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Abstract

This paper presents a model to simulate the electricity demand of a single household consisting of multiple
individuals. The total consumption is divided into four main categories, namely cold appliances, heating,
ventilation, and air conditioning, lighting, and energy consumed by household members’ activities. The
first three components are modeled using engineering physically-based models, while the activity patterns
of individuals are modeled using a heterogeneous Markov chain. Using data collected by the U.S. Bureau
of Labor Statistics, a case study for an average American household is developed. The data are used to
conduct an in-sample validation of the modeled activities and a rigorous statistical validation of the predicted
electricity demand against metered data is provided. The results show highly realistic patterns that capture
annual and diurnal variations, load fluctuations, and diversity between household configuration, location,
and size.

Keywords: Energy demand modeling, household power demand, occupant behavior, residential electricity
use, heterogeneous Markov chain, HVAC modeling

1. Introduction

This era of fossil fuel dependency and concern about greenhouse gas emissions has increased interest in
the use of policy and technology solutions to reduce and shift energy use. The residential sector accounted
for about 22% of total primary energy consumption in the U.S. in 2009, indicating that there are major
potential gains from implementing such solutions in residential settings [1]. The potential energy, cost,
and emissions savings of such policies and technologies can be investigated by modeling their impacts on
residential energy demand and the resulting interactions between this demand and the power grid, renewable
generation, energy storage, and plug-in electric vehicles.

Two general classes of techniques are available to model residential power demand: top-down and bottom-
up models [2]. Top-down models use estimates of total residential sector energy consumption, together
with other pertinent macro variables, to attribute energy consumption to characteristics of the housing
sector. This class of models can be compared to econometric models, which require little detail of the
actual consumption process. These models treat the residential sector as an energy sink and regress or
apply factors that affect consumption to determine trends [2–5]. Depending on availability, the input data
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required to develop these models can include the structural characteristics of the dwellings, occupants and
their behavior, appliances’ characteristics, historical energy consumption, weather conditions, and macro-
economic indicators. Stochastic predictors, based on time-series approach, such as auto regressive moving
average methods, are also used to forecast home energy consumption [6–8].

Bottom-up models, on the other hand, identify the contribution of each end-use towards the aggregate
energy consumption of the residential sector [9–11]. Bottom-up approaches refine the modeling of energy
consumption, allowing the simulation of the effects of technology improvements and policy decisions. These
models calculate the energy consumption of an individual or group of households and extrapolate the results
to a region or nation. This aggregate result is generally accomplished by using a weight for each modeled
house or group of houses based on its representation of the sector [2]. Moreover, the bottom-up approach
has the capability of determining total energy consumption of the residential sector without relying on
historical data. Common input data to bottom-up models include dwelling characteristics (e.g., size and
layout, building materials, and appliances’ characteristics), weather conditions, household occupant behavior
and related use of appliances, lighting use, and characteristics of heating, ventilation, and air conditioning
(HVAC) systems. This high level of detail represents the strength of bottom-up models, providing the ability
to model the impact of different technology options and allowing the implementation of energy optimization
techniques. On the other hand, the use of such detailed information, in particular regarding household
members’ behavior, introduces great model complexity. The input data requirements are typically greater
than that of top-down models.

A number of works propose using bottom-up techniques to model residential energy use. In 1994 Capasso
et al. [9] propose a model for evaluating the impact of demand side management on residential customers. A
Monte Carlo method is used to capture the relationship between residential demand and the psychological
and behavioral factors typical of the household occupants. Richardson et al. [10] introduce a Markov-chain
technique to generate synthetic active occupancy patterns, based upon survey data of people’s time-use
in the United Kingdom. The stochastic model maps occupant activity to appliance use, creating highly-
resolved synthetic demand data. The same authors also include a lighting model, which accounts for natural
daylight [12]. Widén et al. [11, 13] follow a similar approach to relate residential power demand to occupancy
profiles. The model is calibrated and validated against relatively small time-use and electricity consumption
datasets collected in Sweden. The authors show that realistic demand patterns can be generated from these
activity sequences.

In this work a highly-resolved bottom-up approach is developed to model residential energy demand in
the United States. The model is calibrated to simulate an average household in the U.S. and household
members’ behaviors are simulated by using a Markov process calibrated using time-use data collected in
the 2003–2009 American Time Use Survey (ATUS).1 The proposed model differs from existing bottom-up
techniques in four important ways. One is that HVAC use and demand are modeled with much greater
detail using an engineering physically-based approach. The second is that a large-scale time survey dataset
is used to calibrate the behavioral model—existing approaches rely on much smaller datasets. Third, some of
the parameters of the model, which are difficult to estimate, are calibrated using actual metered residential
electricity data. Finally, rigorous statistical tests are used to validate the model by comparing estimated
demand profiles generated by the model against metered residential electricity demand data. In this way
the stochastic features of the modeled residential demand profiles are validated.

This model can be used as a tool to simulate the status quo of the residential sector and, ultimately,
evaluate the impact of energy policies and different technology adoption and deployment scenarios on energy
use, cost, and emissions. The proposed model can also be used as an input to detailed power system
simulations, for instance determining the impacts of diurnal load patterns and renewable uncertainty and
variability on day-ahead and real-time unit commitment, dispatch, and power flows. High model resolution
is needed to make the model suitable to be used for such analysis. This framework allows consumers
to compare costs and benefits with different load schedules and enables energy consumers to participate
actively in energy markets. It can also help utilities evaluate the use of price signals as a means of shaping

1The ATUS data are publicly available for download at http://www.bls.gov/tus/home.htm .
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the electricity load in order to reduce production costs and make demand more flexible to facilitate the
integration of renewable energy sources. Moreover, the proposed model can be used as an input to long-
term capacity planning and expansion studies. Depending on the specific end application, the model may
be used to generate a load profile for an individual household, or the load profiles of multiple buildings may
be aggregated to simulate the load of a broader system.

2. Model Structure

The aim of the proposed model is to generate the electricity demand profile of a residential household.
Residential demand profiles are, by nature, variable and depend on multiple physical factors, such as weather,
temperature, and dwelling characteristics but also on the behavior of household members. Thus the modeled
demand depends on physical properties and the location of the dwelling and on the number and typology of
individuals living in the household. Because the model is intended to generate a typical residential demand
profile, individual behavior is modeled stochastically.

The total electricity power demand of a dwelling, Ẇ , is computed as:

Ẇ = Ẇcold + ẆHV AC + Ẇact + Ẇlight + Ẇfix

where Ẇ is the total electric power demand, expressed in W; Ẇcold represents the power used by cold
appliances, such as refrigerators and freezers; ẆHV AC is the electric power used by the HVAC system to
maintain the desired thermal comfort in the house; Ẇact is the electricity use directly related to activities
of the household members, i.e., cooking or use of dishwasher, etc.; Ẇlight is the electric power consumption

due to lighting; and Ẇfix is a constant time-invariant term that represents ubiquitous electric consumption,
i.e., lights that are always on and appliances’ stand-by power.

Each of these terms includes power losses due to system inefficiencies, as well as thermal dissipation and
electrical losses. The power consumption categories present different dependencies, which determine the
underlying structure of the modeling approach used. Ẇcold depends only on the size and number of the cold
appliances in the house—the effect of external temperature and individuals opening the cold appliances’
doors are neglected. ẆHV AC depends on the physical characteristics of the HVAC system installed, the
thermal comfort required by the occupants, properties of the thermal envelope of the dwelling, and on
weather conditions that the household has to withstand. Ẇact depends on the behavior of the household
members and on activity to power conversion factors, namely the wattage of appliances used when energy-
intensive activities are conducted. Ẇlight depends on the amount of natural lighting available and building
occupancy. This is captured using different lighting power conversion parameters during the day and night.

The lighting power conversion parameters and Ẇfix are difficult to assess, and are computed using a
linear regression model against actual metered data provided by American Electric Power (AEP). Detailed
models for the cold appliance, HVAC systems, and lighting demand components are available in the literature
[14–16].

The model is flexible in design, allowing for energy consumption to be modeled at any time resolution
desired by the user. The case study presented in Section 3 uses a 10-minute time step to model electricity
demand. Moreover, the HVAC model uses a one-second time resolution to capture the thermal dynamic
evolution of the air inside the building. The data against which the model is validated reports electricity
consumption at hourly time steps. Thus, the simulated 10-minute consumption profiles and the one-second
HVAC consumption are aggregated to arrive at hourly values, which can be compared to the metered data.

2.1. Cold Appliance Energy Consumption

Recent estimates place the average nominal power rating of a refrigerator at about 725 W.2 Moreover,
the total yearly electricity consumed by cold appliances in a typical American dwelling was estimated to

2The U.S. Department of Energy publishes statistics regarding the energy use of the average U.S. appliance stock at
http://www.energysavers.gov/your_home/appliances/index.cfm/mytopic=10050 . A value of 725 W was reported as of Febru-
ary 2012.
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be 14.9% of total residential electricity consumption in 2010. The U.S. Department of Energy’s Energy
Information Administration reports annual per-household electricity consumption of 11,496 kWh in 2010.3

These values imply 1,713 kWh of annual per-household cold appliance energy consumption. Assuming that
a refrigerator is an on/off device that always operates at its nominal power when on, the average operating
time can be estimated by dividing annual energy consumption by nominal power as:

top =
1713 kWh

0.725 kW
= 2363 h.

Cold appliance consumption is simulated using a Bernoulli distribution, with the success probability fixed so
the expected on time of the appliance is 2363 hours every year. Assuming that the use is evenly distributed
during the year, this implies that a typical cold appliance works 27% of the time. Since the model is
implemented using a 10-minute time step this translates into a cold appliance running for five random 10-
minute intervals every 3 hours. This would yield daily energy consumption of about 4.83 kWh. Figure 1
shows an example of the resulting power profile over a one-day period.
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Figure 1: Simulated power consumption of a cold appliance during a one-day period.

2.2. HVAC Energy Consumption

Space conditioning end-use includes heating, ventilation, and air conditioning and represents the most
significant residential energy consumption in the United States. The main purpose of an HVAC system
is to maintain indoor air quality through adequate ventilation with filtration and provide thermal comfort
[14]. Over 70% of residential buildings in the U.S. use central forced-air distribution systems for heating
and air-conditioning purposes [17]. The model proposed in this work uses an approach based on overall
thermal resistance theory to simulate the behavior of a typical air-based HVAC system [18]. A control
volume analysis, based on fundamental principles of thermodynamics and heat transfer is performed for the
volume including solely the air present in the house, as illustrated in Figure 2.

The thermal dynamic evolution of the air is given by:

macp
dTa

dt
= ṁHV AC · cp(THV AC − Ta) −

Ta − T∞

Rtot
, (1)

where we define ma as the air mass inside the control volume [kg]; cp as the air specific heat [kJ/kg K]; Ta

as the air temperature inside the control volume [◦C]; ṁHV AC as the HVAC air flow rate [kg/s]; Rtot as the

3The U.S. Energy Information Administration periodically publishes the Residential Energy Consumption Sur-
vey (RECS), a national area-probability sample survey that collects residential energy-related data, available at
http://www.eia.gov/consumption/residential/index.cfm.
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Figure 2: Schematic of the control volume used in HVAC analysis.

equivalent thermal resistance of the household envelope [K/W]; THV AC as the HVAC supply air temperature
[◦C]; and T∞ as the environment temperature [◦C].

Rtot is computed as:

Rtot =

[

(

1

ho · Awall
+ Rwall +

1

hi · Awall

)

−1

+

(

1

ho · Awind
+ Rwind +

1

hi · Awind

)

−1
]

−1

,

where ho and hi are the outside and inside convective coefficients, respectively. Awall and Awind are the
surface of walls and windows in contact with the environment, respectively. These surfaces are normal
to the direction of heat transfer. Rwind and Rwall are the thermal resistances of the windows and walls,
respectively. Values of these parameters are reported in Table 2.

The first term on the right hand side of equation (1) represents the energy supplied by the HVAC system,
namely the energy carried by the air leaving the HVAC system and entering the household at temperature
THV AC . The second term represents the heat transfer between the household, at temperature Ta, and the
environment, at temperature T∞.

Equation (1) can be analytically solved to obtain the dynamic evolution of the temperature of the air
inside the household as:

Ta = [T0 − A]e−t/τ + A,

where:

A =
T∞

Rtot
+ ṁHV AC ·THV AC

ma

ṁHV AC ·cp+ 1

Rtot

ma·cp

,

1

τ
=

ṁHV AC · cp + 1
Rtot

ma · cp
,

and T0 represents the initial condition.
The HVAC model requires several assumptions regarding the physical characteristics of the system,

including the size of the ducts, fans, and thermal machines. Ductwork sizes are determined by minimizing
the net present installation and operating cost [18]. The ducts and fans are sized such that the maximum
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air flow rate matches the worst winter and summer conditions for the location of the building being modeled
(values chosen for these conditions and other HVAC design parameters described below are reported in
Table 2). Once the air flow rate is chosen among the most common available options for residential systems,
the furnace necessary to match the worst winter condition is selected.

The selection of both air flow rate and the nominal power of the furnace lead to a fixed value of the
temperature of the air entering the household that, depending on the specific system chosen, varies from 40
to 66 ◦C. The possible air flow rate and furnace size combinations, as well as the returning air temperature
from the HVAC system, for commercially available systems are reported in Table 1.4 Since cooling machines
are more scalable than furnaces and a greater variety of models is available on the market, it is assumed
that the temperature of the air from HVAC during the summer is constant and equal to 13◦C [18].

Table 1: Available air flow rates and furnace sizes for residential systems and resulting temperature of the
air [◦C] from the furnace [1]

Input Capacity [kBTU/h]
45 50 60 70 75 80 90 100 115 120 125 140

A
ir

F
lo

w

[c
fm

]

800 50 53 59 66
1200 40 42 47 51 53 55 59 64
1600 43 45 47 50 53 58 59 61
2000 44 47 50 52 53 57

The model determines whether each day modeled is a heating or cooling day. This is meant to replicate
the decision made by the occupant to switch one of the two HVAC systems on. A simple but realistic control
strategy is implemented based on a relay that allows a tolerance of 1◦C around the desired temperature,
which is set to 21.1◦C (70◦F).

HVAC energy consumption is divided into two components: the power consumed by the fans to circulate
the air, Ẇfan, and the power absorbed by the HVAC equipment. The former can be computed as:

Ẇfan =
ṁHV AC · ∆Ptot

ηfan · ηmotor
,

where the total pressure drop, ∆Ptot, is defined to equal Pstatic + ρ v2

2
. Pstatic is the static pressure drop,

ρ is the air density, and v is the air velocity. In this work v is assumed to equal 4 m/s [18], the midpoint
of the range of suggested values to avoid noise. ηfan and ηmotor are the efficiencies of the fan and motor,
respectively, and the product ηfanηmotor is assumed to equal 0.15 [19].

The HVAC equipment energy consumption differs depending on whether the system is in cooling or
heating mode. In heating operation, the energy required to maintain the desired thermal condition in the
household, namely the power required to generate the necessary heat, can be obtained using two approaches:
traditional furnace heating or an all-electric HVAC system. In the former case, the primary power required,
Ėprimary, can be computed as:

Ėprimary =
ṁHV AC · cp · (THV AC − Ta)

ηfurnace
,

where ηfurnace the efficiency of the furnace, which is assumed to equal 0.85.
This power is directly obtained via combustion of fuels (e.g. natural gas, fuel oil, or kerosene). In such

a case Ėprimary does not contribute to the building’s electricity load, which is represented solely by the

power consumed to circulate the air, namely Ẇfan. Alternatively the heat can be obtained using an all-
electric system. In this second case the heat is converted into an electric load by means of a coefficient

4The values in the table are given in imperial units, since these units are used in the design and marketing of HVAC systems
in the United States.
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of performance, COP . Thus the primary energy required, Ėprimary, equals the electricity consumption,

Ẇheating , which is computed as:

Ėprimary = Ẇheating =
ṁHV AC · cp · (THV AC − Ta)

1 + COP
.

Note that COP is defined as the thermal energy added to the house per unit of electric energy absorbed by
the HVAC system, or as:

COP =
EER

3.412
,

where EER represents the energy efficiency ratio, the value of which is typically labeled on HVAC equipment
sold in the U.S. EER represents the cooling output, measured in BTU, divided by the total electric energy
input, measured in watt-hours, during the cooling season.

Figure 3 shows the evolution of the air temperature in the control volume and the environment temper-
ature on 9 May, 2010 in the Indiana/Michigan area. For the purpose of this simulation, actual historical
environment temperature data are used. This figure also reports the resulting total hourly electric energy
consumed by the HVAC system. This is shown for both an HVAC system coupled with a furnace and for an
all-electric HVAC system. Table 2 summarizes the HVAC system parameters used. For an HVAC system
coupled with a furnace, the total simulated electricity consumption for the day is 0.53 kWh, and 18.2 kWh
of heat are added via the combustion of fuel in the furnace. For an all-electric system, the total simulated
electricity consumption for the day is 5.2 kWh.
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(a) Simulated temperature evolution in a typical household on 9 May, 2010 in the Indiana/Michigan area.
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(b) Hourly HVAC electricity consumption in a typical household on 9 May, 2010 in the Indiana/Michigan area.

Figure 3: Simulated temperature evolution and resulting HVAC electricity consumption in a typical house-
hold on 9 May, 2010 in the Indiana/Michigan area.

In summer operation the HVAC system must both cool and reduce air humidity. The total energy
requirement of this process, which is proportional to the total enthalpy change, ∆htotal, can be computed
using the sensible heat ratio, SHR. This term measures the ratio between the sensible heat load (e.g. energy
used to cool) and total heat load, and is defined as:

SHR =
∆hsensible

∆htotal
,
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where ∆hsensible is the sensible enthalpy change. Typical SHR values, which range from 0.6 to 0.9 for
different locations in the U.S. in different American Society of Heating, Refrigerating, and Air-Conditioning
Engineers (ASHRAE) standard years are used [20]. The cooling power in the summer is then given by:

Ẇcooling =
ṁHV AC · cp · (Ta − THV AC)

SHR · COP
.

The total electricity consumption during the cooling days can be obtained by summing Ẇfan and Ẇcooling.
In forecasting energy consumption for space conditioning in U.S. residences, some level of regional disaggre-
gation is desirable due to the wide differences in climate and the associated heating and cooling requirements.
In this approach this geographic variation is captured by the variation of both the environment temperature
and the SHR parameter.

In this work, the air mass of the control volume is computed for a building with an area of 223 m2

(2400 ft2) and a height of 2.44 m (8 ft). To maintain comfort, a system with an air flow rate capacity of
0.46 kg/s (800 cfm) coupled with a furnace with a nominal power of 13.2 kW (45 kBTU/h) is required. This
implies a return air temperature of 50◦C. Table 2 summarizes the HVAC parameters used. This approach to
model HVAC power consumption is presented by Muratori et al., where the details and a validation against
actual data are provided [21].

Table 2: Parameter values used in the proposed HVAC model

Parameter Value Unit
Household size 223 m2

Rwall (R-15) 2.64 m2K/W
Rwindow (single-pane) 0.183 m2K/W
hi 5 W/m2K
ho 30 W/m2K
WWR (windows-to-wall ratio) 17% [-]
ηfurnace 0.85 [-]
ηfan · ηmotor 0.15 [-]
Pstatic 135 Pa
v 4 m/s
SHR 0.7 [-]
COP 2.5 [-]
Desired temperature 21.1 ◦C
HVAC summer air temperature 13 ◦C
HVAC winter air temperature 50 ◦C
Hottest environment temperature 38 ◦C
Coldest environment temperature -30 ◦C

2.3. Occupant Behavior and Related Electricity Use in Buildings

Modeling individuals’ behavior is a complex task, due to the stochastic nature of the activities performed.
Factors such as the number of individuals in the household, life habits of each individual, differences in energy
use associated with different activities, daily and weekly variations in behavior, and load coincidence should
all be captured. This model uses a heterogeneous Markov chain to model occupant behavior and predict the
associated energy consumption. Pandit and Wu [22] use a similar approach to model residential electricity
demand and Widén and Wäckelg̊ard [11] develop a similar model to predict residential demand in Sweden.
As a first step a synthetic activity pattern for each household member is generated and then this pattern is
converted into Ẇact by using power conversion factors associated with each activity

All possible activities are classified into nine categories, which differ in terms of the energy required to
perform the activities. These activities are:
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1. Sleeping;
2. No-power activity (e.g. reading);
3. Cleaning (e.g. vacuuming);
4. Laundry;
5. Cooking;
6. Automatic dishwashing;
7. Leisure (e.g. use of the TV, stereo, computer, or videogame system);
8. Away, working; and
9. Away, not working.

The Markov chain model assumes that each household member is in one of these nine states in every
discrete time step. As time proceeds from t to t+1 a state transition occurs. These transitions are governed
by transition probabilities, p

d,h
i,j , which give the probability of going from state i to state j on a type-d day

during hour h. Diurnal behavior patterns are reproduced by allowing transition probabilities to vary over
the 24 hours, which is represented by the index h. Similarly, behavior differences between working and
non-working days are captured by allowing the probabilities to vary between working (d = 1) and non-
working days (d = 0). This approach requires the initial state to be chosen, which is that all individuals are
sleeping at 4 a.m. of the first day simulated. Then at each time step a uniformly-distributed pseudorandom
number, x, is generated and compared to the cumulative distribution of the state transition to determine
which transition takes place. This is illustrated in Figure 4. Because x is in the fifth interval in the example
shown in the figure, this implies that the occupant will transition to the fifth state.

Figure 4: Random simulation of state transition between two subsequent time periods [11].

Input data of the activity-related power consumption model are the number of household members, the
transition probabilities for each individual, and power conversion factors. The transition probabilities are
derived from the ATUS data, and different typical agent types, such as working males and working females
(with different associated transition probabilities), are modeled. Further data-related details are discussed
in section 3.

2.4. Lighting Energy Consumption

Lighting loads represent a large proportion of residential electricity demand, and also contributes to sea-
sonal and diurnal load variations [23]. Proper modeling of this component requires location, solar irradiance,
dwelling orientation, and lighting technology data. This work assumes that different power consumption
levels during the day and the night are used to light the house when at least one member is present and
doing something other than sleeping.

Sunset and sunrise times are computed based on the date and coordinates of the building being modeled
using an approach developed by the U.S. Geological Survey.5 To estimate the diurnal and nocturnal lighting
power conversion factors, a linear regression model, which is explained in section 3.2, is used.

5This software tool, which is implemented in MATLAB, is publicly available for download at
http://woodshole.er.usgs.gov/operations/sea-mat/air_sea-html/index.html .
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3. Behavioral Model Calibration and Input Data

3.1. Time Use Data

In order to estimate the transition probability matrices used in the behavioral Markov chain model,
detailed time use records are required. The ATUS is taken every year from a subsample of participants in the
Consumer Preferences Survey (CPS) administered by the U.S. Bureau of Labor Statistics. ATUS is designed
to provide researchers with detailed data on the time allocation of American adults. Though administered
annually, ATUS is not a panel survey. Each annual survey is based on a different set of participants, and
is therefore strictly longitudinal. ATUS respondents are interviewed on a randomly selected day about
their activities on the previous day. Each activity is recorded and coded by the interviewer, along with its
duration in minutes, starting at 4 a.m. and lasting until midnight. Because this survey is administered with
the CPS, extensive demographic information is also available about the respondent and others sharing the
same household. Moreover, because the ATUS relies on a stratified sampling technique, each respondent k

has a weight, wk, placed on his responses, which represents the weight of those data relative to the total
population.

In this work, respondents are stratified into five agent types: working and non-working males and females
and children. Table 3 summarizes the number and average age of respondents corresponding to each agent
type. Working and non-working male and female respondents are all between the ages of 18 and 85, whereas
children are between the ages of 15 and 17. ATUS data have been collected uniformly across the year during
which the survey was conducted.

Table 3: Summary statistics of ATUS respondents

Mean Age Number of Respondents
Working Male 43 3649
Working Female 43 3978
Non-Working Male 57 1706
Non-Working Female 56 3235
Child 16 565
Total Population 43 13133

Because people’s behavior changes on an hour-to-hour and day-to-day basis, the ATUS data are used
to estimate the transition probability matrices, P d,h, for weekdays (d = 1) and weekends (d = 0) and for
each hour (h = 1, . . . , 24). Given ATUS data from K respondents corresponding to a single agent type,
their activities are divided into the nine categories enumerated in section 2.3. The number of transitions
at one-minute intervals between states is counted, yielding 60 observations per respondent per hour. The
transition probability for that agent type is then calculated as:

p
d,h
i,j =

wk · n
d,h
i,j,k

∑

k

∑

i wk · n
d,h
i,j,k

,

where n
d,h
i,j,k is the number of transitions that respondent k makes from state i to state j during hour h of

day d. The resulting transition matrices represent the probability of transitioning from one state to another
at one-minute time intervals. Since the case study presented in this work uses a 10-minute time step, the
transition probability matrices are raised to the 6th power. Each row is then scaled to sum to one, to account
for the limitations of numerical precision. This gives transition probabilities from one state to another at
10-minute time intervals.

An in-sample validation of the activity pattern generator is done by comparing the modeled behavior to
the underlying ATUS data used to determine the transition probabilities. Muratori et al. present a graphical
comparison of the underlying ATUS data to a simulation of 1000 individuals over 1000 days, showing a good
fit between the two datasets [24]. A 95% confidence interval for the simulated activity patterns for each
of the nine different activities can be generated by performing a sufficiently large number of simulations.
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Figure 5 reports 95% confidence intervals created by simulating 40 people for 100 days for a total of 4000
person-days compared to 3854 working males present in the ATUS data. The figure shows that the behavior
of the ATUS respondents is within the confidence interval for most (95.3%) of the simulated hours. The
vertical scale differs between the nine activities, reflecting different relative frequencies at which the activities
are performed.
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Figure 5: 95% confidence intervals for working males during holidays for the nine different activities.

Figure 6 shows the simulated behavior pattern for a working male during a three-working-day period.
The simulated individual works an average of 10 hours and sleeps approximately 7.5 hours per day, which
is a reasonable activity pattern. Moreover, the times of working and sleeping are broadly consistent with
typical human behavior. Two of the high-power activities, laundry and cooking, are not performed by this
agent during these three days. These activities are more commonly observed on weekends and for other
agent types, such as non-working females. The total power consumed for activities in the household, Ẇact,
is computed by summing the power demand of each individual living in the household.

3.2. Power Conversion Parameters

Table 4 lists the power conversion parameters used to convert activity patterns into power demands.
These are based on the average wattage of the current American appliance stock.6 The laundry activity
is divided into two parts: 30 minutes washing machine use, which uses 425 W, followed by 90 minutes of
drying, which uses 3400 W. In addition, the dishwashing activity is assumed to last for one hour after it is
initiated. All of the other activities are assumed to be ‘instantaneous,’ in that the associated power is only
used when the individual is engaged in the activity.

The remaining power conversion parameters, namely lighting power during day and night and the fixed
time-invariant component are adjusted according to the household location, size, and the attitudes of the

6Average values reported at http://www.energysavers.gov/your_home/appliances/index.cfm/mytopic=10050 by the U.S.
Department of Energy as of February 2012 are used.
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Figure 6: Simulated behavior pattern for a working male during a three-working-day period.

Table 4: Power conversion parameters used in behavioral model

Activity Power Consumption [W]
Sleeping 0
No-power activity 0
Cleaning 1250
Laundry 425 + 3400
Cooking 1225
Automatic dishwashing 1800
Leisure 200
Away working 0
Away non-working 0

building occupants toward energy use. In this work a least-squares linear regression model is used to
estimate these parameters. This is done by estimating these coefficients to fit modeled consumption data
to metered hourly-average per-customer electric load data provided by AEP. The AEP data report average
hourly electric loads for two service territories, Indiana/Michigan and Texas. These regions differ in that
Indiana/Michigan primarily has non-electric heating, whereas Texas is dominated by all-electric heating
systems. The first data set is used to estimate the conversion parameters and a comparison against both
data sets is reported in the next section. Temperature data, which correspond to the metered consumption
data, have been provided by AEP and are used to estimate HVAC consumption.

The linear regression model has the form:

y = Xβ + ǫ,

where y is a vector containing the difference between hourly metered consumption (reported by AEP) and
the sum of modeled HVAC and cold appliance consumption, X is a binary matrix, which indicates whether
each activity is performed during each hour or not, and is determined by the Markov chain model, β is
the vector of power conversion parameters, and ǫ is the vector containing the random error terms. The β’s
corresponding to the power conversion factors in Table 4 are fixed to these values. The remaining β values
are estimated using ordinary least-squares.
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To run the regression model a simulation including 400 households is performed. The physical properties
of the buildings are summarized in Table 2. The breakdown of household occupancy is:

• 37.5%: One working male and one working female
• 37.5%: One working male and one non-working female
• 12.5%: One single working male
• 12.5%: One single working female

The resulting electricity power factors for lighting and the fixed component are:

• Day-time lighting power: 270 W
• Night-time lighting power: 370 W
• Constant electric consumption, Ẇfix: 230 W

These coefficients are estimated based on the proposed cold appliance, HVAC, and Markov-based activity
models and the power conversion factors given in Table 4.

4. Model Validation

In this section a two-step validation methodology is presented. First, the model output is compared
against the dataset used for the calibration (Indiana/Michigan) to verify that the simulated results have the
same statistical features as the metered data. Second, the model is used to simulate power demand for a
different region (Texas) and its output is compared with metered residential demand data from that region.
Since the Texas dataset is not used for model calibration, this provides an out-of-sample model validation.
Figure 7 is a scatterplot showing hourly modeled residential electricity demand against metered demand for
AEP’s Indiana/Michigan service territory, which is the dataset used for model calibration. The figure shows
a linear relationship between the modeled and metered data. Simulated data for the Indiana/Michigan
region fit the actual data with an R2 of 0.5107.
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Figure 7: Scatterplot of hourly modeled and metered residential electricity demand in AEP Indi-
ana/Michigan service territory.

A non-parametric Mann-Whitney U test is performed to assess whether the distributions of two samples
of independent observations are equal [25]. The test verifies if one of two samples tends to have larger values
than the other, namely checking that there is a symmetry between populations with respect to probability
of random drawing of a larger observation.
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The test is unable to reject the null hypothesis at the 99% confidence (the p-value is 0.0965), suggesting
that the modeled and metered data have the same underlying distribution. Moreover, the difference of
the means of the two samples is very small (1,118 W and 1,122 W for the metered and modeled datasets,
respectively). The difference of the standard deviations of the two datasets is larger (403 W for the metered as
opposed to 425 W for the modeled data). Therefore, a Levene/Brown-Forsythe test is performed to determine
if the variances are statistically significantly different [26]. Again, the test does not detect significantly
different variances at 99% confidence level (the p-value is 0.024).

The model is further validated by comparing simulated and metered demand data for Texas. Figure 8
shows modeled per-household electric power consumption for an average household in Texas and the corre-
sponding AEP data.
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Figure 8: Daily per-household modeled electricity consumption and AEP data for Texas.

The figure shows that the model, when fed with typical average data, is able to replicate the trend of the
actual metered data. Simulated data for the Texas region fit the actual data with an R2 of 0.5952. The figure
shows that the model captures diurnal load patterns as well as seasonal variations in demand. Residential
loads in the winter are rarely greater than 1.5 kW in the Indiana/Michigan area whereas demands above
2.5 kW are seen in Texas. This reflects the greater use of all-electric heating systems in Texas, the greater
electricity consumption of which is captured by the HVAC model. Summer loads in Texas also tend to show
greater peaks and span a greater number of months, showing the effect of the warmer and longer cooling
period. A Mann-Whitney U test is again unable to reject the null hypothesis that the distributions of the
modeled and metered data for Texas are equal at the 99% confidence level (the p-value is 0.1376). In this
second case the metered and modeled datasets present a greater difference in means, 1519 W and 1503 W,
respectively. Moreover, the difference of the standard deviations of the two datasets is larger compared to
the calibration case (609 W for the metered as opposed to 625 W for the modeled data). A Levene/Brown-
Forsythe test does show differences in the standard deviations, but the difference is below 3% and likely due
to intrinsic differences in the residential power usage of the two regions. Such a difference in the variance
of simulated and metered data is in line with what is reported in the literature. Specifically, Widén and
Wäckelg̊ard [11] report descriptive statistics for the end-use-specific power demand of 14 modeled households
and corresponding measurements. Their model gives means and standard deviations that differ from the
metered data by 1.8% and 3.2%, respectively. Bartusch et al. [27] provide further discussion of the variance
of annual electricity consumption in single-family homes as well as the impact of household features and
building properties in Sweden.
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5. Conclusions

This work proposes a model to simulate residential electricity consumption. The model is able to simu-
late the power demand of a household consisting of multiple individuals, considering cold appliances, HVAC,
lighting, and activity-related power consumption. Activity patterns for individuals are modeled using a het-
erogeneous Markov chain, calibrated with real data collected by the U.S. Bureau of Labor Statistics. Using
an in-sample validation the simulated activity patterns are shown to replicate the underlying behavioral
data, demonstrating the validity of this approach. Using power conversion factors it is possible to recon-
struct power consumption of a single or an aggregate group of households with desired characteristics and
composition. A rigorous statistical framework is used to validate the modeled electricity demand against
metered data provided by AEP. The results show reasonable demand patterns that capture annual and
diurnal variations, load fluctuations, and diversity between household configuration, location, and size. The
model generates electricity demand profiles with the same statistical features as residential metered data.

The effects of different technologies can be analyzed by varying the appropriate model parameters. For
instance, a more efficient HVAC system can be modeled by adjusting the COP and the potential savings
of high-efficiency lighting can be captured by adjusting the lighting conversion parameters. Modeling of
this nature is useful as it can guide policy decisions regarding the residential stock, both old and new. By
quantifying the consumption and predicting the impact or savings due to retrofits and new materials and
technologies, decisions can be made to support energy supply, retrofit and technology adoption incentives,
building codes, or even demolition and re-construction. This modeling technique can also be coupled with
long-term investment models to determine how energy-saving technologies would be adopted by consumers
and the impact of policy and other decisions on such adoption.
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