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generating capacity available from benchmark unit in
hourt in equivalent conventional power (ECP) calculation
pe hourt loss of load probability

Abstract—We estimate the capacity value of photovoltaic (PV) B;
solar plants in the western U.S. Our results show that PV
plants have capacity values ranging between 52% and 93%,
depending on location and sun-tracking capability. We furher ¢ loss of load expectation (LOLE) of base system

compare more rob.ust.but datq— and co.mputationalI)(-int(?nseELcC - ) )
reliability-based estimation techniques to simpler appraimatiorf ™ "~ LOLE with PV and loads added in ELCC calculation
LOLE with PV added in ECP calculation

methods. We show that if implemented properly, these techgues ¢
LOLE with benchmark unit added in ECP calculation

provide accurate approximations of reliability-based mehods. B
Overall, methods based on the weighted capacity factor of # w; hour weight used in capacity factor-based approxima-
tion

plant provide the most accurate estimate. We also examine ¢h
system characteristic

sensitivity of PV capacity value to the inclusion of sun-traking
systems. m
Q index set for PV plant states in multi-state ELCC approx-
imation
PV capacity unavailable in state
probability PV plant is in states
Z statistic
average annual ELCC of a PV plant at locatibn
T time index set % average annual capacity value of a PV plant at location
T" subset of hours used in capacity factor-based approxima- )\ approximated using methad
tion
A set of locations modeled
G, conventional generating capacity available in hour
G nameplate conventional generating capacity N important issue for power system planners is the con-
Vi generating capacity available from photovoltaic (PV)=\ tribution of renewables to reliably meeting demand [1],
plant in hourt [2]. A generator’s ability to help reliably serve load is igally
mean hourly generating capacity available from PV plagkptured by estimating its capacity value [3]-[5]. Genarat
standard deviation of hourly generating capacity avalabbutages, which can occur due to mechanical failures, pthnne
from PV plant maintenance, or lack of generating resource in real-ting; m
V' rated capacity of PV plant leave a power system with insufficient generating capacity
L; hourt load to meet load. The issue of real-time resource availability
Sy hour+ surplus generation capacity is especially prevalent with renewables. Previous analyse
mean ofS, estimate the capacity values of wind [2], [6]-[11], phottaiz
standard deviation of; (PV) solar [12]-[16], and concentrating solar power (CSP)
L constant loaded added in each hour in effective loaf:7], [18] resources. They demonstrate that these renesabl
carrying capability (ELCC) calculation have non-zero capacity values that can range between 5%
and 95% of maximum generating capacity. The range of
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techniques, photovoltaic solar
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capacity values reflects the effects of technology, gedgrap
and demand patterns on the coincidence between real-time
generation and demand. It also reflects the decreasing madrgi
capacity value of additional renewables. These analysesus
mix of reliability-based and statistical approximationtimads.
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experiences an outage event, which is defined as the gernerati

n:capacity available being less than load. The capacity vialue

determined based on the contribution of a generator toward
reducing this probability.

This paper expands on previous analyses of the capacity
value of PV. Using a case study of the western United
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States, we estimate that PV has long-run interconnect-wigled can account for stochastic loads. The LOLE of the base
average capacity values of between 52% and 93% of its ramdtem is then defined as:

ac capacity, depending on location, sun-tracking capgpili

and the reliability-based estimation used. We also examine €= Zpt'
different approximation techniques, showing that some are
quite accurate relative to reliability-based methods. Welfy The PV plant is added to the system and a fixed |dadis
study the sensitivity of the capacity value of PV to the use afdded to each hour, giving a new LOLE:

single- and double-axis sun-tracking systems. The remsaind -

of this paper is organized as follows: sectlgh Il summarizes ePLCC = Prob{Gy +V, < Ly + L}, ®3)
the capacity value estimation techniques that we examine, teT
section[ll summarizes our case study and the data uswdiere the probability function also accounts for the pralitgib
section[I¥ summarizes our results, sectigh V presents oofr real-time solar availability. The fixed load added to each

)

teT

sensitivity analysis, and secti@alVI concludes. hour is iteratively adjusted until the LOLE of the systemtwit
the PV and added loads is the same as that of the base system,
or until:
Il. CAPACITY VALUE ESTIMATION TECHNIQUES . _ FLCC @

A. Reliability-Based Methods

Numerous techniques are used to approximate the capadifi PV plant's ELCC is defined as the valuelofhat achieves
value of conventional and renewable generators. Religbili condition [3). ,
based methods are among the most robust and widely acceptedd EQuivalent Conventional PowerThe ECP of a gener-
of these [1], [5], [7], [9], [10], [17]-[21]. These technigs ator, g, is defined to be the capacity of a benchmark unit,
use a standard power system reliability index, loss of lod¥ich is assumed to have a positive EFOR, that can replace
probability (LOLP), to determine how a generator affecs tH/ while maintaining the same LOLE. Thl_s is an a'Ftract_lve
reliability of the system. LOLP is defined as the probabili\t/g'easure of a renewable generator’s capacity value, sie it
that generator or transmission outages leave the system g Penchmarked against a conventional dispatchable @sour
insufficient capacity to serve the load in a given periodwid | "€ ECP of a PV generator is calculated by first computing
A related reliability index, loss of load expectation (LOLE the LOLE of the system when the PV is added as:
is defi_ned as the sum of LOLPs over some plgnning .ho.rizon, PV Z Prob{G; + V; < L} . (5)
and gives the expected number of outage periods within that
horizon. Other reliability metrics, such as loss of energ¥
probability, can also be used. These are less common, howe
especially in estimating the capacity value of renewalzes,
we focus on LOLE-based methods, to make our results directly B — Z Prob{G; + B, < L}, (6)
comparable to these previous works [2], [6]-[18]. LOLPs er
are typically modeled at hourly timesteps and LOLEs alhere the probability function also accounts for the liketid

comp_uted_ over ye‘?‘r"ong pen_ods, which are the con\_/en_uogfsthe benchmark unit failing (using an EFOR). The nameplate
used in this analysis. Conventional generator and trarséonis

pacity of the benchmark unit is iteratively adjusted ILthi

. X . C
outages are typically modeled using an equivalent forc %LE of the system with the benchmark unit is the same as
outage rate (EFOR), which captures the probability of aifail . .

dtgf’alt with the PV plant, or until:

at any given time. With variable renewables, one must mo
mechanical failures using an EFOR and capture resource eV = €B, (7

variability. The latter is typically done using historigalsource h lant i defined h | ity of
data or by simulating such data from underlying probabilit& e PV plants EC;P 'S defined as the nameplate capacity o
e benchmark unit that achieves equaliily (7).

distributions. Reliability-based methods determine thgacity 3) Equivalent Firm P A s EEP i d
value of a generator by how it affects the system’s LOLPs ) Equivalent Firm PowerA generator's IS compute

and LOLE. Standard reliability-based methods include tﬁgnolzvmlg the sa(;ne steps asté;ch_e ECP, exzept ti?at thef belnch-
effective load-carrying capability (ELCC), equivalenthwen- mark plant used to compuie” Is assumed to be perfectly

tional power (ECP), and equivalent firm power (EFP) methodrs.e,"""bIe (e _has a ,0% EFOR)', A generator’§ EFP and. ELCC.:
which are detailed below. generally differ, since changing a system’s generation mix

1) Effective Load-Carrying Capability’The ELCC of a changes the distribution of available capacity in a givearho

generator is defined as the amount by which the system’s lodyfiereas adjusting loads does not [9].
can increase, when the generator is added to the systeng, whil
maintaining the same LOLE. The ELCC of PV is calculateB. Approximation Methods

by first computing the system’s LOLPs without the PV as:  \hijle reliability-based methods are widely accepted and
— ProblG, < L 1 considered accurate capacity value estimation techniffles
bt {G: < Lek, @) [9]-[11], they can be computationally expensive and rejuir
where the probability function accounts for the likelihoofl detailed system data. Achieving equalitiek (4) did (7) iregu
generator or other failures (which are modeled using EFOR®rative LOLP calculations, which can be time-consuming.

teT

e LOLE of the system when only the benchmark plant
&.e. without the PV) is added is also computed as:



Recent computer advances makes this less of an issue totiayelate the system’s LOLE to its excess generation capacit

however [22]. Reliability-based methods also require EEORhe parameterm, is called the system characteristic and

and capacities of all existing generators in the system arepresents the amount of additional load, in MW, that gives

loads. Moreover, due to seasonal and annual weather pat@nnLOLE that ise times greater than before. The valuesi®f

changes, several years’ data are typically needed to aeburaand m are typically estimated by conducting multiple LOLE

estimate the long-run capacity value of renewables. calculations usingq1) andd(2) and fitting their values to the
Because of these challenges raised by reliability-basddta. The PV plant is added to the system and a fixed load is

methods, approximation techniques are typically used fadded to each hour, giving the new approximated LOLE:

capacity planning purposes [2]. These include Garver's ELC G4Vi— L —L

approximation [4], the Z method [23], and capacity factor-  €”*““~ > B exp (—#) . (11)

based methods [24]. These techniques reduce the computa- teT m

tional burden by either approximating the relationshipl®8n ¢ | ¢ of the plant is approximated as the valud.dhat

capacity added to the_ system and LOLPs or by focugmg @Buates these two LOLES, or such that:

a subset of hours during which the system faces a high ris R

of not serving the load. Several studies examine the acgurac ZB - exp (_G — Lt) _ (12)

of these approximation techniques in estimating the capaci m

value of wind and CSP. Bernowt al. [25] and El-Sayed

teT

[26] approximate the capacity value of wind as its average ZB - exp <—M> .
capacity factor during the highest-load hours of the year. teT m

Milligan and Parsons [24] introduce three different tecjugis Solving for I yields:

to estimate the capacity value of wind. They approximate it

as the average capacity factor during the highest-load and > eXp(%)

highest-LOLP (of the base system without added wind) hours L=m-log | &—F—~|. (13)
of the year. They also approximate it as a weighted average > exp (%)

of the capacity value during the highest-load hours of the ter

year, using the LOLPs as weights. Madaehial. [17], [18] 3) ELCC Approximation for Multi-State Generatorghis
compare capacity factor-based and reliability-based ouzth Mmethod generalizes Garver’s approximation to multi-siete-
applied to CSP, showing that capacity factors can provi@&ators [19]. The focus is on approximating the ELCC of wind,
re'ative|y accurate approximations_ Zachary and Dent [th|ch is multi-state since different weather Conditiomein
compare these techniques and also discuss their aprjﬁyabmiﬂ:erent real-time wind avallablllty states. ThUS, the thoml

in different settings. The approximation techniques that wshould be appropriate for other renewables with weather-
consider in this analysis, which are detailed below, ineludelated resource constraints. However, it can also beeppi
capacity factor-based, Garver’s, multi-state generatnd Z conventional generators that experience different oustafes
methods. (e.g. operating at reduced capacity due to an outage).

1) Capacity Factor-Based Approximatiofrhis method ap- The method assumes that the probabilities with which the
proximates the capacity value of a generator as its averdiftherator being analyzed can be in the different possiatesst
capacity factor over a subset of ‘risky’ periods. Hours witff time-invariant. It further relies on the same exponemisk
high loads or LOLPs are typically used. We focus on théinction [ID) used by Garver to approximate LOLEs based
weighted capacity factor method that Milligan and Parso@ the system’s excess generating capacity. D’Annunzio and
[24] apply to wind. This method approximates the CapaCi@antoso’s [19] derivation gives the closed-form value:
value by first determining a subset of houi®, with the

highest loads, over which the capacity factor is averaged. T _L log Z 7, -exp(m - (V, = V)|, (14)
weights used in each hour are then computed as: m wen
Dt for the approximated ELCC of a PV plant.
wy = (8)

S opr 4) Z Method: The Z method focuses on the difference
TET between available generating capacity and load:

where thep,'s are the LOLPs of the base system, without

added PV, and are calculated usil (1). The capacity value of Sp =Gy — L, (15)
the PV plant is approximated as: during peak hours. Dragoon and Dvortsov [23] argue that in
S wi -V a large power system with many generators, the central limit
fer theorem implies that; should have a Gaussian distribution.
7 ©) Thus, they argue that the ratio between the mean and standard
2) Garvers Approximation MethodGarver [4] proposes deviation of S; (computed over peak-load hours of the year):
an E_LCC approximation, which uses the exponential risk 7 — _E’ (16)
function: _ s
€~ ZB - exp <_G _ Lt) ’ (10) is an indicator of a system’s resource adequacy. They furthe
ter m argue that although adding capacity or load to the system can



TABLE |

changg the mean and var_iance&;f its distribution remains LOCATION OF PV PLANTS STUDIED
Gaussian. Thus, they estimate the ELCC of a generator as _ o
the load that must be added in each hour to maintain the _Sit Coordinates Characteristic
Z val hen the generator is added to the system Barstow, CA 3515 N, 117.35 W High Solar
Sam_e Vaj ue when . 9 : Y * Congress, AZ 34.1% N, 113.15% W High Solar
Adding a fixed load,L, in each hour and a PV plant changes Yucca Flat, NV 37.25 N, 116.1% W  High Solar
the mean and standard deviation 8f to s + ppy — L Hanover, NM 33.09 N, 107.75 W High Solar
d \/ﬁ tivelv. Thus. maintainina the same Cheyenne, WY 41.35 N, 104.95 W  Urban Area
and \/og + opy, respectively. , g Salt'Lake City, UT | 41.05 N, 112.05 W  Urban Area
Z-statistic after the load and PV are added requires: Boise, ID 43.8% N, 116.25 W  Urban Area
_ Los Angeles, CA | 34.45 N, 118.4% W  Urban Area
Hns L— Hs — Hpv 17 San Francisco, CA| 37.8% N, 122.45% W  Urban Area
T oa \/Q_i_ig : 17) Seattle, WA 47.7% N, 122.4% W  Urban Area
o s TO9pv Denver, CO 39.95 N, 104.85 W  Urban Area
. 7o . Albuquerque, NM | 35.25 N, 106.6% W  Urban Area
Solving for L gives: Phoenix, AZ 33.4% N, 111.95 W  Urban Area
3 Las Vegas, NV 36.25 N, 115.1% W Urban Area
L—HPv-l-Z(\/U%-FU;%V—US), (18)
which is typically simplified to: electrical output of a PV plant. It accounts for power elecic

efficiency losses and other parasitic loads. Each PV plant’s
(19) hourly net ac outputs are used as inputs for the capacity
valuation methods discussed in secfidn Il. In all of our gses
using a first-order Taylor approximation irf, of the radical we assume a PV plant with a nameplate capacity of 100 MW-
term in [I8). DC. This corresponds to 83.4 MW-AC under standard test
The Z method relies critically on the assumption that theonditions (STC) of 1000 W/#of solar irradiation and 25C
distribution of S; remains Gaussian when new generation arwll temperature [28]. This ac rating is used to normalize th
loads are added. With conventional dispatchable gensratoapacity values estimated. The 83.4 MW-AC under STC is
only, this is a relatively innocuous assumption since gatoer not necessarily the maximum ac capacity of the plant. Indeed
failures are typically assumed to occur independently af otthere can be condition®.g. high solar irradiation or low cell
another and the central limit theorem applies. With higtemperature) under which the PV plant generates more than
penetrations of renewables this may not hold true, howev8B8.4 MW, which could yield a capacity value greater than
since energy available from two plants may be correlated. 100%.
SAM includes four PV performance models [28], and our
I1l. CASE STUDY AND DATA analysis is based on the California Energy Commission model
Averter characteristics are based on the Sandia Inveeer P
grmance model. These inverters have a non-linear behavior
making them significantly more efficient at high power out-

tion[I=B] we hold the underlying power system charactigis )
(such as load patterns) fixed at all locations, allowing tffece puts. W‘? assume a Satcon Technology Corporatlon F.)VS'.ZSO
.inverter is used, however the results are extremely inteasi

of differences in solar availability patterns on the capaci hi o W h deled f a fixed
value of PV to be directly ascertained, without dif“ferencetg_t Is assumption. We compare the modeled output of a fixed-

in the power system confounding the results. These si(%}S PV plant located in Barstow, CA using the Satcon and

_ 0'2
L~ ppy + 222,
209

We estimate the capacity value of PV at the 14 sites in t
western United States listed in Talfle I. As discussed in s

are chosen to represent a mix of locations that either haykee additional inverters (Eaton SM1003, K"’.‘CO” New Energy
Blue Plant XP 100U, and Xantrex Technologies GT 100). The

relatively good solar resource or are within urban areasléNh . ) . S 0
they may have less solar resource available, PV in urpgpximum change in the gen(_aratlon .pr0f|Ie is less than O'BA)'.
Our base case assumes fixed-axis PV panels that are ori-

areas can be attractive since the plant is co-located with d hward with imuth arfhée 0° and a til B
load. Moreover, rooftop PV can be more easily deployed fited sout war ) wit 1an azimut a an a_tltang_
ual to the site’s latitude. Changing the orientation lb@ati-

populated areas. Our analysis considers small 100 MW foct i | ) + affects total )
plants at each location. Thus, our capacity value estima gdcfan a ec_ﬂ::apam y value, S;?Ce' anects 0? englrggo
are for marginal PV installations, and do not account f§nd favors either morning or afternoon generation. Sealion

the diminishing marginal capacity value that occurs witRfresents a seQS|t|V|ty anaI)_IS|s of the effect of mcludwg;te-
higher PV penetrations. Moreover, the capacity values at t nd double-axis sun-tracking systems on the capacity \eflue

locations are computed in isolation. Thus, our estimates ar ™
non-additive, since they do not account for spatial cotiatia

of solar availability between locations. B. Data Sources
Our analysis uses eight years of hourly historical conven-

A Photovoltaic Model tional generator, load, and weather data from 1998 to 2005.

We model PV generation using version 2011.6.30 of the'Azimuth angle measures east to west orientation of a PV paneé®

: ) ; zimuth angle corresponds to southward orientation, wa@g and -90
National Renewable Energy Laboratory’s Solar Advisor Mod%Orrespond 1o a westward and eastward orientation, régelgct

(SAM) [28]. SAM takes We?ther data, inCIUding solar irradi- 2y angle is defined as the angle between the horizontal lamdhtlination
ation and temperature, as inputs and simulates hourly netoaithe PV array.



Since all of the locations are within the Western Electridead profiles in each year individually so that the LOLPs & th
ity Coordinating Council (WECC) region, this analysis uselsase system in each year sum to 2.4. This corresponds to the
the entire WECC footprint to determine system loads arstandard planning target of one outage-day every 10 ye@Js [3
LOLPs. This assumes a ‘copperplated’ system with sufficiefhis load adjustment is done by scaling all of the hourly bad
transmission capacity to move PV generation wherever it iy a fixed percentage, ranging between 0.1% and 5% in the
needed in the system to serve the load. If binding transamissidifferent years. Figld1 shows hourly loads during the higthes
constraints limit the amount of PV generation that can seri@ad, a winter, and the lowest-load weeks of 2003. Thesesload
the load during high-LOLP hours, capacity values may bmrrespond to the weeks beginning 20 July, 12 January, and
lower than the values reported here. Utilities and systetd May, respectively, and illustrate typical WECC summer,
planners often use smaller footprints in their capacityplag, winter, and spring load patterns.

since they are primarily interested in ensuring reliapilvithin

the limited territory that they serve. Thus, the capacityga 201 ' ' ' "[—=— Highest—Load
reported here may be different from the results of such A — — — Winter
analysis. This is because PV output may be more or le 110f i 3 5 Lowest-Load
coincident with the ‘local’ load of a more limited system tha

it is with the WECC-wide load [15], [29]. 100
We model generator outages using a simple two-state (¢
line/offline) model. LOLPs are estimated by computing ths 9ot
system’s capacity outage table, which assumes that gen(%
tor outages follow serially and jointly independent Berlliou S gof
distributions [5]. Data requirements and sources used tior ¢
analysis are detailed below. 7ol
1) Conventional GeneratordEach generator’s rated capac
ity is obtained from Form 860 data filed with the United State
Department of Energy’s Energy Information Administratiol
(EIA). The EIA data specify a winter and summer capacit' 5ol ‘ ‘ ‘ ‘ ‘ ‘
which capture the effect of ambient temperature on the me Sunday Monday TuesdayWednesdayThursday Friday —Saturday
imum operating point of thermal generators. The WECC had _ _ _
between 1,016 and 1,622 generating units and 123 GW d:ﬁ% 1. Hourly loads during the highest-load, a winter, ane lowest-load

; . . weeks of 2003.
163 GW of generating capacity during the years that we study,

reflecting load growth during this period. _ 3) Weather:SAM requires detailed weather data, including
We estimate EFORs of the existing generator fleet using t§glar irradiation, temperature, and wind speed. Theseatata
North American Electric Reliability Corporation’s Gengr@ optained from the National Solar Radiation Data Base [31],

Availability Data System (GADS). The GADS specifies hisghich accounts for cloud cover and other factors.
torical annual average generator EFORs based on generating

capacity and technology. We combine these with EIA Form
860 data, which specify generator prime mover and generatin S
fuel, to estimate EFORs. The EFORs used range between 29,Reliability-Based Methods
and 17% and have a capacity-weighted average of 7% for theTable[Il summarizes average annual capacity values over
entire WECC. the eight years studied using the ECP and ELCC methods.
We use a natural gas-fired combustion turbine as the bendhe table shows that ELCCs are less than ECPs. This is
mark unit, against which PV is compared, in the ECP methddecause PV is benchmarked against a generator with a gositiv
This is because such generators are often built for peak=OR (assumed to be 7%) in the ECP method. With ELCC,
capacity purposes. We assume a 7% EFOR for the combustimwever, PV is compared to a constant load, which is akin to
turbine, based on values reported in the GADS. The EGPfully-reliable generator with a 0% EFOR. PV has a lower
of a PV plant is sensitive to this assumption, since differenapacity value when compared to a fully-reliable generator
generation technologies against which it can be benchmarkiéustrated in TabldlI.
have different EFORSs. Depending on location, the ECP of PV can range from
2) Load: Hourly historical WECC load data for each yeab6% to 75% and ELCC can range from 52% to 70%,
are obtained from Form 714 filings with the Federal Energyhich is broadly consistent with other PV analyses [15],
Regulatory Commission (FERC). The FERC data includg9]. Hoff et al [15] approximate the ELCC of fixed-axis
load reports for nearly all of the load-serving entities anBV with a southwesterly orientation and a°36it angle in
utilities in the WECC, although some smaller municipasitiethe year 2002 using Garver's approximation method. They
and cooperatives are not reflected in the data. We assune loestimate the ELCC of 100 MW of PV to be about 70%
are fixed and deterministic based on these data, which harel 30% in the Nevada Power and Portland General Electric
annual peaks ranging between 107 GW and 124 GW. Sigestems. While their Nevada result is within our range of
the system loads increased over the study period and capa€Eit CCs, their estimated capacity value for Portland, OR is
expansion can lead or lag such growth, we adjust the houslignificantly lower. This is, in large part, due to our use of

60

IV. CAPACITY VALUE OF PHOTOVOLTAIC SOLAR



TABLE 1l 80 —T——T——T——T—— —— 130

AVERAGE ANNUAL CAPACITY VALUE OF PV —*— Los Angeles, CA
70 Congress, AZ ]

Site ECP ELCC 1120
Barstow, CA 64.2 59.7 60
Congress, AZ 75.1 69.7
Yucca Flat, NV 61.0 56.6 T 50 110
Hanover, NM 61.0 56.7 =3 .
Cheyenne, WY 55.8 51.8 5 40 s
Salt Lake City, UT | 65.7 61.0 8 100 =
Boise, ID 711 66.0 £ 30 g
Los Angeles, CA | 56.0 52.0 %
San Francisco, CA| 60.1 55.8 & 20 190
Seattle, WA 62.0 57.6
Denver, CO 64.6 60.0 10
Albuquerque, NM | 72.6 67.4 180
Phoenix, AZ 69.4 64.4 OB R—R— A
Las Vegas, NV 64.6 60.0

_101 é é 1‘1 é é 7‘ é élb l‘l 1‘2 1‘3 1‘4 1‘5 1‘6 1‘7 1‘8 1‘9 26 2‘12‘2 2‘3 2470

Hour
the entire WECC footprint in our analysis, whereas Helff Fig. 2. Hourly loads and output of a fixed-axis PV plant lodate Los
al. use the Portland General Electric system only. While tHegeles, CA and Congress, AZ on 20 July, 2005.
summer solar resource in Portland, OR correlates well with
the WECC-wide load, Portland General Electric was a winter-
peaking system in 2002. Thus PV has a much more limitségnificant interannual variation in capacity values betwe
contribution to system reliability when this limited fooipt is the years studied, however. For instance, the ECP of PV in
used. Nevada Power, by contrast, is a summer-peaking sysfepigress, AZ ranges from 48% in 1999 to 85% in 2002.
with large commercial air conditioning demands. Thus, thBhiS iS because solar availability patterns vary constolgra
Nevada Power load is more strongly correlated with WEC@©OM one year to another, resulting in solar output that is
wide loads and the output of PV plants in Nevada. Petezess coincident with system loads in some years. Elg. 3
al. [32] study the relationship between the capacity value #gmonstrates this by showing hourly loads and PV output
PV and the ratio of the system’s summer and winter pedk Congress on 12 July, 1999 and 10 July, 2002. These are
load. By examining systems with different ratios they arteabdays on which the load reaches its annual peak. As the figure
to show the sensitivity of the capacity value to this ratio. Shows, PV output is significantly less coincident with load o

Because our analysis uses the same load pattern fortgﬁ day in 1999. When the load reaches its peak in hours 16

locations, the different capacity values depend solely &n @nd 17 in 1999, the PV,iS producing an average of 10 MW.
gional variations in solar resource. For instance, PV ledtat Conversely, PV generation is 68 MW in hour 14 when the

Congress, AZ, which receives relatively high solar irréidia, load peaks in 2002. This interannual variability indicattest

has a 75% average annual ECP. PV located in Los Angelggyeral years of data are necessary for an _accu_rate and robus
CA only has a 56% ECP. This difference is due to lowdPN9-term estimate of capacity value, as with wind and CSP
correlation between WECC-wide loads and PV generation TAR [1,7]’ [22]. Moreover, using multiple years of data toiae ,
Los Angeles compared to Congress. To illustrate this, [Eig.aé a single Iong-tgrm capacity value, as opposgd to avagagin
shows the output of PV in Congress and Los Angeles on §6‘9'e'yeaf capacity values as we do, may provide more tobus
July, 2005. This is the day with the highest WECC-wide loagStimates.

of 2005. As the figure shows, PV generation in Congress ~ ;o 190

more coincident with the load than that in Los Angeles. | I 1999 Generation T 1999 Load
hour 14, when the load reaches its annual peak, the PV 60 112002 Generation 2002 Load],
Congress produces 66 MW as opposed to only 16 MW in Lt
Angeles. Since generation during peak-load hours has atdir
impact on capacity value, the PV in Los Angeles has a Iowg 0
capacity value than that in Congress. It is important tosstreg
that any correlation between local loads and PV generaltiong 30t
Los Angeles and Congress are not captured in our analy:g
since we use a WECC-wide footprint in our analysis. > 200

Table[d also shows that there are locations, such as Boi: ;4| ﬂ

50 I

Load [GW]

ID and Seattle, WA, with high capacity values despite havir

relatively low solar resource. This is because peaks inrso o

irradiation and PV generation at these locations are coémti

with peaks in the WECC load. Although total generation ¢ 1 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 10 20 21 22 23 24

such locations is low compared to other parts of the WECL, Hour

the contribution toward reliably serving the load is high. £y 3 Hourly loads and dispatch of a fixed-axis PV plant fedain
The values shown in Tabld Il are annual averages. We fifdngress, AZ on 12 July, 1999 and 10 July, 2002.

L




B. Approximation Methods Each bin represents one possible state, with the probabilit

] ) determined by the number of observations falling within the
Table[lll summarizes average annual capacity values of Ry, The output when the generator is in each state is given

at each location using the approximation methods detafledyy the midpoint of the bin. Thus, with the above example
sectior[I:B. Since these methods are intended to apprd&img;ith 20 Mw blocks, the output of the PV plant in each state
ELCC, the table also provides ELCCs for purposes of comy 19 MW, 30 MW, 50 MW, etc Table[d shows that these
parison. The capacity factor-based approximation refdrte coarser representations of the probability distributideldy
the table is the LOLP-weighted method, using the 10 higheglpacity value approximations approaching the ELCC. This i
load hours of the year. Madaest al. [17], [18] show thal pecause the coarser bins reduce the effect of low generation
when applied to CSP, the LOLP-weighted method providggich occurs during night and shoulder hours, biasing the
more accurate approximations than using the hlghest-lmadafb roximation downward.
highest-LOLP methods. This is because the weighted methoe?he Z method approximates the capacity value based on
places proportionally higher weight on generation duriogi  the mean and standard deviation of surplus capacity in the
with relatively high LOLPs. They further show that using thgzge system during peak-load hours and PV generation. We
10 highest-load hours provides the best approximation, a@@mpute different values fors and og in each year based
we find the same results for PV. Specifically, we compagg, the 10 highest-load hours. This gives values between
capacity factor-based approximations using the 100 and 84§ng MW and 7400 MW fops and between 2500 MW and
(10%) highest-load hours, and find 10 hours to provide th&oo Mw for os. We estimate different values for the mean
closest approximation. This is because the capacity value g standard deviation of PV generation in each year based
(CSP and PV) solar is highly sensitive to the most criticg)y simulated hourly generation. This gives means ranging
hours of the year, due to strong correlation between loads 8§btween 25.4 MW and 66.7 MW and standard deviations
generation. Adding more hours to the calculation reduces thetween 4.4 MW and 28.7 MW.
approximated capacity value, biasing the result. Conlgrse Tape[IT] shows that while some methods provide relatively
Milligan and Parsons [24] show that a capacity factor—bas%od approximations of a more detailed ELCC, others are
approximation of wind requires the 10% highest-load hoars §jgnificantly less accurate. To measure the relative acguwh
be used. Wind requires more periods to be included due to g different approximation techniques, we use a root-mean
weaker correlation between loads and generation. If too f&yyare error (RMSE) metric to compare each method to the
hours are considered, the approximation is biased downwaggl cc. This RMSE is defined as:

The Garver and multi-state generator approximation meth- T 5
ods require estimating the parametersand B. The multi- \/W Z (cBLOC — 9)”, (20)
state generator method further requires a probabilityidist AEA

tion representing the possible states in which the PV plagid is based on the difference between the annual average
can operate. We approximate a different value forand capacity value estimated using the ELCC and approximation
B in each year by estimating the LOLE of the system Withethoda. These differences are averaged over the locations
different load peaks. This is done by adding a constant logthdeled. Tabl€ IV summarizes the RMSEs for the different
in each hour, equal to 5% and 10% of the annual peak logghproximation techniques, showing that the capacity facto
and estimating the LOLE usingl(2). We also estimate LOLEsysed approximation provides the best overall approxamati

by subtracting a constant load equal to 5% and 10% of th¢ the ELCC. Moreover, it shows that if applied properly
annual peak. This gives five LOLEs corresponding to diﬁer?&e. an appropriate probability distribution is used to repres
load patterns (including the LOLE of the base system witlpe possible operating states of PV in the multi-state m#tho

unadjusted loads). Values for and B are found by fitting[(1I0) 4| of the approximation methods are comparable to eaclr othe
to the data using ordinary least squares. This yields vdtres jn accuracy.

m ranging betweeB.9 x 10~ and8.7 x 10~ in the different

years. TABLE IV
We use four different probability distributions in the niult AVERAGEROOT-MEAN_SQUA—?ECESGZEESFD'FFERENTAPPROXIMAT|ON

state generator method. The first uses the empirical disiti

of hourly PV output in each year. That is, we assume the PV Method RMSE
. . . Capacity Factor 4.4

plant can operate in 8760 different states, corresponditiget Garver 74

modeled output of the plant in each hour of the year, each Multi-State Generator

having equal probability. TablETIl shows that representin Empirical 37.9

PV generation in this manner significantly underestimates t %8 mw fg:g

ELCC, since a high probability is placed on 0 output (which 33 MW 7.7

occurs during night hours). To overcome this, we use three z 8.3

coarser representations of the probability distributiomhich

the empirical data are aggregated into 10, 20, or 33 MW

‘blocks.’ This is done by binning the modeled generation. Fo V. SENSITIVITY TO SUN-TRACKING SYSTEMS

instance, with 20 MW blocks the bins correspond to outputs Our analysis thus far assumes fixed-axis PV panels. Single-
between 0 and 20 MW, 20 and 40 MW, 40 and 60 MM6  and double-axis sun-tracking systems, which adjust the rea



TABLE Il
AVERAGE ANNUAL CAPACITY VALUE OF PV

Multi-State Generator

Site ELCC | Capacity Factor| Garver | Empirical 10 MW 20 MW 33 MW | Z

Barstow, CA 59.7 60.4 58.3 25.4 34.8 43.9 57.6 46.8
Congress, AZ 69.7 70.4 62.7 24.6 33.9 43.6 56.5 61.8
Yucca Flat, NV 56.6 57.9 55.5 25.2 34.6 44.0 57.2 445
Hanover, NM 56.7 57.3 50.1 24.3 33.6 43.1 56.2 48.4
Cheyenne, WY 51.8 57.3 55.8 221 315 40.9 54.7 46.8
Salt Lake City, UT || 61.0 67.7 60.9 24.7 34.0 43.2 57.1 52.4
Boise, ID 66.0 72.6 60.1 23.3 32.6 42.5 54.9 56.6
Los Angeles, CA 52.0 56.8 54.6 24.0 33.3 42.9 55.7 49.5
San Francisco, CA|| 55.8 61.2 45.0 22.0 31.3 40.8 54.5 53.4
Seattle, WA 57.6 66.2 54.7 20.9 30.1 40.0 53.0 62.2
Denver, CO 60.0 61.6 60.6 20.6 30.0 39.7 53.1 66.6
Albuguerque, NM 67.4 69.8 51.8 23.1 32.4 41.3 55.7 52.6
Phoenix, AZ 64.4 65.9 51.9 19.9 29.2 38.8 52.3 58.3
Las Vegas, NV 60.0 62.8 50.7 14.9 24.2 33.9 48.3 60.2

time orientation of the panel to track the location of the,sunesults. Our results show that PV, on average, can have ELCCs
can be added to increase generation. A single-axis trackinetween 52% and 93% depending on the location and sun-
system is typically untilted, but rotates the panel abowt thracking capability of the plant. As with other renewable
azimuth angle to follow daily movement of the sun. A doublaesources, we find high interannual variation of about 16%,
axis tracking system rotates the panel about both the akimirtdicating that multiple years of data are required for ausib
and tilt angle, allowing the panel to track the daily and seas estimation of capacity value. Out of the approximation tech
movement of the sun. nigues that we study, we find the capacity factor-based rdetho
Table M summarizes the ECP and ELCC of PV plant® be the most accurate technique on the basis of an RMSE
with single- or double-axis sun-tracking systems. Commgari metric. This is important, given the use of approximation
to the values reported in Tabld Il shows, as expected, thathniques by system operators and utilities in their l@ga
sun-tracking systems increase capacity value, with deakile capacity planning [2]. Overall, our analysis indicated thase
systems having the greatest effect. Whereas fixed-axis P& happroximation techniques provide relatively robust eates
ECPs ranging between 56% and 75%, a double-axis trackioigPV capacity value for use in other systems. Although we
system increases the ECP to between 71% and 93%. estimate capacity values by modeling the entire WECC, these
TABLE V techniques could be applied to the more limited footprints
AVERAGE ANNUAL CAPACITY VALUE OF PV WITH SUN-TRACKING Often Used by Sy_Stem planners and Utllltles. )
SYSTEM The WECC-wide results presented here may differ from
analysis of smaller regions, depending on the extent to lwhic

Single-Axis Double-Axis : e : . ) ;
Site ECP. ELCC ECP ELCC solar resource is com_udent with t_he Io_cal load. I_:or argte,
Barsiow, CA 783 727 794 73.7 the northwestern United States is typically a winter-pegki
Congress, AZ 82.7 76.8 85.7 795 system, and PV generation in these areas is typically less
Yucca Flat, NV | 742 68.9 761 70.7 coincident with the ‘local’ load than with the WECC-wide
Hanover, NM 70.3 653 71.2 66.2 . )
Cheyenne, WY 779 724 805 748 load. Thus, PV in the Northwest may have lower capacity
Salt Lake City, UT | 84.7 787  88.6 822 values than our estimates suggest if this more limited fidmitp
Boise, ID 874 812 922 856 i ; ;
Los Angeles, CA | 834 774 850 78.9 is used. By modeling the entire WECC system we a_Iso
San Francisco, CA| 830 77.1 845 78.4 assume that the system has sufficient transmission capacity
Seattle, WA 872 809 927 861 deliver power wherever it is needed. If binding transmissio
Denver, CO /51698 779 723 constraints prevent this, actual ECPs could be lower than ou
Albuquerque, NM | 84.6 78.5 86.5 80.3 . .. .. .
Phoenix, AZ 771 716 782 72.6 estimates [2]. Additional analysis is needed to consideh bo
Las Vegas, NV 826 76.7 84.6 785 the local coincidence of PV with demand and the ability of

transmission to share capacity across larger regions of an
interconnected system.
VI. CONCLUSIONS
This paper compares several approaches for estimating the ACKNOWLEDGMENT
capacity value of PV. It applies these methods at a variety The authors would like to thank C. Dent, V. Banunarayanan,
of locations within the WECC between the years 1998 ald. Milligan, R. Newmark, and A. Sorooshian for helpful
2005, while assuming the load is fixed to evaluate the vanatidiscussions and suggestions.
in performance based on the solar resource. This is done by
simulating hourly PV generation and using it as an input
to reliability-based methods and approximation techrri;que[ll G. R. Pudaruth and F. Li, “Capacity credit evaluation: iferature re-
. . . view,” in Third International Conference on Electric Utility Derdgtion
While ECP and ELCC are well recognlzed and W'dely used, and Restructuring and Power TechnologiesNanjing, China: Institute
we find that some approximation techniques can yield similar of Electrical and Electronics Engineers, 6-9 April 2008, pp19-2724.
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