) 41.24 25.758 4.120 0.606 0.630 0.936 1.548 1.169 1.107 1.843 2.697

L̂NP (q) 36.536 19.873 1.284 0.166 -0.413 -0.654 0.377 0.623 0.644 1.129 1.752

Calpine

φ̂NP (q) 37.851 22.703 13.476 19.051 36.385 33.531 3.637 0.202 0.947 9.775 21.785

ÛNP (q) 65.276 42.197 20.046 24.974 62.567 88.293 23.714 3.239 7.254 32.741 52.15

L̂NP (q) 10.425 3.208 6.907 13.127 10.203 -21.231 -16.441 -2.835 -5.360 -13.192 -8.580

accounted for in these analyses, then the discrepancy in dec prices would represent a true cost of service. Otherwise,

this could indicate some form of anticompetitive behavior for decremental energy.

The results of our ex post analysis are fairly consistent with Hortaçsu and Puller’s findings. One of their metrics of

rational bidding is to compare a firm’s profits under optimal bidding to that under their actual offers, and calculate the

percent of potential profits a firm foregoes with its actual offers. Their results show that amongst the three largest

PGCs, Reliant performs best, realizing 79% of its potential profits in the BES. TXU and Calpine, by contrast,

perform more poorly yielding only 39% and 37% of their potential profits. Their estimates show the smaller PGCs

to consistently perform poorly, generally realizing only a small fraction of their potential BES profits. It is, however,

worth noting that even in the best cases of Reliant and TXU, all our statistical tests reject the null hypothesis that

φ̂NP (q) = 1, meaning none of the generators are behaving in accordance with ex post -optimal behavior.

4.3 Market Participation

Our estimates of the smaller PGCs’ markup ratios show them to submit offer curves which are far steeper than our

model predicts. The most common explanation for this observation is that smaller power producers, cooperatives,

and cogenerators prefer to generate according to their contracted schedules. To help ensure this they overbid their

generation into the balancing market with markups and markdowns significantly higher (in some extreme cases up

to three orders of magnitude greater) than predicted by our model. Such behavior would act to keep them out of

the balancing market, except when demand for balancing resources is sufficiently high to guarantee a high profit

for being dispatched in the BES market. One reason behind this desire may be a real or perceived cognitive cost

of solving a sophisticated optimization problem to make a bidding decision. Smaller generators may have so little

‘money on the table’ from participating in the BES, that there is little incentive to do so. Likewise, cogenerators are

often only tangentially involved in the electricity market and may focus their efforts on more-lucrative bilateral sales

as opposed to the BES. Furthermore, since cogeneration is a byproduct of their primary production process, they

may have a strong disincentive to adjust their output in order to garner slim margins in the BES as doing so may

affect their primary production. Similarly, municipalities may be primarily interested in generating and procuring
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resources for their native load, and as such may have less of a profit-motive to actively participate in the BES market.

This conjectured behavior is supported to some extent by the inc and dec patterns of the various PGCs. Table 3

shows that many of the smaller PGCs often opt to exclude themselves from the BES by submitting only dec offers,

which they are required to, without any inc offers. Furthermore, as table 4 shows, four of the small generators

submitted only a single dec offer at the price floor of -$1000 in a number of bid periods. These observed patterns of

bidding are indicative of many of the small PGCs participating in the BES only in so far as they are required to by

the PUCT’s dec offer requirement.

Table 3: Percentage of Bidding Periods with Only DEC Bids Submitted

PGC % DEC Bid Only PGC % DEC Bid Only

Brazos Electric Power Cooperative 97.3 City of Garland 15.4

Mirant Wichita Falls Management 86.8 Air Liquide 11.9

Hays Energy 84.3 City of San Antonio Public Service 9.1

Midlothian Energy 71.6 BP Energy 7.6

Bryan Texas Utilities 71.4 Guadalupe Power Partners 7.5

Bastrop Energy Partners 53.5 Central Power and Light 7

Lamar Power Partners 41.7 Cogeneration Lyondell 2.3

Gregory Power Partners 39.8 Denton Municipal Electric 2.1

Rio Nogales Power Project 39.4 Ingleside 1.1

Tractabel Power 37.5 AES Deepwater 0.9

Brownsville Public Utility Board 33.3 City of Austin 0.7

South Texas Electric Cooperative 32 Lower Colorado River Authority 0.4

Sweeny Cogeneration General 26.4 Reliant Energy 0.2

West Texas Utilities 17.2 Extex Laporte 0.1

Tenaska Gateway Partners 17.1 TXU 0

Calpine 16.1

Table 4: Percentage of Bidding Periods with Only a Single DEC Bid at -$1000

PGC % -$1000 DEC Bid Only

Bastrop Energy Partners 24.5

Brownsville Public Utility Board 23.7

Lamar Power Partners 16

Sweeny Cogeneration General 9.3

To concretely explore this relationship between dec offer patterns and the ‘size’ of a PGC, we estimate a binary

response model. We define yi,t to be an indicator variable, with yi,t = 1 if PGC i submits only dec offers in period t

and yi,t = 0 otherwise. We then estimate the limited dependent variable model:

Prob{yi,t = 1|xi,t} = F (β⊤
0 xi,t), (5)

where xi,t is a vector of regressors, β0 is the vector of parameters to be estimated, and F (·) is a cumulative distribution
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function. One of our regressors, profPGCi, is an indicator variable for whether PGC i is what we designate a ‘profit-

driven PGC.’ These PGCs include the incumbent IOUs: TXU, Reliant, West Texas Utilities, and Central Power

and Light; as well as the large independent power producer, Calpine. We include a regressor, %CAPi,t, the percent

of available capacity that a PGC has committed day-ahead to account for capacity effects on bid patterns. We

also include a set of regressors, %∆SCHEDτ
i,t, τ = {−2,−1, 1, 2}, giving the percent change in a PGC’s scheduled

production from bidding hour t to bidding period t + τ , which are meant to account for binding ramping constraints

preventing a PGC from offering inc service. We finally include indicator variables ON-PEAK and WEEKDAY to

account for any difference in dec offer patterns between different time periods. We specify the distribution function

in the LDV model in equation (5) to be logistic, and estimate it by maximum likelihood. Using a Wald test, we

find all the estimated coefficients to be statistically significantly non-zero at the 1% level. Our estimates, which are

summarized in table 5, show that a profit-driven PGC is on average less likely to submit only dec offers. We further

find that changes in scheduled production deter a PGC from offering inc offers, with the change from the previous

hour having the highest impact. This suggests ramping constraints, which are ignored in our offer curve derivation,

may play a role in explaining some bidding behavior. Finally, we find that having capacity committed reduces a

PGC’s probability to offer only dec offers. While seemingly counterintuitive, this suggests that a PGC with a higher

proportion of its capacity scheduled to generate, has greater flexibility in ramping generation among a wider portfolio

of operating units.

Table 5: Estimates of LDV Model

Regressor β̂MLE EN [β̂MLEf(β̂⊤
MLEx)]

WEEKDAY -0.070676 -0.01314

ON-PEAK 0.14715 0.027359

%CAP -1.6112 -0.29956

%∆SCHED−2 0.0095387 0.0017735

%∆SCHED−1 0.18526 0.034444

%∆SCHED1 0.0067523 0.0012554

%∆SCHED2 0.0056042 0.001042

profPGC -0.19935 -0.037063

4.4 Learning Effects

A question to ask in a complicated market such as the BES is whether participants can gradually learn to better

bid against their opponents through their repeated interactions in the market. In many empirical and experimental

settings, players have demonstrated the ability to ‘converge’ towards playing equilibrium strategies even when equi-

libria are rarely seen in a one-shot variant of the game. Similarly, one may expect that over time PGCs may learn to

better conjecture their rivals’ behavior and react to those beliefs. Indeed, this result bears itself out quite strikingly

with the behavior of Calpine, which our estimates showed to be submitting offers with markups and markdowns up

to 37-times its ex post -optimal response. The data shows that this is due in large part to exorbitantly high markups

in the first quarter of 2002. Since by that point the BES market had only been in operation for a few months, this

could indicate a period of learning on the part of Calpine. It has alternately been suggested that Calpine may have

initially been reluctant to participate in the BES and was only willing to ‘test the waters’ in a limited fashion, and

16



only after observing the market for a few months was willing to earnestly ‘jump in.’

We demonstrate this learning phenomenon by estimating a partial-linear semiparametric variant of the behavioral

model in equation (4):
MUi,t(q)

MU∗
i,t(q)

= β⊤
i Zi,t + φi(q) + ηi,t(q), (6)

where Zi,t consists of indicator variables for the different time periods we compare bidding patterns across. As usual,

we assume E[ηi,t|Z, q] = 0.

In analyzing Calpine’s learning effects, the matrix of linear regressors, Z, consists of an indicator variable, Q1-

Y2002, for bids submitted in quarter 1 of 2002, and another indicator variable, Q1, for bids submitted in quarter

1 of 2002 or 2003. The inclusion of an indicator for quarter 1 of either year is meant to control for any seasonal

variation in bidding behavior. We estimate the model using the Speckman (1998) conditional moment method.

Figure 5 shows the semiparametric estimates and gives the estimated values of β̂SP , both of which are shown to be

statistically significantly nonzero at the 1% level by a standard Wald test. As can be seen, the first quarter of 2002

showed exceedingly high markups, followed by bidding patterns which more closely match our theoretical model

thereafter. It is also evident that once controlling for high markups and markdowns during the first quarter of 2002,

Calpine’s offers exhibit a pattern somewhat similar to that of Reliant with excessively marked-down dec offers and

more reasonably priced inc offers.

Figure 5: Semiparametric Estimates of Calpine’s Conduct Function
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5 COMPARISON OF ACTUAL OFFERS TO NASH EQUILIBRIUM

SUPPLY FUNCTIONS

Finally, we wish to address the question of whether bids into the BES conform to a Nash equilibrium set of supply

functions. While related to the analysis of the EOSFs, this allows us to compare bids to a full equilibrium as opposed

to the partial equilibrium analysis we have conducted thus far. Assuming that an SFE model truly describes the

behavior of the generating firms, PGCs should submit supply functions with the Nash property that no generator

can profitably unilaterally deviate.

Besides the computational complexity of the problem, one of the difficulties in finding Nash equilibrium supply

functions is the multiplicity of equilibria. This multiplicity arises because if firm i’s rivals are submitting elastic

supply functions then firm i should also submit a more elastic supply function, otherwise it would price itself out

of the market. Similarly, if firm i’s rivals are submitting inelastic supply functions then firm i should submit a

more inelastic supply function. As such, there has been an extensive theoretical literature trying to overcome the

non-uniqueness of supply function equilibria by imposing further assumptions and structure on the model.

5.1 Methods of Finding Unique Supply Function Equilibria

Rudkevich (1999) and Baldick, Grant, and Kahn (2000), (2004) study linear supply functions. Rudkevich derives

optimality conditions giving a Nash equilibrium for a supply function when marginal costs and market demand are

linear, firms are restricted to bidding linear supply functions, and the support of the demand shock has at least two

distinct points. He shows these conditions to yield a unique solution and proposes using an iterative myopic best

response algorithm to solve for the equilibrium. Baldick, Grant, and Kahn give conditions under which this myopic

best response algorithm is a contraction mapping—implying the technique will converge from any starting point and

that the unique equilibrium is stable. They also show that while there do exist a multitude of nonlinear equilibria

(which could arise if firms are not restricted to submitting linear supply functions), if a firm’s rivals all bid linear

supply functions it is then optimal for the firm to bid a linear supply function. Although the linear SFE model has

these attractive properties, we find that in our case it falls short of capturing some complexities of the market. For

one, most of our marginal cost estimates exhibit nonlinearities, which we would like to be able to account for in our

derivation. Secondly, the linear supply function model assumes that the generating firms have no capacity constraints,

meaning that the model cannot take account of the relative ‘size’ of the PGCs. From running some sample instances

we found the linear SFE to be very close to competitive marginal-cost bidding—often with markups of less than

$1 over marginal cost. The reason the linear model yields such competitive outcomes is exactly due to the lack of

capacity constraints; because the model treats the multitude of smaller generators as having unbounded capacity, the

equilibrium solution turns out to be very competitive. Niu overcomes this shortcoming of the linear model by only

considering the four largest PGCs and ‘lumping’ the remaining the PGCs into a fifth ‘fringe’ bidder. Thus the linear

model she uses sees only five capacity-unconstrained PGCs and yields bids with more sensible markups. The final

shortcoming of the linear model is that it does not allow PGCs to ‘hockey-stick’ their bids. We mentioned that this

behavior is prevalent in the offer curves of most all the PGCs, and we would like to capture such nonlinear supply

functions in our model.

In their original paper, Klemperer and Meyer show that if the demand shock, ǫ, has an unbounded support,

then there will be a unique set of supply functions solving the governing differential equations and satisfying the

second-order optimality conditions. Although this assumption has the attractive advantage of allowing for a unique
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equilibrium with general-form supply functions, the unbounded support assumption is rather tenuous in a balancing

market which normally dispatches less than 5% of total electricity traded in ERCOT.

A more recent line of theoretical research in SFE has explored the use of capacity constraints and price caps,

which give an additional set of boundary conditions and yield unique equilibria. In a series of papers, Holmberg

(2008), (2005), and (2009) explores this technique with symmetric and asymmetric firms. His method essentially

amounts to assuming that the capacity constraints of the generators will be binding at the price cap and solves for an

equilibrium by integrating an expanding set of coupled differential equations backwards. This requires an assumption

that the support of the demand shock is sufficiently high so as to exhaust the generating capacities of the bidders

with some positive probability. It also implicitly assumes that the bidders will want to ‘hockey-stick’ their bids so as

to reach the price cap when their capacity constraints are binding. Although we find the assumptions of this model

to fit the realities of the BES market well, the solution technique of solving a series of stiff differential equations

backwards is too computationally complex for us to feasibly run the model on our sample of 8160 bidding periods.

Anderson and Hu (2005) develop a unique SFE along the same lines, in which all but one firm reaches its capacity

limit prior to the price cap. Moreover, their model allows for general marginal cost and demand functions, and they

provide a tractable means of finding this equilibrium by formulating the problem as a complementarity problem.

Due to the soundness of their model’s assumptions and the relative simplicity of finding equilibria, we use Anderson

and Hu’s technique.

Although these supply function models can be applied to derive both Nash equilibrium inc and dec offers, we opt

to analyze only the inc part. The reason we make this restriction is because of our earlier finding in analyzing the

EOSFs that most PGCs (including Reliant and Calpine) bid their dec service with markdowns which are excessively

high and cannot be explained by our optimal response model. Furthermore, we restrict our equilibrium analysis to

the three largest PGCs: TXU, Reliant, and Calpine. We make this restriction both to make the problem tractable

and because of our earlier evidence suggesting that the smaller PGCs are not rational strategic players in the BES

market. The comparison of actual bids to EOSFs showed the smaller PGCs to be submitting bids far in excess of

what our model predicts, which acts to price their generation out of the BES market. If we include these firms as

strategic players, our model would essentially conjecture that these firms are making rational offers which would make

each firm’s residual demand more elastic, thereby making the theoretical equilibria more competitive. Because our

analysis shows these smaller firms not to be acting in accordance with rational profit-maximizing behavior, we opt to

hold their bids as fixed at their actual offer curves in constructing the market demand function, D(p), and the residual

demand functions for the three strategic PGCs. In making these assumptions, we are essentially conjecturing that

the strategic PGCs account for the non-strategic behavior of the smaller PGCs in estimating their residual demand

function and calculating their supply function response to their strategic and non-strategic counterparts.

5.2 Derivation of Capacity-Constrained Nash Equilibrium Supply Functions

8 The basic model has n capacity-constrained firms. Let ci(qi) be firm i’s total cost function, which we assume to

be convex, differentiable, and non-negative, and let qi be firm i’s generating capacity. We will assume that each firm

has a different initial marginal cost (which is true in our data set) and that they have been numbered such that

c′1(0) < c′2(0) < · · · < c′n(0). Again, we assume that demand is given by the function D(p, ǫ) = D(p) + ǫ, in which

D(p) is a deterministic function which is strictly decreasing, differentiable, and concave. The stochastic portion of

the demand, ǫ, is again assumed to have support ǫ ∈ [ǫmin, ǫmax], and we suppose that ǫ is distributed according

8Because Anderson and Hu’s paper details their model, we only mention the underlying assumptions, state their main uniqueness

result, and discuss the technique used to solve for the equilibrium. Interested readers should consult their paper for complete details.
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to density function, f(ǫ), which is strictly positive everywhere on this support. Finally, we assume that there is a

price cap on the market, p, and that prices are always non-negative (which they will be for inc energy). Although

Anderson and Hu’s model does not directly account for scheduled sales, we can incorporate them into the model

by defining each firm’s generation quantity, qi, to be qi = qtot
i − QDA

i , where qtot
i is firm i’s total generation. Thus,

qi simply measures the amount of incremental energy sold above any sales contracted outside the BES, and the

contracted quantity, QDA
I , simply shifts the ‘zero point’ of the marginal cost and supply functions.

We now state Anderson and Hu’s main uniqueness result, the details and proof of which are in their paper.

Theorem 5.1. If

−D(c′1(0)) < ǫmin < −D(c′2(0)),

then any supply function equilibrium is part of an ordered family, and only the lowest (smallest offered quantity at

any given price) can have the property that all but one of the firms reach their capacity limits prior to the maximum

price.

The condition of the theorem simply means that at price c′1(0) there is always some demand (even when ǫ = ǫmin,

but when the price reaches c′2(0) there may not be. Another interpretation of the assumption is that at the minimum

shock there is a single economic supplier (i.e. the supplier with the lowest initial marginal cost).

Anderson and Hu’s technique to solve for an equilibrium is based on discretizing the demand shock and approx-

imating each firm’s supply function as being piecewise linear. Given a fixed positive integer, K, they assume the

demand shock can now take one of K discrete values ǫ ∈ {ǫ1, ǫ2, · · · , ǫK}, with ǫmin ≤ ǫ1 ≤ ǫ2 ≤ · · · ≤ ǫK ≤ ǫmax.

They assume that when ǫ = ǫk the MCPE will be pk, where
∑

i si(pk) = D(pk) + ǫk, each firm’s generation will

be qi,k = si(pk), and its supply function will have slope βi,k = s′i(pk) ≥ 0. Next, they define for each firm a set of

points p̃i,1, p̃i,2, · · · , p̃i,K−1 at which its piecewise linear supply function kinks. Thus, we can write each firm’s supply

function as:

si(p) =















qi,1 + βi,1(p − pi,1), 0 ≤ p ≤ p̃i,1

qi,k + βi,k(p − pi,k), p̃i,k−1 ≤ p ≤ p̃i,k, k = 2, · · · , K − 1

qi,K + βi,K(p − pi,K), p̃i,K−1 ≤ p ≤ p;

where the pi,k is the price that firm i conjectures for when ǫ = ǫk. With this piecewise linear form, we can now write

firm i’s profit maximization problem as:

max
pi,k

[D(pi,k) + ǫk −
∑

j 6=i

sj(pi,k)]pi,k − ci(D(pi,k) + ǫk −
∑

j 6=i

sj(pi,k))

s.t. 0 ≤ pi,k ≤ p

0 ≤ D(pi,k) + ǫk −
∑

j 6=i

sj(pi,k) ≤ qi,

which gives a set of FONC for an optimum. When the FONC from all the firms’ profit-maximization problems are

assembled, and we impose the equilibrium condition, p1,k = p2,k = · · · = pn,k = pk ∀k, that the firms all conjecture
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the same price under each demand shock realization, we arrive at the following set of equilibrium conditions:

qi,k − (pk − c′i(qi,k))(
∑

j 6=i

βj,k − D′(pk)) + λi,k − µi,k = 0 ∀i, k

∑

i

qi,k = D(pk) + ǫk ∀k

0 ≤ pk ≤ p ∀k

qi,k+1 − qi,k + βi,k+1(p̃i,k − pk+1) + βi,k(pk − p̃i,k) = 0 ∀i, k = 1, · · · , K − 1 (7)

pk < p̃i,k < pk+1 ∀i, k

βi,k ≥ 0 ∀i, k

0 ≤ qi,k ⊥ µi,k ≥ 0 ∀i, k

qi,k ≤ qi ⊥ λi,k ≥ 0 ∀i, k,

where µi,k and λi,k are Lagrange multipliers on the lower- and upper-bound capacity constraints, respectively.

Anderson and Hu then prove the following theorem, which we restate, showing that for K sufficiently large the

piecewise linear functions will well approximate the actual equilibrium.

Theorem 5.2. Let {s∗i (p)}n
i=1 be a supply function equilibrium on [0, p]. Then, for K large enough, there exists

a solution ǫk, pk, qi,k, p̃i,k, λi,k, µi,k to the equilibrium conditions (7), such that D(pk) + ǫk =
∑

i s∗i (pk), and

qi,k = si(pk). Moreover βi,k = s∗i
′(pk) for all but a finite number of k.

In order to solve for an equilibrium, Anderson and Hu formulate a mathematical program with equilibrium

constraints (MPEC) with the equilibrium conditions (7) as constraints. The difficulty in solving such an MPEC is

that the complementarity conditions between the capacity constraints and their Lagrange multipliers do not satisfy

constraint qualification conditions, making the problem difficult for standard solvers. They suggest overcoming this

issue by choosing ρ ≥ 0 and relaxing the complementarity conditions so that:

qi,kµi,k ≤ ρ

(qi − qi,k)λi,k ≤ ρ.

One could then solve the MPEC by first solving the problem with a large starting value for ρ, and iterating by

reducing ρ and resolving the relaxed MPEC at each step until reaching a sufficiently-small final ρ.

Our implementation follows the Anderson and Hu method. For each bidding period we fit quadratic marginal

cost and demand functions to the actual data by method of least-squares. The capacity constraints, qi, are set

based on the actual quantity each PGC offers into the BES in that bidding period, as opposed to using the total

nameplate capacity of the generating units available to that PGC. We determine generating capacities from the actual

bids because our nameplate estimates do not account for resources being held for self-scheduled reserves, ramping

constraints on the amount of energy available, and other physical limitations. Moreover, if a PGC has excess capacity

available there is no rationale for physically withholding those resources from the BES, since it can easily economically

withhold the generation by submitting it with an excessively high offer. We set the lower-bound of the support of

the demand shock, ǫmin, so as to satisfy the assumptions of Theorem 5.1. Although Anderson and Hu’s simulations

worked well using the CONOPT optimization package, the parameters of our fitted functions were very poorly scaled

and CONOPT could almost never find an initial feasible solution, even with our large starting value of ρ. As such,
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we opted to use the filterSQP solver [details of the algorithm are available in Fletcher and Leyffer (1999)] on the

NEOS optimization server [details of which are available in Czyzyk, Mesnier, and More (1998)], which performed

much better, and attempted to solve the MPEC with a final ρ less than 10−9. Though the equilibrium problem for

each bidding period is feasible, the solver had difficulty with some instances in which the function parameters and

capacity constraints were particularly poorly scaled. Out of a total of 8160 bidding periods, 4297 converged with

K = 10, another 1781 with K = 5, and 1518 with K = 3, leaving 564 instances which could not converge. In all,

7596 instances or 93% of the total sample solved. Our econometric analysis includes only those 7596 instances which

converged. Qualitative inspection of the cases we could not solve do not reveal any pattern that is likely to bias our

results.

5.3 Comparison of Actual Offers to Nash Equilibrium Supply Functions

In order to compare the actual offers to the Nash equilibrium supply functions, we will again estimate the same

behavioral model used in analyzing the EOSFs, with specific reference to equation (4). Because we now wish to test

the extent to which the offers of the three strategic PGCs match our derived theoretical optima, we will estimate our

behavioral model both using the entire cross section of offers from the three PGCs and for each PGC individually.

Figure 6 shows two sample actual and Nash equilibrium offer curves for TXU from two different bidding periods.

In the left pane, we see that TXU’s actual offers are relatively close to its marginal generating costs, whereas its

Nash equilibrium supply function requires higher offer prices. The derived equilibrium also shows the nonlinear

shape of the Nash equilibrium supply function, which we would not be able to capture in a linear SFE model. In

the right pane, the actual and equilibrium offers match closely for imbalance quantities less than 600MW, but TXU

prices its inc offers above 600MW at higher than the equilibrium calls for. Figures 7 through 10 show our estimated

φ̂NP (q) and the 95% confidence interval. The second pane in the figures shows the same plot with the axes truncated

to show the estimates with greater granularity. Moreover, table 6 summarizes the estimate and gives upper- and

lower-confidence interval bounds. Again, the φ̂NP (q) estimator spikes at q ≈ 0 because of the extreme sensitivity of

the φ multiplier to errors when the imbalance quantity is close to zero.

As the figures show, while the φ̂NP (q) estimator varies considerably across the supply stack, the φ = 1 line lies

within the confidence interval bounds in all four estimates. As such, we are unable to reject the null hypothesis that

φ̂NP (q) = 1. In fact the plots with the truncated axes show that while the φ̂NP (q) estimator is not identically one,

it is nonetheless within a close neighborhood of one. Moreover, in comparison to the estimates of φ̂NP (q) from the

analysis of the EOSFs of the smaller PGCs, we see that the behavior of the three major PGCs are better predicted

by a Nash supply function equilibrium than by a EOSF. Given the large magnitude of the φ̂NP (q) estimator for

low values of q and the corresponding wide variance bands, however, the predictions of the SFE model are highly

sensitive to miscalculations on the part of the PGCs or the economist applying the theory. Nonetheless, other spot

market analyses, such as Niu’s, suggest that precisely pinpointing the bidding behavior of the firms is not crucial

in determining price outcomes of the market. Although there are efficiency and profit consequences from irrational

behavior of the smaller PGCs, if one’s primary concern is the price of balancing energy, then the SFE model performs

admirably with regard to incremental energy—with Niu’s estimates showing actual inc prices to on average be within

3.9% of linear SFE predictions. Moreover, the fact that she restricted herself to a linear SFE model suggests that

nonlinear supply functions may not even be necessary to predict market price outcomes. The reason a linear model

may be sufficient is that the BES will rarely exhaust the supply of the PGCs, as such the ‘hockey-sticked’ portion of

the supply stacks rarely set the MCPE. Although there tends to be a large disparity between predicted and actual

dec prices, if the excessively low dec bids are due to operating costs and constraints not captured in our data, then
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this is not necessarily a failing of the model.

Figure 6: Actual and Nash Equilibrium Offers Example
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(a) TXU’s Actual and Nash Equilibrium Offers from (b) TXU’s Actual and Nash Equilibrium Offers from

hour ending 6:00am on 31 May, 2002 hour ending 2:00pm on 7 August, 2003

6 CONCLUSION

The results of our analysis show that most bidders participating in the ERCOT BES do not act in accordance with

what is predicted by an optimal response model. This is characterized by them making offers with markups and

markdowns which are far in excess of that implied by our theoretically ex post -optimal supply functions. With smaller

power producers, municipalities, cooperatives, and cogenerators, we have explained this as a general reluctance to

participate in the BES. Amongst the large PGCs, TXU and Reliant’s behavior matched our theoretical optima most

closely. Calpine, the other large PGC, was found to be bidding with markups far greater than our model predicted,

although we have shown this to be due to exceedingly high markups in the first quarter of 2002—when we control

for the excessively high offers in this period, Calpine’s offer behavior more closely matches that of Reliant.

When we incorporated capacity constraints into the model and restricted attention to the three strategic PGCs,

the actual offers were within a ballpark of the Nash equilibrium supply functions. Moreover our estimates showed

that we could not reject the null hypothesis that the actual observed behavior was not statistically significantly

different from Nash. Thus our results suggest that an SFE model can well describe offer behavior in electricity spot

markets, although it is highly dependent on judicious application to firms we believe to be bidding strategically.

Though the model does not exactly predict the behavior of bidders, the fact that the three dominant players tend to

set the margin and bid in accordance with the model gives it a fair amount of power in predicting price outcomes.

However, SFE is considered an attractive model of spot electricity markets in part because it assumes a strategy

space and firm behavior which is reminiscent of the actual price/quantity offers submitted by generators. Yet in

a sense, our analysis suggests the one attractive point of SFE—its behavioral assumptions and predictions—tends

to not be in tune with the individual behavior patterns of a large segment of the market. This begs the question
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Figure 7: Estimated Industry Conduct Function
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Figure 8: TXU’s Estimated Conduct Function
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Figure 9: Reliant’s Estimated Conduct Function
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Figure 10: Calpine’s Estimated Conduct Function
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Table 6: Summary Statistics of Conduct Functions

q 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overall

φ̂NP (q) 1775.9 23.858 0.402 0.525 1.155 0.389 0.000 0.146 0.324 1.594 2.166

ÛNP (q) 6333.9 499.4 5.228 2.691 8.129 4.630 1.962 2.441 1.370 7.49 9.034

L̂NP (q) -2782.1 -451.68 -4.425 -1.640 -5.819 -3.851 -1.961 -2.149 -0.722 -4.302 -4.702

TXU

φ̂NP (q) 315.58 163.95 57.755 12.313 2.178 0.871 0.549 0.524 0.859 1.216 1.352

ÛNP (q) 1870.8 1120.2 661.96 287.19 91.994 23.956 5.981 2.971 4.279 5.374 4.014

L̂NP (q) -1239.6 -792.32 -546.45 -262.56 -87.638 -22.214 -4.882 -1.924 -2.562 -2.943 -1.310

Reliant

φ̂NP (q) 2.714 2.167 1.623 1.164 0.869 0.833 1.259 2.435 4.400 6.728 8.885

ÛNP (q) 31.757 18.738 15.465 13.375 11.102 9.442 11.273 17.796 26.321 32.48 34.647

L̂NP (q) -26.329 -14.404 -12.219 -11.047 -9.363 -7.776 -8.756 -12.927 -17.521 -19.024 -16.877

Calpine

φ̂NP (q) 2531.7 1908.4 1122.3 455.01 121.47 21.997 2.696 0.180 0.084 0.204 0.277

ÛNP (q) 7086.9 6840.5 5498.8 3032.9 1377.7 516.3 171.41 49.213 12.85 2.931 1.429

L̂NP (q) -2023.5 -3023.6 -3254.3 -2122.9 -1134.8 -472.3 -166.02 -48.852 -12.681 -2.522 -0.875

whether complicated general-form SFE models, such as the one we employed, may simply be an overly complex

model of the market, which gives no better behavioral or price predictions than simpler models. For instance, linear

SFE models have been shown to give fairly accurate price predictions even though they cannot capture complicated

hockey-stick type bidding. Even more conventional Cournot-type models have been applied to studying markets.

Moreover, many market power studies and models for assessing the economic impacts of transmission constraints and

other nuances of power systems rely on simpler Cournot modeling. Although Cournot models cannot incorporate the

institutional details which SFE models can, this study suggests that at least with respect to determining equilibrium

prices, the results of Nash equilibrium models are quite robust and it may be sufficient to use Cournot models which

allow inclusion of transmission congestion and other details of power systems. Cournot models do have the difficulty,

however, that electricity balancing markets have little or no demand elasticity. As such, Cournot models usually

require estimating a residual demand by assuming there is a competitive fringe. Our analysis suggests, however, that

the fringe suppliers in the market behave far from competitively, and that their behavior can be the most difficult

to predict.

Our analysis also highlights some of the issues arising in the oversight of a market by regulators and market

monitors. With the behavior of the smaller PGCs, we observed these firms submitting offers with markups and

markdowns far in excess of what our supply function model suggests would be profit-maximizing in a non-cooperative

equilibrium. Observation of such behavior may lead us to conclude these firms are exercising market and acting to

raise the MCPE, however a more thorough analysis shows these firms’ residual demand is far too elastic and as

such these bids merely price the firms out of the market. This demonstrates that in undertaking market mitigation,

regulators and market monitors should not be focused solely on behavior (for example, observing high markups), but

also on outcomes (for example, whether high markups drive up the MCPE). This type of restraint applies not only to

simple ‘eyeballing’ of market data for high offers, but also to use of sophisticated equilibrium models such as the one
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we studied. We can also this type of analysis to draw conclusions about how market mitigation measures should be

targeted. A ‘shame cap’ which is meant to punish any firm with an offer above a certain threshold may be targeting

the wrong culprit if the high offer is being used by the firm to ensure it doesn’t have to deviate from its schedule.

As such, it may be more sensible to only target high bids which set (or are close to setting) the margin. However,

depending on the impact the observed economic withholding has on efficiency of the market, regulators may wish to

take steps to facilitate entry into the market by these firms, which may be acting to exclude themselves. Hortacsu and

Puller’s analysis of the BES shows these efficiency losses to be sizeable, suggesting a need by the regulator to adjust

the market design. By contrast, the restraint showed by TXU in its BES offers suggests that giving PGCs native

load obligations with a fixed or capped retail rate may help keep their behavior in the balancing market in check.

We may even go further, concluding that LSEs should be encouraged to retain at least a portion of their generating

assets, and that excessive forced divestitures may increase PGCs’ incentives to exercise market power. On the flip

side, we were able to show the model’s predictions are fairly in line with the behavior of the larger PGCs, suggesting

the type of equilibrium analysis we’ve undertaken has some value in analyzing policy decisions. For example, in a

market with a handful of large strategic firms and a small fringe, these types of models may prove to be one useful

tool in analysis of mergers, divestitures, or alternate market designs. It is important to bear in mind, however, that

these models can result in vastly different conclusions depending on nuanced modeling assumptions.

Finally, we draw some simple market design conclusions. We showed the smaller PGCs submit non-optimal offers,

instead relying primarily on the bilateral markets, and larger PGCs submit non-optimal dec offers. If the behavior

of the smaller PGCs is due to some actual or perceived cost of transacting in the balancing market, for instance

from having to determine offer prices in a complicated optimization problem, this suggests efficient trade may benefit

from creating voluntary liquid day-ahead and real-time markets such as those in PJM which facilitate trading and

reduce transaction costs. The data in our study is taken from the current ERCOT market, which by design tries to

rely primarily on bilateral markets. It is hoped that the new nodal design which includes a voluntary two-settlement

market will improve liquidity and facilitate optimal behavior by participants.
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Table 7: Firm Conduct Estimates for Ex Post -Optimal Bid Curves

q -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

TXU

φ̂NP (q) 0.410 0.298 0.155 0.272 0.712 1.247 0.235 0.090 0.109 0.167 0.226

ÛNP (q) 0.446 0.354 0.185 0.360 1.443 2.705 0.758 0.141 0.141 0.192 0.241

L̂NP (q) 0.373 0.242 0.125 0.184 -0.020 -0.211 -0.288 0.037 0.077 0.141 0.210

Reliant Energy

φ̂NP (q) 38.888 22.816 2.702 0.386 0.108 0.141 0.962 0.896 0.875 1.486 2.225

ÛNP (q) 41.24 25.758 4.120 0.606 0.630 0.936 1.548 1.169 1.107 1.843 2.697

L̂NP (q) 36.536 19.873 1.284 0.166 -0.413 -0.654 0.377 0.623 0.644 1.129 1.752

Calpine

φ̂NP (q) 37.851 22.703 13.476 19.051 36.385 33.531 3.637 0.202 0.947 9.775 21.785

ÛNP (q) 65.276 42.197 20.046 24.974 62.567 88.293 23.714 3.239 7.254 32.741 52.15

L̂NP (q) 10.425 3.208 6.907 13.127 10.203 -21.231 -16.441 -2.835 -5.360 -13.192 -8.580

Central Power and Light

φ̂NP (q) 6.482 7.086 8.252 11.3 17.665 19.195 -17.738 -14.751 -10.479 -6.581 -4.454

ÛNP (q) 9.566 10.218 10.349 13.145 21.818 53.54 0.142 -8.226 -7.324 -4.197 -1.919

L̂NP (q) 3.398 3.954 6.155 9.455 13.511 -15.149 -35.618 -21.277 -13.634 -8.965 -6.990

City of San Antonio Public Service

φ̂NP (q) 2.921 2.481 2.855 4.327 6.882 6.523 0.625 2.498 5.795 10.692 15.167

ÛNP (q) 3.158 2.665 2.996 4.535 7.245 8.634 2.273 3.700 6.896 12.342 16.916

L̂NP (q) 2.684 2.298 2.715 4.118 6.518 4.413 -1.023 1.297 4.693 9.042 13.419

City of Austin

φ̂NP (q) 12.192 6.335 3.536 4.263 7.896 20.122 30.647 25.85 23.646 27.333 33.879

ÛNP (q) 12.919 6.935 3.914 4.858 10.346 36.898 56.852 46.089 40.105 40.209 44.359

L̂NP (q) 11.466 5.734 3.158 3.668 5.445 3.347 4.442 5.611 7.188 14.457 23.4

Lower Colorado River Authority

φ̂NP (q) 4.908 4.987 5.450 7.100 9.099 7.459 -0.807 -0.949 -1.022 1.868 3.490

ÛNP (q) 5.680 5.756 5.994 7.749 10.118 9.776 1.595 0.487 0.534 5.689 6.993

L̂NP (q) 4.135 4.218 4.906 6.451 8.081 5.142 -3.208 -2.386 -2.578 -1.954 -0.013

West Texas Utilities

φ̂NP (q) 8.363 8.122 10.655 19.319 31.167 19.712 -42.041 -30.326 -22.213 -14.949 -10.192

ÛNP (q) 9.878 9.188 12.177 21.456 34.289 63.716 11.601 1.605 -1.858 -1.648 -1.222

L̂NP (q) 6.849 7.056 9.132 17.182 28.046 -24.293 -95.683 -62.256 -42.568 -28.249 -19.161

Midlothian Energy

φ̂NP (q) 86.959 69.883 50.416 430.98 1821 2415.9 1946.8 399.65 8.887 -0.184 -0.685

ÛNP (q) 112.54 108.07 123.5 772.12 2383.4 2839.3 2656.3 837.64 73.59 3.909 0.600

L̂NP (q) 61.375 31.693 -22.669 89.847 1258.6 1992.4 1237.4 -38.328 -55.815 -4.276 -1.971
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Guadalupe Power Partners

φ̂NP (q) 137.69 105.76 70.338 47.232 202.87 846.16 216.07 16.876 3.274 27.155 116.1

ÛNP (q) 158.29 134.64 94.787 75.534 275.21 1014 363.75 59.314 16.801 44.643 142.09

L̂NP (q) 117.1 76.871 45.889 18.929 130.52 678.32 68.399 -25.562 -10.254 9.666 90.106

Lamar Power Partners

φ̂NP (q) 3299.7 3054.2 1192.5 32.262 4.591 0.309 -5.148 -2.923 -1.416 -2.572 -3.773

ÛNP (q) 3982.3 3860.8 1998.1 155.34 17.65 12.728 2.464 2.190 16.376 24.903 29.265

L̂NP (q) 2617 2247.7 386.89 -90.815 -8.469 -12.111 -12.759 -8.036 -19.208 -30.047 -36.811

Brazos Electric Power Cooperative

φ̂NP (q) 240.14 153.06 58.654 48.951 63.833 89.879 112.28 42.427 7.619 48.723 63.835

ÛNP (q) 258.63 181.44 73.436 60.235 79.14 125.89 396.89 135.58 98.954 254.29 134.97

L̂NP (q) 221.65 124.69 43.871 37.667 48.527 53.872 -172.32 -50.732 -83.716 -156.85 -7.299

Sweeny Cogeneration General

φ̂NP (q) 72.132 65.248 80.056 120.92 150.36 -51.798 -165.05 -92.266 -60.122 -46.99 -35.291

ÛNP (q) 79.296 68.959 82.617 125.59 155.95 -1.311 -147.21 -85.501 -56.175 -42.795 -33.075

L̂NP (q) 64.968 61.537 77.496 116.25 144.77 -102.28 -182.88 -99.03 -64.07 -51.184 -37.506

Hays Energy

φ̂NP (q) 74.401 66.108 146.38 1533.8 3752.1 4255 3844.9 1901.2 145.79 -0.411 -1.911

ÛNP (q) 87.246 95.471 429.08 2459.3 4700.6 4853.1 4925.3 3353.2 611.45 35.956 1.182

L̂NP (q) 61.555 36.745 -136.32 608.33 2803.5 3656.9 2764.5 449.21 -319.88 -36.777 -5.004

Tractabel Power

φ̂NP (q) 408.7 371.92 375.67 2284 6403.9 7618.7 4249.3 482.14 -2.531 0.828 15.847

ÛNP (q) 435.56 436.93 857.9 3659.5 7767.1 8616.1 5486 925.11 51.921 9.2552 25.917

L̂NP (q) 381.84 306.92 -106.55 908.48 5040.7 6621.2 3012.6 39.171 -56.983 -7.598 5.777

Ingleside

φ̂NP (q) 659.66 150.31 23.786 13.834 16.168 0.215 -10.786 -6.120 -3.263 -3.647 -7.976

ÛNP (q) 832.64 229.6 46.04 20.423 17.632 6.556 -8.541 -5.28 -2.520 -1.771 -4.856

L̂NP (q) 486.69 71.031 1.531 7.245 14.705 -6.125 -13.032 -6.959 -4.006 -5.522 -11.097

BP Energy

φ̂NP (q) 1139.1 738.91 161.76 555.18 2267.4 2420.9 1036.4 135.6 21.412 201.92 396.49

ÛNP (q) 1253.4 973.98 286.45 1024.2 3054 2862.9 1426.5 306.18 93.832 488.14 558.66

L̂NP (q) 1024.7 503.83 37.068 86.209 1480.9 1978.9 646.35 -34.976 -51.008 -84.299 234.33

Bryan Texas Utilities

φ̂NP (q) 67.502 62.421 73.056 91.267 104.45 102.79 -29.111 -59.537 -40.866 -55.148 -73.723

ÛNP (q) 73.779 71.937 84.456 105.14 122.1 152.76 87.021 -13.49 -5.718 -24.767 -60.958

L̂NP (q) 61.224 52.906 61.656 77.391 86.809 52.814 -145.24 -105.58 -76.014 -85.529 -86.488
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City of Garland

φ̂NP (q) 31.018 37.131 45.934 60.541 72.503 44.056 -49.748 -38.466 -26.87 -21.353 -20.896

ÛNP (q) 32.217 38.807 47.866 63.218 77.552 75.353 -35.201 -31.337 -20.741 -14.073 -16.523

L̂NP (q) 29.818 35.455 44.002 57.865 67.454 12.76 -64.295 -45.595 -32.998 -28.634 -25.269

Rio Nogales Power Project

φ̂NP (q) 130.25 140.26 184.3 272.66 361.84 327.53 59.127 -7.509 -8.773 -6.187 -5.346

ÛNP (q) 161.52 173.09 230.04 341.29 469.88 527.04 153.7 15.574 -0.317 -0.750 -0.327

L̂NP (q) 98.985 107.43 138.56 204.03 253.79 128.02 -35.448 -30.593 -17.229 -11.624 -10.364

Tenaska Gateway Partners

φ̂NP (q) 23.603 10.066 6.707 7.232 10.2 1.885 -12.027 -5.519 -2.289 -0.755 -2.377

ÛNP (q) 26.747 12.04 7.684 8.035 11.051 4.790 -10.427 -3.987 -0.457 2.369 -1.174

L̂NP (q) 20.459 8.093 5.729 6.429 9.349 -1.021 -13.627 -7.051 -4.121 -3.879 -3.579

Cogeneration Lyondell

φ̂NP (q) 33.909 41.682 37.625 57.343 165.75 238.03 36.914 -8.322 1.543 156.63 231.86

ÛNP (q) 348.4 376.69 117.34 73.837 210.66 324.32 87.83 -2.745 17.484 223.97 294.08

L̂NP (q) -280.58 -293.32 -42.089 40.848 120.84 151.74 -14.002 -13.899 -14.399 89.291 169.64

Bastrop Energy Partners

φ̂NP (q) 7107.2 6968.4 5388 719.98 8.163 -2.980 11.014 12.234 4.586 -0.562 -1.916

ÛNP (q) 8177.7 8103.8 6670.1 1401.9 135.12 15.845 21.962 36.881 71.695 97.758 107.94

L̂NP (q) 6036.6 5833 4105.9 38.038 -118.79 -21.804 0.067 -12.413 -62.524 -98.883 -111.78

Mirant Wichita Falls Management

φ̂NP (q) 1900.4 1652 1272.6 902.76 646.16 485.1 362.01 193.97 76.32 73.529 84.1

ÛNP (q) 2366.5 2418.3 2093.3 1580.4 1191.5 1103.7 1320.8 591.04 256.6 191.43 147.37

L̂NP (q) 1434.3 885.67 451.88 225.14 100.81 -133.51 -596.79 -203.11 -103.96 -44.377 20.826

South Texas Electric Cooperative

φ̂NP (q) 246.67 223.42 261.99 384.41 516.49 581.31 119.56 -46.411 -46.736 -70.477 -75.031

ÛNP (q) 280.9 266.41 284.11 409.09 554.71 711.57 306.58 -9.351 -11.376 -46.834 -62.865

L̂NP (q) 212.44 180.44 239.87 359.74 478.26 451.05 -67.468 -83.472 -82.095 -94.121 -87.197

Brownsville Public Utility Board

φ̂NP (q) 1291.8 554.13 74.277 7.9159 5.0634 4.4561 0.61217 -1.313 -1.961 -8.626 -17.122

ÛNP (q) 1699.7 851.84 178.92 28.581 11.426 7.055 1.767 -0.237 1.075 0.720 -6.346

L̂NP (q) 883.83 256.42 -30.363 -12.749 -1.299 1.857 -0.543 -2.389 -4.997 -17.972 -27.898

AES Deepwater

φ̂NP (q) 48.884 48.884 48.884 48.885 49.378 316.22 585.6 586.1 586.1 586.1 586.1

ÛNP (q) 72.919 74.573 80.243 92.525 117.53 587.56 791.82 719.64 682.07 664.71 659.65

L̂NP (q) 24.849 23.196 17.525 5.244 -18.773 44.893 379.37 452.56 490.14 507.49 512.55
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Gregory Power Partners

φ̂NP (q) 71.079 73.507 114.15 140.83 126.88 24.593 -33.78 -18.166 -5.669 2.490 2.893

ÛNP (q) 78.674 84.024 137.63 166.58 160.98 79.681 -1.816 -6.3 6.169 19.022 18.114

L̂NP (q) 63.485 62.991 90.674 115.08 92.787 -30.495 -65.744 -30.032 -17.506 -14.041 -12.329

Extex Laporte

φ̂NP (q) 253.88 235.31 151.71 16.094 1.523 1.564 2.230 3.197 3.982 3.996 3.792

ÛNP (q) 343.13 575.13 600.84 187.94 45.69 7.981 3.309 3.932 4.482 4.545 4.186

L̂NP (q) 164.62 -104.51 -297.41 -155.75 -42.643 -4.853 1.151 2.462 3.482 3.447 3.398

Denton Municipal Electric

φ̂NP (q) 85.735 63.219 42.33 53.15 89.583 153.19 197.96 509.23 3021.7 4885.7 5285.9

ÛNP (q) 92.863 82.649 59.818 89.571 153.93 434.32 713.13 1365.7 4441.7 6735.6 5592.3

L̂NP (q) 78.606 43.79 24.842 16.728 25.239 -127.94 -317.21 -347.29 1601.7 3035.9 4979.6

Air Liquide

φ̂NP (q) 644.11 613.1 652.72 921.92 1362.3 651.69 42.235 -18.553 -10.483 -16.994 -26.711

ÛNP (q) 709.21 700.35 793.14 1179.2 1863.3 1047.2 167.52 8.163 -4.304 -10.769 -19.871

L̂NP (q) 579.01 525.85 512.29 664.67 861.4 256.19 -83.046 -45.269 -16.663 -23.22 -33.552
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