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Abstract

Plug-in hybrid electric vehicles (PHEVs) that are driven and charged in ‘dirty’ power systems, with high penetrations of
coal and other polluting generation fuels, may yield higher net emissions than conventional vehicles (CVs). We examine
the implications of imposing a constraint on PHEV recharging that forces emissions from PHEVs to be no greater than
those from a comparable CV. We use the Texas power system, which has a mix of coal- and natural gas-fired generation
and has been shown to yield higher emissions from PHEVs than CVs, as a case study. Our results show that imposing
the emissions constraint results in most of the PHEV charging loads being shifted from coal- to cleaner natural gas-fired
generators. There is, however, virtually no increase in generation or PHEV driving costs due to efficiency benefits that
are possible through coordination of unit commitment and PHEV charging decisions.
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1. Introduction

Plug-in hybrid electric vehicles (PHEVs) have been of-
fered as alternatives that can reduce driving costs rela-
tive to conventional and hybrid electric vehicles (CVs and
HEVs). These savings stem from the fact that PHEVs
have larger batteries than HEVs that can be charged from
the electric power system, and give the vehicles a limited
‘electric-only’ driving range. Due to the abundance of low-
cost generating capacity, especially overnight, electricity
can be a less costly transportation fuel than gasoline, when
the relative driving efficiencies of electric motors and inter-
nal combustion engines are taken into account. The actual
cost savings from PHEV use will depend on the generation
mix in the power system. This is because of differences in
the cost of generating fuels, for instance between coal and
natural gas. Diurnal PHEV charging patterns will also af-
fect charging costs, because different generation fuels are
marginal and would serve the charging loads at different
times of day. PHEV economics in a number of power sys-
tems in the United States has been examined, including by
Parks et al. (2007), who model the Xcel service territory
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in Colorado, Sioshansi and Denholm (2010), who model
the ERCOT (Texas) power system, Sioshansi et al. (2010),
who model the state of Ohio, and Wang et al. (2010), who
model the PJM system. EPRI (2007a,b) examines the im-
pacts of PHEVs across the United States over a 40-year
period from 2010 to 2050. These analyses all show PHEVs
to be less costly alternatives, on the basis of driving cost,
than CVs and HEVs.

The net emissions impacts of PHEVs, when account-
ing for emissions associated with vehicle charging loads,
are more mixed and will again depend on the genera-
tion mix of the power system and the timing of PHEV
charging. Parks et al. (2007) show that PHEVs in Col-
orado will yield lower CO2, SO2, and NOx emissions than
HEVs and CVs. EPRI (2007a,b) shows that while PHEVs
will yield substantially lower greenhouse gas (GHG) emis-
sions than HEVs and CVs, they will have more mod-
est effects on NOx and SO2 and can lead to increases in
mercury and particulate emissions. McCarthy and Yang
(2010) model PHEV GHG emissions in California, show-
ing the range of possible emissions rates depending on the
timing of PHEV charging. Hajian et al. (2009) show sim-
ilar GHG reductions in Alberta, Canada, and also exam-
ine the effect of varying amounts of wind generation be-
ing added to the system. Elgowainy et al. (2009) model
GHG emissions from PHEVs in three North American
Electric Reliability Corporation regions, which encompass
major metropolitan areas. Their results show differences
in GHG emissions between the different regions, but that
PHEVs will offer GHG reductions relative to CVs and
HEVs. Sioshansi and Denholm (2009) model PHEV emis-
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sions in Texas, and show that while CO2 and NOx emis-
sions will be lower than a CV, net SO2 emissions would
be more than 50 times higher than a CV due to the use of
coal-fired generation for PHEV charging. Sioshansi et al.
(2010) model PHEVs in Ohio, which has a coal-dominated
power system, and show similar SO2 increases as well as
higher NOx emissions.

Emissions of SO2 and NOx in the United States are
capped by Federal legislation and regulations, including
Title IV of the Clean Air Act and the NOx State Imple-
mentation Plan (SIP) Call. As such, total emissions of
these species may not be able to increase with the intro-
duction of PHEVs.1 Thus, increases in SO2 and NOx emis-
sions due to PHEV charging in systems such as ERCOT or
Ohio would have to be offset by reductions elsewhere. Oth-
erwise a constraint would have to be imposed on PHEV
charging to ensure that the added loads do not yield higher
emissions. In the short term, when the generator set is
fixed, the market would react to such a restriction through
emissions dispatch. In the case of ERCOT or Ohio, loads
that would be served using coal-fired generation would in-
stead be served with natural gas-fired generators. This
type of emissions dispatch has been observed in other in-
stances in which emissions regulations have come into force
on the electric power industry. Heslin and Hobbs (1989);
Talaq et al. (1994) survey and evaluate the costs and ben-
efits of different operational strategies, including emissions
dispatch, which can be used to meet such emissions restric-
tions. Jackson et al. (1993); El-Keib et al. (1994) model
the impacts of the Clean Air Act on generator dispatch in
the United States. Delarue and D’haeseleer (2007, 2008)
explore emissions dispatch as a result of the European
Union Emission Trading Scheme (EU ETS), and describe
conditions that are necessary for such switching to occur.
Delarue et al. (2007, 2008) examine historical EU ETS al-
lowance price data to demonstrate that emissions dispatch
took place as a result of the GHG regulations. They also
estimate the potential for additional emissions reductions
from emissions dispatch with higher allowance prices.

Using the model developed by Sioshansi and Denholm
(2009, 2010), we examine the impact of imposing an emis-
sions constraint on PHEV charging in the ERCOT sys-
tem. We consider two different PHEV charging and emis-
sions constraint scenarios. The charging scenarios that
we model are one in which the utility or system operator
(SO) can control PHEV charging, and another in which
the charging decisions are made by vehicle owners in an
uncontrolled fashion. These two scenarios are hereafter re-
ferred to as the controlled and uncontrolled charging cases,
respectively. The emissions constraint scenarios that we

1If emissions are already below the cap without PHEVs, then
emissions could increase. Since SO2 allowances have historically been
traded and auctioned at strictly positive prices, this suggests that the
SO2 cap is binding. Similarly, the introduction of NOx regulations
have led to reductions in NOx emissions, also suggesting that the
NOx cap is binding.

consider are one in which total emissions from the genera-
tor fleet cannot increase with the introduction of PHEVs,
and another in which reductions in tailpipe emissions (due
to lower relative gasoline use by PHEVs) can offset in-
creases in generator emissions. We hereafter refer to these
two as the non-offset and offset emissions constraint sce-
narios, respectively. We compare these two cases to one
in which there is no constraint on emissions to estimate
the cost of PHEV charging having to comply with SO2

and NOx regulations. Our results show that imposing the
constraint results in nearly all of the PHEV charging load
being served by higher-cost and cleaner natural gas-fired
generation, as opposed to some coal-fired generation that
is used without the constraint. There is, however, virtually
no increase in generation or PHEV driving costs, due to
the ability of the SO to coordinate power system unit com-
mitment and PHEV charging decisions to yield generation
efficiency gains.

The remainder of this paper is organized as follows:
section 2 describes the model and data used in our analysis,
section 3 summarizes our results, and section 4 concludes.

2. Model and Data

2.1. Model and Data Overview

Our analysis is based on the unit commitment and
vehicle driving model that Sioshansi and Denholm (2009,
2010) develop. The model takes the power system and
PHEV fleet characteristics and driving patterns as fixed.
In the controlled charging case, the model determines the
commitment and dispatch of the generator set as well as
when to recharge the PHEVs to minimize the sum of gen-
eration and PHEV driving costs. PHEV driving costs are
included in the objective function to provide the SO with a
proper incentive to recharge the PHEV fleet. Moreover, we
also impose a constraint that requires each PHEV battery
to be fully recharged in time for the first trip each morn-
ing. In the uncontrolled scenario the charging patterns are
fixed and the model only determines the commitment and
dispatch of the generator set. All of the models are for-
mulated using AMPL 12.1 and are solved using Cplex 12.1
with default settings. We model CO2, SO2, and NOx emis-
sions in our analysis and consider generator and tailpipe
emissions sources.

We use the same model data, which are based on the
ERCOT system, that Sioshansi and Denholm (2009, 2010)
use. The generator set, operating constraints, and cost
data, as well as the non-PHEV loads are based on actual
data from 2005. The generator set, operating constraint,
and cost data are obtained from Ventyx and Platts, which
are proprietary data vendors. We include SO2 allowance
costs in computing generation costs, and obtain histori-
cal SO2 allowance costs from Platts. The load data are
obtained from ERCOT. We model generator emissions us-
ing input-based emissions rates, which compute emissions
based on the amount of fuel burned. This use of input-
based emissions rates allows us to capture emissions due
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to generator startups and differences in generator efficien-
cies when operated at part load. We estimate emissions
rates using continuous emissions monitoring systems data
obtained from the United States Environmental Protec-
tion Agency (EPA).

We model a case in which 1% of the light duty vehi-
cle fleet in ERCOT are PHEVs. This amounts to 75,750
PHEVs, based on vehicle registration data reported by
the United States Department of Transportation’s Federal
Highway Administration for the year 2005.2 We assume
that the PHEV fleet is driven according to empirical driv-
ing data detailed by Gonder et al. (2007), and that the ac-
tual driving patterns are fixed based on these data. These
data provide second-by-second driving data for 227 study
participants, which were obtained using the global posi-
tioning system. Figure 1 shows the distribution of average
daily driving distances among the 227 study participants,
as well as the average daily driving distance of the study
population. We assume that the vehicle fleet we model
is uniformly distributed between these 227 driving profiles
and that all of the vehicles corresponding to each driv-
ing profile charge identically in each hour. The empirical
driving data are used to determine the hours in which the
PHEVs corresponding to each driving profile are driven,
and when they are plugged into the grid. We assume that
a PHEV is grid-connected in an hour if it is not driven
for the entire hour. The driving data are combined with
the ADVISOR vehicle simulation tool, which is described
by Markel et al. (2002), to determine gasoline and bat-
tery energy usage for each of the driving profiles. Table 1
summarizes the assumed characteristics of the PHEVs in
the fleet, which are used by Parks et al. (2007). We as-
sume that the PHEVs operate using an electric vehicle-
type control. Under such a control, PHEVs are initially
driven in a charge-depleting (CD) mode, which uses elec-
tricity as the primary transportation fuel. Once the state
of charge (SOC) of the battery reaches a preset minimum
level, which we assume to be 30%, the PHEV switches to
charge-sustaining (CS) mode. When driven in CS mode,
the PHEV behaves much like an HEV, using gasoline as
the primary transportation fuel and keeping the SOC at
the minimum. Once the PHEV enters CS mode, it will re-
main there until the battery is recharged using grid energy.
We assume that all charging stations have a power capac-
ity of 5 kW, and that charging incurs 5% transmission and
distribution losses and 10% inverter losses.

Our model is formulated to minimize the sum of all gen-
eration costs (i.e. the cost of serving the PHEV and non-
PHEV loads) and PHEV gasoline costs. Gasoline costs are
computed using estimates of gasoline use when the PHEVs
are driven in CD and CS modes, obtained from the ADVI-
SOR model, and retail gasoline prices. The gasoline prices

2The data reports vehicle registrations by state. We assume that
85% of the vehicles in Texas are driven within the ERCOT power
system, based on the fact that ERCOT serves approximately 85%
of the state’s population. Thus the 75,750 PHEVs corresponds to
0.85% of light-duty vehicles registered in the state of Texas.
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Figure 1: Average daily driving distance of driving profile data used.

Table 1: PHEV Characteristics
Characteristic Value
Battery Capacity 9.4 kWh
Vehicle Mass 1488 kg
All-electric Range 35.9 km
Average Energy Use 23 km/l and

Over Drive Cycle 59 Wh/km
CD-mode Electric 0.183 kWh/km

Energy Use

are based on weekly average prices for the state of Texas
in 2005, as reported by the United States Department of
Energy’s Energy Information Administration. We also use
the ADVISOR model to estimate gasoline usage by CVs
driven with the same driving profiles that we use to model
the PHEVs. Following Parks et al. (2007), we assume that
the CVs are comparably sized to the PHEVs and have a
fuel economy of about 25 miles per gallon or 11 kilome-
ters per liter. These gasoline usage estimates are combined
with the retail price data to estimate the driving cost of a
CV, which we use as a benchmark to estimate cost savings
associated with PHEV use.

We estimate tailpipe emissions using both the chemical
composition of gasoline and relevant environmental regu-
lations. CO2 emissions are based on the carbon content
of gasoline, which gives emissions of about 2.35 kg/liter
of gasoline burned. Tailpipe emissions of SO2 will depend
on the sulfur content of gasoline, which will in turn de-
pend on gasoline refining. The EPA’s Tier2 rule, which
is described by EPA (2000), requires the sulfur content
of gasoline to be below 30 ppm. We assume that refin-
ers will exactly meet this requirement, which will give an
emissions rate of 0.045 g/liter of gasoline burned. Tailpipe
emissions of NOx will depend to a large extent on vehicle
designs, since NOx emissions can be controlled. Tier2 re-
quires tailpipe emissions of NOx to be below 0.043 g/km
driven. We assume that vehicle manufacturers will design
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CVs to exactly meet this requirement. Following EPRI
(2007b); Sioshansi and Denholm (2009), we assume that
HEVs will also be designed to exactly meet this require-
ment. We then estimate tailpipe emissions from PHEVs
based on the percentage reduction in gasoline used by a
PHEV relative to a comparable HEV using the same driv-
ing profile. This gives an NOx emissions rate of about
0.673 g/liter of gasoline burned for a PHEV.

2.2. Emissions-Unconstrained Model Formulation

We first give the formulation of the model in the case in
which emissions are unconstrained. We use the following
notation in the formulation:

T : set of hours in planning horizon;

I: set of generators;

V : set of PHEV driving profiles;

Mv: number of PHEVs driven according to driving profile
v;

Ci,t(·): generator i’s non-decreasing stepped variable gener-
ating cost function in hour t;

Ni,t: generator i’s noload cost in hour t;

SUi,t: generator i’s startup cost in hour t;

K−

i : generator i’s minimum operating point;

K+
i : generator i’s maximum operating point;

R−

i : generator i’s rampdown limit;

R+
i : generator i’s rampup limit;

τ−

i : generator i’s minimum down-time;

τ+
i : generator i’s minimum up-time;

Dt: non-PHEV load in hour t;

p: power limit of PHEV charging station plug;

e: maximum energy level of PHEV battery;

e: minimum energy level of PHEV battery;

πg
t : cost of gasoline in hour t;

ce: charging efficiency (including transmission, distribu-
tion, and inverter losses) of PHEV battery;

distv,t: distance driving profile v drives in hour t;

cde
v: average net battery energy usage of driving profile v

when operating in CD mode;

cdg
v: average gasoline usage of driving profile v when op-

erating in CD mode;

csg
v: average gasoline usage of driving profile v when op-

erating in CS mode;

φv,t: binary parameter indicating whether the battery of
a PHEV driven according to driving profile v must
be fully recharged in hour t;

qi,t: generation provided by generator i in hour t;

ui,t: binary variable indicating if unit i is online in hour
t;

si,t: binary variable indicating if unit i is started-up in
hour t;

hi,t: binary variable indicating if unit i is shutdown in
hour t;

Lv,t: ending energy level of battery of PHEV with driving
profile v in hour t;

chv,t: energy charged into battery of PHEV with driving
profile v in hour t;

cdv,t: distance driven in CD mode by PHEV with driving
profile v in hour t;

csv,t: distance driven in CS mode by PHEV with driving
profile v in hour t; and

c̃dv,t: binary variable indicating whether SOC of PHEV
with driving profile v is above minimum at end of
hour t.

The objective of the model is to minimize the sum of
generation and PHEV gasoline costs:

min
∑

t∈T

{
∑

i∈I

[Ci(qi) + Niui,t + SUisi,t] (1)

+
∑

v∈V

πg
t Mv[cd

g
vcdv,t + csg

vcsv,t]

}
,

subject to the following constraints:
∑

i∈I

qi,t = Dt +
∑

v∈V

Mvchv,t/ce, ∀ t ∈ T ; (2)

K−

i ui,t ≤ qi,t ≤ K+
i ui,t, ∀ i ∈ I, t ∈ T ; (3)

R−

i ≤ qi,t − qi,t−1 ≤ R+
i , ∀ i ∈ I, t ∈ T ; (4)

t∑

y=t−τ
+

i

si,y ≤ ui,t, ∀ i ∈ I, t ∈ T ; (5)

t∑

y=t−τ
−

i

hi,y ≤ 1 − ui,t, ∀ i ∈ I, t ∈ T ; (6)

si,t − hi,t = ui,t − ui,t−1, ∀ i ∈ I, t ∈ T ; (7)

ui,t, si,t, hi,t ∈ {0, 1}, ∀ i ∈ I, t ∈ T ; (8)

Lv,t = Lv,t−1 + chv,t − cdecdv,t, ∀ v ∈ V, t ∈ T ; (9)

cdv,t + csv,t = distv,t, ∀ v ∈ V, t ∈ T ; (10)

c̃dv,t ≥
Lv,t − e

e − e
, ∀ v ∈ V, t ∈ T ; (11)

csv,t ≤ distv,t(1 − c̃dv,t), ∀ v ∈ V, t ∈ T ; (12)

e ≤ Lv,t ≤ e, ∀ v ∈ V, t ∈ T ; (13)
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Lv,t = e if φv,t = 1, ∀ v ∈ V, t ∈ T ; (14)

0 ≤ cht ≤

{
0, if distv,t > 0
p, otherwise

, ∀ v ∈ V, t ∈ T ; (15)

0 ≤ cdv,t, csv,t, ∀ v ∈ V, t ∈ T ; (16)

c̃dv,t ∈ {0, 1}, ∀ v ∈ V, t ∈ T. (17)

Constraint (2) is the hourly load-balance constraint,
which ensures that PHEV and non-PHEV loads are ex-
actly met. Constraints (3) and (4) are hourly generation
bounds and ramping limits, respectively. Constraints (5)
and (6) impose minimum-up and -down times when gen-
erators are started up and shutdown, while constraint (7)
defines the startup and shutdown variables in terms of
the ui,t variables. Constraint (8) imposes integrality on
these variables. Constraint (9) defines the ending energy
level in each PHEV battery in terms of the previous level
and charging and driving decisions. Constraint (10) en-
sures that each PHEV drives the required distance in each
hour. Constraint (11) defines the c̃dv,t variables in terms of
the ending charge level of the battery—if the charge level
is above the minimum then c̃dv,t is forced equal to one.
Constraint (12) forces a PHEV to operate in CD mode
if the charge level of the battery is above the minimum.
Constraint (13) imposes the minimum and maximum en-
ergy levels of the PHEV batteries and constraint (14) re-
quires each PHEV battery to be recharged in time for the
first trip of each morning. Constraint (15) imposes the
power capacity of the charging plug, and also constrains
a PHEV to not be charged in any hour in which it is be-
ing driven. Constraint (16) imposes non-negativity on the
driving variables, and constraint (17) imposes integrality

on c̃dv,t.
The emissions-unconstrained model is given by objec-

tive function (1) and constraints (2) through (17). In the
controlled charging case qi,t, ui,t, si,t, hi,t, Lv,t, chv,t, cdv,t,

csv,t, and c̃dv,t are all decision variables, reflecting the fact
that the SO can control the charging of the PHEV fleet.
In the uncontrolled case, however, Lv,t, chv,t, cdv,t, csv,t,

and c̃dv,t are exogenously fixed, and only qi,t, ui,t, si,t,
and hi,t are decision variables. In the uncontrolled case
we follow the assumption made by Sioshansi et al. (2010)
that drivers will immediately charge their vehicles when-
ever they are not being driven. Because solving this prob-
lem using a year-long optimization horizon is intractable,
we simplify the model by solving it one day at a time us-
ing a rolling two-day optimization horizon. This use of a
two-day horizon ensures that generator commitments at
the end of each day account for the fact that there will be
loads to serve in the future. Without the use of a two-day
horizon, generators may be shutdown at the end of each
day, incurring expensive generator cycling costs.

2.3. Emissions-Constrained Model Formulation

We analyze the emissions-constrained case using the
same basic model, but add a new set of constraints that
limit emissions of CO2, SO2, and NOx to not increase as
a result of adding the PHEV charging loads. We consider
two emissions-constrained cases. In the first, we assume
that the reductions in tailpipe emissions due to PHEV
use can offset increases in generator emissions. Thus in
this case we constrain total emissions with the PHEV fleet
(consisting of the sum of generator emissions and tailpipe
emissions from the PHEVs) to be less than total emissions
with a CV fleet of the same size (consisting of the sum of
generator emissions without any PHEV and tailpipe emis-
sions from the CVs). The second emissions-constrained
case assumes that tailpipe emissions cannot offset increases
in generator emissions. Thus in this case we constrain gen-
erator emissions with PHEVs to be no greater than gen-
erator emissions without PHEVs.

In order to give the formulation of this model, we first
define the following notation:

Λ: set of pollutants to be constrained;

ξi(·): generator i’s non-decreasing stepped generation heat
rate function;

ξN
i : spinning fuel used by generator i;

ξS
i : startup fuel used by generator i;

ρi,λ: emissions of pollutant λ emitted per unit of fuel
burned by generator i;

γλ: emissions of pollutant λ emitted per unit of gasoline
burned by a PHEV;

ωG
λ : total annual emissions of pollutant λ from all gener-

ators without any PHEVs in the system; and

ωV
λ : total annual emissions of pollutant λ from a CV fleet

which is the same size as the PHEV fleet.

In the case in which tailpipe emissions can offset gener-
ator emissions, the model would include the following set
of constraints:

∑

t∈T

{
∑

i∈I

ρi,λ[ξi(qi,t) + ξN
i ui,t + ξS

i si,t]

+
∑

v∈V

γλMv[cd
g
vcdv,t + csg

vcsv,t]

}
(18)

≤ ωG
λ + ωV

λ , ∀ λ ∈ Λ;

whereas in the other case the emissions constraints would
be:

∑

t∈T

∑

i∈I

ρi,λ[ξi(qi,t) + ξN
i ui,t + ξS

i si,t] (19)

≤ ωG
λ , ∀ λ ∈ Λ.
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Adding either constraint set (18) or (19) to the model
couples the 365 days of the year together, making the
model intractable to solve. We apply Lagrangian relax-
ation, which is described by Wolsey (1981), to relax these
coupling constraints. If we let ηλ ≥ 0 denote the La-
grange multiplier associated with the constraint on pollu-
tant λ, then the objective function of the relaxed problem
becomes:

min
∑

t∈T

{
∑

i∈I

[Ci(qi) + Niui,t + SUisi,t (20)

+
∑

λ∈Λ

ηλρi,λ(ξi(qi,t) + ξN
i ui,t + ξS

i si,t)]

+
∑

v∈V

[πg
t Mv(cd

g
vcdv,t + csg

vcsv,t)

+
∑

λ∈Λ

ηλγλMv(cd
g
vcdv,t + csg

vcsv,t)]

}
,

in the case in which tailpipe emissions can offset generator
emissions. In the other case, in which tailpipe emissions
cannot offset generator emissions, the objective function
is:

min
∑

t∈T

{
∑

i∈I

[Ci(qi) + Niui,t + SUisi,t (21)

+
∑

λ∈Λ

ηλρi,λ(ξi(qi,t) + ξN
i ui,t + ξS

i si,t)]

}
.

The relaxed problem, which consists of objective func-
tion (20) or (21) and constraints (2) through (17) can be
more easily solved, since it decouples into 365 subprob-
lems, corresponding to each day. These problems can be
solved using the same rolling two-day optimization hori-
zon. We use a subgradient algorithm to solve for a near-
optimal set of ηλ that give a solution satisfying the emis-
sions constraints with a small duality gap.

3. Results

We begin our analysis by first considering an emissions-
unconstrained case, in which the sum of generator and
tailpipe emissions of SO2 and NOx can increase with the
introduction of the PHEV fleet. This case could arise if
there are offsetting reductions in SO2 and NOx reductions
elsewhere in the economy. Otherwise, we use the results
of this case as a baseline to estimate the cost of PHEV
charging complying with emissions caps, without relying
on such offsetting reductions.

3.1. Emissions-Unconstrained Case

3.1.1. PHEV Costs

Table 2 compares generation costs with and without
PHEVs in the emissions-unconstrained case. The first row

of the table gives the total annual generation costs un-
der the different scenarios, while the second gives the in-
cremental cost (between the PHEV and no-PHEV cases)
when PHEVs are added to the system. These incremen-
tal costs represent the added cost to the power system of
serving PHEV charging loads. The final row of the ta-
ble normalizes these costs based on the size of the PHEV
fleet, to give the charging cost on a per-vehicle basis. As
expected, these charging loads are more expensive in the
uncontrolled case since PHEV charging is not co-optimized
with power system operations.

Table 2: Annual generation costs with CVs and PHEVs in the
emissions-unconstrained case.

CVs PHEVs
Controlled Uncontrolled

Total ($ mil.) 12,470 12,476 12,488
Incremental ($ mil.) 7 19
Per-vehicle ($) 92 248

Table 2 summarizes annual CV and PHEV driving
costs, which consist of vehicle charging and gasoline costs,
in the emissions-unconstrained case. The PHEV charging
costs are the incremental generation costs given in table 2,
while the gasoline costs of the PHEV fleet are given by the
system optimization and ADVISOR models. The costs re-
ported in the table are only for the fleet of 75,750 CVs and
PHEVs that we compare to each other, and as such do not
represent the driving cost of the entire light-duty vehicle
fleet in ERCOT. The table provides costs for the PHEV
and CV fleets, as well as on a per-vehicle basis. Table 2
shows that PHEVs yield a significant driving cost savings
relative to CVs, although greater cost reductions are possi-
ble with proper coordination of charging and power system
operation decisions in the controlled charging case. With
controlled charging, PHEVs are 67% less costly than CVs
as opposed to only a 54% savings with uncontrolled charg-
ing.

Table 3: Annual CV and PHEV driving costs in the emissions-
unconstrained case.

CVs PHEVs
Controlled Uncontrolled

Fleet Costs ($ mil.)
Electricity 0 7 19
Gasoline 91 23 23
Total 91 30 42

Per-Vehicle Costs ($)
Electricity 0 92 248
Gasoline 1,196 302 301
Total 1,196 393 549

It is important to stress that the electricity costs re-
ported in table 3 represent the social cost of PHEV charg-
ing, and not necessarily the private cost incurred by PHEV
owners. This is because the private cost of PHEV charg-
ing will depend on how electricity tariffs are set. If, for
instance, PHEV charging loads are priced the same as
non-PHEV loads, then the private cost of PHEV driving
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will be lower than the costs in table 3. This is because
the incremental generation cost when PHEVs are added
to the system will be socialized across PHEV and non-
PHEV loads.

Table 3 shows that the difference in PHEV driving
costs between the controlled and uncontrolled charging
scenarios is almost entirely due to differences in generation
costs. The uncontrolled scenario yields some small gaso-
line cost savings, since the uncontrolled scenario results
in slightly more midday recharging of about 0.05 kWh
per vehicle daily than controlled charging. This differ-
ence amounts to only an annual per-vehicle reduction in
gasoline cost of $0.95, however. Figure 2 shows the av-
erage hourly per-vehicle charging profiles over the course
of the year under the two charging cases. As expected,
the uncontrolled charging scenario results in the bulk of
overnight recharging taking place between 4 and 10 pm,
after most commuters arrive home. With the controlled
scenario, however, this charging is delayed to later hours
overnight when lower-cost baseload generating capacity is
available.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.5

1

1.5

2

2.5

3

Hour

A
ve

ra
ge

 P
er

−
V

eh
ic

le
 C

ha
rg

in
g 

Lo
ad

 (
kW

)

 

 
Controlled
Uncontrolled

Figure 2: Average hourly per-vehicle charging load (kW) in the
emissions-unconstrained case.

Table 4 shows the effect of these differences in the tim-
ing of PHEV charging on the breakdown and heat rate
of the charging load. The first two rows of the table show
the breakdown of the incremental generating load between
natural gas- and coal-fired generators under the two charg-
ing scenarios. The incremental generating load is defined
as the change in generation between the PHEV and no-
PHEV case. The table shows that significantly more of
the PHEV charging load is served by coal-fired generation
under the controlled charging scenario, as a result of the
delaying of overnight charging. Almost all of the charging
is done using natural gas-fired generation in the uncon-
trolled case, by contrast, since natural gas is the marginal
generating fuel virtually all of the time in late-afternoon
and early-evening hours.

Table 4: Breakdown and average heat rate of annual incremental gen-
erating load with addition of PHEVs in the emissions-unconstrained
case.

Charging Scenario
Controlled Uncontrolled

Incremental Generating Load (%)
Natural Gas 73.42 96.72
Coal 26.58 3.28

Incremental Heat Rate (kJ/kWh)
Natural Gas 3,289 8,976
Coal 11,355 12,207

The last two rows of the table show the average heat
rate of the incremental charging load. This is defined as
the difference in fuel burned between the PHEV and no-
PHEV case, divided by the difference in generation be-
tween those cases. The table shows that generation of
the charging load in the controlled scenario is significantly
more efficient than under uncontrolled charging. These
high efficiencies in the controlled case are due to the abil-
ity of the SO to time PHEV charging in such a way to
shift non-PHEV loads to more efficient generators, and is
also observed by Sioshansi and Denholm (2010).

Table 5 demonstrates this effect of the PHEV charg-
ing load by breaking the natural gas-fired generators into
two sets—those with a net increase and those with a net
decrease in generation between the PHEV and no-PHEV
cases. The table shows the net change in generation and
fuel burned for these two sets of generators between the
PHEV and no-PHEV cases. It also shows the average heat
rate, which is defined as the change in fuel burned divided
by the change in generation. The table shows that non-
PHEV loads are shifted between the two sets of generators.
This is because the addition of the PHEV charging loads
necessitates or allows the SO to shift loads to generators
that it could not use without the PHEV loads, due to con-
straints on generator operations. In the controlled charg-
ing case, about 634 GWh of non-PHEV load is shifted
over the year from natural gas-fired generators with an
average heat rate of about 11,000 kJ/kWh to generators
with an average heat rate of about 9,000 kJ/kWh, giving
the high incremental generating efficiency. The 634 GWh
of shifted generation can also be normalized by the 8,760
hours of the year, showing that on average about 72 MW
of power is shifted in each hour from less- to more-efficient
generators. The SO is able to do similar generation shift-
ing in the uncontrolled charging case, but since it does
not have the same flexibility in optimizing the timing of
PHEV charging, the effect is somewhat muted with less
load being shifted and a smaller difference between the
heat rates of generators that the load is shifted to and
from. Similar load shifting is done among coal-fired gen-
erators, although to a lesser extent. The PHEV charging
loads allow 2,392 MWh and 412 MWh of non-PHEV loads
to be shifted from less- to more-efficient coal-fired genera-
tors in the controlled and uncontrolled cases, respectively.

The differences in the generation mix and heat rates
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Table 5: Net change in annual total generation and fuel consumed,
and average heat rate of natural gas-fired generators with net genera-
tion increase and decrease with addition of PHEVs in the emissions-
unconstrained case.

Charging Scenario
Controlled Uncontrolled

Net Generation Increase
∆ Generation (MWh) 811,022 508,847
∆ Fuel Burned (TJ) 7,276 4,971
Heat Rate (kJ/kWh) 8,972 9,769

Net Generation Decrease
∆ Generation (MWh) -633,577 -273,720
∆ Fuel Burned (TJ) -6,692 -2,861
Heat Rate (kJ/kWh) 10,563 10,454

between the controlled and uncontrolled charging cases
shown in table 4, explain the drastically different PHEV
charging costs in the two cases.

3.1.2. PHEV Emissions

Table 6 summarizes generator emissions of CO2, SO2,
and NOx in the emissions-unconstrained case. CO2 emis-
sions are reported in megatonnes, whereas the other pollu-
tants are given in tonnes. The table shows the total emis-
sions of each pollutant with and without PHEVs. It also
shows, in the two PHEV cases, the incremental emissions,
which is defined as the change in the emissions (relative
to the non-PHEV case) when PHEV charging loads are
added to the system. Table 7 estimates total emissions
attributable to the CV and PHEV fleets. The generator
emissions are the incremental emissions reported in ta-
ble 6. The emissions are, again, only for the fleet of 75,750
CVs and PHEVs that we compare to one another, and as
such the values reported do not give total emissions at-
tributable to the entire light-duty vehicle fleet in ERCOT.

Table 6: Annual generation emissions of CO2 (Mt), SO2 (t), and
NOx (t) in the emissions-unconstrained case.

CVs PHEVs
Controlled Uncontrolled

CO2 Emissions (Mt)
Total 195.354 195.452 195.471
Incremental 0.098 0.117

SO2 Emissions (t)
Total 452,942 453,237 452,970
Incremental 295 28

NOx Emissions (t)
Total 130,167 130,143 130,248
Incremental -24 81

Table 7 shows that the PHEV charging loads will in-
crease generator emissions of CO2 in both the controlled
and uncontrolled charging cases, but that the decrease in
tailpipe emissions from PHEVs more than offset these in-
creases, giving a net decrease in CO2 emissions relative to
CVs. It may be counterintuitive that generator emissions
of CO2 are higher with uncontrolled charging than in the
controlled case, despite the greater use of natural gas in
the uncontrolled scenario, since natural gas has an input-
based CO2 emissions rate of about 51 kg/GJ as opposed to

Table 7: Annual emissions of CO2 (Mt), SO2 (t), and NOx (t) at-
tributable to CVs and PHEVs in the emissions-unconstrained case.

CVs PHEVs
Controlled Uncontrolled

CO2 Emissions (Mt)
Generator 0 0.098 0.117
Tailpipe 0.363 0.091 0.091
Total 0.363 0.189 0.208

SO2 Emissions (t)
Generator 0 295 28
Tailpipe 7 2 2
Total 7 297 30

NOx Emissions (t)
Generator 0 -24 81
Tailpipe 104 26 26
Total 104 2 107

91 kg/GJ for coal. This result is due to the much higher in-
cremental heat rate of the natural gas generators in the un-
controlled case, as shown in table 4. This higher heat rate
implies that significantly more natural gas must be used
for generation in the uncontrolled case, giving the higher
CO2 emissions. This result also highlights the importance
of using an input-based emissions rate to properly estimate
generator emissions, due to differences in generating effi-
ciency and energy used for generator startups. When these
factors are taken into account, the output-based CO2 emis-
sions rate of incremental natural gas generation (which is
defined as the difference in CO2 emissions divided by the
difference in generation between the PHEV and no-PHEV
cases) is 169 kg/MWh in the controlled charging case as
opposed to 458 kg/MWh with uncontrolled charging.

Table 7 shows that the increase in generator emissions
of SO2 more than outweighs the decrease in tailpipe emis-
sions, meaning that PHEVs will result in greater net SO2

emissions than CVs. The difference in generator emissions
of SO2 is driven entirely by the significantly greater use
of coal-fired generation in the controlled charging case—
natural gas has an SO2 emissions rate of 0.003 kg/GJ as
opposed to an average emissions rate of 0.302 kg/GJ for
coal generators in ERCOT. Since more than a quarter of
the charging load is served by coal in the controlled case,
the much higher emissions rate of coal yields higher SO2

emissions. Indeed, despite the fact that only 3% of the
charging load is served by coal in the uncontrolled case,
the high emissions rate of coal yields higher net SO2 emis-
sions than CVs in this case as well.

Table 7 also shows that net NOx emissions will de-
crease relative to CVs with controlled PHEV charging, but
will slightly increase with uncontrolled PHEVs. Moreover,
generator emissions of NOx will decrease in the controlled
charging case, despite the fact that more electricity is being
generated. This reduction in generator emissions of NOx

is a consequence of the load shifting that gives the low
incremental heat rate in the controlled charging case, and
is also observed by Sioshansi and Denholm (2009). The
natural gas-fired generators that have a net decrease in
generation between the PHEV and no-PHEV case have an
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average NOx emissions rate of about 0.039 kg/GJ, while
the generators with a net increase in generation have an av-
erage emissions rate of about 0.026 kg/GJ. This reduction
in NOx emissions is somewhat coincidental, in that the
more-efficient generators to which the non-PHEV loads
are shifted happen to have lower NOx emissions rates.
Indeed, although the same type of generation shifting is
done in the uncontrolled case, the loads are shifted from
natural gas generators with an average emissions rate of
0.029 kg/GJ to generators with a higher average emissions
rate of 0.031 kg/GJ.

Figure 3 summarizes the effect of these changes in gen-
eration and tailpipe emissions on net annual per-vehicle
emissions of CVs and PHEVs. The values in the figure
are taken from table 7, and normalized by the 75,750
vehicles in the simulated fleets. CO2 emissions are re-
ported in tonnes, while SO2 and NOx emissions are given
in kilograms. The figure shows that PHEVs will result
in lower CO2 and higher SO2 emissions than a CV un-
der both charging scenarios, and that NOx emissions from
PHEVs will be lower with controlled and higher with un-
controlled charging. Table 7 and figure 3 can also be used
to compared PHEV emissions to emissions from CVs with
different fuel efficiencies, since we model CO2 and SO2

emissions as scaling linearly in fuel use. NOx emissions
will not, however, be affected by fuel economy since we
assume that CVs are designed to exactly meet the Tier2
NOx requirement of 0.043 g/km.
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Figure 3: Net annual per-vehicle emissions of CO2 (t), SO2 (kg),
and NOx (kg) from CVs and PHEVs in the emissions-unconstrained
case.

3.2. Emissions-Constrained Cases

As discussed above, because of current SO2 and NOx

limits, emissions of these species cannot increase with the
introduction of PHEVs, unless there are offsetting emis-
sions reductions elsewhere in the economy or something
else causes the emissions caps to be relaxed. As such, we

now consider two cases in which emissions are constrained
not to increase with the introduction of PHEVs. We first
consider a case in which reductions in tailpipe emissions
(relative to CVs) due to PHEV use can offset increases
in generation emissions. We also consider a case in which
such offsetting cannot be done, which means that genera-
tor emissions cannot increase. Because of the limited flex-
ibility in how the SO can meet the emissions constraints
in the short-run, the effect of imposing these constraints
will be to shift PHEV charging loads to generators with
lower emissions rates.

3.2.1. Offset Emissions-Constrained Case

Table 7 and figure 3 show that with controlled charg-
ing only SO2 emissions from PHEVs will be higher than
those from CVs, and that only SO2 and NOx emissions
will be greater with uncontrolled charging. Thus the La-
grange multiplier on the CO2 constraint can be neglected
(i.e. fixed equal to zero) in the both cases, and the La-
grange multiplier on the NOx constraint can be neglected
in the controlled case. Moreover, because we allow offset-
ting in this case, the right-hand side of constraints (18) will
consist of the sum of generator emissions without PHEV
charging and tailpipe emissions from the CV fleet, which
are given in tables 6 and 7. Table 8 summarizes the total
upper bounds on the three pollutants.

Table 8: Emissions upper bounds in the offset emissions-constrained
case.

Pollutant Upper Bound
CO2 (Mt) 195.717
SO2 (t) 452,949
NOx (t) 130,271

Table 9 summarizes the emissions, Lagrange multipli-
ers, and system cost in the emissions-constrained case.
The emissions shown are the sum of generator and PHEV
tailpipe emissions, and are all less than the upper bounds
given in table 8. The costs shown are the sum of gener-
ation and PHEV gasoline costs. Interestingly, these costs
are lower than the costs in the emissions-unconstrained
case. In the emissions-unconstrained case, the sum of gen-
eration and PHEV gasoline costs are $12,499 million and
$12,511 million in the controlled and uncontrolled charging
cases, respectively. These cost reductions give the negative
duality gaps3 shown in table 9.

These negative duality gaps indicate that the solutions
found in the emissions-unconstrained case are not MIP-
optimal, and that there are other solutions which are near-
optimal in terms of cost but differ in terms of emissions.
Guan et al. (2003) show that unit commitment problems

3The duality gap is defined as the difference in costs between
the emissions-constrained and emissions-unconstrained cases, as a
percentage of the costs in the emissions-unconstrained case. This is
a standard metric used to measure how near-optimal a solution is.
See Wolsey (1981) for further discussion.
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Table 9: Total generation and gasoline emissions and cost, and La-
grange multipliers in the offset emissions-constrained case.

Controlled Uncontrolled

Emissions
CO2 (Mt) 195.489 195.492
SO2 (t) 452,938 452,574
NOx (t) 130,058 130,086

ηλ ($/kg)
CO2 0 0
SO2 0.18739 0.21897
NOx 0 0

Total Cost 12,498 12,508
($ mil.)

Duality Gap (%) -0.01 -0.02

are NP-hard, and as such they are rarely (if ever) solved
to complete optimality by SOs or utilities. For example,
Streiffert et al. (2005) explain that since PJM has a short
time window after receiving bids from the market to de-
termine the day-ahead dispatch and commitment of the
system, the unit commitment model is solved for a fixed
period of time and the best solution (in terms of cost)
found within that window is used. This solution that is
used by PJM is rarely, if ever, completely optimal and
will instead be within a fraction of a percent of optimal.
We use a similar approach in solving our simulation mod-
els, since by default Cplex will terminate when it finds a
solution that has a duality gap of 0.01%. Johnson et al.
(1997); Sioshansi et al. (2008) demonstrate that these dif-
ferent near-optimal solutions to a unit commitment prob-
lem can vary in terms of which generators are started up.
Our findings here show that these different near-optimal
solutions can yield different system emissions as well.

Indeed, the subgradient algorithm that we use to find
our final emissions-constrained solution yields several in-
termediate solutions, all of which are very near-optimal
and yield different emissions. Tables 10 and 11 show the
difference in cost and emissions between the emissions-
unconstrained solution and each of these intermediate so-
lutions found by the subgradient algorithm. These tables
highlight the fact that the commitment and dispatch of the
power system and resulting emissions can be rather sensi-
tive to the choice of near-optimal solution. These solutions
are all similar in terms of cost, however, since they are all
within 0.033% of the final emissions-constrained solution.

Table 10: Difference in total generation and gasoline cost and CO2,
SO2, and NOx emissions between emissions-unconstrained case and
intermediate solutions of subgradient algorithm in in offset emissions-
constrained case with controlled charging.

Iteration Difference from Emissions-Unconstrained Case
Cost ($ mil.) CO2 (t) SO2 (t) NOx (t)

1 1.74 -38,659 -335 -79
2 1.51 -34,160 -296 23
3 0.83 -43,501 -325 -120
4 0.74 -52,378 -352 -127
5 -0.43 -56,104 -333 -79

Almost all of the emissions reductions are obtained

Table 11: Difference in total generation and gasoline cost and CO2,
SO2, and NOx emissions between emissions-unconstrained case and
intermediate solutions of subgradient algorithm in in offset emissions-
constrained case with uncontrolled charging.

Iteration Difference from Emissions-Unconstrained Case
Cost ($ mil.) CO2 (t) SO2 (t) NOx (t)

1 1.28 -36,847 -351 -64
2 -1.94 -53,940 -343 -113

by the shifting of loads to generators with lower emis-
sions rates. Although the SO is assumed to have flexibil-
ity in timing when PHEVs are charged in the controlled
charging scenario, the average hourly charging pattern in
the emissions-constrained case is nearly identical to that
shown in figure 2 for the emissions-unconstrained case.
There are five days on which the charging load is slightly
lower in the emissions-constrained case. This indicates
that it is preferable to use gasoline as opposed to midday
PHEV recharging on these days, but these differences are
extremely small in net.

Table 12 summarizes the breakdown of the incremental
generating load in the emissions-constrained case. The
table shows that when the emissions constraint is imposed,
almost all of the PHEV charging load in the controlled
charging case is served using natural gas-fired generation.
In the uncontrolled case, on the other hand, 126% of the
incremental load uses natural gas. This indicates that both
the PHEV and a portion of the non-PHEV load must be
shifted from coal- to natural gas-fired generators. The last
two rows of table 12 also show the incremental heat rate
in the emissions-constrained case. These rows highlight
the fact that the load shifting done when the emissions
constraints are imposed yields the same type of efficiency
gains we observe with controlled charging in the emissions-
unconstrained case. Essentially, the added cost that the
Lagrange multiplier imposes on emissions forces the SO to
find another near-optimal solution to the unit commitment
problem that uses more natural gas-fired generation. The
higher cost of natural gas, relative to coal, is offset by the
fact that the SO is able to use more-efficient natural gas
generators, which yields a very small cost difference when
the emissions constraint is imposed. Indeed, comparing
the heat rates in table 12 to those in table 4 shows that
the SO is able to achieve efficiency gains in the emissions-
constrained case compared to the unconstrained case.

Table 12: Breakdown and average heat rate of annual incremen-
tal generating load with addition of PHEVs in the offset emissions-
constrained case.

Charging Scenario
Controlled Uncontrolled

Incremental Generating Load (%)
Natural Gas 97.31 126.15
Coal 2.69 -26.15

Incremental Heat Rate (kJ/kWh)
Natural Gas 3,552 7,732
Coal 752 12,675
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Table 9 also shows that the NOx constraint is satisfied
in the uncontrolled charging case, despite the Lagrange
multiplier on the associated constraint being zero. This is
because the shifting of loads that is done as a result of the
Lagrange multiplier on SO2 emissions also results in lower
NOx emissions, due to the fact that the generators with
high SO2 emission rates also happen to have high NOx

emission rates. Indeed, both CO2 and NOx emissions are
reduced with controlled and uncontrolled charging, despite
having Lagrange multipliers of zero on both of those con-
straints.

3.2.2. Non-Offset Emissions-Constrained Case

When reductions in tailpipe emissions due to PHEV
use cannot offset increases in generation emissions, we im-
pose constraint (19) which restricts generator emissions
not to increase with the addition of PHEV charging loads.
Thus the right-hand side of the emissions constraints will
be given by generator emissions in the CV case. Table 6
shows that in the controlled charging case generator emis-
sions of CO2 and SO2 increase with the introduction of
PHEVs, whereas in the uncontrolled case emissions of all
three species increases. Table 13 summarizes the final
set of Lagrange multipliers in the non-offset emissions-
constrained case. Comparing this set of multipliers to
those in table 9 shows that a cost on SO2 emissions alone
is not sufficient to reduce CO2 emissions to the necessary
levels, and positive Lagrange multiplier values on CO2 are
needed in both the controlled and uncontrolled charging
cases. NOx emissions are, however, reduced despite having
a Lagrange multiplier of zero, which shows that the gener-
ation shifting done to reduce CO2 and SO2 emissions also
reduces NOx.

Table 13: Lagrange multipliers ($/kg) in the non-offset emissions-
constrained case.

Controlled Uncontrolled
CO2 0.00220 0.00220
SO2 0.18739 0.21897
NOx 0 0

Table 14 shows generator, tailpipe, and total emissions
in the non-offset emissions-constrained case. The table
shows that generator emissions of the three species are
all reduced compared to the CV case, and when tailpipe
emissions are taken into account total emissions of all three
pollutants also drop. Table 15 summarizes generation and
gasoline costs when the emissions constraint is imposed.
Comparing these costs to those in tables 2 and 3 shows
that imposing the emissions constraint in the non-offset
case results in no cost increase. There is, in fact, a slight
generation and total cost decrease, which does not appear
in table 15 due to rounding. The emissions and cost re-
ductions are achieved in much the same way as in the case
with offsetting of emissions. About 170% and 196% of the
incremental load is served by natural gas-fired generators
in the controlled and uncontrolled charging cases, respec-

tively. The fact that these values are both greater than
100% indicates that both PHEV charging and non-PHEV
loads are also shifted from coal- to natural gas-fired gener-
ators. The higher cost of natural gas as a generating fuel
is offset by efficiency gains the SO is able to exploit by
committing more efficient generation—the average incre-
mental heat rate of natural gas-fired generators is about
4,896 kJ/kWh and 7,701 kJ/kWh in the controlled and
uncontrolled charging cases, respectively.

Table 14: Emissions in the non-offset emissions-constrained case.

Controlled Uncontrolled

CO2 (Mt)
Generator 195.253 195.269
Tailpipe 0.091 0.091
Total 195.344 195.360

SO2 (t)
Generator 452,428 452,084
Tailpipe 2 2
Total 452,430 452,084

NOx (t)
Generator 129,715 129,751
Tailpipe 26 26
Total 129,741 129,777

Table 15: Cost in the non-offset emissions-constrained case.

Cost ($ mil.) Controlled Uncontrolled
Generation 12,476 12,488
Gasoline 23 23
Total 12,499 12,511

4. Conclusions

The net emissions and cost impact of PHEVs and other
electrically driven vehicles will generally be quite sensitive
to a number of factors. One of these is the generation mix
of the power system in which they charge. Another is the
time of day that they are charged and the extent to which
charging decisions can be co-optimized with power system
operations. PHEV charging in ‘dirty’ power systems, such
as Texas, could yield net increases in emissions of some
pollutants. This will, of course, depend on the regulatory
framework within which PHEVs are deployed. If emis-
sions are capped, then PHEVs cannot increase generator
emissions.

Our results suggest that if a power system has enough
efficient natural gas-fired generating capacity (or any other
technology with low emissions rates) to serve the PHEV
charging loads, PHEVs could be cost-effectively accommo-
dated without a net increase in emissions. This is because
unit commitment problems can have many near-optimal
solutions, which have very similar costs but differ in terms
of the commitment and dispatch of individual generators
and total emissions. Since SOs and utilities do not solve
unit commitment problems to optimality, our results show
that the operation of the power system can be guided to-
ward a lower-emission dispatch without much (if any) cost
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increase. Indeed, our emissions-constrained solutions are
all lower-cost than the emissions-unconstrained one. If the
unit commitment problem is solved to complete optimal-
ity, then there would by definition be a cost increase when
the emissions constraints are imposed. We can, however,
bound any such cost increase since we know that the so-
lutions found by Cplex must be within 0.01% of optimal.
If the unit commitment problem is solved to complete op-
timality then annual generation costs will increase by at
most $1.1 million when the emissions caps are imposed,
which represents at most a 0.01% increase in costs.4 Thus
the cost of meeting the emissions constraints would be
trivial, regardless of whether the unit commitment prob-
lem is solved to optimality. These results are dependent,
however, on properly penalizing emissions in the objective
function of or ‘finessing’ the unit commitment model to en-
sure a near-optimal low-emissions solutions is used. Since
SOs and utilities may use different termination criteria in
their unit commitment models than those we assume, the
actual cost impacts of such emissions restrictions may dif-
fer from the specific values that we report. Nevertheless,
our result that the restrictions can be met with only a
trivial cost impact would still apply.

In our case study the SO is able to meet the emissions
constrains by shifting charging and non-charging loads from
coal- to natural gas-fired generators. The higher cost of
natural gas as a generating fuel is offset by efficiency gains
that the SO is able to achieve by better coordinating unit
commitment decisions with the PHEV charging loads. Ta-
ble 16 summarizes the annual per-vehicle driving costs and
emissions of CVs and PHEVs. The driving costs consist of
gasoline costs for the CV and gasoline and charging costs
for the PHEVs. The emissions consist of tailpipe emis-
sions for the CV and the sum of tailpipe and generator
emissions for the PHEVs. The table shows that PHEVs
can be made significantly cleaner than CVs without any
increase in driving costs.

Table 16: Annual per-vehicle charging and gasoline cost and emis-
sions of CVs and PHEVs.

Cost ($) CO2 (kg) SO2 (g) NOx (g)

CV 1,196 4,792 91 1,374
Contr. PHEV

Uncons. 393 2,496 3,910 32
Offset 381 1,780 -54 -1,442
Non-offset 391 -127 -6,772 -5,629

Uncontr. PHEV
Uncons. 549 2,747 390 1,411
Offset 512 1,823 -4,863 -1,070
Non-offset 544 84 -11,313 -5,153

The negative duality gaps that we find when the emis-

4The $1.1 million cost increase would occur if the cost of the
optimal unconstrained solution is 0.01% less than the near-optimal
solution and the emissions-constrained solutions we have found are
optimal. This could occur in theory, since our solutions in the un-
constrained case are only guaranteed to be within 0.01% of optimal,
while the emissions-constrained solutions may be optimal.

sions constraints are imposed also point to an inefficiency
that will generally occur as a result of the SO or utility
having to rely on near-optimal unit commitment solutions.
The price of SO2 permits averaged $997/t and ranged be-
tween $712/t and $1,752/t during the year 2005. Thus the
reduction in generator emissions of SO2 that we simulate
in the emissions-constrained cases amount to an annual
savings of between about $214,000 and $1.6 million, based
on these permit prices. These savings are included in the
costs reported in tables 9–11, and 15, but further point
to the fact that generation emissions can be slightly re-
duced with little or no added cost depending on the unit
commitment solution selected.

We do not make any explicit assumptions regarding
what policy or regulation levers are used to achieve these
low-emission outcomes. Algorithmically, Lagrangian re-
laxation works by imposing costs, given by the Lagrange
multipliers, on CO2, SO2, and NOx emissions, as suggested
by Gjengedal (1996). Thus the Lagrangian relaxation and
subgradient algorithm find the emissions-constrained so-
lutions through a price-based mechanism, and this can be
likened to a tax or cap-and-trade program. However, our
model fundamentally only assumes that upper bounds are
imposed on emissions. If current SO2 caps are not relaxed
with the addition of vehicle charging loads and the NOx

SIP Call or a similar program is extended to ERCOT, then
the non-offset emissions-constrained case should theoret-
ically occur. The offset emissions-constrained case could
occur if SO2 and NOx emissions caps are relaxed based
on reduced tailpipe emissions from PHEVs, however there
are currently no such exemptions in the relevant laws or
regulations.
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