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Evaluating the Impacts of Real-Time Pricing on the
Usage of Wind Generation

Ramteen Sioshansi and Walter Short

Abstract—One of the impediments to large-scale use of wind
generation within power systems is its non-dispatchability and
variable and uncertain real-time availability. Operating con-
straints on conventional generators such as minimum generation
points, forbidden zones, and ramping limits as well as system
constraints such as power flow limits and ancillary service
requirements may force a system operator to curtail wind
generation in order to ensure feasibility. Furthermore, the pattern
of wind availability and electricity demand may not allow wind
generation to be fully utilized in all hours. One solution to
these issues, which could reduce these inflexibilities, is the use of
real-time pricing (RTP) tariffs which can both smooth-out the
diurnal load pattern in order to reduce the impact of binding
unit operating and system constraints on wind utilization, and
allow demand to increase in response to the availability of costless
wind generation. We use and analyze a detailed unit commitment
model of the Texas power system with different estimates of
demand elasticities to demonstrate the potential increases in wind
generation from implementing RTP.

Index Terms—Power system economics, wind power genera-
tion, variable renewable energy resources, real-time pricing, unit
commitment

I. I NTRODUCTION

ONE of the difficulties presented by the use of wind and
some other renewable sources of electricity is the fact

that their actual available real-time generation can be vari-
able and uncertainex ante, limiting their dispatchability and
dependability. For example, the availability of photovoltaic-
or concentrating-solar energy is governed by the ambient
sunlight, which is outside human control. Moreover, in some
regions the availability of such a variable renewable energy
resource can be negatively correlated with electricity demand.

Because supply and demand of electricity must be perfectly
balanced at all times and most storage technologies are costly,
the pattern of variable renewable energy supply and electric
loads may sometimes preclude these energy sources from
serving demand and at other time require their generation
to be curtailed when output exceeds net load. These issues
are further exacerbated by constraints on the operations of
conventional and other dispatchable generation units (e.g.
minimum operating points, forbidden generating zones, min-
imum up and down times, and ramp constraints) and on
the power system (e.g. transmission constraints and ancillary
service (AS) requirements). Reference [1] gives the example
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of the Danish system, which has a large installed base of
wind generators. The Danish system relies on combined heat
and power thermal generators for heating, and as such many
thermal plants must be constantly kept online to serve heating
needs. As a result, wind generation must often be curtailed on
cold windy nights when wind generation could potentially be
quite high but heating loads require keeping thermal generators
online. Even in systems which do not rely on combined heat
and power, the limited flexibility of the power system may
require curtailment of renewable generation. Overnight they
can be displaced by baseload units, which are normally kept
online due to slow and expensive startups and are often kept
close to their minimum operating points. During the day they
can be displaced by mid-merit units that are starting- and
ramping-up in the morning shoulder and ramping-down in the
evening shoulder, due to midday peaks. Transmission con-
straints can substantially limit renewable energy production,
especially in systems in which wind or solar resources are
sited away from load pockets. In addition to these system
inflexibility issues, day- and hour-ahead uncertainty in the
real-time availability of variable renewable energy resources
may require increasing AS procurements from dispatchable
generators in order to ensure system reliability, potentially
increasing the displacement of renewable resources due to
operating constraints on the dispatchable generators used. [2],
[3], and [4] describe some methods of estimating the impacts
of integrating wind generators into power systems and their
associated AS requirements.

In many power systems today, these issues are largely muted
by the fact that variable renewable energy resources account
for a relatively small portion of total energy supplied. In the
California ISO’s control area, for instance, wind generation
rarely exceeded 1,100 MW in 2006 which is approximately
4% of the average system load of 27,406 MW. When wind
and other variable energy resources account for such a small
fraction of generation, their non-anticipativity will tend to have
minimal effects on system reliability. With renewable portfo-
lio standards coming into force and other market pressures
increasing investments and reliance on these energy resources,
these system operations issues will slowly become more preva-
lent. One potential way of overcoming these issues would be
to alter the load pattern in such a way that electricity demand
more closely follows supply of variable energy resources by
leveraging real-time demand response. For example, flattening
the daily peak may reduce the displacement of renewables
by ramp-constrained units, shifting day-time loads to hours
later in the night may increase the system’s flexibility to take
renewable generation overnight, and using locational price
differences to increase loads in areas with an abundant supply
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of renewable generation and reduce it elsewhere can increase
wind utilization in a transmission-constrained system.

Over the last few years a number of authors have advocated
real-time pricing (RTP) of electricity, in which retail electric
prices change frequently to reflect changes in the supply
of electricity and the cost of serving load (they typically
suggest rates change hourly or sub-hourly since the cost of
service can vary significantly on this timescale). These authors
have typically advocated RTP for standard economic reasons,
such as increasing social welfare by having consumers face
the actual marginal cost of electricity service, or decreasing
generators’ market power by making demand more elastic.
Reference [5] suggests that the demand response resulting
from RTP could have lessened the severity of the 2000-
2001 California electricity crisis, while [6] and [7] simulate
the efficiency gains from RTP. These and other simulations
generally show that RTP has the effect of changing the diurnal
load pattern by flattening peaks and shifting those loads to off-
peak hours, since peak prices tend to be higher than the fixed
retail rates customers would otherwise face whereas off-peak
prices are lower—which is the exact change in the load pattern
which may increase system flexibility and allow greater use of
renewable energy resources. The use of locational prices can
help alleviate transmission bottlenecks and further ‘re-shape’
the load pattern in different parts of the transmission network
to more-closely follow the availability of renewable energy.

In this paper we use a detailed unit commitment model
with historical system, market, and wind availability datafrom
2005 in the Electricity Reliability Council of Texas (ERCOT)
system, to simulate the potential for RTP to increase the
utilization of large-scale wind farms. We demonstrate that
introducing demand response increases both the percentage
of total load which is served by wind generation, and the
percentage of potential wind generation which is actually used
in real-time. We also provide estimates of the market value
of the incremental wind generation from introducing demand
response. We further demonstrate that putting commercial and
industrial (C&I) customers only on RTP tariffs while keeping
residential customers on fixed rates can achieve most of the
gains from RTP, which may be a more feasible alternative,
given the costs of installing interval meters on residential
customers. The remainder of this paper proceeds as follows:
Section II describes the models, data, and assumptions under-
lying our analysis, section III summarizes the results of our
simulations, and section IV concludes.

II. M ODEL AND DATA

Our analysis is based on a competitive unit commitment
model of the ERCOT system, the details of which are given
in the appendix.1 Our simulations were conducted using a set
of 165 days from January to October of 2005, for which all the
requisite datasets were available. Each day in the sample was
simulated using two unit commitment models, one of which
simulated a day-ahead commitment and the other a real-time

1See [8] and [9] for a background on unit commitment models andsolution
techniques.

dispatch.2

The day-ahead unit commitment was solved using an hourly
time-step for the commitment and dispatch variables and day-
ahead forecasts of hourly loads, transmission capacities,and
availability of wind generation. In addition to load-balance
constraints the model included load-based AS requirements.
Our model only accounted for spinning and non-spinning
reserves (i.e. regulation services were not modeled), and
assumed a 15-minute response time for both AS products
to determine generators’ capabilities based on their hourly
ramp rates. We assumed a total reserve requirement of9%,
at least half of which must be met by spinning reserves. Wind
generators were assumed not to be qualified to provide AS,
and we further assumed the system operator (SO) may ‘der-
ate’ forecasted wind generation schedules in determining AS
requirements, due to uncertainty in their real-time availability.
More precisely, we formulated the AS requirement in each
hour, t, as:3

ρwt + gt + at ≥ (1 + r)lt, (1)

whereρ ∈ [0, 1] is the day-ahead wind schedule rating factor,
r ≥ 0 is the fraction of load which must be procured in AS,wt,
gt, at are the total day-ahead wind generation, conventional
generation, and AS schedules, respectively, andlt is the load.
The wind schedule rating factor can be thought of analogously
as increasing day-ahead AS requirements in proportion to day-
ahead wind schedules. To see this, note that the hourly load-
balance constraint is given by:4

wt + gt = lt. (2)

Combining equations (1) and (2), the AS requirement be-
comes:

at ≥ rlt + (1 − ρ)wt,

the right-hand side of which is decreasing inρ. We simulated
a set of rating factors ranging from0.1 to 1.

Once the day-ahead commitments of the units were deter-
mined, these were then fixed (except for units assigned non-
spinning reserves, which could be started up) and a dispatch
model was solved with 15-minute time-steps and actual load,
transmission capacity, and wind generation availability data,
representing real-time system operations. The dispatch model
did not place upper and lower bounds on generators’ outputs
based on the day-ahead schedule, rather the SO is assumed to
choose a feasible social welfare-maximizing dispatch (given
the fixed commitments). As such, the day-ahead market is

2In addition to these we also used an ‘initialization’ unit commitment,
which had a three-day planning horizon (with the day being studied in the
middle), to fix the starting and ending commitment and initial minimum up
and down time constraints on the generating units. Importantly, the inclusion
of the third day ensures baseload units are not taken offline in the evening
of the day being studied, as might happen with a one-day planning horizon
since the model would not see the need to keep these units online to serve
the following day’s load.

3As mentioned above, there are actually two sets of constraints of this form
for both spinning and non-spinning reserves.

4Because a zonal power flow model is included in our formulation (which
is described in further detail later), there is in fact a load-balance constraint
for each transmission zone, which also ensures network flowsdo not violate
the transfer capacity of any transmission line. The constraint given here is
actually the sum of the individual zonal load-balance constraints.
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assumed to only make binding commitments as opposed to
dispatches. Both the day-ahead unit commitment and real-
time dispatch models were formulated as mixed-integer linear
programs (MILPs) using GAMS and solved using cplex 9.0.

Generator costs were modeled as consisting of three parts—
a startup cost, which is incurred whenever a generator is started
up; a spinning no-load cost, which is incurred whenever a
generator is online; and a non-decreasing stepped variable
generating cost function. Generator capacities, minimum gen-
erating points, ramp rates, AS capabilities, minimum up and
down times, and must-run requirements were included in the
model formulation as well. Generator costs were computed
using heat rate values, fuel and emission permit prices, and
variable operation and maintenance costs obtained from Global
Energy Decisions and Platts Energy. Generator constraint
parameters were also obtained from the same sources.

Power flows within the network were represented using
the linearized zonal DC power-flow model used in ERCOT’s
congestion management system—consisting of five zones and
six commercially significant constraints (CSCs). Power trans-
fer distribution factors (PTDFs) between zonal injectionsand
CSCs, and total transfer capacities (TTCs) on each CSC were
obtained from ERCOT. The PTDF data consisted of monthly
averages, whereas TTCs were the monitored limit on each
CSC, reported at 15-minute intervals.

Simulations without RTP were conducted using actual his-
torical load data, which were obtained from the Public Utility
Commission of Texas (PUCT). The PUCT data included both
day-ahead load forecasts as well as actual real-time loads
reported at 15-minute intervals. Simulations with RTP were
conducted by constructing a price-elastic demand function,
and formulating the unit commitment objective to maximize
social surplus as opposed to minimizing cost. Following [7]
we assume that cross-price elasticities between demands in
different periods are zero.5 As done in [10], we construct the
demand function by assuming a fixed elasticity and calibrating
the demand function so it goes through the locus defined by the
actual historical load and the retail price of electricity—since
the actual historical loads reveal demand for electricity at the
historical retail price. Because different customer typesface
different retail prices, loads were broken down into industrial,
commercial, and residential segments, based on the proportion
of total electricity demand in Texas in 2005 of the three
sectors, as reported by the US Department of Energy’s Energy
Information Administration (EIA). The EIA also provided
average retail rates for Texas in 2005 for the three customer
segments, which we used in determining the retail price of
electricity. Because these rates included non-energy costs such
as distribution, metering, and nuclear decommissioning, we
subtracted these components from the EIA-reported rates,
based on PUCT tariffs. We conducted simulations with a set of
demand functions representing elasticities ranging from−0.10
to −0.30, which is consistent with the range of short-run
demand elasticity estimates reported in [11]. Each demand
function was approximated as a 100-piece step function.

We assume that the SO sets energy and ancillary service

5We discuss the implications of this assumption further in section IV.

prices by fixing the integer variables to their optimal valueand
using the dual variables from the resulting linear programming
problem. This use of linear energy and ancillary service prices
does raise the issue of economic confiscation, due to the
non-convexity of generator costs [12], [13], and [14]. Most
SOs overcome this issue by using supplemental ‘make-whole’
payments, which ensure generators fully recover their costs,
and uplifting those costs to loads. We ignore any effect these
uplift charges may have on customer behavior and revelation
of their willingness to pay for energy.

Wind generators are assumed to operate at no cost. Their
generation is limited by both the installed nameplate capacity
at each wind site, as well as prevailing wind speeds. In order
to model large-scale wind investments in our simulations, we
include all wind generators which are currently built, under
construction, or proposed to be built by 2011—totaling 9,864
MW of nameplate capacity (which represents approximately
10% of the system nameplate capacity of 91,009 MW).
Wind generators were modeled as belonging to one of the
twenty competitive renewable energy zones (CREZ) within
ERCOT,6 based on their geographic location. The CREZ are
regions within Texas that have been identified as prime wind
generation sites, into which the state is encouraging investment
by increasing transmission capacity. Wind availability data is
based on a meso-scale model provided by AWS Truewind,
which specifies hourly potential wind generation within dif-
ferent sites in each CREZ. Day-ahead forecasts of and real-
time wind availability are generated by randomly sampling
empirical distribution functions fitted to the meso-scale model
data. Figure 1 shows the transmission zones and CREZ within
the ERCOT system.

Fig. 1. Map of ERCOT Congestion Zones and CREZ.

6There are a total of twenty-five CREZ in Texas, but only twentyof them
are within the ERCOT control area. We assume wind generatorssited within
those other five CREZ are not interconnected with the ERCOT system.
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III. S IMULATION RESULTS

Tables I and II summarize the results of our simulations,
showing wind utilization averages for the days simulated.
Table I shows the average percentage of potential wind gen-
eration that is actually dispatched in real-time for different
demand elasticities and day-ahead wind schedule ratings,
whereas table II reports the average percentage of total load
that is served by wind generation. Our results show substan-
tive increases of up to7% in the usage of potential wind
generation, which translates into an increase of up to1%
in the fraction of load served by wind, or approximately
a 10% increase in wind generation’s contribution to load.
Table III summarizes the economic value of the additional
wind energy generated by introducing demand response into
the market. The value is computed using the zonal LMP
corresponding to each wind site, and is divided by the increase
in wind generation to give an average value per MWh of wind
generation. The results in all three tables also show very little
dependence on the treatment of wind forecasts in determining
AS requirements—with less than a0.4% difference between
10% and100% ratings of day-ahead wind schedules.

TABLE I
AVERAGE PERCENTAGE OFPOTENTIAL WIND GENERATION UTILIZED

Wind Schedule Rating
0.1 0.5 1.0

Elasticity

-0.00 75.00 75.23 75.24
-0.10 77.53 77.79 77.80
-0.20 79.86 80.10 80.11
-0.30 82.01 82.22 82.24

TABLE II
AVERAGE PERCENTAGE OFLOAD SERVED BY WIND GENERATION

Wind Schedule Rating
0.1 0.5 1.0

Elasticity

-0.00 8.89 8.91 8.91
-0.10 9.20 9.25 9.28
-0.20 9.47 9.53 9.57
-0.30 9.71 9.77 9.83

TABLE III
INCREASEIN VALUE OF WIND GENERATION FROM INTRODUCINGRTP ($

PER MWH OF INCREMENTAL WIND GENERATION)

Wind Schedule Rating
0.1 0.5 1.0

Elasticity
-0.10 7.04 6.37 6.18
-0.20 9.06 8.68 8.81
-0.30 9.84 9.48 9.47

The wind utilization rates in table I are lower than those
typically reported in other wind resource studies due to one
or more CSCs limiting exports from the West zone, which is
where most of the wind generation is sited, into load pockets
in eastern Texas.7 Indeed, when transmission constraints are
relaxed wind utilization rates rise to above90%. As tables IV

7It bears noting that the values reported in table I may actually overstate
wind utilization rates because our zonal model does not represent a number
of constraints within the West zone, for instance the Crane substation, which
tend to be more binding on wind exports than the six CSCs represented in
ERCOT’s zonal load-flow model.

and V show, one effect of introducing demand response is
to decrease the impact of these CSCs by using locational
price differences to decrease demand in the eastern zones and
increase it in the West zone when transmission constraints
would otherwise be binding—thereby reducing the number of
periods in which exports are constrained and correspondingly
increasing wind utilization.8

TABLE IV
NUMBER OF 15-MINUTE INTERVALS IN WHICH EXPORTSFROM THE

WEST ZONE ARE BINDING

Wind Schedule Rating
0.1 0.5 1.0

Elasticity

-0.00 10432 10320 10323
-0.10 10364 9865 9698
-0.20 10361 9848 9775
-0.30 10208 9869 9878

TABLE V
TOTAL INCREASE INWIND GENERATION (IN MW) DURING 15-MINUTE

INTERVALS IN WHICH EXPORTSFROM THE WEST ZONE BECOMES

NON-BINDING UNDER RTP

Wind Schedule Rating
0.1 0.5 1.0

Elasticity
-0.10 1003 7154 8697
-0.20 1408 9256 11686
-0.30 804 11528 13356

Figure 2 compares potential and actual wind generation
patterns with and without RTP on 14 April, in which West zone
exports become non-binding in several periods with RTP. The
RTP run assumed a demand elasticity of−0.30, and both runs
assumed day-ahead wind schedules are fully rated. The figure
highlights the fact that RTP increases wind utilization both by
relieving congestion, and also increases usage in periods in
which exports remain constrained.

RTP increases the dispatch of wind generators in
transmission-constrained periods by smoothing out the diurnal
load pattern and decreasing the extent to which operating
constraints on conventional generators are binding. Figure 3
plots the load pattern with and without RTP and the corre-
sponding increase in wind generation (given as a percentageof
total wind generation available) from our simulation of system
operations on 20 October, assuming a demand elasticity of
−0.30 and that wind schedules are fully rated day-ahead.9

The figure highlights the extent to which RTP smooths out
the load pattern, by both substantially decreasing the peak
and plateauing the midday loads, and slightly increasing early
morning demand. The net effect of this on system operations
is that the entire load can be served by 214 conventional gen-
erators, as opposed to the 219 that must be committed without
demand response. Moreover, the conventional generators are
significantly less ramp-constrained, which allows more wind
generation to offset conventional generation. Tables VI and VII

8One reason we study a system with wind generation capacitiesexpanded
to 2011 levels but use the 2005 transmission network is to better capture the
effects of RTP on increasing wind usage when transmission constraints would
otherwise be binding.

9The low wind utilization rates are due to exports from the West zone being
binding both with and without RTP in every period of this particular day.
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Fig. 2. Wind Generation Patterns With and Without Real-TimePricing.

compare the number of units that are ramp-constrained in real-
time for the same two sets of runs from 20 October (hours
without binding ramp constraints are excluded). The ramp-
down constraints, which all occur in the early morning and late
evening hours, are caused by generators having to decrease
output due to decreasing off-peak loads, and cause wind
curtailments because conventional generators cannot reduce
their output quickly enough to increase wind generation while
maintaining load balance. The ramp-up constraints are caused
by generators having to increase generation to meet the midday
peak, and can similarly cause wind generation curtailments
since conventional generators must be operated at their upper
ramping limit in anticipation of the peak.

TABLE VI
NUMBER OF RAMP-DOWN-CONSTRAINEDUNITS IN EACH HOUR

Hour Fixed Load RTP

2 23 15
3 12 0
4 2 1
20 1 0
21 1 6
22 2 0
23 12 11
24 50 22
25 9 8
Total 112 63

A. Impact of RTP for C&I Customers Only

One impediment to the use of RTP in restructured markets
has been the high cost of large-scale installation of interval
meters that can record real-time electrical loads, and designing

TABLE VII
NUMBER OF RAMP-UP-CONSTRAINEDUNITS IN EACH HOUR

Hour Fixed Load RTP

4 3 0
5 2 0
6 8 1
7 21 4
8 32 12
9 31 7
10 8 9
11 18 13
12 2 17
13 2 13
14 0 11
15 4 11
16 3 14
17 4 8
18 1 6
22 2 0
23 6 0
Total 147 126

a system for communicating real-time prices to consumers.10

As such, some have advocated placing larger C&I customers
on RTP tariffs, since that would cover a large proportion
of system load11 at a smaller implementation cost, and in

10Recent advances in metering and broadband over powerlines may reduce
these costs to the point that large-scale installations would not be cost-
prohibitive.

11For instance, C&I customers accounted for nearly63% of the load in
Texas in 2005.
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Fig. 3. Diurnal Load Patterns With and Without Real-Time Pricing and Increase in Wind Generation.

some cases these efforts are already being undertaken.12 In
California, for instance, all customers with a peak load above
200 kW are required to have 15-minute interval meters.13

We estimate how much of the gains from RTP can be
achieved by applying it to these two customer segments
only, by simulating the same set of unit commitment models
assuming residential loads are fixed while C&I demands are
price-elastic. As discussed in section II, we apportioned zonal
loads in each time period to the three customer segments based
on that segment’s proportion of total electricity demand in
Texas for 2005. Tables VIII and IX summarize the results
of our simulations with fixed residential loads, showing the
percentage of the potential increases in wind generation which
could be attained if all customers are placed on RTP that are
achieved if only C&I demands are made price-elastic (e.g. a
value of 50 means that half of the increase in wind generation
from placing all customers on RTP are achieved if only C&I
customers are placed on RTP). These tables show that placing
C&I customers only on RTP reaps at least 60% of the gains
from introducing variable tariffs for all customers, and may be
a more practical starting point given the high costs of meter
installation for smaller and residential customers.

12Another rationale for keeping residential customers on fixed-rate tariffs
is that RTP could expose customers to risk, volatility, and uncertainty in their
electricity costs, which may be too great for a small residential consumer
to bear. Reference [15] discusses the use of hedging instruments by a utility
to insulate customers from most of this price risk, but subjecting them to
marginal rates based on RTP to reap the efficiency gains.

13This cutoff is smaller for San Diego Gas and Electric (SDG&E), since
SDG&E customers with a peak load above 100 kW are required to have
interval meters.

TABLE VIII
PERCENTAGE OFINCREASE INAVERAGE WIND GENERATION

UTILIZATION WITH RTPFOR ALL CUSTOMERSACHIEVED WITH C&I
CUSTOMERSONLY ON RTP

Wind Schedule Rating
0.1 0.5 1.0

Elasticity
-0.10 64.03 64.45 64.84
-0.20 64.61 64.68 64.68
-0.30 65.48 65.67 65.57

TABLE IX
PERCENTAGE OFINCREASE INAVERAGE LOAD SERVED BY WIND

GENERATION WITH RTPFOR ALL CUSTOMERSACHIEVED WITH C&I
CUSTOMERSONLY ON RTP

Wind Schedule Rating
0.1 0.5 1.0

Elasticity
-0.10 80.65 82.35 83.78
-0.20 82.76 83.87 83.33
-0.30 85.37 84.88 84.78

IV. CONCLUSIONS

We simulated and compared system operations with high
wind penetration levels with and without RTP. Our results
showed that constraints on unit and power system operations
can result in wind curtailment and that RTP, even with low
elasticities, can increase both the percentage of load served by
wind generation and the amount of potential wind generation
actually utilized in real-time. We further demonstrated that
this incremental wind generation can have substantial market
value—in some cases close to $10/MWh. Given the fact
that wind has no marginal generation cost, these additional
revenues can be quite valuable to wind generators recovering
their investment costs. Moreover, this incremental generation
represents social welfare gains, since zero-cost generation is
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being used to serve the demand. Our results further show
that RTP can increase wind utilization when transmission
capacity is generally insufficient to export wind generation
to load pockets by using locational price differences to reduce
congestion and increase wind utilization on the constrained
side of a transmission link. This added impact of RTP may
reduce the need for costly transmission investments. We
also demonstrated that introducing RTP for industrial and
commercial customers only can yield at least 64% of the
potential gains from placing all three customer segments on
RTP, which is potentially a more feasible alternative giventhe
implementation costs and concerns over bill volatility with
placing residential customers onto RTP tariffs.

Although these simulations are useful in determining the
gains from RTP, they don’t take into account all aspects
of electricity markets or, in some cases, make simplifying
assumptions. While it would be difficult to incorporate these
characteristics into the modeling framework, it seems that
with respect to these issues the analysis conducted here is
potentially understating the gains from RTP.

Our simulations have ignored market power issues, and
instead assumed the system will be perfectly competitive and
generators committed and dispatched based on actual costs
and with truthfully revealed constraint parameters. A number
of studies, including [16] and [17], have demonstrated poten-
tial incentive issues with generators being able to profitably
misstate their cost and constraint parameters when offering
generation into a centrally-committed market. If one expects
the exercise of market power to increase real-time prices,
perhaps disproportionately in peak periods when supply is
scarce, then our simulations may underestimate the extent to
which RTP could flatten peaks and affect the load pattern. If
the effect of market power is to increase real-time prices in
all hours, however, then the net effect may be to shift loads
down in all hours as opposed to having a pronounced effect
on peaks or the diurnal load pattern.

Another simplifying assumption we made was that elec-
tricity demand under a RTP tariff would only exhibit own-
price elasticities. Simulating a complete matrix of cross-price
elasticities would increase model complexity substantially, as a
96-dimensional demand function (each dimension representing
the price and load in each 15-minute interval) would have
to be approximated as a step function. As [6] discusses,
this assumption is likely dampening the simulated effects of
RTP. If demands are generally substitutes between hours then
inclusion of cross-price elasticities would further smooth-out
the load pattern by increasing off-peak and decreasing on-
peak demands. This would, in turn, reduce the extent to which
ramping and other operating constraints on conventional units
impinge on the usage of wind generation.

While the wind utilization values and results reported here
are specific to ERCOT, our results highlight the fact that wind
generation may generally be curtailed in power systems. This
curtailment can be due to limited flexibility of thermal gen-
erating units, as well power system constraints. Our analysis
shows that demand response can reduce the impact of these
curtailments by making the load pattern follow the supply
of wind generation more closely, increasing demand where

costless wind generation is available, and reducing the impact
of unit operating constraints. Although our results are specific
to ERCOT, RTP can be expected to have similar impacts in
other power systems.

APPENDIX

MODEL FORMULATION

The formulation of the unit commitment model used in our
simulations is presented. While the notation used here does
not assume a specific time-step in making commitment and
dispatch decisions, the relevant model parameters (e.g. ramp
rates, minimum up- and down-times) are appropriately scaled
for the day-ahead unit commitment with an hourly timestep
and the real-time dispatch with 15-minute intervals. The AS
constraints are only enforced for the day-ahead commitment
models, not for the real-time dispatch models. Moreover, the
binary commitment variables of all conventional generators,
except those that provide non-spinning reserves while offline,
are fixed in each real-time dispatch model based on the day-
ahead unit commitment solution. Finally, the unit commit-
ments with price inelastic demand were formulated with a
fixed load, which could be equivalently represented within this
formulation as a single-step demand function with an infinite
price. We first define the following notation:
Problem Parameters

• T : number of periods
• I: conventional generator index set
• W : wind generator index set
• Z: transmission zone set
• L: transmission line set
• Ci(q): generatori ∈ I ’s convex piecewise-linear variable

generating cost function
• Ni: generatori ∈ I ’s noload cost
• SUi: generatori ∈ I ’s startup cost
• K−

i , K+
i : generatori ∈ I ’s minimum and maximum

operating points, respectively
• R−

i , R+
i : generatori ∈ I ’s rampdown and rampup limits,

respectively
• SP i, NSi: generatori ∈ I ’s spinning and non-spinning

reserve capacities, respectively
• τ−

i , τ+
i : generatori ∈ I ’s minimum down- and up-time,

respectively
• ωw,t: wind generation available from wind generatorw ∈

W in periodt ∈ T

• pz,t(l): non-increasing stepped inverse demand function
of energy in zonez ∈ Z in periodt ∈ T

• ηs, ηn: spinning and non-spinning reserve requirements
(as a fraction of load), respectively

• ρ: rating of day-ahead wind schedules in AS constraint
• PTDFz,λ: power transfer distribution factors between

transmission zonez ∈ Z and CSCλ ∈ L

• TTCλ,t: total transfer capacity on CSCλ ∈ L in period
t ∈ T

Decision Variables

• qi,t: generation provided by generatori ∈ I in period
t ∈ T
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• spi,t, nsi,t: spinning and non-spinning reserves provided
by generatori ∈ I in periodt ∈ T , respectively

• ui,t, si,t, hi,t: binary variables indicating if uniti ∈ I is
up, started-up, and shutdown in periodt ∈ T , respectively

• gw,t: wind generation provided by wind generatorw ∈ W

in period t ∈ T

• lz,t: load served in transmission zonez ∈ Z in period
t ∈ T

• ǫz,t: net exports from transmission zonez ∈ Z in period
t ∈ T

The problem is formulated as maximizing social surplus:

max
∑

z,t

∫ lz,t

0

pz,t(x)dx−





∑

i,t

Ci(qi,t) + Niui,t + SUisi,t



 ;

subject to the following constraints:

• zonal load-balance (∀ z ∈ Z, t ∈ T ):

lz,t =
∑

i∈I(z)

qi,t +
∑

w∈W (z)

gw,t − ǫz,t,

whereI(z) andW (z) are conventional and wind gener-
ators located in zonez ∈ Z;

• no net exports (∀ t ∈ T ):
∑

z∈Z

ez,t = 0;

• total and spinning reserve requirements (∀ t ∈ T ):

ρ
∑

w∈W

gw,t +
∑

i∈I

(qi,t + spi,t + nsi,t) ≥ (1 + ηn)
∑

z∈Z

lz,t

ρ
∑

w∈W

gw,t +
∑

i∈I

(qi,t + spi,t) ≥ (1 + ηs)
∑

z∈Z

lz,t;

• conventional generator minimum and maximum genera-
tion bounds (∀ i ∈ I, t ∈ T ):

K−

i ui,t ≤ qi,t

qi,t + spi,t ≤ K+
i ui,t

qi,t + spi,t + nsi,t ≤ K+
i ;

• conventional generator AS bounds (∀ i ∈ I, t ∈ T ):

0 ≤ spi,t ≤ SP iui,t

0 ≤ nsi,t ≤ NSi;

• conventional generator ramping limits (∀ i ∈ I, t ∈ T ):

R−

i ≤ qi,t − qi,t−1

qi,t − qi,t−1 + spi,t + nsi,t ≤ R+
i ;

• conventional generator minimum up- and down-times
(∀ i ∈ I, t ∈ T ):

t
∑

y=t−τ
+

i

si,y ≤ ui,t

t
∑

y=t−τ
−

i

hi,y ≤ 1 − ui,t;

• conventional generator startup and shutdown state transi-
tions (∀ i ∈ I, t ∈ T ):

si,t ≥ ui,t − ui,t−1

hi,t ≥ ui,t−1 − ui,t;

• CSC flow limits (∀ λ ∈ L, t ∈ T ):

−TTCλ,t ≤
∑

z∈Z

PTDFz,λez,t ≤ TTCλ,t;

• wind generation bounds (∀ w ∈ W, t ∈ T ):

0 ≤ gw,t ≤ ωw,t;

• non-negativity (∀ z ∈ Z, t ∈ T ):

lz,t ≥ 0; and

• integrality of variables (∀ i ∈ I, t ∈ T ):

ui,t, si,t, hi,t ∈ {0, 1}.
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