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Abstract—One of the costs associated with integrating wind
generation into a power system is the cost of redispatchinghe

system in real-time due to day-ahead wind resource forecast

errors. One possible way of reducing these redispatch cosis
to introduce demand response in the form of real-time pricirg
(RTP), which could allow electricity demand to respond to atual
real-time wind resource availability using price signals.A day-
ahead unit commitment model with day-ahead wind forecastsrad
a real-time dispatch model with actual wind resource availaility
is used to estimate system operations in a high wind penetrain
scenario. System operations are compared to a perfect foright
benchmark, in which actual wind resource availability is known
day-ahead. The results show that wind integration costs wiit fixed
demands can be high, both due to real-time redispatch costd
lost load. It is demonstrated that introducing RTP can redue@
redispatch costs and eliminate loss of load events. Finajlgocial
surplus with wind generation and RTP is compared to a system
with neither and the results demonstrate that introducing wind
and RTP into a market can result in superadditive surplus gans.

spi+  Spinning reserves provided by generatdn
period¢

ns;; Non-spinning reserves provided by generator
in periodt

u; ¢  binary variables indicating if unit is up in
period¢

Sit binary variables indicating if unit is started-up
in periodt

hit binary variables indicating if unit is shutdown
in periodt

gw, Wind generation provided by wind generator
in periodt

load served in period

LTHOUGH wind generation is generally considered an
energy source with zero marginal cost, it can impose

INTRODUCTION

Index Terms—Power system economics, wind power genera- COSts on a power system. These costs typically stem from the

tion, wind forecast errors, real-time pricing, unit commitment

I. NOMENCLATURE

limited-dispatchability of wind generation, the variatyilin
wind resource availability, and errors in forecasting tese
availability. For instance, day-ahead wind availabilibydcast
errors can result in a suboptimal unit commitment if the eyst

T number of periods _ operator (SO) commits too many, too few, or the ‘wrong
I conventional generator index set set’ of dispatchable generators. These forecasting ecams
w wind generator index set _ lead to high-cost ancillary services and replacement gnerg
Ci(g)  generator’s non-decreasing stepped variable  peing used to cover a wind generation shortfall. Similarly,
generating cost function wind resource variability can require having more ramping
Ni generatori’s no-load cost capability available from dispatchable generators.
SU;  generator’s startup cost _ A series of studies have simulated and estimated these
K; generatori’s minimum operating point integration costs associated with wind generation. Refare
K" generator’'s maximum operating point [0 uses a probabilistic approach to estimate the energy
R, generator's rampdown limit redispatch costs associated with day- or hour-ahead wind
R_f generatori’s rampup limit forecast errors, and estimates that these costs can betas hig
SP;  generatori’'s spinning reserve capacity as 10% of a wind generator's energy revenues. References
NS;  generatori’s non-spinning reserve capacity [2], [Bl, [4] survey some techniques to study the impacts
T, generatori’s minimum down-time of wind generation on day-ahead unit commitment, real-time
.t generatot’s minimum up-time redispatch, and ancillary service requirements. Some ®f th
wy:  Wind generation available from wind generator estimates they report place these system integration essts
w in periodt high as $5/MWh of wind generation.
pe(l)  non-increasing stepped inverse demand One way to reduce these wind integration costs is to
function of energy in period introduce demand responsiveness by using a time-varitailt re
n° spinning reserve requirement (as a fraction of electricity rate, such as real-time pricing (RTP). RTP can
load) potentially reduce wind integration and forecast errorsos
n" non-spinning reserve requirement (as a fractionsince consumer demand could be made to follow the supply
of load) of wind generation by using a price signal. Under RTP, if
it generation provided by generatom period¢ available wind generation is less than forecast, the higit co
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of deploying ancillary services to cover the generatiornrtfalb
will reduce electricity demand and the cost of serving the
load. Similarly, because wind generation has zero marginal



cost, electricity demand will increase when there is momedwi the fixed load at least cost. The formulation of the models is
resource available than forecast, and wind generation mag hgiven in the appendix.
to otherwise be curtailed due to constraints on the operatio The first model is a unit commitment with a two-day
of conventional generators. Inde€d, [5] demonstratesfteete planning horizon, which ensures that the commitment at the
RTP can have in reducing wind curtailment due to generatend of each day takes into account the need to serve the
and power system constraints. following day’s load. In order to make this two-day unit
Besides reductions in wind integration costs, RTP has othmrmmitment problem tractable, the commitment variables ar
economic benefits. Chief among them is increasing shontodeled at three-hour long intervals. The second model is
run efficiency by balancing consumers’ willingness to pag unit commitment with a one-day planning horizon, which
for energy with production costs. Many economists havekes the starting and ending commitment of each generator
advocated RTP on the basis of economic efficiency gairas fixed, based upon the solution of the first unit commitment.
Reference[]6] suggests that the demand elasticity from RTRis second unit commitment models all the commitment
could have reduced the severity of the California energgicri and dispatch variables at hourly intervals. These first two
in 2000 and 2001, and][7]][8][]9] analyze the long- andnit commitment models are solved using forecasts of wind
short-run efficiency gains from introducing RTP. In additio resource availability, and are meant to represent a dageahe
to these benefits, the fact that RTP makes electricity demat@mmitment. Both unit commitment models include standard
follow wind supply more closely suggests that the surplusnstraints, including hourly load-balance and spinning a
gains from introducing RTP and wind generation together maypn-spinning reserve requirements. In addition, unit afieg
be superadditive when compared to the surplus gains fraonstraints such as minimum and maximum operating points,
introducing each individually. minimum up and down times, ramp limits, ancillary service
This paper uses a unit commitment model to analyze thegalifications, and generator response times are moddled. |
cost of day-ahead unit commitment errors and real-time rie- important to note that this analysis uses a deterministic
dispatch associated with errors in day-ahead wind avditiabi day-ahead unit commitment model. Some authors, such as
forecasts. The model is used to simulate a power system tfidd], [11], have suggested that power systems with high
is based on the ERCOT system with high wind penetratiovind penetrations could benefit from using a stochastic day-
levels, both with fixed loads and RTP. The results shoahead unit commitment, which explicitly accounts for wind
that with fixed loads wind forecast errors can result in highncertainty. The implications of this assumption are diseal
system redispatch costs—in some cases more than $2/MWtther in sectiorlV.
of wind generation—and that RTP can reduce these costslhe results of these day-ahead unit commitments are then
significantly. System operations are also simulated witthee used, along with actual wind availability, to solve a reaie
wind generation nor RTP and compared to a system in whitgdispatch. The real-time dispatch problem takes generato
each is introduced individually. The results show that ehilcommitments as fixed based upon the solution from the
social surplus is increased by introducing wind generation day-ahead unit commitment problems, with the exception of
RTP individually, there are superadditive surplus gaimsnfr generators that are offline but providing non-spinning mess
introducing both wind generation and RTP into the powend quick-start units, which are allowed to startup in téak
system together. In addition to demonstrating these benefitneeded. The committed generators are then redispatched t
of RTP in the test system considered here, this paper develsprve the load subject to the same unit operating consraint
a modeling framework that can be applied to other powthat are included in the day-ahead unit commitments. ltdear
systems to determine the costs of wind forecasting errais anentioning that the day-ahead unit commitment and rea-tim
the impacts of RTP and other strategies in reducing thegs.cogedispatch models are meant to be illustrative of actudksys
The remainder of this paper is organized as follows: seffflon operations in ERCOT (and many other power systems), but are
describes the model and the data underlying the simulatiomt an exact representation of their protocols.
of the ERCOT system, the results are presented in seclion IV This analysis simulates one year’s operation of the ERCOT
and sectio .V concludes. system with the conventional generator set, generatiots,cos
and loads taken from 2005. In order to simulate a power
system with very high wind penetration, all wind farms thiat a
proposed to be built and in operation by 2011 are included—
The analysis is based on a series of unit commitment amthich consists of more than 14 GW of nameplate wind
dispatch models, which capture the fact that the day-ahezapbacity or more than 18% of the system’s generating capacit
commitment must be done with forecasts of wind resourceThe hourly demand functions for scenarios with RTP are
availability, which will typically have some forecastingrer, calibrated based on actual load data for 2005, which is tegor
and that the system must be subsequently redispatchecbyrERCOT, and an assumed demand elasticity. Folloviing [12],
real-time in response to actual wind availability. Modelishw the hourly demand functions are calibrated to intersect the
demand elasticity are formulated to maximize social welfapoint defined by the actual load in that hour and the retadlepri
(the difference between consumer surplus and total gearratbof electricity. Retail electricity price data is based upwerage
costs), and as such demand is assumed to respond to etgctrieites in Texas for the year 2005, which are reported by the US
prices that are endogenously determined in the model. ModBlepartment of Energy’s Energy Information Administration
with fixed demands, on the other hand, are formulated to seilieis retail rate data is combined with tariff data for 2005

IIl. M ODEL AND DATA



from the Public Utility Commission of Texas to remove IV. RESULTS

non-energy charges (such as metering and billing) to arriverne gay-ahead and real-time commitment and dispatch of
at the retail rate of energy. A set of scenarios with owRpe ERCOT system are simulated under the various scenarios
price demand elasticities ranging betwee.1 and—0.3 are i, gifferent forecast error variances and demand eitistic
simulated, which is consistent with the estimates of SEITR e analysis compares the cost and social surplus fromrsyste
electricity elasticities reported ii_[113]. Followin@l[8}r0ss-  gperations with day-ahead wind forecasting errors to thtt w
price elasticities are assumed to be zero. The implicatiopsyfect foresight of wind availabilityi €. assuming actual real-

of this assumption and its potential for underestimating thime wind resource availability is known day-ahead).
effects of RTP are discussed in sectloh V. In order for the

objective functions of the models to be linear, the hourl ]

demand functions are approximated by non-increasing step C0St Of Wind Forecast Errors With Fixed Loads

functions. The day-ahead unit commitment models include Table[l compares total annual system operation costs with

hourly load-based ancillary service constraints, whichsist day-ahead wind forecast errors to operation costs witheperf

of a 4.5% spinning reserve and an additional 4.5% noferesight of wind resource availability. The system operat

spinning reserve requirement. costs consist of the three-part generation cost structere d
Conventional generators are modeled as having a standsgtbed in sectior lll. The increased generation costs with

three-part cost structure, which consists of a startup thagt wind forecast errors stems from suboptimal generator com-

is incurred whenever a generator is brought online; a spqnimitments made day-ahead and costly redispatch in real-time

no-load cost that is incurred in any hour a generator is enlinThe increase in system operation costs is divided by totad wi

regardless of generating output; and a non-decreasingesiepgeneration, which gives the wind integration cost in $/MWh

variable generation cost. Generation costs are calcufeded of wind generation. The results in talile | show that incrdase

tested heat rate and fuel and emission permit price davénd forecast errors, which are characterized by a higher

reported by Ventyx and Platts. Ventyx and Platts also preidforecast error variance, result in higher integration £ost

data on generator constraints and capabilities, includiimg-

mum and maXi_rnum generation Ievgls, ramp Ilmlts,mlnlmum ADDITIONAL ANNUAL SYST-IIE-?/IB(;}EEIRATIONCOSTSDUE TOWIND

up and down times, must-run requirements, qualifications taForecAsTERRORSWITHOUT RTP ($/MWH OF WIND GENERATION)

provide spinning and non-spinning reserves, and whichsunit

are quick-start. The entire set of 375 dispatchable gemesat Forecast Error| Forecast Error Cost
. . . . Variance ($/MWh Wind Generation)
which were interconnected with the ERCOT system in 2005, 0.0049 0.568
is included in the analysis, except for the Comanche Peak 0.0064 1.109
and South Texas nuclear power stations, which are assumed 8-823(1) i-gii
to always run at capacity. 0.0121 2172

Actual availability of wind generation is based on a
mesoscale model of historical wind data by 3TIER. The 3TIER e of the costs of wind forecast errors that is not included

data models hourly generation available from hypotheticy (apie[] is the value of lost load (VOLL). Lost load events
wind farms at 659 locations in Texas. This hourly Wingyccyr when forecasts of wind availability are much higher
resource data is translated into the fraction of the nan®pl@,an actual resource availability and result in insuffitieon-

capacity of the wind farm: ventional generating capacity being committed and avigilab
Fuy = Guw,t to serve the load in real-time. Figuf@ 1 shows the annual
TR wind integration cost, again normalized by the amount of

wind energy generated, when the VOLL over the year is

whereg,, ; is the available generation ard,, the nameplate . ] )
capacity of wind farmw in hour ¢. The wind farms in the included in the cost calculation. Figuké 1 uses a range of

model are associated to locations in the 3TIER data based aLL Which is in line with the price paid to curtailed loads
geographical location and the model assumes that the bleaild'Nder utility interruptible load programs. Figuk 1 showatt

generation of the modeled wind farms will scale linearlydzas Wind forecasting errors can potentially result in many loés
on the fraction of nameplate capaciff, ; load events if the forecast error variance is sufficientighhi

The day-ahead forecast of wind resource availability Eqregast error variances of below 0.0081 reSl_JIt in reaSe|_1ab
assumed to be given by: wind integration costs of below $4/MWh of wind generation
even with a VOLL of $10000/MWh. Higher forecast error

fw,t = fwt + Nw.t, variances result in much higher integration costs of up to

) ) ~ . $12/MWh of wind generation due to the greater amount of
where n,,; is the forecast error. Following the stat|st|ca|0St load.

analysis of wind forecast errors ih_114], the forecast efsor

assumed to have an unbiased first-order autocorrelated trun )

cated normal distribution. A set of scenarios with the fatc B- Cost of Wind Forecast Errors with RTP

error's variance ranging between 0.0049 and 0.0121 and afwWhen analyzing wind integration and forecast error costs
autocorrelation coefficient of 0.6 are used in the simutetjo with RTP, the change in social welfare is the more approgriat
which are in line with the parameters estimatedlin [14].  metric to use as opposed to changes in operation costs. This
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0.0064 1.146 0.116

Value of Lost Load ($/MWh of Lost Load) 0.0081 1497 0.134

- . . . 0.0100 1.973 0.152
Fig. 1. Annual forecast error cost including cost of lostdaes a function 0.0121 2618 0.171

of the value of lost load ($/MWh of Wind Generation).

is because social welfare captures the changes in consugagsugh RTP can have significant impacts in reducing the cost
surplus from increases or decreases in demand due to Wijdwind forecasting errors. It is also worth noting that the
forecast errors. When wind forecasts are less than actgyginand flexibility from RTP eliminates lost load eventsgsin
available wind generation, demand may increase since ibergne high real-time price of dispatching replacement energy
excess costless generation. Similarly, when wind foreca® || reduce energy demand when wind forecasts are much
greater than actual wind resource, demand can decreage SHigher than actual resource availability. It is also impatt
the cost of replacement energy may be greater than the valyenote that if retail electric customers are heterogeneous
of the load to consumers. with different values of electricity consumption, becatise
Tables[dl througHI¥ summarize the annual social surplyfemand curtailment with RTP is done on the basis of will-
loss due to wind forecast errors, in $/MWh of wind generatiofhgness to pay, the ‘load rationing’ is efficient with RTP.
The surplus values reported in the cases without RTP Ugthout RTP, load rationing is often done using inefficient
consumer surplus losses to quantify the value of lost loaghpitrary and administrative means such as rolling blatskou
assuming that retail electric customers are heterogeneitis Even curtailable and interruptible load contracts may Itesu
different willingness to pay for energy given by the samg inefficiencies since load-serving entities typicallyoose
price-elastic demand function used in the cases with RTghich customers to interrupt without regard to their real-
The calculation of surplus losses further assumes that logge willingness to pay for energy. Given the fact that fetai
curtailments will be randomly allotted to customers, Si”C@Iectricity customers encompass a wide range of consumer
loads would presumably be curtailed using rolling blackoutypes such as commercial, industrial, and residential, taad
or some other administrative measure, without consid®ratigifferences in wealth and income amongst these custonters, i
of willingness to pay. This computation assumes that {g |ikely that the willingness to pay and value of electscit
cases without RTP consumers have an underlying pricei@lagfemand will be heterogeneous amongst different customers

demand for electricity, but that these preferences are ngid these efficiency gains over a fixed demand regime could
expressed and the load is fixed because customers face a fixe@onsiderable.

retail electricity rate. Comparing these surplus loss ealvith
figure[ also provides another way of quantifying the cost %f
lost load without RTP.

Table[M summarizes the efficiency losses that would result
the load curtailments that occur without RTP are uniforml
distributed among customers with different willingnespay
TABLE II for energy. As in tableElll throudh1V, customers’ willingsee
ANNUAL SOCIAL SURPLUSLOSSDUE TOWIND FORECASTERRORS to pay for energy is Computed from the demand function. The
($IMWH OF WIND GENERATION) WITH DEMAND ELASTICITY OF 0.1 0oy mey surplus loss with random curtailment is compared

Forecast Error to that if loads are curtailed based on willingness to pay,
Variance Without RTP  With RTP and normalized to give consumer surplus losses in $/MWh of
8-8822 g-ggg 8-3;8 curtailed load. TablE)V shows that the surplus losses ariéasim
0.0081 1682 0.477 for different forecast error variances, but are quite dimesi
0.0100 2.355 0.539 to demand elasticity, since a more inelastic demand functio
0.0121 3.361 0.661 will have more customer heterogeneity with a wider range of

willingness to pay and more efficiency losses from random
Tabledd througllV show that introducing demand responseirtailment.



TABLE V

CONSUMERSURPLUSL 0SSFROM RANDOM L OAD CURTAILMENT error variance of 0.0049 for scenarios with wind generators
($/MWH OF CURTAILED LOAD) (scenarios 2 and 4). The example shows that on an annual

N basis, adding wind generation to the market can result in
Cg:;cnacs; Error _OthemarldOE'aSt'C%f) large social surplus gains, and that RTP can also increase
0.0049 99559 49780 331.86 social surplus through more efficient real-time energy use.
0.0064 1038.13  519.07 346.04 Comparing the last two rows of the table shows that introduc-
8:823(1) 1%2:3% ggg:ig 2%?,;2?, ing wind _g_eneration and_ RTP together does indeed result in
0.0121 976.31 488.15 325.44 superadditive surplus gains, and that RTP enhances thal soci

value of wind generation.

” ; ; TABLE VI
C. Superadditive Surplus Gains From Wnd Generation and ANNUAL SOCIAL SURPLUSGAINS FROM WIND, RTP,AND WIND AND
RTP RTP TOGETHERWITH A FORECASTERRORVARIANCE OF 0.0049 ($
. MILLION

Many analyses of RTP have focused on the social wel- )
farg gains_ from h_aving electri_city demand react to reaktim Demand Elasticity
variation in marginal generation costs. In addition to #hes -0.1 -02 -0.3
welfare improvements, the results thus far have demoestrat o2 — 01 2va§ ngg 2f:§

. . . . . . g3 — O

that introducing RTP in a market with supply uncertaintyl wil os + o201 | 2848 23013 3147
increase social welfare by allowing demand to react to chang o4 — 01 2,924 3,131 3,298

in actual real-time supply. At the same time, wind generatio

can increase short-run social welfare by providing a cestle Table[VIl summarizes these superadditive surplus gains for
source of energﬂ{.An interesting question is whether therall of the forecast error variances and demand elasticities
would be an interaction between introducing RTP and addiegnsidered in sectiof IVAB. The table reports the increase i
wind generation, which would result in superadditive sbcigocial welfare from introducing both wind generators andPRT
surplus gains, compared to introducing each to an eldgtriciogether, as a percentage of the sum of the increase in social

market in isolation. welfare from introducing each of wind generators and RTP
These social surplus improvements are examined by coseparately, or

paring a set of scenarios in which there is: 04 — 01 1.
1) no RTP, no wind generators; 03 + 02 — 201
2) no RTP, wind generators; Table [Vl shows that introducing both wind generators and
3) RTP, no wind generators; and RTP together can result in noticeable social welfare gafns o
4) RTP, wind generators. between 2.7% and 6.6%, depending upon the forecast error

Defining o, to be the social surplus under scenaripthis Vvariance and demand elasticity. The combination of wind and

analysis compares the increase in welfare from introduciff P is more valuable with higher forecast error variances,
both RTP and wind generation togethes £ o1) to the sum of because the demand flexibility from RTP reduces real-time
the welfare increases from introducing each of RTP and wihi@dispatch costs and surplus losses from wind forecastserro
generation individuallyds + o2 — 201). If 04 —01 > 03+02— TABLE V|

20, this implies that the combination of RTP and wind result |ycrease inSociat SURPLUSFROM INTRODUCING BOTH WIND

in superadditive surplus gains, or that RTP increases ttialso GENERATORS ANDRTP TOGETHER(% OF SUM OF SURPLUSINCREASE
value of wind generators. Scenarios 1 and 3, which assume FROM'NTRODUC'NGEIANCDF:\STEXX'LNLE; ()E‘ENERATORS ANDRTP

that there are no wind generators, use only the conventional

generator set in ERCOT in 2005 to serve the load. Moreover, Forecast Error]  Demand Elasticity
because there is no wind generation, these scenarios will no Variance —01 —-02 -03
have any added redispatch costs due to wind forecast errors. 8:8822 g:; 431:3 g:f
The surplus values for scenarios 2 and 4, on the other hand, 0.0081 3.2 4.6 55
do include real-time redispatch costs and the value of lost 0.0100 3.7 5.1 6.0

load is computed as done in tables Il throlgh IV. Similarly, 0.0121 42 57 66

because scenarios 1 and 2 assume no RTP, electricity demand
is assumed to be fixed in these scenarios.
Table[¥] presents, as an illustrative example, the annual V. DiscussION ANDCONCLUSIONS

surplus gains from each of introducing wind, RTF_’, and wind This paper developed and discussed a model to simu-

and RTP. The example assumes the lower wind forecggle power system operations under high wind penetration
T o . , _ scenarios, which can be used to assess the cost of wind
Wind generation is costless insomuch as it does not incurfaglycost. f The si lati h h inalt

Many countries, including the United States, provide wirherators with resource forecast err_ors. e simulations have shown 1 W

generation-based subsidies or tax incentives to spur winestment. These forecast errors can increase system costs through sukaptim

subsidies can be_co_n5|dered a cost in that society bearstmlmxn to pay for (nit commitments day-ahead, the Subsequent redispatd:inaof t

them, however this is a wealth transfer between taxpayetsvamd generators . I-ti d th ial for | load d

and as such there are no social welfare losses from such @gubith the system in real-ime, and the potential for lost loa ue to

exception of some deadweight losses from taxation. insufficient generating capacity being committed and atxdél



in real-time. These costs can range up to $2.18/MWh ahead, electricity demand in that hour will likely be reddice
wind generation without the VOLL and can be much highdroth due to the high price of generation in that hour and
when lost load is considered. The results demonstrate ttia comparably lower price of energy in other hours. This
introducing demand flexibility in the form of RTP can reducéoad shifting between hours would tend to further decrease
these integration costs, by allowing electric loads to oesp wind integration costs below the estimates given here, lwhic
to actual resource availability. RTP not only decreasestis¢ only account for demand reductions in an hour due to a
of redispatching the system in real-time, but also elingsathigh energy price in that hour. This effect of cross-price
loss of load events. elasticities is obviously dependent upon the assumptian th
Social surplus with both wind generation and RTP waswn-price elasticities remain the same. If some of the intgpac
compared to cases without wind or RTP to determine thod load-shifting are captured in own-price elasticity esttes,
surplus gains from introducing the two together. The rasulthen a proper model with cross-price elasticities wouldehav
show that introducing wind and RTP together would result it include lower own-price elasticities, and the effects of
superadditive surplus gains, which can increase totallssirpchanging the two elasticities may cancel each other out.
by between 2.2% and 6.6% above the sum of the surplusAnother assumption in this analysis is that loads are able
increases from introducing each of wind and RTP individue respond to price signals in a symmetric and predictable
ally. These superadditive surplus gains can be thought of manner, which may be tenuous in practice. The value of
increasing the social value of wind generation to the systeRTP is that it allows loads to respond to wind resource
In interpreting these result, it is important to note that@mmy availability. In reality, electricity demand may not resgb
as consumer bids are within an appropriate range, RTP wil price signals symmetrically, since customers may regpon
tend to reduce costs, increase surplus, and improve fi@labimore to increases in electricity prices than to decreasas. F
in power systems regardless of whether wind is in the systemstance, a consumer may turn off an air conditioner or other
Our results suggest that wind and RTP are particularly welppliance when electricity prices are high, but may not turn
suited to one another and that they enhance the benefits barnean air conditioner when it is not needed simply because
by one another. As discussed above, the reason RTP and witmel price of electricity is low. While this type of asymmetri
behave in this way is because RTP causes the load profiledemand response may reduce some of the surplus gains from
more closely follow the available supply of wind. Because thproviding consumers with additional energy when actualdwin
availability of wind tends to suppress the real-time priR€P availability is greater than forecast, much of the beneffts o
will cause customer loads to shift towards periods in whidRTP stem from demand reductions when wind forecasts are
wind generation is available. Conversely, hours in whichdvi too high. Thus, most of the benefits estimated here would be
is not available (and periods in which wind availability hasaptured even with asymmetric demand response.
been overforecast) will have comparably higher energyegric  Similarly, this analysis assumes that loads and their respo
which will tend to shift loads away from those periods. to prices are known by the SO. This assumption can also
It bears mentioning, however, that there will be some sociaé problematic since day-ahead load forecasts typicalg ha
welfare losses from increased use of wind. Taxes that @eme errors, and loads may not respond to prices in an
levied to fund production tax credits and other subsidies fentirely predictable fashion. In practice, it may take aoners
wind generation will generally lead to some deadweightdess time to process updated price information and adjust their
as will sunk costs borne by conventional generators that ameergy use. The assumption that there are no day-ahead load
displaced from the market by wind generators. While it caiorecast errors is made to isolate the effect of wind fortiegs
be expected that these surplus losses would be small eelatvrors on redispatch costs and loss of load events—without
to the surplus gains from RTP, it is nonetheless important itecluding the effect of load forecasting errors. The assionp
note them in evaluating the net surplus effect of RTP amdgarding the ability of loads to respond to prices immedyat
wind. It is also important to note that the model developesarrants further investigation, since demand responselagay
here is illustrative to the extent that it does not exactlglectricity price changes in practice. This analysis waalde
represent system operations in ERCOT, but the results @rgortant issues regarding the timing of when wind forexast
nonetheless useful for quantifying the extent to which RTéhd prices are updated. This paper implicitly assumes that
can reduce wind integration costs. Furthermore, the mogleliconsumers employ some type of automated control that can
framework developed here can easily be adapted to studyingnediately adjust energy use in response to price sigmals a
wind integration in other power systems and the effect of RTu&er inputs regarding willingness to pay and demand eifystic
and other policies in reducing the cost of wind forecasting This analysis also assumes that ancillary service require-
errors. ments would remain the same, regardless of expected or
This analysis assumes the cross-price elasticity of ébégtr scheduled wind generation day-ahead. This assumptiofigesu
demand to be zero and models only own-price elasticitign. loss of load events with fixed demands when there is
As discussed in[]5], this assumption may be understatintsufficient conventional generating capacity availabledal-
the effect of RTP, since it does not account for the crossme to meet a wind generation shortfall. Previous studiesh
hour load shifting that would occur if cross-price elasigs as [3], [14], [15], [16], [17], [18], have estimated the amdbof
are non-zero. If own-price elasticities remain the same anefjulation, spinning, and non-spinning capacity which ldou
cross-price elasticities are non-zero, then when actuatl wibe required to maintain reliability standards under highadvi
resource availability in a given hour is less than expectag d penetration scenarios due to resource forecasting errats a



transience issues. Some markets schedule wind generatoss load-balanceY( t € T)):

based on a probabilistic assessment of resource avayabili - Z 4 Z )
Under the proposed nodal market redesign, ERCOT will use a K it Guts
wind resource forecast with an 80% probability of exceedanc
in its reliability unit commitments. This analysis showsth

i€l weW
« total and spinning reserve requiremernitst(c 7):

with fixed loads, except in cases in which forecast error Z(Sm#rnsi,t) > 0"l
variances are small, lost load events can be costly andagere el

wind integration costs. This suggests that it may be prudent s

for ancillary service requirements to be dependent on wind ZSPM 21l

schedules or for an SO to use an approach similar to the _ e )
one proposed by ERCOT to ensure system reliability. Despites COnventional generator minimum and maximum genera-

this, some SOs do not explicitly consider wind schedules in  tion bounds{( i € I,¢ € T):

determining ancillary service requirements. The curregtkat Kow . <a

. . . . i Uit = Qi
design in ERCOT, for example, does not adjust ancillary N
services based on wind schedules. The results of this amalys it + spie < KjTuiy
show, however, that introducing RTP can eliminate (or rejluc Git + spis +nsiy < K

the need for additional ancillary service capacity, whiem c
further reduce system operation and wind integration costs
Other authors, such a§ J10],J11], have advocated using 0 < spit < SPiusy
a stochastic day-ahead unit commitment to explicitly deal
with resource forecasting errors. These approaches wlillae
the cost of forecast errors without demand response, since conventional generator ramping limits { € I,¢ € T):
the day-ahead unit commitment would be optimized to take
account of wind uncertainty. As such some of the surplusgyain
and redispatch cost savings from introducing RTP would be Git — Qi1+ spiy +nsie < RS
reduced.l\_levetheIess, RT.ID woqld Iikelystill_bgavaluabm « conventional generator minimum up- and down-times
for managing wind uncertainty, since load shifting and detha (Viel,teT):
response expected in real-time could reduce the need tgehan .
the day-ahead commitment to account for uncertainty. This Z o < u
interaction between RTP and these other means of addressing by = Tt

« conventional generator AS bounds{ € I,t € T):

0<ns;y <NSj;

R <Gt — Git—1

. L =t—r+
wind uncertainty is an area of future research that we plan to y=toT
pursue. t
Z hiy <1 =45
=t—7.
APPENDIX _ e _
MODEL EORMULATION « conventional generator startup and shutdown state transi-

. . . . tions(vViec I,teT):
The formulation of the unit commitment model used in the

simulations is presented. The AS constraints are only eatbr Sit = Wit — Wit—1
for the day-ahead commitment models, not for the real-time
dispatch models. Moreover, the binary commitment vargble ) _
of all conventional generators, except fast response anigs ~* Wind generation bounds/(w € Wt € T):
those that provide non-spinning reserves while offline, are 0 < Guit < Wt
fixed in each real-time dispatch model based on the day-ahead -

unit commitment solution. Finally, the unit commitmentsiwi  * non-negativity ¥ t € T):

price inelastic demand are formulated with a fixed load, Whic l; > 0; and

could be equivalently represented within this formulatam

a single-step demand function with an extremely high price.

Pt > Wii—1 — Us;

« integrality of variablesY i € I,t € T):

The models are all formulated using GAMS and solved with Uity Sits hiy € {0,1}.
CPLEX 9.0.
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