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Abstract—We examine the robustness of solar capacity-value
estimates to three important data issues. The first is the sensitivity
to using hourly averaged as opposed to subhourly solar-insolation
data. The second is the sensitivity to errors in recording and
interpreting load data. The third is the sensitivity to using
modeled as opposed to measured solar-insolation data.

We demonstrate that capacity-value estimates of solar are
sensitive to all three of these factors, with potentially large errors
in the capacity-value estimate in a particular year. If multiple
years of data are available, the biases introduced by using hourly
averaged solar-insolation can be smoothed out. Multiple years of
data will not necessarily address the other data-related issues
that we examine.

Our analysis calls into question the accuracy of a number
of solar capacity-value estimates relying exclusively on modeled
solar-insolation data that are reported in the literature (includ-
ing our own previous works). Our analysis also suggests that
multiple years’ historical data should be used for remunerating
solar generators for their capacity value in organized wholesale
electricity markets.

Index Terms—Capacity value, power system reliability, photo-
voltaic solar power generation

NOMENCLATURE

Gt Time-t generating capacity available

Lt Time-t load

L̄ Fixed load added in each time step

pt Time-t loss of load probability (LOLP) of base

system

pSt (L̄) Time-T LOLP of system with solar generation and

L̄ MW of load added

St Time-t solar generation available

T Time index set

ǫ Loss of load expectation (LOLE) of base system

ǫS(L̄) LOLE of system with solar generation and L̄ MW

of load added

I. INTRODUCTION

ELECTRICITY is a commodity for which supply and

demand must be instantaneously balanced at all times.

A power system delivers energy to end customers. However,

demand must be curtailed to ensure system stability if at any

time there is insufficient generating capacity to meet real-time

demand. Thus, electricity-generating facilities provide value
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both by supplying energy and through their contribution to

reducing the extent, duration, and likelihood of such load

curtailments. Capacity value is a standard metric that measures

the contribution of a generator or other asset to the power

system reliably serving load.

System reliability assessments examine the effects of high

loads or generator or transmission failures requiring load

curtailment. Reliability assessments estimate the probability

that such load-curtailment events occur. A resource’s capacity

value is assessed by estimating the effect that the resource has

on reducing load-curtailment probabilities.

Generator failures can occur due to mechanical failures,

planned maintenance, or a lack of generating resource. Lack

of generating resource is of particular importance to renewable

energy resources, such as wind and solar. This is because

the ability of such renewable resources to generate electricity

depends on climatic conditions, which cannot be controlled,

is variable, and may be difficult to forecast. Given this reality,

there is a vast and growing literature applying capacity value-

assessment techniques to renewable resources. This includes

analyses of wind [1]–[19], solar photovoltaic (PV) [20]–[27],

and solar thermal [28], [29] plants. These analyses typically

use historical load, conventional-generator, and renewable-

availability data to estimate the capacity value of the renewable

facility being studied. Historical data are used to capture

renewable variability and the statistical dependence between

renewable availability and load (as load is driven by climatic

conditions in many systems).

These analyses find that the capacity value of a renewable

facility can range between 5% and 95% of its nameplate capac-

ity. This wide range reflects differences related to geography

and technology, which affect load and renewable-availability

patterns, and the penetration level of the technology in ques-

tion. One typical finding is that at low penetration levels, solar

generation facilities can have much higher capacity values

than wind [27]. This is because solar availability tends to

be more coincident with load, especially in summer-peaking

power systems, than wind availability is. In many systems, the

capacity value of solar is driven by solar availability in about

the 10 highest-load hours of the year [28], [29]. By contrast,

the capacity value of wind is driven by wind availability in

about the 1000 highest-load hours of the year.

This difference in the fundamental driver of solar capacity

value (compared to wind) raises important questions about the

robustness of capacity-value estimates to the underlying data.

This is because capacity-value studies often rely on data that

are either modeled, recorded at coarse time intervals, or may

have other errors. This paper examines the robustness of PV

capacity-value estimates to three data issues.

gami.3@osu.edu
sioshansi.1@osu.edu
paul.denholm@nrel.gov


2 IEEE JOURNAL OF PHOTOVOLTAICS

We first examine the use of hourly averaged solar-insolation

data (which are typically used) as opposed to one-minute data.

The question that we address here is the effect on capacity-

value estimates of using hourly averaged data, which can

‘smooth’ solar-output profiles. We show that hourly averaged

data can under- or overestimate the capacity value of solar by

up to 10% in an individual year. Having multiple years of data

tends to mitigate the errors introduced by the use of hourly

averaged data, however.

We next examine the effect of errors in recording load data.

There can be ambiguities about load data. Hour-t load data

could represent the instantaneous hour-t load measurement, the

average load over the hour-ending t, the average load over the

hour-beginning t, or something else. Moreover, utilities may

handle daylight savings time differently in reporting load. We

bound this effect by examining the sensitivity of PV capacity-

value estimates to shifting load profiles forward and backward

by one hour. We find that these load shifts can change the

capacity value of PV by more than 35% and that the load shifts

do not necessarily always affect the capacity-value estimate in

the same direction. Moreover, having multiple years of data

will not necessarily eliminate the biases introduced by load

errors.

We finally examine the effect of using modeled as opposed

to measured solar-insolation data to simulate PV output. We

find that modeled data can significantly over- or underestimate

capacity value. We find that using multiple years of data will

not necessarily eliminate these biases either.

The remainder of this paper is organized as follows. Sec-

tion II details the reliability-based model that we use in all

of our capacity-value estimates and Section III discusses the

data that are used in our analysis. Section IV summarizes

our capacity-value estimates for the PV plants studied and

the sensitivity analyses detailed above. We also provide some

examples that demonstrate why our capacity-value estimates

exhibit the sensitivities that we observe. We provide exam-

ples showing the effects of smoothing-out one-minute solar-

insolation data by using hourly averaged data instead. We also

demonstrate the different types of effects that using modeled

as opposed to measured solar-insolation can have on capacity-

value estimates. Section V concludes.

II. CAPACITY-VALUE ESTIMATION MODEL

We use a standard reliability-based approach to estimate

the capacity value of PV. The specific capacity-value metric

that we use is the effective load-carrying capability (ELCC).

ELCC is defined as the amount by which a system’s load

can increase when the output of the PV plant is added to the

system, without changing system reliability.

To compute the ELCC of a PV plant, we first assess the

reliability of the base system, without the PV. To do this,

we compute the loss of load probability (LOLP) of the base

system in each time step as:

pt = Prob {Gt < Lt} , ∀t ∈ T. (1)

The Prob {·} function in (1) can capture generator failures,

random load, transmission failures (which can limit the ability

of particular generators to serve load), or other random events

that can cause a loss of load.

We next compute the loss of load expectation (LOLE) of

the base system as the sum of the LOLPs:

ǫ =
∑

t∈T

pt. (2)

The LOLE represents the expected number of time periods (the

duration of the time periods are defined based on the temporal

granularity used to compute the LOLPs) over the study period

(which is determined by the number of time periods in the set,

T ).

We next compute the LOLPs of the system with the PV

plant added to the generator set and an additional L̄ MW of

load in each time step as:

pSt (L̄) = Prob
{

Gt + St < Lt + L̄
}

, ∀t ∈ T. (3)

The variable, St, represents the output of the PV plant in these

LOLP calculations. The Prob {·} function in (3) captures the

same types of events captured by the Prob {·} function in (1).

It can also capture the effects of random events (e.g., climatic

conditions) on PV output. We then compute the LOLE of the

system with the PV and added load as:

ǫS(L̄) =
∑

t∈T

pSt (L̄). (4)

The final step of the ELCC calculation is to determine a

value of L̄ that makes the LOLE of the base system and

the system with the added load and PV equal. That is, we

determine a value of L̄ for which:

ǫS(L̄) = ǫ.

This is typically done in an iterative fashion, for instance using

a bisection method, which is the method employed in our

analysis.

III. CASE-STUDY DATA

Our case study examines 10 locations across the United

States. More specifically, we examine the locations listed

in Table I, for which historical measured solar-insolation

data are available at one-minute intervals. The table lists the

geographical coordinates of each ground-level measurement

station, from which insolation data are taken. It also lists

which electric utility’s footprint each station is in. We use

the local utility to model system loads and capacity available

from the remaining generation fleet (i.e., the values of Lt and

Gt) in the LOLP calculations. Table I also lists the years for

which our analysis is conducted for each location. We only

conduct ELCC estimates for years for which complete solar-

production, load, and generator data are available.

We now detail the solar-production and power system data

used in our analysis.

A. Solar-Production Data

The locations that we study do not have PV plants installed.

Thus, we use weather data to simulate the output of a

hypothetical PV plant. We now detail the data sources and

model used for these simulations.
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TABLE I
LOCATIONS STUDIED

Location Coordinates Years

Nevada Energy, Nevada (NE)
1 36.09◦ N, 115.07◦ W 2006

2 36.09◦ N, 115.15◦ W 2006

3 36.61
◦ N, 116.03◦ W 1999–2002, 2004–2013

Public Service Company of Colorado, Colorado (PSCC)
4 39.74◦ N, 105.18◦ W 2005–2006
5 40.13◦ N, 105.23◦ W 1999–2002, 2004–2013

NorthWestern Energy, Montana (MPC)
6 48.33◦ N, 105.11◦ W 1998–1999, 2002–2013

NorthWestern Energy, South Dakota (NWPS)
7 43.73

◦ N, 96.63◦ W 2008, 2010–2013
South Mississippi Electric Power Association, Mississippi (SMEA)

8 34.25◦ N, 89.87◦ W 1998–2005, 2007–2013
Southern Illinois Power Cooperative, Illinois (SIPC)

9 40.05
◦ N, 88.39◦ W 1998, 2000, 2001, 2003,

2004, 2007
West Penn Power, Pennsylvania (WPP)

10 40.73◦ N, 77.95◦ W 1999, 2002–2003, 2007–2013

1) Measured Solar-Insolation Data: Solar-insolation data,

which are gathered by ground stations at the locations studied

at one-minute intervals, are publicly available from the MIDC1

and SURFRAD2 data repositories. These datasets include solar

insolation, temperature, and wind speed data, all of which are

needed to simulate the electric output of a PV plant.

One of our sensitivity analyses is to compare ELCC es-

timates using solar-insolation data measured at one-minute

intervals to hourly solar-insolation measurements. We model

PV output with hourly data by averaging the 60 one-minute

solar-insolation measurements corresponding to each hour to

obtain an hourly averaged solar-insolation measurement. We

then construct a dataset in which each hourly averaged solar-

insolation measurement is repeated 60 times. By doing this,

we examine the effect of changing the input data from one-

minute to hourly measurements without any other changes in

the underlying PV-simulation model.

Hourly PV simulations often caluculate the sun position at

the midpoint of each hour assuming hourly averaged solar-

irradiance data. The method that we employ calculates the

correct sun position at each minute. The sun position affects

the calculated angle of incidence of irradiance on the PV

system. Thus, there may be small differences in energy output

between the two methods.

2) Modeled Solar-Insolation Data: One of the sensitivity

analyses that we conduct is to compare ELCC estimates

using measured solar-insolation data to estimates using mod-

eled data. We obtain modeled solar-insolation data from ver-

sion 2.0.0 of the National Solar Radiation Database (NSRDB)

[30], [31] for this comparison. The NSRDB uses satellite

images to estimate the amount of solar radiation that impacts

the surface of the earth at thirty-minute intervals on a 4 km2

grid of the United States.

We use modeled solar-insolation data for the location in

the NSRDB that is closest to each location in the MIDC

and SURFRAD datasets. The NSRDB data are reported in

UTC. We shift the data to local time using the standard time

1https://www.nrel.gov/midc/
2http://www.esrl.noaa.gov/gmd/grad/surfrad/

difference between the local time zone of each location and

UTC. Because the NSRDB data are reported at 30-minute

intervals, we convert the NSRDB data to hourly averaged

solar-insolation data and compare the NSRDB-based ELCC

estimates to those using hourly average measured data.

3) Simulated Solar Generation: The production of a solar

plant at each study location is estimated using version 5 of the

PVWatts model [32] from the System Advisor Model Software

Development Kit.3

We assume that each PV plant has a 100 MW dc nameplate

capacity and a dc to ac derate factor of 0.81. This derate

factor captures energy and efficiency losses associated with

converting the dc output of the PV cells to ac. The plants are

assumed to be fixed-axis with a 180◦ azimuth and an optimal

tilt equal to the location’s latitude.

B. Power System Data

Modeling LOLPs and LOLEs requires load and generator

data. We now detail the data sources used and how specifically

LOLPs are computed.

1) Load Data: Hourly historical load data are obtained

from Form 714 data submitted by each of the utilities studied

to the Federal Energy Regulatory Commission.4 Because our

base case analysis uses solar insolation data recorded at one-

minute intervals, each hourly load observation is repeated 60
times to obtain time-synchronized load data.

2) Generator Data: Historical generator data are obtained

from Form 860 data submitted by each generator to the

United States Department of Energy’s Energy Information

Administration.5 The Form 860 data specify the owner of

each generating facility. We only consider generating facilities

that were owned by each utility and operational in each

year studied in modeling their respective power systems. The

Form 860 data also specify the nameplate capacity, generating

fuel, and prime mover of each generator.

These data are combined with historical effective forced out-

age rate (EFOR) data reported in the North American Electric-

ity Reliability Corporation’s (NERC’s) Generating Availability

Data System (GADS).6 The GADS reports historical EFORs

based on generating technology and plant capacity.

3) LOLP Calculation: Our base case analysis uses solar

insolation data recorded at one-minute intervals. Thus, we

compute LOLPs at one-minute intervals. LOLPs are computed

assuming that the loads and PV output are fixed based on

their historical values. The only randomness modeled are

conventional-plant failures. These failures are represented us-

ing a simple two-state (online/offline) model. We assume

that generator outages are serially and cross-sectionally in-

dependent, with each plant’s failure probability being the

corresponding EFOR obtained from the GADS. Generator

EFORs and nameplate capacities are used to compute each

utility system’s capacity outage probability table [33].

Some of the systems that we model may export or import

energy to neighboring regions. As such, the LOLE of the base

3https://sam.nrel.gov/sdk
4http://www.ferc.gov/docs-filing/forms/form-714/data.asp
5https://www.eia.gov/electricity/data/eia860/
6http://www.nerc.com/pa/RAPA/gads/Pages/default.aspx

https://www.nrel.gov/midc/
http://www.esrl.noaa.gov/gmd/grad/surfrad/
https://sam.nrel.gov/sdk
http://www.ferc.gov/docs-filing/forms/form-714/data.asp
https://www.eia.gov/electricity/data/eia860/
http://www.nerc.com/pa/RAPA/gads/Pages/default.aspx
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system may be higher or lower than NERC’s one outage-day in

10 years reliability standard [9]. To account for these imports

and exports, we proportionally scale the loads so that the base

system has an LOLE of 144 minutes (2.4 hours) in each year.

Table II summarizes the range (over the years studied) of

unscaled loads in each of the utility systems modeled. As

is common in the United States, many of the systems are

summer-peaking (due to air conditioning loads). However, the

MPC, NWPS, and SMEA systems have winter peaks that are

very close to the summer peak. These systems are also winter-

peaking in some of the years studied.

TABLE II
UTILITY LOAD DATA [GW]

Utility Average Summer Peak Winter Peak

NE 1.9–3.0 4.0–6.3 2.2–4.0
PSCC 2.8–4.8 4.5–8.2 4.0–6.8
MPC 0.3–1.1 0.4–1.5 0.4–1.5
NWPS 1.2–1.2 1.6–1.8 1.7–1.8
SMEA 0.2–1.7 0.2–2.7 0.4–2.9
SIPC 1.8–5.5 3.2–9.4 2.5–7.2
WPP 4.5–8.1 6.4–13.8 6.8–10.9

IV. ELCC ESTIMATES

This section first summarizes our ELCC estimates in the

base case, in which solar-insolation data measured at a ground

station at one-minute intervals are used. We then discuss the

results of our sensitivity analyses.

A. Base-Case ELCC Estimates

Table III provides summary statistics of the annual ELCC

estimates (measured in MW) for each location studied. This

includes the average, standard deviation, minimum, and max-

imum ELCCs (across the years studied) for each location.

Because only a single year’s data are available for Locations 1
and 2, only the averages are reported for these two. The table

shows that the ELCCs in a given year can range between

8 MW and 41 MW. These values correspond to 10% and 50%

of the 83 MW ac nameplate capacity of the PV plants studied.

TABLE III
ELCC ESTIMATES USING ONE-MINUTE MEASURED SOLAR-INSOLATION

DATA [MW]

Location Average Standard Deviation Minimum Maximum

1 30.4

2 26.3

3 24.2 3.0 17.8 30.5

4 23.1 5.2 19.4 26.8

5 24.2 7.0 14.6 40.9

6 16.9 4.9 7.9 23.0

7 17.7 9.2 9.0 32.1

8 25.5 5.9 13.2 32.2

9 26.5 3.6 21.5 32.4

10 20.9 5.1 15.3 31.5

Solar ELCC is driven by the coincidence between solar

insolation and load. For this reason winter-peaking systems

tend to see low ELCCs. Locations 6–8 and 10 are in utilities

that are winter peaking in some of the years studied. The

average ELCC of PV plants in these locations in the winter-

peaking years are between 9% and 56% lower than the

ELCCs in the summer-peaking years. Our finding that ELCCs

are lower in winter-peaking systems is consistent with other

capacity-value estimates of solar PV reported in the literature,

although our overall ELCC estimates are lower than those

reported elsewhere [23].

B. Sensitivity of ELCCs to Hourly Solar-Insolation Data

Table IV summarizes the sensitivity of the ELCC estimates

to using hourly as opposed to one-minute solar-insolation data.

The table shows the average and maximum absolute value of

differences (across the years studied) in ELCCs when using

the two sets of solar-insolation measurements. These values

are reported as absolute [MW] differences and as percentages

of the average ELCC estimate obtained using one-minute data.

Because only a single year’s data are available for Locations 1
and 2, maximum differences are not reported for these two.

Table IV shows that using hourly averaged data can bias the

resulting ELCCs significantly in a single year. For instance,

the ELCC based on one-minute solar-insolation data of the PV

plant in Location 3 is 18 MW in 2005. This is overestimated

by 2 MW (a 9% error) if hourly averaged data are used instead.

TABLE IV
ABSOLUTE VALUE OF DIFFERENCES IN ELCC ESTIMATES USING

MEASURED ONE-MINUTE AND HOURLY-AVERAGED SOLAR-INSOLATION

DATA

Mean Difference Maximum Difference
Location [MW] [%] [MW] [%]

1 0.7 2.3

2 2.2 8.2

3 0.3 1.3 1.7 9.3

4 1.2 5.0 1.6 6.0

5 0.3 1.3 1.0 3.7

6 0.2 1.1 0.4 2.3

7 0.3 1.2 0.6 2.0

8 0.2 0.6 0.4 2.0

9 0.1 0.4 0.2 0.8

10 0.2 1.1 0.5 2.9

Fig. 1 demonstrates how hourly averaged solar-insolation

data can ‘smooth out’ variability in PV output, thereby af-

fecting the ELCC estimate. It shows simulated PV output and

loads at Location 6 on 13 July, 2005, which is the peak-load

day of the year for the NWE system, in which the PV plant

is located. Using the hourly averaged and one-minute solar-

insolation data gives the same energy production from the

PV plants over the course of the day—472 MWh. However,

hourly averaged data slightly overestimates PV generation in

the afternoon, when the system load is high, impacting the

ELCC calculation. One-minute solar-insolation data estimate

192 MWh of PV output from the beginning of hour 12 to the

end of hour 15, as opposed to 196 MWh of output estimated

during this period using hourly averaged data. These and other

differences result in a 1.0% error in the ELCC estimate.

The effect of ‘smoothing out’ variability in solar-insolation

that is shown in Fig. 1 could also be caused by analyzing the

energy production of a solar facility that is spread out over a

wide geographic area. Because a ground instrument measures

solar-insolation at a single geographic point, the measurement

tends to exhibit more noise than a series of PV panels spread

out over the ground or multiple rooftops would.
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Fig. 1. Simulated PV output using one-minute and hourly averaged solar-
insolation data and loads for Location 6 on 13 July, 2005.

Using hourly average data can under- or overestimate EL-

CCs, even in the same system. However, we find that hourly

averaged data overall tends to bias the ELCC estimates up-

wards. Of the 91 location/year pairs studied, 74 of the ELCCs

are overestimated when hourly averaged solar-insolation data

are used. This suggests that hourly averaged solar-insolation

data tend to overestimate afternoon PV output, giving the

upward bias in the estimates.

Using hourly averaged solar-insolation data can introduce

significant errors in estimating an ELCC in a particular year.

However, the mean absolute differences reported in Table IV

show that having multiple years of data tends to smooth out

these errors. Locations 3, 5, 6, 8, and 10, for which we have

nine to 16 years of data, have average absolute errors in

the ELCC estimates between hourly averaged and one-minute

solar-insolation data of no more than 1.3%. Locations 2 and 4,

for which we have one and two years of data, respectively,

have higher average errors of 8.2% and 5.0%, respectively.

These findings suggest that although using hourly averaged

data can result in biased ELCC estimates, using multiple years

of data can mitigate these errors to some extent.

C. Sensitivity of ELCCs to Load Shifts

Table V summarizes the sensitivity of the ELCC estimates

to shifting the load data reported in Form 714 backward and

forward one hour. The reason for conducting this analysis is

that there is ambiguity in what exactly is reported by utilities

in Form 714. The submitted data have no clear documentation

indicating what specific load measurements are reported. The

hour-t load reported could represent the instantaneous load

at hour t or could be an average load over the preceding

or following hour. Shifting the loads forward and backward

one hour bounds the effect of such errors in reporting and

interpreting the load data on ELCC estimates.

For each of backward and forward load shifts, Table V

reports the average (over the years studied) differences in

the ELCCs compared to using unshifted loads. A positive

difference means that using the shifted load gives a higher

TABLE V
AVERAGE DIFFERENCES IN ELCC ESTIMATES USING LOAD DATA

SHIFTED BACKWARD AND FORWARD ONE HOUR [%]

Shifted Backward Shifted Forward
Location Difference Abs. Value Difference Abs. Value

1 31.3 31.3 −31.4 31.4

2 29.6 29.6 −30.4 30.4

3 41.8 41.8 −37.3 37.3

4 36.9 36.9 −34.7 34.7

5 34.4 34.4 −31.5 31.5

6 3.5 6.8 −4.8 7.7

7 11.2 11.2 −7.7 8.3

8 16.2 20.8 −17.6 21.7

9 17.5 17.5 −19.4 19.4

10 4.7 5.4 −5.0 9.8

ELCC estimate compared to using the unshifted loads. The

differences are reported as percentages of the average ELCC

estimate using unshifted loads. The table also reports the

average of the absolute values of the differences.

For all of the systems studied, shifting the loads back one

hour gives an average increase in the ELCC estimates. This

is because most of these systems are summer-peaking (on

average over the years studied). It is common in summer-

peaking systems for the peak load to lag peak solar output

by a few hours (due to thermal inertia in buildings delaying

air conditioning loads). Shifting the loads back improves

the coincidence in loads and PV output, increasing ELCCs.

There are, however, six, three, and three years, respectively, in

which the MPC, SMEA, and WPP systems are winter-peaking.

Shifting the loads back one hour decreases the ELCC estimates

of PV in these systems (cf. Locations 6, 8, and 10) during four,

one, and two of these years, respectively. This phenomenon is

exhibited by the average differences and the average of the

absolute values of the differences in Table V not being the

same for Locations 6, 8, and 10.

Table V shows that errors in properly interpreting load data

can have a drastic effect on ELCC estimates. Moreover, having

multiple years of data does not necessarily smooth out these

errors. Locations 3, 5, and 8, for which we have at least

14 years of data, have average (over the years studied) errors

of more than 21%. This is because the ELCC differences given

by load shifting tend to be persistent over the years and do

not smooth out as more data are used for the ELCC analysis.

D. Sensitivity of ELCCs to Modeled Solar-Insolation Data

Table VI summarizes the sensitivity of the ELCC estimates

to using modeled solar-insolation data. Table VI provides

summary statistics of the differences in the ELCC estimates

using the two datasets. The differences are reported as percent-

ages of the average ELCC estimate obtained using measured

solar-insolation data. Because we only have one year’s data

for Locations 1 and 2, only average values are reported for

these two. A positive difference means that the NSRDB-

based ELCC is higher than the estimate using measured solar-

insolation data.

The table shows that modeled data can introduce significant

errors in the ELCC estimates. Moreover, having multiple years

of data do not necessarily smooth out these errors, as seen for

Locations 6, 8, and 10, for which we have 10–15 year’s data.
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TABLE VI
DIFFERENCES IN ELCC ESTIMATES USING MEASURED AND MODELED

SOLAR-INSOLATION DATA [%]

Location Average Standard Deviation Minimum Maximum

1 −1.1

2 10.4

3 0.9 5.5 −17.4 4.8

4 3.2 1.8 1.4 5.0

5 0.6 7.8 −17.2 12.6

6 −7.0 10.1 −24.5 15.2

7 26.9 10.4 15.4 41.2

8 12.8 27.1 −5.8 112.1

9 7.1 5.3 −0.2 12.5

10 4.3 4.4 −2.4 11.5

Fig. 2 shows the distribution of the differences in the ELCC

estimates between using modeled and measured data in each

year examined for each location. The differences are given

as percentages of the ELCC estimate obtained for each year

using measured solar-insolation data. The figure uses the same

convention as in Table VI that a positive difference means that

the NSRDB-based analysis overestimates the ELCC.

1 2 3 4 5 6 7 8 9 10

Location

-40

-20

0

20

40

60

80

100

120

D
iff

er
en

ce
s 

in
 E

LC
C

 E
st

im
at

es
 [%

]

Annual Difference
Average Difference

Fig. 2. Annual and average (over years analyzed) differences in ELCC
estimates using measured and modeled solar-insolation data.

Modeled solar-insolation data can introduce a number of

errors in the ELCC estimates, which are illustrated in Figs. 3

through 6. One is that the modeled data can grossly under-

or overestimate solar-insolation. An example of this is given

in Fig. 3, which shows simulated PV output using measured

and modeled solar-insolation data and loads for Location 3
on 12 July, 2012. This is the highest-load day for the NE

utility system, which contains Location 3. The figure shows

that the NSRDB data completely underestimate PV output on

this day. The measured solar-insolation data yield 493 MWh

of generation during the day shown as opposed to 223 MWh

using the NSRDB data. As a result, using NSRDB data

underestimates the ELCC computed using measured solar-

insolation data by 17% in 2012.

We find that at some locations the NSRDB can systemat-

ically under- or overestimate PV output over multiple years.

As an example of this, the NSRDB overestimates PV output
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Fig. 3. Simulated PV output using measured and modeled solar-insolation
data and loads for Location 3 on 12 July, 2012.

in an individual year by between 1% and 13% (relative to

the measured data) for Location 9, giving an average (over

the six years studied) PV-output overestimate of 7%. As a

result, the NSRDB gives an average ELCC estimate that is

7% greater than that using measured data. Interestingly, the

NSRDB slightly underestimates the ELCC for Location 9 in

2007 but overestimates aggregate PV output in that year by

1%. This is because the NSRDB underestimates PV output on

the highest-load day of 2007.

Figs. 4 and 5 demonstrate a more extreme case of this for

Location 5 in 2004. The NSRDB overestimates PV output over

the year by 0.5% relative to the measured solar-insolation data.

Moreover, as Fig. 4 shows, the average (over the year) sim-

ulated diurnal PV-output profile using measured and NSRDB

data are almost identical. Fig. 5 shows, however, that although

the average performance of the NSRDB is virtually identical

to the measured data for 2004, the NSRDB underestimates PV

output on the highest-load day of the year in the NE system,

which is 14 July. As a result, the NSRDB underestimates the

ELCC by 11% relative to using measured data. This finding,

again, highlights the extreme sensitivity of the ELCC estimate

to output during the small number of peak-load hours in the

study period.

At other locations, the NSRDB can both under- or overes-

timate PV output across multiple years. In the case of Loca-

tion 6, the NSRDB under- or overestimates PV output in an

individual year by between 12% and 11% and underestimates

PV output by 6% over the 14 years studied. As a result,

the average ELCC is underestimated by 7% relative to using

measured data.

Fig. 6 illustrates another type of error that modeled solar-

insolation data can introduce. It shows simulated PV output

using measured and modeled solar-insolation data and loads

for Location 8 on 27 June, 2013, the highest-load day of

the year. The two solar-insolation data sets give very similar

aggregate PV output profiles on this day—469 MWh and

455 MWh using measured and modeled data, respectively.

The modeled data, however, underestimate PV production in
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Fig. 4. Average (over the year) simulated diurnal PV-output profile using
measured and modeled solar-insolation data for Location 5 in 2004.
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Fig. 5. Simulated PV output using measured and modeled solar-insolation
data and loads for Location 5 on 14 July, 2004.

the morning hours and overestimate it in the afternoon. As a

result, the modeled data give an ELCC estimate that is 19%

greater than that using measured solar-insolation data.

V. CONCLUSIONS

This paper examines the sensitivity of solar PV ELCC esti-

mates to a number of potential data issues. Figs. 1, 3, 5, and 6

give specific examples showing how using hourly averaged

or modeled solar-insolation can introduce significant errors in

capacity-value estimates. The errors shown in these figures are

not the only ones possible. However, these examples convey

the major types of errors that we observe in our analysis.

Our analysis suggests that if a sufficient number of years’

data are used in a capacity-value analysis, hourly solar-

insolation data should provide relatively robust results. How-

ever, errors in recording or interpreting load data cannot nec-

essarily be fixed through more data. More troubling, our anal-

ysis shows that modeled solar-insolation can introduce large
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Fig. 6. Simulated PV output using measured and modeled solar-insolation
data and loads for Location 8 on 27 June, 2013.

errors in capacity-value estimates. This finding is problematic

because measured solar-insolation data are not available at the

spatial and temporal granularity that modeled data are. Even

at locations with a ground-based measurement station, ‘holes’

in the data appear due to instrument failures. For instance, the

measured solar-insolation data for Location 10 show zero solar

insolation for the highest-load day of two of the years studied

(these years are, obviously, excluded from our analysis).

The results of this paper call into question the accuracy

of photovoltaic capacity-value estimates in the literature (in-

cluding our own previous works) that rely on modeled solar-

insolation and publicly reported load data. It is important to

stress, however, that we only analyze a single modeled solar-

insolation dataset (the NSRDB). There are numerous other

modeled solar-irradiance datasets and a comparison of the

performance of the NSRDB to these datasets is an important

future research topic. The NSRDB is the only publicly avail-

able dataset that uses a physics-based approach (specifically,

using the Fast All-Sky Radiation Model for Solar applications

or FARMS) to modeling solar irradiance. It is not known how

this would perform compared to other modeling techniques

(e.g., approaches based on time series). It should also be

stressed that our analysis only compares the use of the NSRDB

to measured solar-insolation data for purposes of capacity-

value estimation. Capacity-value estimatation is not the sole

use of solar-insolation data, and our analysis should not be

construed as making any claims about the accuracy of other

types of solar analyses using the NSRDB.

Despite these concerns, these data issues can be addressed

with time. As PV systems become more common and widely

deployed, measured solar-output (as opposed to only solar-

insolation) data could become more widely available. This

may reduce our reliance on modeled data. Other data-quality

issues, for instance related to load reporting, can be ad-

dressed by FERC and other agencies that collect such data

by developing detailed standards on data reports (e.g., what

load measurements to report and how time zone and daylight

savings are accounted for).



8 IEEE JOURNAL OF PHOTOVOLTAICS

Our analysis also has some important implications for remu-

nerating solar generators for capacity value. Many organized

electricity markets have mechanisms that compensate solar

generators based on historical production data. Our analysis

suggests that these schemes can, on average, get capacity

payments correct if they use hourly metered solar production,

so long as a sufficient number of years of historical data

are included in determining payments. Otherwise, if only a

small number of years’ data are used, payments based on

hourly metered solar output may not properly remunerate solar

generators for the reliability benefits that they provide the

system.

An interesting topic for future research is to better under-

stand the tradeoffs between the number of years of solar-

insolation data used in capacity-value estimation and the

temporal granularity of those data. We only compare hourly

averaged and one-minute data. Moreover, our analysis only

goes as far as finding that using at least nine years of hourly

average solar-insolation data results in relatively good ELCC

estimates (compared to using less than two years of data).

This result raises the question of understanding the marginal

value of having additional years of hourly averaged solar-

insolation data for the purposes of capacity-value estimation.

Another related question is how many years of data would be

needed if solar-insolation data are recorded at other temporal

granularities (e.g., 10-minute data). Such analyses will require

more data covering more locations and years than we currently

have access to, in order to ensure that the findings are robust.

As more measured solar-output data become available, such

analyses should become feasible.
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