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Abstract—We develop a bi-level model, which captures strate-
gic decision making by PEV owners, to optimize the design of a
plug-in electric vehicle (PEV) charging station with distributed
energy resources. The upper level of the model determines
the optimal configuration of the station and pricing schemes
whereas the lower level captures charging decisions by PEV
owners. A robust formulation is employed to capture uncertain
wholesale energy prices, renewable-resource availability, and
PEV flows. The resulting bi-level robust-optimization model is
transformed into an equivalent single-level optimization problem
by replacing the lower-level problem with Karush-Kuhn-Tucker
optimality conditions. A column-and-constraint-generation algo-
rithm is used to solve the resultant single-level problem. Results
from a realistic case study and a parameter analysis demonstrate
the effectiveness of the proposed model in capturing the impacts
of uncertainty and self-interested behavior by PEV owners.

Index Terms—Plug-in electric vehicle, charging station, dis-
tributed energy resource, bi-level optimization, robust optimiza-
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NOMENCLATURE

Indices and Sets

d index of representative days in set, D
n index of charging-demand blocks of plug-in electric

vehicle (PEV) owners in set, N
t index of time periods in set, T
v index of PEV-owner types in set, V

Parameters

cC annualized fixed cost of PEV-charging piles ($/kW-

year)

cR annualized fixed cost of renewable resource ($/kW-

year)

cS,E annualized fixed cost of energy storage energy ca-

pacity ($/kWh-year)

cS,P annualized fixed cost of energy storage power ca-

pacity ($/kW-year)
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uv,n marginal utility of charging-demand block n of PEV

owner type v ($/kW)

X̄C maximum capacity of PEV-charging piles that can

be built (kW)

X̄R maximum capacity of renewable resource that can

be built (kW)

X̄S,E maximum energy capacity of energy storage that

can be built (kWh)

X̄S,P maximum power capacity of energy storage that can

be built (kW)

β
γ,max
d maximum uncertainty budget for γd,t on day d (p.u.)

β
γ,min
d minimum uncertainty budget for γd,t on day d (p.u.)

β
π,max
d maximum uncertainty budget for πd,t on day d

(p.u.)

β
π,min
d minimum uncertainty budget for πd,t on day d (p.u.)

β
Υ,max
d,v maximum uncertainty budget for Υd,t,v for type-v

PEV owners on day d (p.u.)

β
Υ,min
d,v minimum uncertainty budget for Υd,t,v for type-v

PEV owners on day d (p.u.)

γ̃d,t reference value of γd,t (p.u.)

γmax
d,t maximum possible value of γd,t (p.u.)

γmin
d,t minimum possible value of γd,t (p.u.)

∆ duration of a time period (h)

ǫmax
d,v maximum day-d energy that can be charged into

battery of type-v PEV owner (kWh)

ǫmin
d,v minimum day-d energy that can be charged into

battery of type-v PEV owner (kWh)

ǭv,n maximum charging demand in block n of PEV

owner type v (kW)

ηC efficiency of charging piles (p.u.)

ηS roundtrip efficiency of energy storage (p.u.)

θd weight on representative day d (days)

π̄ maximum retail price of charging energy ($/kWh)

π̃W
d,t reference value of πW

d,t ($/kWh)

π
W,max
d,t maximum possible value of πW

d,t ($/kWh)

π
W,min
d,t minimum possible value of πW

d,t ($/kWh)

σS
max maximum state of energy (SOE) of energy storage

(p.u.)

σS
min minimum SOE of energy storage (p.u.)

τ̄ capacity of distribution transformer (kW)

Υ̃d,t,v reference value of Υd,t,v

Υmax
d,t,v maximum possible value of Υd,t,v

Υmin
d,t,v minimum possible value of Υd,t,v

alosecity@126.com
349237801@qq.com
1401868217@qq.com
zengmingbj@vip.sina.com
sioshansi.1@osu.edu


2 IEEE TRANSACTIONS ON INDUSTRIAL APPLICATIONS

Station Owner’s Planning Variables

xC capacity of PEV-charging piles built (kW)

xR capacity of renewable resource built (kW)

xS,E energy capacity of energy storage built (kWh)

xS,P power capacity of energy storage built (kW)

πd,t price of charging energy sold to PEV owners in time

period t of day d ($/kWh)

Station Owner’s Robust Variables

γd,t capacity factor of renewable generator in time pe-

riod t of day d (p.u.)

πW
d,t wholesale energy price in time period t of day d

($/kWh)

Υd,t,v number of type-v PEV owners arriving to the station

in time period t of day d

Station Owner’s Recourse Variables

yd,t renewable energy production in time period t of

day d (kW)

δd,t power discharged from energy storage in time pe-

riod t of day d (kW)

ιd,t power charged into energy storage in time period t

of day d (kW)

σd,t SOE of energy storage at end of time period t of

day d (kWh)

τd,t net power imported from the grid in time period t

of day d (kW)

χd,t total power charged into PEVs in time period t of

day d (kW)

PEV-Owners’ Decision Variables

χ̄d,t,v,n charging demand of block n of PEV owner type v

in time period t of day d (kW)

I. INTRODUCTION

TECHNOLOGICAL advances and policy decisions are

prompting rapid growth in the adoption of plug-in electric

vehicles (PEVs) [1]. Relative to conventional vehicles, PEVs

have high operating efficiencies and no direct emissions. Thus,

PEVs hold promise in stemming climate change [2]. However,

the environmental impact of PEV adoption and use depends

on the generation mix of the power system from which they

are charged [3]. Renewable generation plays a key role in

determining these impacts.

Co-ordinating the design and operation of PEV-charging

infrastructure with renewable resources raises issues, be-

cause both technologies present operational uncertainties (e.g.,

weather conditions and charging patterns) [4]. The technical

literature takes different approaches to co-ordinate the plan-

ning of PEV-charging infrastructure and renewable energy

resources.

One body of work [4]–[6] examines the configuration and

location of charging stations and renewable resources at the

grid side. Shojaabadi et al. [4] develop a multi-objective

model to optimize the design of PEV-charging stations and

the deployment of wind generation, taking into account the

perspective of a distribution-system planner and the owners

of the wind generators. Hung et al. [5] design, with the

objective of minimizing energy losses, PEV-charging stations

that have photovoltaic (PV) solar panels installed in them.

Erdinc et al. [6] examine the sizing and siting of renewable

generation units, PEV-charging stations, and energy storage

within a distribution system.

A second body of work [7]–[11] aggregates the chargers

and renewable generators in a single local charging station

and determines the optimal size of these components. Gunter

et al. [7] propose a methodology for designing grid-connected

systems that consist of PEV chargers, distributed generation,

and energy storage. They demonstrate that systems with PV

panels can be most cost effective than those without. Fazelpour

et al. [8] develop a model to design a parking facility with

distributed generation to minimize power losses and improve

voltage profiles. Chandra Mouli et al. [9] optimize the config-

uration of energy storage that is deployed in a PEV-charging

station that uses PV panels. They show that properly sized

energy storage can reduce grid dependency of the charging

station by 25%. Other works examine this problem with

consideration of lifecycle costs [10] and better characterization

of PEV-charging demands using queuing models [11].

Although the literature tackles the problem of planning

PEV-charging infrastructure, many existing works assume

that the decision maker has full knowledge of the real-time

operating state of the system. Thus, the uncertainties that

complicate infrastructure planning are ignored [6], [7], [10]

or represented using simple probabilistic models [4], [11].

Moreover, the existing literature neglects the strategic self-

interested nature of PEV owners in deciding whether to use

a public PEV-charging station. The use of public charging

stations by PEV owners depends on multiple factors, including

personal preferences and the tariff that is set for charging

energy [12], [13]. Numerous works demonstrate that retail

tariffs can be structured to drive PEV-charging loads to be

co-incident with the availability of low-cost [14], [15] or

renewable [16] energy.

This paper seeks to address these gaps in the extant literature

by proposing a new modeling framework to optimize the

design of a PEV-charging station with distributed energy

resources. Our model assumes that the owner designs and

operates the station while transacting in the wholesale electric-

ity market and determining the retail tariff for PEV-charging

energy. The owner’s objective is to maximize the net revenue

that is earned from building and operating the station. We

embed within the station owner’s upper-level problem lower-

level problems that capture the behavior of PEV owners, who

determine the use of the charging station to maximize their

net utilities.

The bi-level model includes a robust formulation, which

captures uncertainty in the real-time operation of the charging

station (e.g., weather conditions, wholesale prices, and the

number of PEV drivers). Robust optimization can be used to

incorporate uncertainty into planning and operational models

involving PEVs [17]. A benefit of robust optimization is that

it does not require detailed knowledge of the structure or

distribution of the underlying random variables. Conversely,

stochastic optimization does require such information. This
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feature of robust optimization is beneficial for a planning

problem, as estimating distributions of wholesale prices and

PEV ownership years into the future (which would be required,

given the long-lived nature of the components in a charging

station) may be challenging.
To solve the bi-level robust-optimization model, first we

replace the lower-level problems with their necessary and suf-

ficient Karush-Kuhn-Tucker (KKT) conditions [18]–[20]. This

use of KKT conditions is a common approach to converting

a bi-level problem into a more tractable single-level problem

[21]. The resulting single-level robust-optimization model is

solved by applying a column-and-constraint-generation algo-

rithm [22]. Wang et al. [23] apply this algorithm to solve a

robust-optimization model that plans transmission and energy-

storage expansion. The column-and-constraint-generation al-

gorithm is based on the idea of Benders’s decomposition [24],

which is used widely to solve robust-optimization problems

[25]. Other potential algorithms to solve robust-optimization

models include cutting-plane methods [17] and alternating

direction method of multipliers [26].
We demonstrate the effectiveness of the proposed model

using a comprehensive numerical case study, from which

we derive analytical insights. We show the benefits of the

proposed model in capturing uncertainty and the self-interested

behavior of PEV owners in deciding whether to use the public

charging station and how to shape their demands for charging

energy.
Overall, our work makes two contributions to the existing

literature. First, we develop a novel bi-level robust formulation

for optimizing the design of a public charging station. This

model accounts for uncertainty and the self-interested behavior

of PEV owners in deciding whether and to what extent to

use the public charging station. Our model determines how to

price charging energy to shape PEV-charging loads to follow

the availability of low-cost and renewable energy. Second,

we apply KKT conditions and the constraint-and-column-

generation algorithm to solve the otherwise intractable model

efficiently.
The remainder of this paper is organized as follows.

Overviews of the problem and model structure are given in

Section II. Section III provides the model formulation, while

Section IV details the solution method. Section V summarizes

the results of our case study. Section VI concludes.

II. MODEL OVERVIEW

We employ a bi-level robust-optimization framework to

model the design and operation of the PEV-charging station.

The charging station is assumed to consist of PEV-charging

piles that are co-located with distributed renewable generators

and energy storage. Thus, the design of the charging station

that is optimized by the model is the capacity of the PEV-

charging piles, distributed renewable generators, and energy

storage that are built. The charging station is grid-connected,

meaning that it can purchase deficit and sell surplus energy

from and to the wholesale market.
We model the design of the charging station from the

perspective of a private owner, as opposed to a distribution-

system operator or PEV owners installing charging station(s).

Thus, we do not model the broader power system (e.g., unit

commitment, optimal power flow, or power quality on the

distribution feeder). Such considerations could be added to

a model that optimizes the design of a charging station.

However, it would assume a different modeling perspective

than that which we we take.

The upper-level model represents the profit-maximizing

decisions of the PEV-station owner. First, the station owner

determines the configuration of the station (i.e., values of xC ,

xR, xS,E , and xS,P ) and time-of-use tariffs to levy on PEV

owners for charging energy (i.e., values of πd,t, ∀d ∈ D, t ∈
T ). After these planning decisions are made, nature selects

the worst-possible outcome of the uncertain variables (i.e.,

values of γd,t and πW
d,t, ∀d ∈ D, t ∈ T and Υd,t,v, ∀d ∈

D, t ∈ T , v ∈ V) within some uncertainty budget. Thus, nature

represents the realization of random variables, which are the

real-time availability of energy from the renewable generator

that the station owner builds, wholesale energy prices, and

the number of PEVs that arrive into the station. Due to our

use of a robust modeling framework, nature is assumed to

select the worst possible outcomes (from the perspective of the

charging-station owner) for these random variables (subject to

the uncertainty budget). Finally, the PEV-station owner makes

recourse decisions regarding the real-time operation of the

charging station (i.e., determine values of yd,t, δd,t, ιd,t, σd,t,

τd,t, and χd,t, ∀d ∈ D, t ∈ T ). We assume that in doing

so, the charging-station owner is able to curtail output of the

renewable generator below real-time availability, if so desired.

The lower-level model represents the behavior of PEV

owners, who determine how much charging energy to obtain

from the charging station to maximize their net utilities. PEV

owners are represented by types [16], [27]. All of the PEV

owners corresponding to a type are assumed to have the same

(or sufficiently similar) driving patterns, willingness-to-pay for

charging energy, etc. Thus, we represent type-v PEV owners

as determining χ̄d,t,v,n, ∀d ∈ D, t ∈ T , n ∈ N to maximize

their net utilities.

Fig. 1 provides a schematic timeline of the sequence of

decisions that are made in the model. It shows that the

station owner first determines the design of the charging

station and the prices to levy for PEV-charging energy. Next,

nature determines the worst-possible outcomes for the random

variables. Finally, the station owner determines its recourse

decisions and PEV owners determine their charging-energy

demands.

Stage 1:

Station Owner Determines:

· Capacity of charging piles

· Capacity of renewable resource

· Capacity of energy storage

· Retail prices for PEV-charging energy

Stage 2:

Nature Determines:

· Renewable availability

· Wholesale energy prices

· Number of PEV arrivals

Stage 3:

Station Owner Determines:

· Energy-storage operation

· Renewable production

· Energy exchanged with grid

PEV Owners Determine:

· Charging-energy demand

Fig. 1. Schematic timeline of decisions.
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III. MODEL FORMULATION

We begin by providing the formulation of the PEV owners’

utility-maximization problems. Type-v PEV owners determine

χ̄d,t,v,n, ∀d ∈ D, t ∈ T , n ∈ N by solving:

max
∑

d∈D,t∈T ,n∈N

∆ · (uv,n − πd,t)χ̄d,t,v,n (1)

s.t. ǫmin
d,v ≤ ∆

∑

n∈N

χ̄d,t,v,n ≤ ǫmax
d,v ; ∀d ∈ D, t ∈ T (2)

(µ1,min
d,t,v , µ

1,max
d,t,v )

0 ≤ χ̄d,t,v,n ≤ ǭv,n; ∀d ∈ D, t ∈ T , n ∈ N ; (3)

(µ2,min
d,t,v,n, µ

2,max
d,t,v,n)

where the Lagrange multipliers that are associated with each

constraint are indicated in parentheses at the end of the

constraint. Objective function (1) maximizes the net utility

of obtaining energy from the PEV-charging station. Con-

straints (2) ensure that the total amount of energy that is

charged is within the appropriate bounds while (3) ensure that

the amount of charging energy that is obtained in each block

is less than the block size.

Our bi-level robust-optimization model is formulated as:

max
ΩP

− cCxC − cRxR − cS,ExS,E − cS,PxS,P (4)

+min
ΩN

max
ΩR

∑

d∈D,t∈T

θd∆ ·
(

πd,tχd,t − πW
d,tτd,t

)

s.t. 0 ≤ xC ≤ X̄C (5)

0 ≤ xR ≤ X̄R (6)

0 ≤ xS,E ≤ X̄S,E (7)

0 ≤ xS,P ≤ X̄S,P (8)

0 ≤ πd,t ≤ π̄; ∀d ∈ D, t ∈ T (9)

γmin
d,t ≤ γd,t ≤ γmax

d,t ; ∀d ∈ D, t ∈ T (10)

β
γ,min
d ≤

∑

t∈T
γd,t

∑

t∈T
γ̃d,t
≤ β

γ,max
d ; ∀d ∈ D (11)

π
W,min
d,t ≤ πW

d,t ≤ π
W,max
d,t ; ∀d ∈ D, t ∈ T (12)

β
π,min
d ≤

∑

t∈T
πW
d,t

∑

t∈T

π̃W
d,t

≤ β
π,max
d ; ∀d ∈ D (13)

Υmin
d,t,v ≤ Υd,t,v ≤ Υmax

d,t,v; ∀d ∈ D, t ∈ T , v ∈ V (14)

β
Υ,min
d,v ≤

∑

t∈T
Υd,t,v

∑

t∈T

Υ̃d,t,v

≤ β
Υ,max
d,v ; ∀d ∈ D, v ∈ V (15)

− τ̄ ≤ τd,t ≤ τ̄ ; ∀d ∈ D, t ∈ T (16)

(λ1,min
d,t , λ

1,max
d,t )

0 ≤ χd,t ≤ xC ; ∀d ∈ D, t ∈ T (17)

0 ≤ yd,t ≤ γd,tx
R; ∀d ∈ D, t ∈ T (λ3,max

d,t ) (18)

σS
minx

S,E ≤ σd,t ≤ σS
maxx

S,E ; ∀d ∈ D, t ∈ T (19)

0 ≤ ιd,t ≤ xS,P ; ∀d ∈ D, t ∈ T (λ5,max
d,t ) (20)

0 ≤ δd,t ≤ xS,P ; ∀d ∈ D, t ∈ T (λ6,max
d,t ) (21)

σd,t = σd,t−1 + ηS∆ιd,t −∆δd,t; ∀d ∈ D, t ∈ T (22)

σd,0 = σd,|T |; ∀d ∈ D (23)

τd,t + yd,t + δd,t = ιd,t + χd,t; ∀d ∈ D, t ∈ T (24)

ηC∆χd,t = ∆
∑

v∈V,n∈N

Υd,t,vχ̄d,t,v,n; (25)

∀d ∈ D, t ∈ T

(1)–(3); ∀v ∈ V ; (26)

where the dual variable that is associated with each constraint

is denoted in parentheses to its right. We define:

ΩP =
{

xC , xR, xS,E, xS,P
}

∪ {πd,t, ∀d ∈ D, t ∈ T } ;

as the set of the station owner’s planning variables:

ΩN =
{

γd,t, π
W
d,t, ∀d ∈ D, t ∈ T

}

∪

{Υd,t,v, ∀d ∈ D, t ∈ T , v ∈ V};

as the set of nature’s variables, and:

ΩR = {yd,t, δd,t, ιd,t, σd,t, τd,t, χd,t, ∀d ∈ D, t ∈ T };

as the set of the station owner’s recourse variables.

Objective function (4) maximizes the net revenue that is

earned by the station owner. The four terms in (4) represent

the annualized cost of installing the station components, while

the remaining terms represent the cost of operating the station.

These latter terms appear after the ‘min’ and ‘max’ to

represent nature’s choice of the worst-possible outcome and

the station owner’s recourse decisions that react to nature. The

model has three constraint sets. The first set of constraints,

(5)–(9), pertain to the station owner’s planning decisions, the

second set, (10)–(15), pertain to nature’s choice of the uncer-

tain variables, and the remaining pertain to station operations.

Constraints (5)–(8) impose restrictions on the amount of

charging-pile, distributed generation, and energy-storage ca-

pacity, respectively, that can be installed. These can represent

budgetary, physical-space, or resource limits. Constraints (9)

are regulatory restrictions on how high the retail price of

charging energy can be.

Constraints (10), (12), and (14) impose confidence-interval

bounds on the uncertain variables, whereas (11), (13), and (15)

impose polyhedral uncertainty budgets on them [28].

Constraints (16) restrict the amount of power that is ex-

changed with the power system, based on the transformer ca-

pacity. Constraints (17) restrict the amount of charging power

that can be provided to PEVs based on the installed capacity

of the charging piles. Constraints (18) restrict renewable gen-

eration in each time period based on the installed capacity of

the generator and the real-time capacity factor of the generator,

which captures the impact of weather conditions on renewable

output. These constraints allow renewable production to be

curtailed below real-time availability if so desired by the

charging-station owner.

Constraints (19)–(21) restrict the SOE and charging and dis-

charging power of the energy storage, based on its associated

capacities. Constraints (22) govern how the SOE of energy

storage evolves from one time period to the next, whereas (23)

require the ending SOE of the energy storage on each day to
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equal its starting SOE. This is a heuristic means of ensuring

that stored energy has carryover value from one day to the next

[29]. We use a single parameter, ηS , which is applied to energy

that is charged into the energy storage, to represent energy

losses from the energy-storage cycle. Alternatively, one could

apply separate efficiency parameters to energy that is charged

into and discharged from energy storage. We opt to use a

single efficiency parameter to simplify the model notation. We

do not include any direct cost on the use of energy storage

in (4). Such a cost could be included, for instance to account

for accelerated degradation of energy storage as a result of

cycling [30], [31]. None of these changes would affect the

structure of our model or the solution algorithm substantively.
Constraints (24) define the amount of energy that the

charging station exchanges with the power system in terms of

how the resources in the charging station are operated. Con-

straints (25) ensure that all PEV-charging demands are met.

Constraints (26) embed the PEV owners’ utility-maximization

problems within the station owner’s problem.

IV. SOLUTION TECHNIQUE

Model (4)–(26) is a bi-level optimization problem in which

the upper-level has a three-level max-min-max structure. As

such, this problem is intractable. We deal with this compu-

tational difficulty through two steps. First, we replace the

PEV owners’ lower-level problems with their necessary and

sufficient KKT conditions, which yields a single-level problem

with a max-min-max structure. Then, we employ a column-

and-constraint-generation algorithm whereby the single-level

problem is decomposed into a master problem and subprob-

lem. These problems are solved iteratively and new variables

and optimality cuts are added to the master problem until a

solution satisfying a desired optimality criterion is obtained.
We proceed in this section by converting the bi-level prob-

lem into a single-level problem first. Then we provide the

decomposed master problem and subproblem of the single-

level problem. Finally, we provide an outline of the iterative

solution algorithm.

A. Conversion of Bi-Level to Single-Level Optimization

Type-v PEV owners’ problem (1)–(3) is a linear optimiza-

tion model and satisfies the Slater condition. Thus, KKT

conditions:

∆ · (uv,n − πd,t)− µ
1,min
d,t,v + µ

1,max
d,t,v − µ

2,min
d,t,v,n (27)

+ µ
2,max
d,t,v,n = 0; ∀d ∈ D, t ∈ T , n ∈ N

0 ≤ µ
1,min
d,t,v ⊥ ∆

∑

n∈N

χ̄d,t,v,n ≥ ǫmin
d,v ; ∀d ∈ D, t ∈ T (28)

0 ≤ µ
1,max
d,t,v ⊥ ∆

∑

n∈N

χ̄d,t,v,n ≤ ǫmax
d,v ; ∀d ∈ D, t ∈ T (29)

0 ≤ µ
2,min
d,t,v,n ⊥ χ̄d,t,v,n ≥ 0; ∀d ∈ D, t ∈ T , n ∈ N (30)

0 ≤ µ
2,max
d,t,v,n ⊥ χ̄d,t,v,n ≤ ǭv,n; ∀d ∈ D, t ∈ T , n ∈ N (31)

are necessary and sufficient for a global optimum [18]. As

such, we can replace (26) in the bi-level problem with (27)–

(31) ∀v ∈ V , which gives an equivalent single-level problem.

Henceforth, we refer to this single-level problem as P .

B. Decomposition of P

To apply the column-and-constraint-generation algorithm,

we decompose P into a master problem and subproblem.

The master problem includes the first-stage variables, which

determine the design of the charging station and the prices

that are levied for PEV-charging energy, and the primal and

dual variables of (27)–(31). The subproblem corresponds to

the remaining decisions.
1) Master Problem: The master problem is:

max
ΩM

− cCxC − cRxR − cS,ExS,E − cS,PxS,P +Ψ (32)

s.t. (5)–(9), (27)–(31) (33)

Ψ ≥
∑

d∈D,t∈T

θd∆ ·
(

πd,tχ
(i)
d,t − π

W,(i)
d,t τ

(i)
d,t

)

; (34)

∀i = 1, . . . , I

where:

ΩM = ΩP ∪Ψ ∪
{

µ
1,min
d,t,v , µ

1,max
d,t,v , ∀d ∈ D, t ∈ T , v ∈ V

}

∪
{

χ̄d,t,v,n, µ
2,min
d,t,v,n, µ

2,max
d,t,v,n, ∀d ∈ D, t ∈ T , v ∈ V , n ∈ N

}

;

i is a counter that corresponds to the iteration number of the

column-and-constraint-generation algorithm, and I indicates

the number of iterations of the algorithm that have been

conducted thus far.
The first four terms in (32) represent the capital cost of

installing the components of the charging station. Ψ is an

auxiliary variable that approximates the resulting operating

cost of the station. Constraint set (33) imposes the first-stage

constraints and the KKT conditions that characterize an opti-

mal solution to the PEV owners’ problems. Constraints (34)

are the optimality cuts that are added iteratively in the course

of the algorithm. These cuts are generated based on the

optimized values of nature’s, the station owner’s recourse,

and the PEV owners’ decisions that are obtained from the

subproblem in each iteration. Thus, for instance, χ
(i)
d,t, π

W,(i)
d,t ,

and τ
(i)
d,t represent optimized values of χd,t, π

W
d,t, and τd,t that

are obtained from solving the subproblem in the ith iteration

of the algorithm.
2) Subproblem: The subproblem represents the remainder

of the problem (i.e., nature’s and the station owner’s resource

decisions). As such, it has a min-max structure, which is

simplified by converting it into a min-only structure by re-

placing the station owner’s recourse problem with necessary

and sufficient optimality conditions.
a) Linear Dual of Recourse Problem: We begin by

examining the following simplified recourse problem, which

is obtained by fixing the first-stage, nature’s, and the PEV

owners’ decisions:

max
ΩR

∑

d∈D,t∈T

θd∆ ·
(

πd,tχd,t − πW
d,tτd,t

)

(35)

s.t. (16)–(25).

By substituting (22) into (19) and (23) and (24) into (17), (25),

and (35), we obtain:

max
Ω

R′

∑

d∈D,t∈T

θd∆ ·
[

πd,t · (τd,t + yd,t + δd,t − ιd,t) (36)
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−πW
d,tτd,t

]

s.t. (16), (18), (20), (21) (37)

0 ≤ τd,t + yd,t + δd,t − ιd,t ≤ xC ; ∀d ∈ D, t ∈ T (38)

(λ2,min
d,t , λ

2,max
d,t )

σS
minx

S,E ≤ σd,0 +
∑

ζ≤t

(

ηS∆ιd,ζ −∆δd,ζ
)

(39)

≤ σS
maxx

S,E; ∀d ∈ D, t ∈ T (λ4,min
d,t , λ

4,max
d,t )

∑

t∈T

(

ηS∆ιd,t −∆δd,t
)

= 0; ∀d ∈ D (λ7
d) (40)

ηC · (τd,t + yd,t + δd,t − ιd,t) (41)

=
∑

v∈V,n∈N

Υd,t,vχ̄d,t,v,n; ∀d ∈ D, t ∈ T (λ8
d,t)

where:

ΩR′ = {yd,t, δd,t, ιd,t, τd,t, ∀d ∈ D, t ∈ T };

and the dual variable that is associated with each constraint is

indicated to its right. Problem (36)–(41) is a simplified version

of the recourse problem in which χd,t and σd,t have been

projected out.
The linear dual of (36)–(41) is given by:

min
ΩD

R

∑

d∈D,t∈T



τ̄ ·
(

λ
1,max
d,t − λ

1,min
d,t

)

+ xCλ
2,max
d,t

+ γd,tx
Rλ

3,max
d,t + xS,E ·

(

σS
minλ

4,min
d,t + σS

maxλ
4,max
d,t

)

+ xS,Pλ
5,max
d,t + xS,Pλ

6,max
d,t

+λ8
d,t

∑

v∈V,n∈N

Υd,t,vχ̄d,t,v,n





s.t. λ2,min
d,t + λ

2,max
d,t + λ

3,max
d,t + ηCλ8

d,t ≥ θd∆πd,t;

∀d ∈ D, t ∈ T (yd,t)

λ
2,min
d,t + λ

2,max
d,t −∆

∑

ζ≥t

(

λ
4,min
d,ζ + λ

4,max
d,ζ

)

+ λ
6,max
d,t

−∆λ7
d + ηCλ8

d,t ≥ θd∆πd,t; ∀d ∈ D, t ∈ T (δd,t)

− λ
2,min
d,t − λ

2,max
d,t + ηS∆

∑

ζ≥t

(

λ
4,min
d,ζ + λ

4,max
d,ζ

)

+ λ
5,max
d,t + ηS∆λ7

d − λ8
d,t ≥ −θd∆πd,t;

∀d ∈ D, t ∈ T (ιd,t)

λ
1,min
d,t + λ

1,max
d,t + λ

2,min
d,t + λ

2,max
d,t + ηCλ8

d,t (42)

= θd∆ · (πd,t − πW
d,t); ∀d ∈ D, t ∈ T (τd,t)

λ
1,min
d,t , λ

2,min
d,t , λ

4,max
d,t ≤ 0; ∀d ∈ D, t ∈ T

λ
1,max
d,t , λ

2,max
d,t , λ

3,max
d,t , λ

4,max
d,t , λ

5,max
d,t , λ

6,max
d,t ≥ 0;

∀d ∈ D, t ∈ T

where:

ΩD
R =

{

λ
1,min
d,t , λ

1,max
d,t , λ

2,min
d,t , λ

2,max
d,t , λ

3,max
d,t , λ

4,min
d,t ,

λ
4,max
d,t , λ

5,max
d,t , λ

6,max
d,t , λ7

d, λ
8
d,t; ∀d ∈ D, t ∈ T

}

;

and the primal variable that is associated with each dual

constraint is indicated in parentheses to its right.

b) min-Only Subproblem: Because the station owner’s

recourse problem is linear, an optimal solution can be char-

acterized by its primal, dual, and complementary-slackness

conditions. Thus, the simplified min-only subproblem is given

by:

min
ΩS

∑

d∈D,t∈T

θd∆ ·
[

πd,t · (τd,t + yd,t + δd,t − ιd,t) (43)

−πW
d,tτd,t

]

s.t. (10)–(15), (40), (41), (42) (44)

− τ̄ ≤ τd,t ⊥ λ
1,min
d,t ≤ 0; ∀d ∈ D, t ∈ T (45)

τd,t ≤ τ̄ ⊥ λ
1,max
d,t ≥ 0; ∀d ∈ D, t ∈ T (46)

0 ≤ τd,t + yd,t + δd,t − ιd,t ⊥ λ
2,min
d,t ≤ 0; (47)

∀d ∈ D, t ∈ T

τd,t + yd,t + δd,t − ιd,t ≤ xC ⊥ λ
2,max
d,t ≥ 0; (48)

∀d ∈ D, t ∈ T

yd,t ≤ γd,tx
R ⊥ λ

3,max
d,t ≥ 0; ∀d ∈ D, t ∈ T (49)

σS
minx

S,E ≤ σd,0 +
∑

ζ≤t

(

ηS∆ιd,ζ −∆δd,ζ
)

(50)

⊥ λ
4,min
d,t ≤ 0; ∀d ∈ D, t ∈ T

σd,0 +
∑

ζ≤t

(

ηS∆ιd,ζ −∆δd,ζ
)

≤ σS
maxx

S,E (51)

⊥ λ
4,max
d,t ≥ 0; ∀d ∈ D, t ∈ T

ιd,t ≤ xS,P ⊥ λ
5,max
d,t ≥ 0; ∀d ∈ D, t ∈ T (52)

δd,t ≤ xS,P ⊥ λ
6,max
d,t ≥ 0; ∀d ∈ D, t ∈ T (53)

λ
2,min
d,t + λ

2,max
d,t + λ

3,max
d,t + ηCλ8

d,t ≥ θd∆πd,t (54)

⊥ yd,t ≥ 0; ∀d ∈ D, t ∈ T

λ
2,min
d,t + λ

2,max
d,t −∆

∑

ζ≥t

(

λ
4,min
d,ζ + λ

4,max
d,ζ

)

(55)

+ λ
6,max
d,t −∆λ7

d + ηCλ8
d,t ≥ θd∆πd,t ⊥ δd,t ≥ 0;

∀d ∈ D, t ∈ T

− λ
2,min
d,t − λ

2,max
d,t + ηS∆

∑

ζ≥t

(

λ
4,min
d,ζ + λ

4,max
d,ζ

)

(56)

+ λ
5,max
d,t + ηS∆λ7

d − λ8
d,t ≥ −θd∆πd,t ⊥ ιd,t ≥ 0;

∀d ∈ D, t ∈ T

where:

ΩS = ΩN ∪ ΩR′ ∪ ΩD
R .

Objective function (43) is written with χd,t and σd,t having

been projected out of the problem. Constraint set (44) imposes

the uncertainty budget, optimality conditions of the PEV

owners’ problems, and the primal and dual equality con-

straints. Constraints (45)–(53) and (54)–(56) are, respectively,

the primal and dual inequality constraints and the associated

complementary-slackness conditions.

c) Linearization of Complementarity Conditions: The

complementary-slackness conditions in (28)–(31) and (45)–

(56) are nonlinear. We apply the technique that is proposed by

Fortuny-Amat and McCarl [32] to linearize these conditions.
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This technique requires the use of additional auxiliary binary

variables.

C. Column-and-Constraint-Generation Algorithm

Algorithm 1 provides pseudocode that details the steps

of the column-and-constraint-generation algorithm. Line 1

initializes the algorithm by setting starting values for the lower

and upper bounds of the objective-function value, the iteration

counter, and the number of iterations that have been conducted

thus far, which are denoted by zLB, zUB, k, and I , respectively.

Algorithm 1 Column and Constraint Generation

1: initialize: zLB ← −∞, zUB ← +∞, k ← 1, I ← 0
2: repeat

3: ω
(k)
M ← argmaxΩM

(32) s.t. (33)–(34)

4: zUB ← min{zUB, z
(k)
M }

5: ω
(k)
S ← argminΩS

(43) s.t. (44)–(56) with ω
(k)
M fixed

6: zLB ← max{zLB, z
(k)
S }

7: if zUB − zLB > Γ then

8: create (34) for i = k with χ
(i)
d,t ← χ

(k)
d,t , π

W,(i)
d,t ←

π
W,(k)
d,t , and τ

(i)
d,t ← τ

(k)
d,t ; ∀d ∈ D, t ∈ T

9: I ← I + 1
10: end if

11: until zUB − zLB ≤ Γ

Lines 2–11 is the main iterative loop. Line 3 solves the

master problem. We define:

ωM =
(

xC , xR, xS,E , xS,P , π1,1, . . . , π|D|,|T |,Ψ, µ
1,min
1,1,1 ,

µ
1,max
1,1,1 , . . . , µ

1,min
|D|,|T |,|V|, µ

1,max
|D|,|T |,|V|, χ̄1,1,1,1, µ

2,min
1,1,1,1,

µ
2,max
1,1,1,1, . . . , χ̄|D|,|T |,|V|,|N |, µ

2,min
|D|,|T |,|V|,|N |,

µ
2,max
|D|,|T |,|V|,|N |

)

;

as the decision-variable vector of the master problem. The

superscript, (k), in Line 3 denotes the values of the variables

that are obtained in the kth iteration of the algorithm. Line 4

updates the upper bound based on the most recent master-

problem solution. We let:

z
(k)
M = −cCxC,(k) − cRxR,(k)

− cS,ExS,E,(k) − cS,PxS,P,(k) +Ψ(k);

denote the optimal objective-function value from solving the

master problem in the current iteration. Line 5 solves the

subproblem where the first-stage and PEV owners’ variables

are fixed equal to the values that are in ω
(k)
M . We define:

ωS =
(

λ7
1, . . . , λ

7
|D|, γ1,1, π

W
1,1, y1,1, δ1,1, ι1,1, τ1,1, λ

1,min
1,1 ,

λ
1,max
1,1 , λ

2,min
1,1 , λ

2,max
1,1 , λ

3,max
1,1 , λ

4,min
1,1 , λ

4,max
1,1 , λ

5,max
1,1 ,

λ
6,max
1,1 , λ8

1,1, . . . , γ|D|,|T |, π
W
|D|,|T |, y|D|,|T |, δ|D|,|T |, ι|D|,|T |,

τ|D|,|T |, λ
1,min
|D|,|T |, λ

1,max
|D|,|T |, λ

2,min
|D|,|T |, λ

2,max
|D|,|T |, λ

3,max
|D|,|T |,

λ
4,min
|D|,|T |, λ

4,max
|D|,|T |, λ

5,max
|D|,|T |, λ

6,max
|D|,|T |, λ

8
|D|,|T |,Υ1,1,1, . . . ,

Υ|D|,|T |,|V|

)

;

as the decision-variable vector of the subproblem. Line 6

updates the lower bound, where we define

z
(k)
S =

∑

d∈D,t∈T

θd∆ ·
[

π
(k)
d,t ·

(

τ
(k)
d,t + y

(k)
d,t

+δ
(k)
d,t − ι

(k)
d,t

)

− π
W,(k)
d,t τ

(k)
d,t

]

;

as the optimal objective-function value from solving the sub-

problem in the current iteration.

Line 7 checks if the algorithm has converged. If not, a new

constraint is added in Line 8. If so, the algorithm terminates

(cf. Line 11).

V. CASE STUDY

This section summarizes a numerical case study that demon-

strates the benefits of our proposed model.

A. Case-Study Data

Our case study considers a 2000-m2 public charging station

that can install up to 500 kW of solar PV panels, 600 kW

of lithium-ion (Li-ion) energy storage with up to 1800 kWh

of energy-carrying capability, and 2500 kW of charging piles.

The charging station is connected to the grid with a 4000-kVA

transformer.

The PV is assumed to have, an $870/kW capital cost,

an annual maintenance cost of $12/kW-year, and a 25-year

usable life.1 Asset lifetimes are used with an assumed 6%

discount rate to annualize the capital cost of the components,

due to our modeling a representative year [6]. The Li-ion

energy storage is assumed to have a 15-year usable life,

86.49% roundtrip efficiency, capital costs of $200/kW and

$143/kWh, and an annual maintenance cost of $0.80/kWh-

year. The energy storage is assumed to have minimum and

maximum SOEs of 30% and 90% respectively. The charging

piles are assumed to be 95% efficient, have 20-year usable

lives, a capital cost of $100/kW, and an annual maintenance

cost of $6/kW-year.

We use four days (one for each season), which are modeled

at half-hourly time steps, to represent the year. Figs. 2–4

summarize the assumed PEV, energy-price, and solar char-

acteristics [33]. Fig. 2 shows the reference numbers of PEV

arrivals to the station in each time period, which are the

forecasted number of PEV arrivals to the station on each

representative day. We assume three different types of PEV-

usage profiles: one set of PEVs will be driven for long-range

100-km trips after departing the station and their batteries have

a 50% SOE upon arrival to the station, a second set will

be driven for medium-range 50-km trips after departing the

station and their batteries have a 50% SOE upon arrival, and

the final set will be driven for short-range 20-km trips and

their batteries have a 30% SOE upon arrival. The duration of

the trips after departing the station and the starting SOE are

used to calibrate the charging-energy demands of the drivers.

We assume that the number of PEV arrivals can deviate by

up to 10% relative to the reference levels that are shown in

1https://www.nrel.gov/analysis/tech-cost-om-dg.html

https://www.nrel.gov/analysis/tech-cost-om-dg.html
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Fig. 2. Each PEV is assumed to be a Nissan Leaf, with a 40-

kWh battery with an allowable SOE range of between 20%

and 90% and a power-consumption rate of 0.18 kWh/km.2

One could generalize this case study to consider different PEV

types. However, because the purpose of our case study is to

serve as a proof-of-concept of our proposed model, assuming

the same type of PEVs is acceptable. We assume that the retail

tariff that can be levied by the charging station is capped to

be no more than 50% above the wholesale price.

Fig. 2. Reference number of PEVs arriving to the station in each time period.

Fig. 3. Reference value and range of possible prices in each time period.

The model is programmed using version 25.0.1 of GAMS

and solved using version 12.8.0 of CPLEX with default

settings. The model is implemented on a computer with a 1.7-

GHz Intel Core i7 processor, and 8 GB of memory.

2https://fueleconomy.gov/

Fig. 4. Reference value and range of possible solar capacity factors in each
time period.

B. Benefit of Bi-Level Modeling Approach

We begin by examining the benefits of using a bi-level

modeling approach, wherein the decisions of the PEV owners

are represented in the lower level. We do this by comparing our

bi-level model to a single-level model where the retail prices

and demands are assumed to be fixed. Specifically, we examine

two cases using our bi-level model with the retail price of

charging energy fixed equal to $0.35/kWh and $0.50/kWh,

respectively. We contrast this with two cases in which charging

demands are assumed to be fixed and the same two retail

prices (i.e., $0.35/kWh and $0.50/kWh) are used to determine

revenues from selling charging energy.

Table I summarizes the results of using the two modeling

approaches. The table shows that if the strategic behavior of

the PEV owners is not taken into account (i.e., if a single-level

modeling approach is taken), the station owner over-estimates

the demand for charging energy. This leads to over-sizing the

charging station relative to the optimal level.

TABLE I
DESIGN OF CHARGING STATION WITH AND WITHOUT BI-LEVEL

MODELING APPROACH

Bi-Level Model Single-Level Model

Retail Price ($/kWh) Retail Price ($/kWh)
0.35 0.50 0.35 0.50

x
C 1543 660 2273 2273

x
R 500 500 500 500

x
S,E 1738 1217 1868 1868

x
S,P 482 375 565 565

Profit ($) 897538 844132 569039 286161

The profits that are reported in Table I are computed

differently for the two modeling approaches. For the two cases

in which the bi-level model is employed, the profit is given by

the optimized value of (4). For the cases in which the single-

level model is used, the sizes of the station components (i.e.,

the values of xC , xR, xS,E , and xS,P ) are determined using

https://fueleconomy.gov/
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the single-level model in which PEV-charging demands are

fixed. Then, these component sizes are fixed in the bi-level

model, which is optimized to determine the true demand for

PEV charging, given the fixed retail tariffs. The exceedingly

low profits that are reported in Table I highlight the cost to the

station owner of not accounting for driver behavior in sizing

the station’s components.

Table I shows that the same amount of PV capacity is

built in all four cases. This suggests that PV is a low-cost

source of charging energy. PV is able to deliver between 7%

and 8% of PEV-charging energy (depending upon the retail

price that is levied by the charging station). Indeed, 500 kW

is the assumed limit on PV installation. This implies that if

the charging station has a relaxed constraint, more PV panels

would be installed, reducing the environmental impact of PEV

charging.

Table I shows also that the profit of the charging station

is lower when using the bi-level model with a fixed retail

price of $0.50/kWh, compared to the $0.35/kWh case. This

suggests that a price of $0.50/kWh is too high, in the sense

that it drives away PEV-charging demand that could be served

economically by the charging station by increasing the size of

its installed components. Fig. 5 demonstrates this by showing

the optimized retail price of charging energy over the four

representative days that are modeled. This optimized price is

always below $0.50/kWh, showing that such a price is too high

and drives away too much PEV-charging demand. Although

$0.35/kWh is within the range of optimized prices, setting a

‘flat’ price of $0.35/kWh across the entire year is suboptimal.

Fig. 5. Optimized retail price of charging energy.

The purpose of levying time-variant prices is to shape

electricity demand around periods of low wholesale prices or

high PV availability. Fig. 6 shows the resulting operation of the

charging station under the optimized retail tariff. In addition

to shifting PEV-charging demand around PV availability and

wholesale prices, it allows for the use of energy storage to

engage in some arbitraging of wholesale prices.

Fig. 6. Optimized operation of charging station.

C. Benefit of Uncertainty Characterization

We examine the benefits of modeling uncertainty by com-

paring a case of deterministic planning, in which the values

of γd,t, π
W
d,t, and Υd,t,v are all fixed equal to their reference

values, to using our robust-optimization model. Table II shows

the results with three different uncertainty budgets for the

robust model. In each case, the uncertainty budgets of the

three robust variables are set equal to one another. That is,

we examine cases in which β
γ,min
d , β

π,min
d , and β

Υ,min
d,v are

set equal to the same value of either 0.9, 0.8, or 0.7 while

the values of β
γ,max
d , β

π,max
d , and β

Υ,max
d,v are set equal to the

same value of either 1.1, 1.2, or 1.3, respectively.

TABLE II
DESIGN OF CHARGING STATION WITH DETERMINISTIC AND ROBUST

MODELING APPROACHES

Robust Model
Uncertainty Budget (p.u.) Deterministic

Model[0.9, 1.1] [0.8, 1.2] [0.7, 1.3]

x
C 1283 958 809 1386

x
R 500 500 500 500

x
S,E 1667 1745 1866 1269

x
S,P 455 538 556 386

Expected 1134982 959671 764973 1057759
Profit ($)

Table II shows that the robust model tends to be more

conservative in sizing the charging piles (compared to the

deterministic model), while building larger energy-storage

systems. This conservatism with respect to sizing the charging

piles is due to uncertainty in PEV-charging demand. The larger

energy-storage size is due to greater price volatility with a

higher uncertainty budget. Energy storage helps the station

owner hedge against price uncertainty by being able to use

stored energy to manage price spikes.
The expected profits that are reported in Table II are

obtained by fixing the sizes of the charging-station components

based on the solutions that are given in each of the four cases

that are reported. Then, 100000 replications of the uncertain
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variables (e.g., γd,t, π
W
d,t, and Υd,t,v) are sampled randomly,

assuming that they have Gaussian distributions with mean

equal to their reference values and standard deviations equal

to 20% of their assumed means. The profit of operating the

charging station under each sample is computed to estimate the

expected profits that are reported in Table II. The table shows

that the greater conservatism that comes with using robust

optimization results in reduced profits for the charging-station

owner, except in the case with a relatively small uncertainty

budget (i.e., when all values of β
γ,min
d , β

π,min
d , and β

Υ,min
d,v

are set equal to 0.9 and all values of β
γ,max
d , β

π,max
d , and

β
Υ,max
d,v are set equal to 1.1. Thus, choosing the uncertainty

budget appropriately results in a reasonable tradeoff between

conservatism and optimality. Uncertainty budgets that are ‘too

high’ sacrifice optimality to hedge against uncertainty.

D. Impact of Energy-Storage Costs

As a final case, we examine the impacts of reducing the

capital cost of the energy storage by up to 20% relative to

the baseline values that we assume. Table III summarizes

the value of (4) in cases with different energy-storage costs.

As expected, the table shows that decreasing energy-storage

costs increases the profit of the charging-station owner. This

is because energy storage can be installed at a lower cost,

meaning that more capacity is built. This increased energy-

storage capacity results in the station owner having added

flexibility in managing volatility in wholesale energy prices,

the availability of PV-generated energy, and demands for

PEV-charging energy. Further analyses could be conducted to

determine the sensitivity of the optimized value of (4), the

optimized configuration of the charging station and tariffs for

PEV-charging energy, and the real-time use of the charging

station.

TABLE III
OPTIMIZED VALUE OF (4) WITH DIFFERENT ENERGY-STORAGE COSTS

Storage-Cost Reduction Value of (4)
Relative to Baseline (%) ($)

0 974545
5 976156
10 980716
15 987504
20 996168

VI. CONCLUSIONS

This paper presents a novel methodology for optimizing

the design of a public PEV-charging station. Our model takes

account explicitly of uncertainty and the strategic behavior of

PEV owners. As such, the model is formulated as a computa-

tionally intractable bi-level robust-optimization model, which

has the optimized decisions of PEV owners at the lower level.

Moreover, due to its robust nature, the upper-level problem has

a max-min-max structure. We apply complementary theory

to convert the problem into a single-level robust-optimization

model. We solve the resulting model efficiently using a

column-and-constraint-generation algorithm.

We demonstrate the model using a case study. In particular,

we show how the explicit treatment of the strategic behavior

of PEV owners and uncertainty impacts the optimal design

of the charging station. We demonstrate also that varying

over time the retail price that is levied for charging energy

benefits the station owner by having PEV-charging demands

follow the availability of low-cost and renewable energy. We

show that by varying the uncertainty budget in the robust-

optimization model, we can achieve a suitable balance between

conservatism and optimality of the solution that is obtained.
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