
Modern Power Systems and Clean Energy manuscript No.
(will be inserted by the editor)

Wind-Integration Benefits of Controlled Plug-In Electric

Vehicle Charging

Sachin Chandrashekar · Yixian Liu ·

Ramteen Sioshansi

Received: 12 May, 2016 / Accepted: 22 March, 2017

Abstract Flexibility in plug-in electric vehicle (PEV) charging can reduce the
ancillary cost effects of wind variability and uncertainty on electric power sys-
tems. In this paper, we study these benefits of PEV charging, demonstrating
that controlled PEV charging can reduce costs associated with wind uncer-
tainty and variability. Interestingly, we show that the system does not require
complete control of PEV-charging loads to mitigate the negative cost impacts
of wind variability and uncertainty. Rather, PEV owners giving the system
a two-hour window of flexibility in which to recharge their vehicles provides
much of the benefits that giving full charging control does.

Keywords Plug-in electric vehicle · controlled charging · wind integration ·
demand response · unit commitment and dispatch

1 Introduction

Concerns surrounding growing energy demand, climate change, and finite
fossil-fuel supplies have increased interest in the use of renewable energy re-
sources. Renewables, such as wind, can significantly reduce electricity-related
emissions and costs by displacing conventional fossil-fueled resources. They
can, however, have ancillary cost impacts on other generators. This is because
their real-time output is uncertain and variable when making operational de-
cisions day- or even hour-ahead. More specifically, to accommodate this vari-
ability, conventional generators may have to frequently adjust their output
levels or be cycled on and off. A power system may also need more reserves
from conventional generators to balance wind uncertainty, forcing generators
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to operate inefficiently in a partially loaded fashion [18,16]. Empirical numeri-
cal studies of the Belgian [29], Irish [4], Texas [23], and U.K. [1] power systems
further demonstrate these effects of wind.

One commonly proposed means of mitigating these cost impacts of renew-
ables is to use some form of demand response, whereby flexible demands follow
the availability of wind. Through such a scheme, demand responds to unex-
pected drops in the availability of wind, reducing the need to use costly con-
ventional generators to replace renewable supply. Demand can also respond to
unexpected increases in wind availability, reducing possible wind curtailment
due to generator or transmission constraints [27]. A number of numerical stud-
ies [10,23,5] show that demand response can effectively reduce the ancillary
costs of wind uncertainty and variability.

A limitation of these analyses is that they do not answer the question of
what exact loads respond to wind availability. Instead they assume that some
portion of the load is flexible and responds to price or other signals indicating
wind availability. A natural source of load flexibility is plug-in electric vehi-
cle (PEV) charging. A PEV owner is typically only concerned with having
energy recharged into the PEV’s battery before the next vehicle departure.
Thus, there is potentially flexibility in when and the rate at which a PEV
is recharged between its arrival to and subsequent departure from a charg-
ing station. Properly controlled PEV charging can, therefore, provide demand
response to accommodate wind variability.

A number of works examine how to control PEV charging. Reddy et al.
[21] develop a fireworks algorithm to schedule PEV charging and the use of
renewable energy to minimize power system emissions and cost. Liu et al.
[11] develop a PEV charging-control algorithm to optimize the peak-valley
difference of a power system, considering wind and solar production. Liu et
al. [12] survey a variety of centralized and decentralized PEV-charging-control
algorithms. They present a mathematical framework, which they propose using
to evaluate the positive and negative characteristics of the algorithms in terms
of different actors in the power system. Momber et al. [17] introduce a PEV-
charging control model that accounts for risk-aversion.

In this paper we use a numerical case study, based on the Electricity Re-
liability Council of Texas (ERCOT) system, to demonstrate the benefits of
controlled PEV charging on wind integration. We focus on the impacts of
controllable PEV-charging loads on reducing the costs arising from wind vari-
ability and uncertainty. Our analysis assumes that PEVs are used solely to
provide demand response. This means that the timing and rate of PEV charg-
ing can be adjusted based on wind availability and other power-system condi-
tions. Our analysis does not allow PEV batteries to be discharged to provide
so-called vehicle-to-grid services [8,9,25]. Moreover, we require each PEV to
be fully recharged by the time it finishes each stop at a charging station. Thus,
the demand response that we model does not allow PEV-charging load to go
unserved. Rather, it only allows those loads to be shifted during the window
of time that a vehicle is grid connected.
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Our case study examines PEV charging and power system operations over
a one-year period. We assume about 7 GW of wind is added to a system with
a peak non-PEV load of about 60 GW. We further assume that a fleet of
about 50000 PEVs, which require a total of about 470 MWh of energy to be
recharged into their batteries each day, is added to the system.

We demonstrate that without the PEVs, wind uncertainty and variability
impose an ancillary cost of about $0.23/MWh of wind. This cost increases
to $0.46/MWh of wind if PEV charging is not controlled (i.e., PEVs charge
immediately upon arrival at a charging station). However, if PEV charging
can be fully controlled, the ancillary cost of wind uncertainty and variabil-
ity is reduced to $0.09/MWh. We also examine a case in which there is a
limited two-hour window of flexibility within which PEV charging can be con-
trolled. We show that such a two-hour window of flexibility provides much
of the benefits of complete PEV-charging control. This is because the benefit
of controlled PEV charging is in allowing the system to more easily accom-
modate errors in estimating wind availability. Although wind forecasts can be
wrong in a particular hour, these errors tend to smooth out over the course
of several hours. Thus, some limited flexibility in shifting PEV-charging loads
around within two hours provides almost as much benefit as complete control
of PEV charging in reducing wind-integration costs. The choice of studying
a two-hour window of flexibility is meant to represent an intermediate case
of charging control, between the extremes of uncontrolled and fully controlled
PEV charging. One could study other intermediate cases, which is an area of
further study.

The remainder of this paper is organized as follows. Section 2 details the
models that are used to examine how the power system is operated and PEVs
are recharged under the different cases constituting our study. Section 3 sum-
marizes the data and assumptions underlying our numerical case study. Sec-
tion 4 presents our results and Section 5 concludes.

2 Models and Methods

Our analysis is based on a unit commitment and dispatch model that consid-
ers the scheduling of PEV-charging loads [25]. Our model is agnostic to who
actually controls PEV charging, so long as it is co-ordinated and co-optimized
with the commitment and dispatch of the power system. We give a detailed
formulation of our scheduling model in Section 2.1 and then explain how the
model is used in analyzing different PEV-charging and wind cases to evaluate
the benefits of controlled PEV charging in Section 2.2.

2.1 Scheduling Model Formulation

Our analysis studies hourly power system operations and PEV charging over
a one-year period. We conduct this analysis in a rolling-horizon fashion, which
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is further detailed in Section 2.3. This is done by rolling forward through
each hour of the year and determining system operations and PEV charging
for that hour while considering future system and PEV-charging needs. In the
following, we provide the formulation of the model starting from hour m. Note
that in the rolling-horizon technique, the value of m varies from 1 to 8760 as
the algorithm rolls through the hours of the year.

2.1.1 Model Notation

We begin by first defining model notation.

1) Index Parameters and Sets

Our model assumes a fixed T -hour optimization horizon. Although we simulate
power system operations and PEV charging one hour at a time, these decisions
are made taking into account future power-system and PEV-charging needs
over the subsequent T hours. The system is assumed to have a set, I, of
conventional generators. An additional set of wind generators are modeled,
but not included in the set, I.

We also assume that the PEVs are categorized according to a set, V , of
PEV-driving profiles. The PEVs modeled are each assigned to one of the driv-
ing profiles in the set, V .

2) Power System Parameters and Data

Generators are modeled using the three-part cost structure that is standard in
unit commitment models. This consists of a startup cost, cSi , which is incurred
whenever generator i is switched on from an offline state, a no-load cost,
cNi , which is incurred each hour that generator i is online (regardless of its
generation level), and a variable cost, cVi (·), which gives the per-hour variable
cost as a function of energy produced. Although cVi (·) can presumably take
any form, in our case study we restrict attention to convex piecewise-linear
functions, which is standard in unit commitment modeling.

Our model includes standard constraints on generator operations. Gener-
ator i must produce between Q−

i and Q+

i MW during hours that it is online.
Otherwise, it is restricted to producing 0 MW when offline. There are also re-
strictions on how much the output of each generator can increase or decrease
from one hour to the next. We let R−

i and R+

i denote the maximum amount by
which the output of generator i can decrease and increase, respectively, from
one hour to the next. Generators also have restrictions on being cycled on and
off. We let τ−i and τ+i denote the minimum number of hours that a generator
must remain offline after being shutdown and online after being started up,
respectively. Finally, generators have restrictions on how much reserves they
can provide. We let ρSi denote the maximum amount of spinning reserves that
generator i can provide in each hour, which can only be provided during hours
that the generator is online. Similarly, ρNi denotes the maximum amount of
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non-spinning reserves that generator i can provide. Non-spinning reserves can
be provided by generators regardless of whether they are online or offline. In
addition to the limits, ρSi and ρNi , any reserves provided by a generator must
satisfy its ramping and capacity constraints.

Wind generators are modeled as having zero operating cost. Moreover, we
let W̄t denote total wind generation available in hour t.

We let lt denote the hour-t non-PEV load. In addition to a load-balance
constraint, we also impose load-based reserve restrictions. We require that, at
a minimum, a fraction, ηS , of the hourly load be held as spinning reserves.
We similarly require that, at a minimum, a fraction, ηN , of the hourly load be
held as non-spinning reserves.

3) PEV Parameters and Data

Each of the PEVs that are modeled is assigned to one of the driving profiles
in the set, V . We let Nv denote the number of PEVs that are assigned to
driving profile v. We further assume that all of the PEVs that are assigned
to a driving profile have the same driving patterns (i.e., arrival times to and
departure times from charging stations) and battery state of charge (SOC)
upon arrival to the charging station. We let φA

v and φD
v denote the arrival

time to and departure time from the charging station of the PEVs that are
assigned to driving profile v.

We let ζv denote the remaining charging energy that must be supplied to
PEVs in driving profile v. The value of ζv is updated in our rolling-horizon
algorithm (cf. Section 2.3) as PEV-charging decisions are made on an hour-
by-hour basis. We assume that a PEV can only be charged between its arrival
and departure times and that the full ζv MWh of charging demand must be
supplied to each PEV in driving profile v before its departure time in hour φD

v .
All PEVs are assumed to connect to the same type of charging station with a
charging capacity of H̄ MW.

Each PEV-driving profile is modeled as having a single arrival and de-
parture time. In practice, a PEV may have multiple trips and be parked at
a charging station multiple times during a day. We capture multiple parking
events by representing each event as a separate driving profile. As an exam-
ple, suppose that a PEV is parked from 9 am until 11 am, then departs the
charging station, and is parked again from 3 pm until 7 pm. This would be
represented by breaking the PEV into two driving profiles. The first would
have arrival and departure times at 9 am and 11 am, and the model would
require the PEV to be fully recharged before its 11 am departure. The second
driving profile would have 3 pm and 7 pm arrival and departure times.

4) Decision Variables

We represent generator-commitment decisions using three sets of binary vari-
ables. The variable ui,t is defined to equal 1 is generator i is online in hour t
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and equal 0 otherwise. Similarly, hi,t and si,t are defined to equal 1 if genera-
tor i is shutdown and started up in hour t, respectively, and equal 0 otherwise.
Generator-dispatch decisions are modeled using another three sets of continu-
ous variables. We let qi,t denote generator i’s hour-t production level in MW.
We also let rSi,t and rNi,t denote the MW of spinning and nonspinning reserves,
respectively, provided by generator i in hourt. We represent the dispatch of
wind generators with another set of continuous variables. We let wt denote
hour-t wind production in MW.

We assume that all of the PEVs that are assigned to a driving profile have
the same charging profile assigned to them. We let zv,t denote the MW of
power recharged in hour m into each PEV with driving profile v.

2.1.2 Model Formulation

Our hour-m scheduling model is formulated as:

min
h,q,r,s,u,w,z

T+m
∑

t=m

∑

i∈I

[

cVi (qi,t) + cNi ui,t + cSi si,t
]

(1)

s.t. lt +
∑

v∈V

Nvzv,t =
∑

i∈I

qi,t + wt; ∀t = m, . . . , T +m; (2)

∑

v∈V

Nvzv,t +
∑

i∈I

rSi,t (3)

≥ ηS ·

(

lt +
∑

v∈V

Nvzv,t

)

; ∀t = m, . . . , T +m;

∑

v∈V

Nvzv,t +
∑

i∈I

(

rSi,t + rNi,t
)

(4)

≥
(

ηS + ηN
)

·

(

lt +
∑

v∈V

Nvzv,t

)

; ∀t = m, . . . , T +m;

Q−

i ui,y ≤ qi,t; ∀t = m, . . . , T +m; i ∈ I; (5)

qi,t + rSi,t ≤ Q+

i ui,y; ∀t = m, . . . , T +m; i ∈ I; (6)

qi,t + rSi,t + rNi,t ≤ Q+

i ; ∀t = m, . . . , T +m; i ∈ I; (7)

0 ≤ rSi,t ≤ ρSi ui,t; ∀t = m, . . . , T +m; i ∈ I; (8)

0 ≤ rNi,t ≤ ρNi ; ∀t = m, . . . , T +m; i ∈ I; (9)

R−

i ≤ qi,t − qi,t−1; ∀t = m, . . . , T +m; i ∈ I; (10)

qi,t + rSi,t + rNi,t − qi,t−1 ≤ R+

i ; ∀t = m, . . . , T +m; i ∈ I; (11)

t
∑

ξ=t−τ
+

i

si,ξ ≤ ui,t; ∀t = m, . . . , T +m; i ∈ I; (12)
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1−

t
∑

ξ=t−τ i

i

hi,ξ ≥ ui,t; ∀t = m, . . . , T +m; i ∈ I; (13)

ui,t − ui,t−1 = si,t − hi,t; ∀t = m, . . . , T +m; i ∈ I; (14)

ui,t, si,t, hi,t ∈ {0, 1}; ∀t = m, . . . , T +m; i ∈ I; (15)

0 ≤ wt ≤ W̄t; ∀t = m, . . . , T +m; (16)

0 ≤ zv,t ≤ H̄ ; ∀t = m, . . . , T +m; v ∈ V ; (17)

zv,t = 0; ∀v ∈ V ; t 6∈ [φA
v , φ

D
v ]; (18)

T+m
∑

t=m

zv,t = ζv; ∀v ∈ V. (19)

Objective function (1) minimizes the total unit commitment and dispatch cost
over the T -hour model horizon. Our model includes three system-wide con-
straints. First, constraints (2) impose the hourly load-balance requirements
that the sum of non-PEV and PEV-charging demand exactly equals energy
produced by conventional and wind generators. Constraints (3) and (4) im-
pose contingency-reserve requirements. We model two types of contingency
reserves: spinning and non-spinning reserves. These constraints allow the re-
serve requirements to be met using PEV-charging loads. The reason for this
is that if a system contingency (e.g., a major generator or transmission fail-
ure) occurs in real-time, PEV-charging loads can be reduced to help mitigate
the supply shortfall [25]. Constraints (4) allow spinning reserves to serve the
nonspinning reserve requirement. This is because spinning reserves are ‘higher-
quality’ in the sense that they must be provided by generators that are online
and able to respond to a system contingency quickly. Nonspinning reserves,
conversely, can be provided by generators that are offline (so long as they are
able to startup and begin producing energy within a relatively short window
of time, which is reflected in whether a generator has a non-zero value for ρNi ).

Constraints (5)–(7) impose the capacity constraints on the conventional
generators. Note that when a generator is offline (i.e., ui,t = 0) it is restricted
to providing zero generation and spinning reserves but can provide nonspinning
reserves. Otherwise, if a generator is online, it can provide any combination
of energy and reserves, so long as the maximum generation level is not vio-
lated. Constraints (8) and (9) impose the reserve-capability restrictions on the
conventional generators. A conventional generator can only provide spinning
reserves in a given hour if it is online during that hour (hence, the right-
hand sides of constraints (8) have ui,t terms). Generators that are qualified to
provide nonspinning reserves can provide them when offline. Constraints (10)
and (11) impose the ramping restrictions. As with generator upper-capacity
constraints (6) and (7), ramp-up constraints (11) consider energy and reserves
provided by generators in each hour. Constraints (12) and (13) impose the
minimum up- and down-time restrictions when a generator is started up or
shutdown. Constraints (14) impose the state-transition logic by defining the
values of the si,t and hi,t variables in terms of changes in the ui,t variables. Con-
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straints (15) force the state variables to take on binary values. Constraints (16)
impose the limits on wind generation.

Constraints (17) impose the charger capacity, by restricting the amount
recharged into each PEV based on the capacity of the charger. Constraints (18)
impose the driving pattern, by only allowing each PEV to be recharged while
it is parked (i.e., between hours φA

v and φD
v ). Finally, constraints (19) force

each PEV to be fully recharged before leaving its charging station.

2.2 Cases Examined

We examine the impacts of wind and PEV charging under the eight cases
that are summarized in Table 1. These cases vary in how wind and PEVs
are modeled. Cases 1, 3, 5, and 7 assume that future wind availability is
known with perfect foresight when solving the scheduling model. This means
that the values of W̄m, . . . , W̄m+T that are used in the hour-m scheduling
model all reflect the actual wind that will be available in each of hours m

through (m+T ). Cases 2, 4, 6, and 8, conversely, assume that forecasts of future
wind availability must be used when solving the scheduling model. These cases
all assume that the value of W̄m that is used in the hour-m scheduling model
reflects the actual wind available in hour m. The values of W̄m+1, . . . , W̄m+T

that are used in the hour-m scheduling model reflect hour-m forecasts of wind
availability in hours (m+1) through (m+T ), however. Further details on how
wind availability is simulated and wind forecasts are generated are given in
Section 3.3.

Table 1 Cases Examined

Wind
Perfect Foresight Forecast

P
E
V

None 1 2
No Control 3 4

Two-Hour Control 5 6
Full Control 7 8

Cases 1, 3, 5, and 7 represent counterfactuals in which future wind avail-
ability is known with perfect foresight. The cost differences between each of
Cases 1, 3, 5, and 7 and each of Cases 2, 4, 6, and 8, respectively, measure the
incremental cost impacts of having to schedule generation and PEV charging
without perfect foresight of future wind availability. This is a commonly used
metric to measure the ancillary operational cost associated with wind uncer-
tainty and variability [2,3,6,28,23,15,14] and is the metric that we use in our
analysis.

Cases 1 and 2 assume that there are no PEVs in the system whereas Cases 3
through 8 assume that there are PEVs employing different charging strategies.
Cases 3 and 4 assume that there is no control over PEV charging. In these
cases, each PEV is assumed to begin charging immediately upon arriving to
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its charging station. These cases are modeled by fixing the values of the zv,t
variables to:

zv,t = min









ζv −
∑

ξ<t

zv,ξ





+

, H̄







; ∀t = φA
v , . . . , φ

D
v ; (20)

in the scheduling model. Equation (20) defines the hour-t uncontrolled charg-
ing demand of PEVs with driving profile v as the minimum between the
amount of unserved charging demand, which is defined as:



ζv −
∑

ξ<t

zv,ξ





+

;

and the charger capacity, which is H̄ .
Cases 5 and 6 assume that there is limited (two-hour) control over PEV

charging. This case is modeled by first determining in which hour PEVs as-
signed to each driving profile will be recharged in the no-control case as:

ev = φA
v +

⌈

ζv

H̄

⌉

; ∀v ∈ V ; (21)

where ⌈·⌉ is the ceiling operator. Equation (21) defines the amount of time
that it takes PEVs to recharge as the ceiling of the ratio between ζv (the
amount of energy that must be recharged into the PEVs that are assigned to
driving profile v) and H̄ (the capacity of the charger). The two-hour control
case assumes that PEV owners allow an additional two hours of flexibility
in being fully recharged beyond the time (i.e., the end of hour ev) that their
PEVs would be recharged if uncontrolled. These cases are modeled by changing
constraints (18) in the scheduling model to:

zv,t = 0; ∀v ∈ V ; t 6∈ [φA
v ,min(φD

v , ev + 2)]. (22)

Finally, Cases 7 and 8 allow full flexibility in recharging the PEV within
the window of time that it is parked at the charging station. These cases are
modeled using the scheduling model that is outlined in Section 2.1, without
any changes to the constraints or fixing of variables.

Figure 1 illustrates the charging windows in the three charging-control
cases studied. The horizontal axis of the figure represents time and shows the
case of a vehicle that is parked in the charging station between hours φA

v

and φD
v . In the full-control case, the scheduling model has the flexibility to

charge the PEV anytime between these arrival and departure times (so long as
the vehicle is fully recharged before hour φD

v , as constraints (19) require). In the
no-control case, the PEV begins charging at the H̄ MW capacity of the charger
immediately and finishes charging in hour ev, as defined in (21). The two-hour-
control case allows an intermediate amount of flexibility. The scheduling model
can charge the vehicles within an additional two-hour window of time, relative
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φv
A ev ev+2 φv

D

Full
Control

2-Hour
Control

No
Control

Fig. 1 Illustration of Charging Window in No-, Two-Hour-, and Full-Control Cases

to the no-control case. If a PEV is parked for less than two hours beyond ev,
then it is assumed to charge as in the uncontrolled case (i.e., immediately) in
the two-hour-control case.

Constraints (22), defining the two-hour control case, fix values of zv,t = 0
for t > min(φD

v , ev + 2). This is because from some driving profiles, the two-
hour control window may extend beyond the period of time that the vehicle is
parked. For instance, if a vehicle is parked for two hours and would require one
hour of charging in the no-control case, the two-hour- and full-control cases
would give the scheduling model the same window of time within which to
recharge the PEV.

Cost differences between the different PEV-charging cases (i.e., between
each of Cases 3 and 4, 5 and 6, and 7 and 8) allow us to gauge the cost effects
and benefits of allowing flexibility in recharging PEVs. The choice of studying
PEV charging in cases with no control, full control, and with a two-hour
window of flexibility is meant to represent two extreme and one intermediate
cases. One could study other intermediate cases (i.e., with half an hour of
charging control). This is, indeed, an area of further study to understand how
much charging flexibility is needed to harness the benefits of PEV charging in
mitigating wind-integration costs.

2.3 Rolling-Horizon Solution Algorithm

We simulate the commitment and dispatch of generators and the scheduling
of PEV charging over a year-long period. Solving an integrated scheduling
model over a year-long optimization horizon would be intractable. As such, we
employ the rolling-horizon solution method that is outlined in Algorithm 1.
This algorithm simulates the generator and PEV-charging scheduling process
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over the year one hour at a time, by rolling forward through the hours of the
year.

Algorithm 1 Rolling-Horizon Solution Algorithm
1: fix starting values for hi,0, qi,0, si,0, ui,0

2: for m = 1, . . . , 8760 do

3: update W̄m, . . . , W̄m+T

4: (h, q, r, s, u,w, z)← argmin (1) s.t. (2)–(19)
5: fix hi,m, qi,m, rNi,m, rSi,m, si,m, ui,m; ∀i ∈ I;wm; zv,m; ∀v ∈ V ; to values found in

Step 4
6: Kt ←

∑

i∈I

[

cVi (qi,m) + cNi ui,m + cSi si,m
]

7: ζv ← ζv − zv,m; ∀v ∈ V such that φA
v ≤ m and φD

v ≥ m+ 1
8: end for

The algorithm works by first fixing the starting state in hour 0 of all of
the generators in Step 1. This is needed to set hour-1 ramping and minimum
up- and down-time constraints for the generators. We assume that all of the
generators are online and producing at their minimum operating points (i.e.,
that qi,0 = Q−

i ; ∀i ∈ I) and that each generator has been online a sufficient
number of hours that it could be immediately switched off in hour 1, if the
scheduling model finds it optimal to do so.

Steps 3 through 7 are the main iterative loop of our algorithm, which goes
through each hour of the year. The loop begins in Step 3 by updating wind-
availability data for the T -hour horizon of the hour-m scheduling model. As
discussed in Section 2.2, the values of the W̄m+1, . . . , W̄m+T can either be
actual wind availabilities or forecasts, depending on which of the cases that
are listed in Table 1 is being modeled.

Next, Step 4 solves the hour-m scheduling problem and Step 5 fixes the val-
ues of the hour-m generator and PEV-charging scheduling variables only. The
values of decision variables for hours (m+1) through (m+T ) are determined
in subsequent iterations of the algorithm. Step 6 computes the cost incurred in
hour m, based on the values of the hour-m decision variables, which are fixed
in Step 5. Finally, Step 7 updates the amount of charging energy that remains
unserved for vehicles that arrived before hour m, based on the PEV-charging
decisions determined by the hour-m scheduling model.

3 Case-Study Data

We study the interactions of wind and PEV charging over one year, using a
case study based on the ERCOT power system. Most of our case-study data
are taken from the work of Madaeni and Sioshansi [14], which is based on
year-2005 data for ERCOT. We formulate the scheduling model using version
12.1.0 of the AMPL mathematical programming software package and solve it
using the branch-and-cut algorithm in CPLEX 12.5.1.0 with default settings.
CPLEX is an industry-standard optimization solver that is widely used in the
electric-power industry.
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We detail all of the data sources that are used in our analysis in the fol-
lowing subsections.

3.1 Conventional-Generator Data

Cost data for conventional generators are modeled using heat rates and his-
torical fuel and SO2-permit prices. These data are obtained from propri-
etary databases maintained by Platts Energy and Global Energy Decisions.
Conventional-generator-constraint data are obtained from Global Energy De-
cisions. The two nuclear plants in ERCOT are modeled as must-run units that
constantly operate at their nameplate capacity. In total we model 375 dispatch-
able generators that were installed and operational in the ERCOT system in
the year 2005.

3.2 Non-PEV-Load Data

Non-PEV loads are modeled using 15-minute metered historical ERCOT load
data from the year 2005, obtained from the Public Utility Commission of
Texas. Because our scheduling model is formulated using hourly time steps,
each of the four 15-minute measurements corresponding to each hour are av-
eraged together to obtain an hourly-average load.

3.3 Wind Data

Our case study assumes that there is 7 GW of wind installed in the system,
which is approximately 10% of the peak non-PEV load of about 60 GW. Thus,
we study a high-penetration scenario (relative to the year 2005), considering
ERCOT did not achieve 7 GW of wind until 2008. We simulate real-time
wind availability and generate wind forecasts using a vector autoregression
model that is fit to three years’ publicly available data from the Western
Wind Resources Dataset (WWRD) for the year 2005 [20].

The WWRD consists of modeled historical wind-generation data at 10-
minute intervals for numerous sites across the western United States and is
generated by 3TIER for the Western Wind and Solar Integration Study [7].
Each of the sites in the WWRD is able to support 30 MW of wind capacity.
We assume that the 7 GW of wind are distributed among the 234 WWRD
locations in ERCOT that have the highest wind capacity factors.

We convert the WWRD data, which are reported at 10-minute intervals,
to hourly data. We then fit a vector autoregression model [13] to the WWRD
data. The fitted model is then used to simulate hourly wind generation at each
of the 234 WWRD locations and to generate the wind-availability forecasts
that are used in Cases 2, 4, 6, and 8.
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3.4 PEV Data

PEV driving patterns are modeled using a Monte Carlo-based method to gen-
erate typical daily driving patterns. We use statistical properties of light-duty
vehicle driving patterns within the United States [22,19] to calibrate the sim-
ulation model.

More specifically, we assume that the number of trips each vehicle makes
daily has a normal distribution with a mean of 4 and a variance of 1.33 [22].
Once we simulate the number of trips each vehicles makes daily, we deter-
mine the distances of each trip. If the vehicle makes a single trip, the trip
distance is randomly generated from a Weibull distribution with a mean of
36.12 miles1 and a variance of 12.04 [19]. If the vehicle makes two daily trips,
the distance of each trip is half of the distance generated from the Weibull
distribution (i.e., we assume that the vehicle is used for commuting to and
from a workplace). If the vehicle makes three or more trips daily, two of them
(which represent commuting trips) have distances that are one third of the
Weibull-distributed distance. The remaining trip distances are randomly gen-
erated using a truncated non-negative Gaussian distribution. The mean and
variance of the Gaussian distribution are determined so that in aggregate, one
third of the vehicle miles driven are for commuting to and from the workplace
[22]. The starting and ending times of each vehicle trip are determined based
on the relative weights of vehicles reported to be driving at different times of
day [22].

We assume that the ERCOT system has 50000 PEVs, which corresponds to
0.66% of the light-duty vehicle fleet in ERCOT in 2005. The PEVs are assumed
to have the characteristics (i.e., battery capacity and energy-consumption rate)
of a 2014 Nissan Leaf and to connect to 5 kW chargers that incur 10% en-
ergy losses in recharging the vehicle batteries. Table 2 summarizes the tested
characteristics of the Nissan Leaf, which are used in our analysis. The 10%
energy losses in recharging the vehicle batteries is taken into account when
computing the value of ζv in Step 7 of Algorithm 1. The Monte Carlo model is
used to generate 1023 typical driving profiles. The 50000 PEVs are uniformly
assigned to the 1023 driving profiles, meaning that about 49 PEVs follow each
driving profile. We further assume that each PEV follows the same driving
profile each day.

Table 2 Tested Characteristics of 2014 Nissan Leaf

Range 84 miles (135 km)
Battery Capacity 24 kWh (21.3 kWh usable)
Efficiency 0.158 kWh/km

1 We use Imperial units for distances, because they are still the standard unit of measure
used in the United States.
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As noted in Section 2.1, the scheduling model represents each driving profile
as having a single arrival and departure time to a charging station. Because
each of the simulated driving profiles can have multiple daily trips, each driving
profile is subdivided into a separate profile in the scheduling model. As such,
there are 4410 PEV driving profiles in the scheduling model, corresponding to
these subdivisions.

4 Case Study Results

Table 3 summarizes the total annual generation costs incurred in the eight
different cases (cf. Table 1) examined. These costs are computed as:

8760
∑

t=1

Kt;

where the Kt’s are defined in Step 6 of Algorithm 1. The first two columns
of the table show that without PEVs and in the three different PEV-charging
control cases, costs are higher when the system must be scheduled using wind
forecasts as opposed to having perfect foresight of wind. This is to be expected,
and the cost difference between each pair of forecast and perfect-foresight cases
measures the value of perfect wind-availability information.

Table 3 Annual Generation Costs

Total Generation Cost [$ Million] Wind-Integration Cost
PEVs Perfect Foresight Forecast [$/MWh of Wind]

None 10934.34 10940.67 0.23
No Control 10928.22 10940.84 0.46
Two-Hour Control 10926.64 10930.86 0.15
Full Control 10928.16 10930.68 0.09

The last column of Table 3 reports the cost difference between the forecast
and perfect-foresight cases divided by total wind generation over the course
of the year. The values in this column represent the cost of wind uncertainty
and variability (which we term ‘wind-integration cost’ in the table) on a per-
MWh basis. We find that when PEVs are added to the system but their
charging cannot be controlled, they double the ancillary cost impacts of wind
uncertainty. However, if PEV charging can be fully controlled, wind-integration
costs are reduced by close to 61%. Interestingly, having only two-hours of
flexibility within which to control PEV charging reduces wind-integration costs
by close to 35%. This means that two hours of charging control delivers close
to 60% of the benefits of complete control over PEV charging.

We note that with perfect foresight of wind, the two-hour-control case
achieves lower total cost than the full-control case. This is not unexpected,
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because by default CPLEX does not solve the scheduling model to complete op-
timality. Rather, the branch-and-cut algorithm terminates once the optimality
gap of the incumbent solution is sufficiently small. In essence, the objective
function of the scheduling model is extremely ‘flat’ around the optimum, and
there are many near-optimal solutions that are virtually identical in terms
of overall cost. A similar phenomenon is observed by Sioshansi and Miller
[26], who find that adding emissions constraints to a model that schedules
PEV-charging loads has virtually no impact on overall system costs. This
cost-related finding is further evidence of the fact that the two hours of charg-
ing control delivers most of the benefits that complete charging control does.
When taking into account the fact that CPLEX finds near-optimal solutions,
the two cases are very similar in terms of total overall cost.

Examining the charging profiles in the different cases provides some insights
into the different interactions between PEV charging and wind. Figure 2 con-
trasts the total aggregate PEV charging profile on the morning of 26 July with
full and no charging control with and without perfect foresight of wind. It also
shows the actual wind profile and wind forecasts in hours 11 and 14.
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Fig. 2 Aggregate PEV-Charging Profiles with Full Control in Forecasted and Perfect Fore-
sight of Wind Cases and With No Control and Actual and Forecasted Wind on 26 July

We first note that the PEV-charging profile with no charging control does
not respond in any way to system load or wind availability. As expected,
much of the PEV recharging is done midday and in the early evening when
vehicles first arrive at a charging station (e.g., at a workplace or stopping while
running errands midday or at home in the early evening after commuting). This
charging profile is undesirable because on many days the PEVs are adding load
to the system when the non-PEV loads are peaking as well [25,24]. The PEV-
charging profiles with full control, conversely, defer vehicle charging from the
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early evening (after commuters return home from work) to the middle of the
night when the non-PEV loads and the marginal cost of generation are low.

We find that the full-charging-control cases do schedule peaks in the PEV-
charging profiles midday in hours 11, 14, and 15. These peaks in the PEV-
charging profiles are driven by wind availability. Contrasting the PEV-charging
profiles with and without perfect foresight of wind shows the impacts of imper-
fect wind information. For instance, the model schedules more PEV-charging
load in hours 11 and 14 when using forecasts (compared to having perfect fore-
sight), because the model anticipates less wind being available in the future.
For instance, the hour-11 forecast anticipates a total of 22.8 GWh of wind
being available between hours 11 and 18 as opposed to 27.0 GWh actually
being available. As such, the model schedules PEV-charging loads earlier than
when it is optimal to do so with perfect information. Such an effect is also
observed in hour 14. The hour-14 wind forecast anticipates hour 14 having the
peak wind availability of the afternoon. As such, a peak in the PEV-charging
load is scheduled in hour 14. In reality, however, wind availability increases in
hour 15 and delaying PEV charging an hour longer reduces system cost.

Figures 3 and 4 show two cases in which having only two-hours of charging
control does not and does hamper the ability to coordinate PEV charging
with power system operations. Figure 3 shows a case in which the two-hour-
and full-control charging profiles are virtually identical. The root mean square
difference between the two charging profiles is 0.0004 MWh. The fact that the
difference in the charging profiles is so small suggests that the differences may
arise from numerical issues in solving the scheduling problem.
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Fig. 3 Aggregate PEV-Charging Profiles with Two-Hour, Full, and No Control with Wind
Forecasts Used in Scheduling on 26 July

Figure 4, conversely, shows a case in which there is a marked difference
between the charging profiles in two-hour- and full-control cases. Here we see
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Fig. 4 Aggregate PEV-Charging Profiles with Two-Hour, Full, and No Control with Wind
Forecasts Used in Scheduling on 24 July

that if the scheduling model has full flexibility to schedule PEV charging, it
would be optimal to delay some of the vehicles to recharge in hour 15. Doing
so would, however, violate the two-hours of flexibility available in the two-
hour-control case. As such, there is a larger peak in the PEV-charging profile
in hour 13, relative to the full-control case.

Although there are days, such as that shown in Figure 4, on which the
two-hour limitation on control hinders the ability to properly coordinate PEV
charging with power system operations, the limitation from two-hour control
is relatively small. This is because the two-hour-control case achieves much of
the benefits in mitigating wind-integration costs, as shown in Table 3.

5 Conclusions

This paper presents an analysis of the synergies between wind and PEV charg-
ing [30]. We show that if PEV charging is not coordinated with power system
operations, PEV-charging loads can exacerbate the ancillary costs of wind
uncertainty and variability. This is because PEV-charging loads tend to add
to peaks in the non-PEV-load profile midday and in the early evening. As
such, higher-cost generators that are marginal in these hours must be used to
balance wind availability with demand and conventional-generator supply.

Conversely, if PEV charging can be controlled, wind-integration costs can
be decreased substantially. Importantly, PEV owners do not have to ‘hand
over’ full charging control to the entity operating the power system. Two
hours of charging control is sufficient to achieve much of the cost savings.
This is because the benefit of controlled PEV charging is in accommodating
errors in estimating wind availability. Wind-forecasting errors tend to smooth
out over the course of several hours. Thus, some limited flexibility in shifting
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PEV-charging loads around within two hours provides almost as much wind-
integration benefit as complete control of PEV charging. We expect that a
shorter charging window would deliver less benefits than a two-hour charging
window and that a longer charging window would deliver more benefits. Our
analysis shows that demand response can be used as an effective means of
mitigating wind-integration costs and that PEV charging is a natural source
of demand-side flexibility. Moreover, the cost savings achieved by controlling
PEV charging could be used to remunerate PEV owners for making charging
control available to the power system.

There are several future areas of research that can build off of this work.
For one, we only examine one case of intermediate charging control in which
there is a two-hour window of time within which to schedule PEV charging. A
natural question is what tradeoffs are introduced by decreasing or increasing
the window of time within which to control charging. This may require mod-
eling PEV charging and power system operations at subhourly time steps.
Another question is the extent to which controlling midday PEV charging is
needed to mitigate wind-integration costs. This is because PEVs stopping be-
tween trips midday may be less likely to connect to a charging station (at
least compared to a PEV parked overnight). A third question that we do not
tackle is how to achieve the charging control assumed in our case study. The
literature proposes both centralized control schemes (which would be akin to
how we formulate the charging-control problem) and decentralized schemes.
This is an area for further research. The work of Liu et al. [12] may give some
insights into how different control schemes may fare in achieving the desired
PEV-charging patterns.
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