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Comparing Capacity Value Estimation Techniques
for Photovoltaic Solar Power
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Abstract—We estimate the capacity value of photovoltaic (PV)
solar plants in the western U.S. Our results show that PV
plants have capacity values ranging between 52% and 93%,
depending on location and sun-tracking capability. We further
compare more robust but data- and computationally-intense
reliability-based estimation techniques to simpler approximation
methods. We show that if implemented properly, these techniques
provide accurate approximations of reliability-based methods.
Overall, methods based on the weighted capacity factor of the
plant provide the most accurate estimate. We also examine the
sensitivity of PV capacity value to the inclusion of sun-tracking
systems.

Index Terms—Capacity value, reliability theory, approximation
techniques, photovoltaic solar

NOMENCLATURE

T time index set
T ′ subset of hours used in capacity factor-based approxima-

tion
Λ set of locations modeled

Gt conventional generating capacity available in hourt

Ḡ nameplate conventional generating capacity
Vt generating capacity available from photovoltaic (PV)

plant in hourt
µPV mean hourly generating capacity available from PV plant
σPV standard deviation of hourly generating capacity available

from PV plant
V̄ rated capacity of PV plant
Lt hour-t load
St hour-t surplus generation capacity
µS mean ofSt

σS standard deviation ofSt

L̄ constant loaded added in each hour in effective load-
carrying capability (ELCC) calculation
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Bt generating capacity available from benchmark unit in
hourt in equivalent conventional power (ECP) calculation

pt hour-t loss of load probability
ǫ loss of load expectation (LOLE) of base system

ǫELCC LOLE with PV and loads added in ELCC calculation
ǫPV LOLE with PV added in ECP calculation
ǫB LOLE with benchmark unit added in ECP calculation
wt hour-t weight used in capacity factor-based approxima-

tion
m system characteristic
Ω index set for PV plant states in multi-state ELCC approx-

imation
Vω PV capacity unavailable in stateω
πω probability PV plant is in stateω
Z Z statistic

cELCC

λ
average annual ELCC of a PV plant at locationλ

ca

λ
average annual capacity value of a PV plant at location
λ approximated using methoda

I. I NTRODUCTION

A N important issue for power system planners is the con-
tribution of renewables to reliably meeting demand [1],

[2]. A generator’s ability to help reliably serve load is typically
captured by estimating its capacity value [3]–[5]. Generator
outages, which can occur due to mechanical failures, planned
maintenance, or lack of generating resource in real-time, may
leave a power system with insufficient generating capacity
to meet load. The issue of real-time resource availability
is especially prevalent with renewables. Previous analyses
estimate the capacity values of wind [2], [6]–[11], photovoltaic
(PV) solar [12]–[16], and concentrating solar power (CSP)
[17], [18] resources. They demonstrate that these renewables
have non-zero capacity values that can range between 5%
and 95% of maximum generating capacity. The range of
capacity values reflects the effects of technology, geography,
and demand patterns on the coincidence between real-time
generation and demand. It also reflects the decreasing marginal
capacity value of additional renewables. These analyses use a
mix of reliability-based and statistical approximation methods.
These methods estimate the probability that a power system
experiences an outage event, which is defined as the generating
capacity available being less than load. The capacity valueis
determined based on the contribution of a generator toward
reducing this probability.

This paper expands on previous analyses of the capacity
value of PV. Using a case study of the western United
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States, we estimate that PV has long-run interconnect-wide
average capacity values of between 52% and 93% of its rated
ac capacity, depending on location, sun-tracking capability,
and the reliability-based estimation used. We also examine
different approximation techniques, showing that some are
quite accurate relative to reliability-based methods. We finally
study the sensitivity of the capacity value of PV to the use of
single- and double-axis sun-tracking systems. The remainder
of this paper is organized as follows: section II summarizes
the capacity value estimation techniques that we examine,
section III summarizes our case study and the data used,
section IV summarizes our results, section V presents our
sensitivity analysis, and section VI concludes.

II. CAPACITY VALUE ESTIMATION TECHNIQUES

A. Reliability-Based Methods

Numerous techniques are used to approximate the capacity
value of conventional and renewable generators. Reliability-
based methods are among the most robust and widely accepted
of these [1], [5], [7], [9], [10], [17]–[21]. These techniques
use a standard power system reliability index, loss of load
probability (LOLP), to determine how a generator affects the
reliability of the system. LOLP is defined as the probability
that generator or transmission outages leave the system with
insufficient capacity to serve the load in a given period of time.
A related reliability index, loss of load expectation (LOLE),
is defined as the sum of LOLPs over some planning horizon,
and gives the expected number of outage periods within that
horizon. Other reliability metrics, such as loss of energy
probability, can also be used. These are less common, however,
especially in estimating the capacity value of renewables,and
we focus on LOLE-based methods, to make our results directly
comparable to these previous works [2], [6]–[18]. LOLPs
are typically modeled at hourly timesteps and LOLEs are
computed over year-long periods, which are the conventions
used in this analysis. Conventional generator and transmission
outages are typically modeled using an equivalent forced
outage rate (EFOR), which captures the probability of a failure
at any given time. With variable renewables, one must model
mechanical failures using an EFOR and capture resource
variability. The latter is typically done using historicalresource
data or by simulating such data from underlying probability
distributions. Reliability-based methods determine the capacity
value of a generator by how it affects the system’s LOLPs
and LOLE. Standard reliability-based methods include the
effective load-carrying capability (ELCC), equivalent conven-
tional power (ECP), and equivalent firm power (EFP) methods,
which are detailed below.

1) Effective Load-Carrying Capability:The ELCC of a
generator is defined as the amount by which the system’s loads
can increase, when the generator is added to the system, while
maintaining the same LOLE. The ELCC of PV is calculated
by first computing the system’s LOLPs without the PV as:

pt = Prob{Gt < Lt} , (1)

where the probability function accounts for the likelihoodof
generator or other failures (which are modeled using EFORs)

and can account for stochastic loads. The LOLE of the base
system is then defined as:

ǫ =
∑

t∈T

pt. (2)

The PV plant is added to the system and a fixed load,L̄, is
added to each hour, giving a new LOLE:

ǫELCC =
∑

t∈T

Prob
{

Gt + Vt < Lt + L̄
}

, (3)

where the probability function also accounts for the probability
of real-time solar availability. The fixed load added to each
hour is iteratively adjusted until the LOLE of the system with
the PV and added loads is the same as that of the base system,
or until:

ǫ = ǫELCC . (4)

The PV plant’s ELCC is defined as the value ofL̄ that achieves
condition (4).

2) Equivalent Conventional Power:The ECP of a gener-
ator, g, is defined to be the capacity of a benchmark unit,
which is assumed to have a positive EFOR, that can replace
g while maintaining the same LOLE. This is an attractive
measure of a renewable generator’s capacity value, since itcan
be benchmarked against a conventional dispatchable resource.
The ECP of a PV generator is calculated by first computing
the LOLE of the system when the PV is added as:

ǫPV =
∑

t∈T

Prob{Gt + Vt < Lt} . (5)

The LOLE of the system when only the benchmark plant
(i.e. without the PV) is added is also computed as:

ǫB =
∑

t∈T

Prob{Gt + Bt < Lt} , (6)

where the probability function also accounts for the likelihood
of the benchmark unit failing (using an EFOR). The nameplate
capacity of the benchmark unit is iteratively adjusted until the
LOLE of the system with the benchmark unit is the same as
that with the PV plant, or until:

ǫPV = ǫB. (7)

The PV plant’s ECP is defined as the nameplate capacity of
the benchmark unit that achieves equality (7).

3) Equivalent Firm Power:A generator’s EFP is computed
following the same steps as the ECP, except that the bench-
mark plant used to computeǫB is assumed to be perfectly
reliable (i.e. has a 0% EFOR). A generator’s EFP and ELCC
generally differ, since changing a system’s generation mix
changes the distribution of available capacity in a given hour
whereas adjusting loads does not [9].

B. Approximation Methods

While reliability-based methods are widely accepted and
considered accurate capacity value estimation techniques[7],
[9]–[11], they can be computationally expensive and require
detailed system data. Achieving equalities (4) and (7) requires
iterative LOLP calculations, which can be time-consuming.
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Recent computer advances makes this less of an issue today,
however [22]. Reliability-based methods also require EFORs
and capacities of all existing generators in the system and
loads. Moreover, due to seasonal and annual weather pattern
changes, several years’ data are typically needed to accurately
estimate the long-run capacity value of renewables.

Because of these challenges raised by reliability-based
methods, approximation techniques are typically used for
capacity planning purposes [2]. These include Garver’s ELCC
approximation [4], the Z method [23], and capacity factor-
based methods [24]. These techniques reduce the computa-
tional burden by either approximating the relationship between
capacity added to the system and LOLPs or by focusing on
a subset of hours during which the system faces a high risk
of not serving the load. Several studies examine the accuracy
of these approximation techniques in estimating the capacity
value of wind and CSP. Bernowet al. [25] and El-Sayed
[26] approximate the capacity value of wind as its average
capacity factor during the highest-load hours of the year.
Milligan and Parsons [24] introduce three different techniques
to estimate the capacity value of wind. They approximate it
as the average capacity factor during the highest-load and
highest-LOLP (of the base system without added wind) hours
of the year. They also approximate it as a weighted average
of the capacity value during the highest-load hours of the
year, using the LOLPs as weights. Madaeniet al. [17], [18]
compare capacity factor-based and reliability-based methods
applied to CSP, showing that capacity factors can provide
relatively accurate approximations. Zachary and Dent [27]
compare these techniques and also discuss their applicability
in different settings. The approximation techniques that we
consider in this analysis, which are detailed below, include
capacity factor-based, Garver’s, multi-state generator,and Z
methods.

1) Capacity Factor-Based Approximation:This method ap-
proximates the capacity value of a generator as its average
capacity factor over a subset of ‘risky’ periods. Hours with
high loads or LOLPs are typically used. We focus on the
weighted capacity factor method that Milligan and Parsons
[24] apply to wind. This method approximates the capacity
value by first determining a subset of hours,T ′, with the
highest loads, over which the capacity factor is averaged. The
weights used in each hour are then computed as:

wt =
pt

∑

τ∈T ′

pτ

, (8)

where thept’s are the LOLPs of the base system, without
added PV, and are calculated using (1). The capacity value of
the PV plant is approximated as:

∑

t∈T

wt · Vt

V̄
. (9)

2) Garver’s Approximation Method:Garver [4] proposes
an ELCC approximation, which uses the exponential risk
function:

ǫ ≈
∑

t∈T

B · exp

(

−
Ḡ − Lt

m

)

, (10)

to relate the system’s LOLE to its excess generation capacity.
The parameter,m, is called the system characteristic and
represents the amount of additional load, in MW, that gives
an LOLE that isǫ times greater than before. The values ofB

andm are typically estimated by conducting multiple LOLE
calculations using (1) and (2) and fitting their values to the
data. The PV plant is added to the system and a fixed load is
added to each hour, giving the new approximated LOLE:

ǫELCC ≈
∑

t∈T

B · exp

(

−
Ḡ + Vt − Lt − L̄

m

)

. (11)

The ELCC of the plant is approximated as the value ofL̄ that
equates these two LOLEs, or such that:

∑

t∈T

B · exp

(

−
Ḡ − Lt

m

)

= (12)

∑

t∈T

B · exp

(

−
Ḡ + Vt − Lt − L̄

m

)

.

Solving for L̄ yields:

L̄ = m · log







∑

t∈T

exp
(

Lt

m

)

∑

t∈T

exp
(

Lt−Vt

m

)






. (13)

3) ELCC Approximation for Multi-State Generators:This
method generalizes Garver’s approximation to multi-stategen-
erators [19]. The focus is on approximating the ELCC of wind,
which is multi-state since different weather conditions result in
different real-time wind availability states. Thus, the method
should be appropriate for other renewables with weather-
related resource constraints. However, it can also be applied to
conventional generators that experience different outagestates
(e.g. operating at reduced capacity due to an outage).

The method assumes that the probabilities with which the
generator being analyzed can be in the different possible states
is time-invariant. It further relies on the same exponential risk
function (10) used by Garver to approximate LOLEs based
on the system’s excess generating capacity. D’Annunzio and
Santoso’s [19] derivation gives the closed-form value:

−
1

m
log

[

∑

ω∈Ω

πω · exp(m · (Vω − V̄ ))

]

, (14)

for the approximated ELCC of a PV plant.
4) Z Method: The Z method focuses on the difference

between available generating capacity and load:

St = Gt − Lt, (15)

during peak hours. Dragoon and Dvortsov [23] argue that in
a large power system with many generators, the central limit
theorem implies thatSt should have a Gaussian distribution.
Thus, they argue that the ratio between the mean and standard
deviation ofSt (computed over peak-load hours of the year):

Z = −
µS

σS

, (16)

is an indicator of a system’s resource adequacy. They further
argue that although adding capacity or load to the system can
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change the mean and variance ofSt, its distribution remains
Gaussian. Thus, they estimate the ELCC of a generator as
the load that must be added in each hour to maintain the
sameZ value when the generator is added to the system.
Adding a fixed load,̄L, in each hour and a PV plant changes
the mean and standard deviation ofSt to µS + µPV − L̄

and
√

σ2
S

+ σ2
PV

, respectively. Thus, maintaining the same
Z-statistic after the load and PV are added requires:

−
µS

σS

=
L̄ − µS − µPV
√

σ2
S

+ σ2
PV

. (17)

Solving for L̄ gives:

L̄ = µPV + Z

(

√

σ2
S

+ σ2
PV

− σS

)

, (18)

which is typically simplified to:

L̄ ≈ µPV + Z
σ2

PV

2σS

, (19)

using a first-order Taylor approximation inσ2
PV

of the radical
term in (18).

The Z method relies critically on the assumption that the
distribution ofSt remains Gaussian when new generation and
loads are added. With conventional dispatchable generators
only, this is a relatively innocuous assumption since generator
failures are typically assumed to occur independently of one
another and the central limit theorem applies. With high
penetrations of renewables this may not hold true, however,
since energy available from two plants may be correlated.

III. C ASE STUDY AND DATA

We estimate the capacity value of PV at the 14 sites in the
western United States listed in Table I. As discussed in sec-
tion III-B, we hold the underlying power system characteristics
(such as load patterns) fixed at all locations, allowing the effect
of differences in solar availability patterns on the capacity
value of PV to be directly ascertained, without differences
in the power system confounding the results. These sites
are chosen to represent a mix of locations that either have
relatively good solar resource or are within urban areas. While
they may have less solar resource available, PV in urban
areas can be attractive since the plant is co-located with
load. Moreover, rooftop PV can be more easily deployed in
populated areas. Our analysis considers small 100 MW PV
plants at each location. Thus, our capacity value estimates
are for marginal PV installations, and do not account for
the diminishing marginal capacity value that occurs with
higher PV penetrations. Moreover, the capacity values at the
locations are computed in isolation. Thus, our estimates are
non-additive, since they do not account for spatial correlation
of solar availability between locations.

A. Photovoltaic Model

We model PV generation using version 2011.6.30 of the
National Renewable Energy Laboratory’s Solar Advisor Model
(SAM) [28]. SAM takes weather data, including solar irradi-
ation and temperature, as inputs and simulates hourly net ac

TABLE I
LOCATION OF PV PLANTS STUDIED

Site Coordinates Characteristic
Barstow, CA 35.15◦ N, 117.35◦ W High Solar
Congress, AZ 34.15◦ N, 113.15◦ W High Solar
Yucca Flat, NV 37.25◦ N, 116.15◦ W High Solar
Hanover, NM 33.05◦ N, 107.75◦ W High Solar
Cheyenne, WY 41.35◦ N, 104.95◦ W Urban Area
Salt Lake City, UT 41.05◦ N, 112.05◦ W Urban Area
Boise, ID 43.85◦ N, 116.25◦ W Urban Area
Los Angeles, CA 34.45◦ N, 118.45◦ W Urban Area
San Francisco, CA 37.85◦ N, 122.45◦ W Urban Area
Seattle, WA 47.75◦ N, 122.45◦ W Urban Area
Denver, CO 39.95◦ N, 104.85◦ W Urban Area
Albuquerque, NM 35.25◦ N, 106.65◦ W Urban Area
Phoenix, AZ 33.45◦ N, 111.95◦ W Urban Area
Las Vegas, NV 36.25◦ N, 115.15◦ W Urban Area

electrical output of a PV plant. It accounts for power electronic
efficiency losses and other parasitic loads. Each PV plant’s
hourly net ac outputs are used as inputs for the capacity
valuation methods discussed in section II. In all of our analyses
we assume a PV plant with a nameplate capacity of 100 MW-
DC. This corresponds to 83.4 MW-AC under standard test
conditions (STC) of 1000 W/m2 of solar irradiation and 25◦ C
cell temperature [28]. This ac rating is used to normalize the
capacity values estimated. The 83.4 MW-AC under STC is
not necessarily the maximum ac capacity of the plant. Indeed,
there can be conditions (e.g. high solar irradiation or low cell
temperature) under which the PV plant generates more than
83.4 MW, which could yield a capacity value greater than
100%.

SAM includes four PV performance models [28], and our
analysis is based on the California Energy Commission model.
Inverter characteristics are based on the Sandia Inverter Per-
formance model. These inverters have a non-linear behavior,
making them significantly more efficient at high power out-
puts. We assume a Satcon Technology Corporation PVS-250
inverter is used, however the results are extremely insensitive
to this assumption. We compare the modeled output of a fixed-
axis PV plant located in Barstow, CA using the Satcon and
three additional inverters (Eaton SM1003, Kacon New Energy
Blue Plant XP 100U, and Xantrex Technologies GT 100). The
maximum change in the generation profile is less than 0.6%.

Our base case assumes fixed-axis PV panels that are ori-
ented southward with an azimuth angle1 of 0◦ and a tilt angle2

equal to the site’s latitude. Changing the orientation or tilt an-
gle can affect capacity value, since it affects total energyyield
and favors either morning or afternoon generation. SectionV
presents a sensitivity analysis of the effect of including single-
and double-axis sun-tracking systems on the capacity valueof
PV.

B. Data Sources

Our analysis uses eight years of hourly historical conven-
tional generator, load, and weather data from 1998 to 2005.

1Azimuth angle measures east to west orientation of a PV panel. A 0◦

azimuth angle corresponds to southward orientation, while90◦ and -90◦

correspond to a westward and eastward orientation, respectively.
2Tilt angle is defined as the angle between the horizontal and the inclination

of the PV array.
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Since all of the locations are within the Western Electric-
ity Coordinating Council (WECC) region, this analysis uses
the entire WECC footprint to determine system loads and
LOLPs. This assumes a ‘copperplated’ system with sufficient
transmission capacity to move PV generation wherever it is
needed in the system to serve the load. If binding transmission
constraints limit the amount of PV generation that can serve
the load during high-LOLP hours, capacity values may be
lower than the values reported here. Utilities and system
planners often use smaller footprints in their capacity planning,
since they are primarily interested in ensuring reliability within
the limited territory that they serve. Thus, the capacity values
reported here may be different from the results of such an
analysis. This is because PV output may be more or less
coincident with the ‘local’ load of a more limited system than
it is with the WECC-wide load [15], [29].

We model generator outages using a simple two-state (on-
line/offline) model. LOLPs are estimated by computing the
system’s capacity outage table, which assumes that genera-
tor outages follow serially and jointly independent Bernoulli
distributions [5]. Data requirements and sources used for our
analysis are detailed below.

1) Conventional Generators:Each generator’s rated capac-
ity is obtained from Form 860 data filed with the United States
Department of Energy’s Energy Information Administration
(EIA). The EIA data specify a winter and summer capacity,
which capture the effect of ambient temperature on the max-
imum operating point of thermal generators. The WECC had
between 1,016 and 1,622 generating units and 123 GW and
163 GW of generating capacity during the years that we study,
reflecting load growth during this period.

We estimate EFORs of the existing generator fleet using the
North American Electric Reliability Corporation’s Generating
Availability Data System (GADS). The GADS specifies his-
torical annual average generator EFORs based on generating
capacity and technology. We combine these with EIA Form
860 data, which specify generator prime mover and generating
fuel, to estimate EFORs. The EFORs used range between 2%
and 17% and have a capacity-weighted average of 7% for the
entire WECC.

We use a natural gas-fired combustion turbine as the bench-
mark unit, against which PV is compared, in the ECP method.
This is because such generators are often built for peak-
capacity purposes. We assume a 7% EFOR for the combustion
turbine, based on values reported in the GADS. The ECP
of a PV plant is sensitive to this assumption, since different
generation technologies against which it can be benchmarked
have different EFORs.

2) Load: Hourly historical WECC load data for each year
are obtained from Form 714 filings with the Federal Energy
Regulatory Commission (FERC). The FERC data include
load reports for nearly all of the load-serving entities and
utilities in the WECC, although some smaller municipalities
and cooperatives are not reflected in the data. We assume loads
are fixed and deterministic based on these data, which have
annual peaks ranging between 107 GW and 124 GW. Since
the system loads increased over the study period and capacity
expansion can lead or lag such growth, we adjust the hourly

load profiles in each year individually so that the LOLPs of the
base system in each year sum to 2.4. This corresponds to the
standard planning target of one outage-day every 10 years [30].
This load adjustment is done by scaling all of the hourly loads
by a fixed percentage, ranging between 0.1% and 5% in the
different years. Fig. 1 shows hourly loads during the highest-
load, a winter, and the lowest-load weeks of 2003. These loads
correspond to the weeks beginning 20 July, 12 January, and
11 May, respectively, and illustrate typical WECC summer,
winter, and spring load patterns.

Sunday Monday TuesdayWednesdayThursday Friday Saturday
50

60

70

80

90

100

110

120

Lo
ad

 [G
W

]

 

 
Highest−Load
Winter
Lowest−Load

Fig. 1. Hourly loads during the highest-load, a winter, and the lowest-load
weeks of 2003.

3) Weather:SAM requires detailed weather data, including
solar irradiation, temperature, and wind speed. These dataare
obtained from the National Solar Radiation Data Base [31],
which accounts for cloud cover and other factors.

IV. CAPACITY VALUE OF PHOTOVOLTAIC SOLAR

A. Reliability-Based Methods

Table II summarizes average annual capacity values over
the eight years studied using the ECP and ELCC methods.
The table shows that ELCCs are less than ECPs. This is
because PV is benchmarked against a generator with a positive
EFOR (assumed to be 7%) in the ECP method. With ELCC,
however, PV is compared to a constant load, which is akin to
a fully-reliable generator with a 0% EFOR. PV has a lower
capacity value when compared to a fully-reliable generator, as
illustrated in Table II.

Depending on location, the ECP of PV can range from
56% to 75% and ELCC can range from 52% to 70%,
which is broadly consistent with other PV analyses [15],
[29]. Hoff et al. [15] approximate the ELCC of fixed-axis
PV with a southwesterly orientation and a 30◦ tilt angle in
the year 2002 using Garver’s approximation method. They
estimate the ELCC of 100 MW of PV to be about 70%
and 30% in the Nevada Power and Portland General Electric
systems. While their Nevada result is within our range of
ELCCs, their estimated capacity value for Portland, OR is
significantly lower. This is, in large part, due to our use of
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TABLE II
AVERAGE ANNUAL CAPACITY VALUE OF PV

Site ECP ELCC
Barstow, CA 64.2 59.7
Congress, AZ 75.1 69.7
Yucca Flat, NV 61.0 56.6
Hanover, NM 61.0 56.7
Cheyenne, WY 55.8 51.8
Salt Lake City, UT 65.7 61.0
Boise, ID 71.1 66.0
Los Angeles, CA 56.0 52.0
San Francisco, CA 60.1 55.8
Seattle, WA 62.0 57.6
Denver, CO 64.6 60.0
Albuquerque, NM 72.6 67.4
Phoenix, AZ 69.4 64.4
Las Vegas, NV 64.6 60.0

the entire WECC footprint in our analysis, whereas Hoffet
al. use the Portland General Electric system only. While the
summer solar resource in Portland, OR correlates well with
the WECC-wide load, Portland General Electric was a winter-
peaking system in 2002. Thus PV has a much more limited
contribution to system reliability when this limited footprint is
used. Nevada Power, by contrast, is a summer-peaking system
with large commercial air conditioning demands. Thus, the
Nevada Power load is more strongly correlated with WECC-
wide loads and the output of PV plants in Nevada. Perezet
al. [32] study the relationship between the capacity value of
PV and the ratio of the system’s summer and winter peak
load. By examining systems with different ratios they are able
to show the sensitivity of the capacity value to this ratio.

Because our analysis uses the same load pattern for all
locations, the different capacity values depend solely on re-
gional variations in solar resource. For instance, PV located in
Congress, AZ, which receives relatively high solar irradiation,
has a 75% average annual ECP. PV located in Los Angeles,
CA only has a 56% ECP. This difference is due to lower
correlation between WECC-wide loads and PV generation in
Los Angeles compared to Congress. To illustrate this, Fig. 2
shows the output of PV in Congress and Los Angeles on 20
July, 2005. This is the day with the highest WECC-wide load
of 2005. As the figure shows, PV generation in Congress is
more coincident with the load than that in Los Angeles. In
hour 14, when the load reaches its annual peak, the PV in
Congress produces 66 MW as opposed to only 16 MW in Los
Angeles. Since generation during peak-load hours has a direct
impact on capacity value, the PV in Los Angeles has a lower
capacity value than that in Congress. It is important to stress
that any correlation between local loads and PV generation in
Los Angeles and Congress are not captured in our analysis,
since we use a WECC-wide footprint in our analysis.

Table II also shows that there are locations, such as Boise,
ID and Seattle, WA, with high capacity values despite having
relatively low solar resource. This is because peaks in solar
irradiation and PV generation at these locations are coincident
with peaks in the WECC load. Although total generation at
such locations is low compared to other parts of the WECC,
the contribution toward reliably serving the load is high.

The values shown in Table II are annual averages. We find
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Fig. 2. Hourly loads and output of a fixed-axis PV plant located in Los
Angeles, CA and Congress, AZ on 20 July, 2005.

significant interannual variation in capacity values between
the years studied, however. For instance, the ECP of PV in
Congress, AZ ranges from 48% in 1999 to 85% in 2002.
This is because solar availability patterns vary considerably
from one year to another, resulting in solar output that is
less coincident with system loads in some years. Fig. 3
demonstrates this by showing hourly loads and PV output
in Congress on 12 July, 1999 and 10 July, 2002. These are
days on which the load reaches its annual peak. As the figure
shows, PV output is significantly less coincident with load on
the day in 1999. When the load reaches its peak in hours 16
and 17 in 1999, the PV is producing an average of 10 MW.
Conversely, PV generation is 68 MW in hour 14 when the
load peaks in 2002. This interannual variability indicatesthat
several years of data are necessary for an accurate and robust
long-term estimate of capacity value, as with wind and CSP
[7], [17], [22]. Moreover, using multiple years of data to arrive
at a single long-term capacity value, as opposed to averaging
single-year capacity values as we do, may provide more robust
estimates.
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Fig. 3. Hourly loads and dispatch of a fixed-axis PV plant located in
Congress, AZ on 12 July, 1999 and 10 July, 2002.
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B. Approximation Methods

Table III summarizes average annual capacity values of PV
at each location using the approximation methods detailed in
section II-B. Since these methods are intended to approximate
ELCC, the table also provides ELCCs for purposes of com-
parison. The capacity factor-based approximation reported in
the table is the LOLP-weighted method, using the 10 highest-
load hours of the year. Madaeniet al. [17], [18] show that
when applied to CSP, the LOLP-weighted method provides
more accurate approximations than using the highest-load or
highest-LOLP methods. This is because the weighted method
places proportionally higher weight on generation during hours
with relatively high LOLPs. They further show that using the
10 highest-load hours provides the best approximation, and
we find the same results for PV. Specifically, we compare
capacity factor-based approximations using the 100 and 876
(10%) highest-load hours, and find 10 hours to provide the
closest approximation. This is because the capacity value of
(CSP and PV) solar is highly sensitive to the most critical
hours of the year, due to strong correlation between loads and
generation. Adding more hours to the calculation reduces the
approximated capacity value, biasing the result. Conversely,
Milligan and Parsons [24] show that a capacity factor-based
approximation of wind requires the 10% highest-load hours to
be used. Wind requires more periods to be included due to the
weaker correlation between loads and generation. If too few
hours are considered, the approximation is biased downward.

The Garver and multi-state generator approximation meth-
ods require estimating the parametersm and B. The multi-
state generator method further requires a probability distribu-
tion representing the possible states in which the PV plant
can operate. We approximate a different value form and
B in each year by estimating the LOLE of the system with
different load peaks. This is done by adding a constant load
in each hour, equal to 5% and 10% of the annual peak load,
and estimating the LOLE using (2). We also estimate LOLEs
by subtracting a constant load equal to 5% and 10% of the
annual peak. This gives five LOLEs corresponding to different
load patterns (including the LOLE of the base system with
unadjusted loads). Values form andB are found by fitting (10)
to the data using ordinary least squares. This yields valuesfor
m ranging between6.9×10−6 and8.7×10−6 in the different
years.

We use four different probability distributions in the multi-
state generator method. The first uses the empirical distribution
of hourly PV output in each year. That is, we assume the PV
plant can operate in 8760 different states, corresponding to the
modeled output of the plant in each hour of the year, each
having equal probability. Table III shows that representing
PV generation in this manner significantly underestimates the
ELCC, since a high probability is placed on 0 output (which
occurs during night hours). To overcome this, we use three
coarser representations of the probability distribution in which
the empirical data are aggregated into 10, 20, or 33 MW
‘blocks.’ This is done by binning the modeled generation. For
instance, with 20 MW blocks the bins correspond to outputs
between 0 and 20 MW, 20 and 40 MW, 40 and 60 MW,etc.

Each bin represents one possible state, with the probability
determined by the number of observations falling within the
bin. The output when the generator is in each state is given
by the midpoint of the bin. Thus, with the above example
with 20 MW blocks, the output of the PV plant in each state
is 10 MW, 30 MW, 50 MW,etc. Table III shows that these
coarser representations of the probability distribution yield
capacity value approximations approaching the ELCC. This is
because the coarser bins reduce the effect of low generation,
which occurs during night and shoulder hours, biasing the
approximation downward.

The Z method approximates the capacity value based on
the mean and standard deviation of surplus capacity in the
base system during peak-load hours and PV generation. We
compute different values forµS and σS in each year based
on the 10 highest-load hours. This gives values between
4600 MW and 7400 MW forµS and between 2500 MW and
4800 MW for σS . We estimate different values for the mean
and standard deviation of PV generation in each year based
on simulated hourly generation. This gives means ranging
between 25.4 MW and 66.7 MW and standard deviations
between 4.4 MW and 28.7 MW.

Table III shows that while some methods provide relatively
good approximations of a more detailed ELCC, others are
significantly less accurate. To measure the relative accuracy of
the different approximation techniques, we use a root-mean-
square error (RMSE) metric to compare each method to the
ELCC. This RMSE is defined as:

√

1

|Λ|

∑

λ∈Λ

(

cELCC

λ
− ca

λ

)2
, (20)

and is based on the difference between the annual average
capacity value estimated using the ELCC and approximation
methoda. These differences are averaged over the locations
modeled. Table IV summarizes the RMSEs for the different
approximation techniques, showing that the capacity factor-
based approximation provides the best overall approximation
to the ELCC. Moreover, it shows that if applied properly
(i.e. an appropriate probability distribution is used to represent
the possible operating states of PV in the multi-state method),
all of the approximation methods are comparable to each other
in accuracy.

TABLE IV
AVERAGE ROOT-MEAN-SQUARE ERROR OFDIFFERENTAPPROXIMATION

TECHNIQUES

Method RMSE
Capacity Factor 4.4
Garver 7.4
Multi-State Generator

Empirical 37.9
10 MW 28.7
20 MW 19.5
33 MW 7.7

Z 8.3

V. SENSITIVITY TO SUN-TRACKING SYSTEMS

Our analysis thus far assumes fixed-axis PV panels. Single-
and double-axis sun-tracking systems, which adjust the real-
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TABLE III
AVERAGE ANNUAL CAPACITY VALUE OF PV

Multi-State Generator
Site ELCC Capacity Factor Garver Empirical 10 MW 20 MW 33 MW Z
Barstow, CA 59.7 60.4 58.3 25.4 34.8 43.9 57.6 46.8
Congress, AZ 69.7 70.4 62.7 24.6 33.9 43.6 56.5 61.8
Yucca Flat, NV 56.6 57.9 55.5 25.2 34.6 44.0 57.2 44.5
Hanover, NM 56.7 57.3 50.1 24.3 33.6 43.1 56.2 48.4
Cheyenne, WY 51.8 57.3 55.8 22.1 31.5 40.9 54.7 46.8
Salt Lake City, UT 61.0 67.7 60.9 24.7 34.0 43.2 57.1 52.4
Boise, ID 66.0 72.6 60.1 23.3 32.6 42.5 54.9 56.6
Los Angeles, CA 52.0 56.8 54.6 24.0 33.3 42.9 55.7 49.5
San Francisco, CA 55.8 61.2 45.0 22.0 31.3 40.8 54.5 53.4
Seattle, WA 57.6 66.2 54.7 20.9 30.1 40.0 53.0 62.2
Denver, CO 60.0 61.6 60.6 20.6 30.0 39.7 53.1 66.6
Albuquerque, NM 67.4 69.8 51.8 23.1 32.4 41.3 55.7 52.6
Phoenix, AZ 64.4 65.9 51.9 19.9 29.2 38.8 52.3 58.3
Las Vegas, NV 60.0 62.8 50.7 14.9 24.2 33.9 48.3 60.2

time orientation of the panel to track the location of the sun,
can be added to increase generation. A single-axis tracking
system is typically untilted, but rotates the panel about the
azimuth angle to follow daily movement of the sun. A double-
axis tracking system rotates the panel about both the azimuth
and tilt angle, allowing the panel to track the daily and seasonal
movement of the sun.

Table V summarizes the ECP and ELCC of PV plants
with single- or double-axis sun-tracking systems. Comparing
to the values reported in Table II shows, as expected, that
sun-tracking systems increase capacity value, with double-axis
systems having the greatest effect. Whereas fixed-axis PV have
ECPs ranging between 56% and 75%, a double-axis tracking
system increases the ECP to between 71% and 93%.

TABLE V
AVERAGE ANNUAL CAPACITY VALUE OF PV WITH SUN-TRACKING

SYSTEM

Single-Axis Double-Axis
Site ECP ELCC ECP ELCC
Barstow, CA 78.3 72.7 79.4 73.7
Congress, AZ 82.7 76.8 85.7 79.5
Yucca Flat, NV 74.2 68.9 76.1 70.7
Hanover, NM 70.3 65.3 71.2 66.2
Cheyenne, WY 77.9 72.4 80.5 74.8
Salt Lake City, UT 84.7 78.7 88.6 82.2
Boise, ID 87.4 81.2 92.2 85.6
Los Angeles, CA 83.4 77.4 85.0 78.9
San Francisco, CA 83.0 77.1 84.5 78.4
Seattle, WA 87.2 80.9 92.7 86.1
Denver, CO 75.1 69.8 77.9 72.3
Albuquerque, NM 84.6 78.5 86.5 80.3
Phoenix, AZ 77.1 71.6 78.2 72.6
Las Vegas, NV 82.6 76.7 84.6 78.5

VI. CONCLUSIONS

This paper compares several approaches for estimating the
capacity value of PV. It applies these methods at a variety
of locations within the WECC between the years 1998 and
2005, while assuming the load is fixed to evaluate the variation
in performance based on the solar resource. This is done by
simulating hourly PV generation and using it as an input
to reliability-based methods and approximation techniques.
While ECP and ELCC are well recognized and widely used,
we find that some approximation techniques can yield similar

results. Our results show that PV, on average, can have ELCCs
between 52% and 93% depending on the location and sun-
tracking capability of the plant. As with other renewable
resources, we find high interannual variation of about 16%,
indicating that multiple years of data are required for a robust
estimation of capacity value. Out of the approximation tech-
niques that we study, we find the capacity factor-based method
to be the most accurate technique on the basis of an RMSE
metric. This is important, given the use of approximation
techniques by system operators and utilities in their long-term
capacity planning [2]. Overall, our analysis indicates that these
approximation techniques provide relatively robust estimates
of PV capacity value for use in other systems. Although we
estimate capacity values by modeling the entire WECC, these
techniques could be applied to the more limited footprints
often used by system planners and utilities.

The WECC-wide results presented here may differ from
analysis of smaller regions, depending on the extent to which
solar resource is coincident with the ‘local’ load. For instance,
the northwestern United States is typically a winter-peaking
system, and PV generation in these areas is typically less
coincident with the ‘local’ load than with the WECC-wide
load. Thus, PV in the Northwest may have lower capacity
values than our estimates suggest if this more limited footprint
is used. By modeling the entire WECC system we also
assume that the system has sufficient transmission capacityto
deliver power wherever it is needed. If binding transmission
constraints prevent this, actual ECPs could be lower than our
estimates [2]. Additional analysis is needed to consider both
the local coincidence of PV with demand and the ability of
transmission to share capacity across larger regions of an
interconnected system.
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