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Using Price-Based Signals to Control Plug-in
Electric Vehicle Fleet Charging

Xiaomin Xi and Ramteen Sioshansi,Senior Member, IEEE

Abstract—We study decentralized plug-in electric vehicle
(PEV) charging control, wherein the system operator (SO) sends
price-based signals to a load aggregator (LA) that optimizes
charging of a PEV fleet. We study a pricing scheme that conveys
price and quantity information to the LA and compare it to
a simpler price-only scheme. We prove that the price/quantity-
based mechanism can yield a socially optimal solution. We
also examine several numerical case studies to demonstratethe
superior performance of the price/quantity-based scheme.The
price/quantity scheme yields nearly identical PEV charging costs
compared to the social optima, whereas the price-only scheme is
highly sensitive to the choice of a regularization penalty term that
is needed to ensure convergence. We also show that the time to
compute an equilibrium with the price-only mechanism can beup
to two orders of magnitude greater than with the price/quantity
scheme and can involve 24 times more information exchange
between the SO and LA.

Index Terms—Plug-in electric vehicles, economic dispatch,
charging control, market design

NOMENCLATURE

A. Sets, Parameters, and Functions
T set of hours in optimization horizon
I set of conventional generators
Γ set of plug-in electric vehicle (PEV) groups
Iγ,t indicator that PEVs in groupγ ∈ Γ are parked at

the charging station during hourt ∈ T
Nγ number of PEVs in groupγ
Xγ total energy demand of PEV groupγ
R power capacity of PEV charger
Dt hour-t PEV energy demand
Lt hour-t non-PEV energy demand
P−

i generatori ∈ I ’s minimum power capacity
P+

i generatori’s maximum power capacity
R−

i generatori’s ramp-down limit
R+

i generatori’s ramp-up limit
Fi(·) generatori’s generation cost function
Ct(·) load aggregator’s (LA’s) hour-t PEV charging energy

cost function
ξ regularization penalty in LA’s cost function
∆ price-quantity function updating parameter
V value of lost load

B. System Operator’s Decision Variables
qi,t hour-t output of generatori
σt hour-t PEV charging load served
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C. Load Aggregator’s Decision Variables
bt total hour-t charging energy scheduled by the LA
δγ,t hour-t charging energy scheduled by the LA for PEV

groupγ
uγ charging energy for PEV groupγ that is unscheduled

by the LA

D. Multiple-Load Aggregator Case
A set of LAs
Γa set of PEV groups that arrive at LAa ∈ A’s

charging station
Ia,γ,t indicator that PEVs in groupγ of LA a are parked

at the charging station during hourt
Na,γ number of PEVs in groupγ of LA a
Xa,γ total energy demand of PEV groupγ of LA a
Da,t hour-t PEV energy demand of LAa
Ca,t(·) LA a’s hour-t PEV charging energy cost function
ba,t total hour-t charging energy scheduled by LAa
δa,γ,t hour-t charging energy scheduled by LAa for PEV

groupγ
ua,γ charging energy for PEV groupγ that is unscheduled

by LA a

E. Random PEV Driving Pattern Case
S set of future PEV arrival scenarios
πs probability that scenarios ∈ S occurs
Is,γ,t indicator that PEVs in groupγ are parked at the

charging station during hourt in scenarios
Nγ,s number of PEVs in groupγ in scenarios
Xγ,s total energy demand of PEV groupγ in scenarios
Dt,s hour-t PEV energy demand in scenarios
Ct,s(·) LA’s hour-t PEV charging energy cost function in

scenarios
qi,t,s hour-t output of generatori in scenarios
σt,s hour-t PEV charging load served in scenarios
bt,s total hour-t charging energy scheduled by the LA in

scenarios
δγ,t,s hour-t charging energy scheduled by the LA for PEV

groupγ in scenarios
uγ,s charging energy for PEV groupγ that is unscheduled

by the LA in scenarios

I. I NTRODUCTION

RECENT developments have increased interest in plug-in
electric vehicles (PEVs). PEVs can introduce costs and

benefits to electric power systems. The primary cost is that
PEVs add new loads, which can increase strains on generation,
transmission, and distribution assets [1]. A number of works
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model the effects of PEV charging on generation costs [2],
[3], transmission [4], and distribution transformer loading [5],
[6].

PEVs can offer benefits, however, since there is flexibility
in when charging loads can be served. Sioshansiet al. [7]–[10]
demonstrate that if PEV charging is properly coordinated with
commitment and dispatch, system-wide generator efficiency
can be improved. This is because the mix of generators that is
committed can be changed to include more efficient units that,
due to operational constraints, could not be used without the
PEV charging loads. Wuet al. [11] model energy allocation
among a fleet of PEVs between day-ahead and real-time
timeframes. They model a day-ahead block energy purchase,
based on price and PEV energy demand forecasts. They then
optimize actual energy delivery to the fleet based on real-time
conditions. Sortomme and El-Sharkawi [12], [13] demonstrate
the benefits of what they term unidirectional vehicle-to-grid
services, wherein PEVs adjust their real-time charging loads
to provide regulation and other ancillary services. Clement-
Nyns et al. [5] demonstrate the benefits of coordinated PEV
charging in minimizing distribution feeder losses. Richardson
et al. [14], [15] model distribution impacts of PEV charging
with the objective of maximizing energy delivered to vehicles
while respecting network constraints.

These benefits of PEVs presuppose some form of control to
coordinate charging and power system operations. Most PEV
analyses assume centralized control by the system operator
(SO), which schedules PEV charging subject to minimum
service requirements [2], [7], [16]. This is akin to solving
a social planner’s problem. While centralized control maxi-
mizes coordination between power system operations and PEV
charging, it may be difficult to implement. Centralized control
may require the SO to track the status of each PEV, raising data
management and computational issues. Bashash and Fathy
[17] suggest the use of a universal control signal that may
overcome this limitation, however. Otherwise, decentralized
control, for instance through price signals, is offered as an
alternative [1], [18]. Under such a scheme, charging decisions
are left to PEV owners or perhaps to a load aggregator
(LA) that optimizes charging for a fleet of PEVs. Time-
variant electricity tariffs are designed to encourage optimal
charging behavior. For instance, a time-of-use rate leviesa
lower energy price during certain hours, encouraging charging
at these times. Real-time pricing, which dynamically sets
prices based on real-time marginal energy costs, provides PEV
owners with even finer-grained price signals. Indeed, if prices
are set equal to the marginal cost of energy from the social
planner’s solution, they should support a Nash equilibriumin
which a self-interested SO and LAs follow the social planner’s
solution.

A difficulty in implementing such a scheme is that one
must typically solve the social planner’s problem to find
equilibrium-supporting prices. Alternatively, one may use it-
erative price discovery [19], [20]. Such a framework assumes
that the SO sends real-time prices to LAs after receiving
charging demands, while LAs adjust their charging patterns
in response to the prices. This is done repeatedly until settling
at an equilibrium. A shortcoming of this approach, however,

is that equilibria may be unstable or difficult to compute [21],
without any convergence guarantee. Maet al. [19] overcome
these issues by adding a regularization term, which penalizes
differences between each PEV’s charging profile and the
population average, to the LAs’ objective functions. While
providing convergence guarantees, there is no clear economic
rationale for including such penalties. This is because the
regularization term does not reflect the social cost of a good
or service being consumed by the LA.

Following on these seminal works, this paper further ex-
plores the use of price-based techniques to coordinate PEV
charging with power system operations. We examine a simple
price-only control mechanism, in which LAs are given the
most recent marginal prices at each iteration. We contrast this
with a scheme that sends price and quantity information to
the LAs. Specifically, the LA is given data specifying prices
as a function of the quantity of charging load scheduled. This
function is iteratively constructed by collecting marginal price
data as the SO and LA interact. We prove that under mild
conditions the price/quantity scheme induces an equilibrium
that is an optimum of the social planner’s problem, without
the need for any regularization terms. We also use numerical
case studies to compare the performance of the two con-
trol schemes. Our results demonstrate that the price/quantity
mechanism can find an equilibrium that is close to a social
optimum. While the price-only scheme can provide similar
costs to a social optimum, its performance is very sensitive
to the choice of regularization penalty term. Moreover, we
show that the price-only mechanism typically requires much
more computational effort to find an equilibrium than the
price/quantity one does.

The remainder of this paper is organized into six sections.
Section II describes the setting that we study, provides formu-
lations of the SO’s, LA’s, and social planner’s problems, and
details the pricing schemes examined. Section III presentsour
theoretical results showing that the price/quantity mechanism
can achieve social optimality. Sections IV–VI summarize our
numerical case studies and their results. Section VII concludes.

II. M ARKET MODELS

We model the market as consisting of two interacting
players—an SO, which determines generator dispatch, and
an LA, which schedules PEV charging. The SO solves an
economic dispatch problem to minimize the cost of serving
PEV and non-PEV loads. Based on the dispatch solution, the
SO sends a price signal to the LA, which is used in the LA’s
charging scheduling problem to minimize fleet-wide costs.
The LA is assumed to have complete discretion to schedule
charging within the window of time that each PEV is parked.
The optimized charging schedule is sent to the SO, which then
reoptimizes the system dispatch and sends an updated signalto
the LA. We compute an equilibrium by iterating between the
SO and LA problems, until neither player changes its decisions
between two successive iterations. We examine two different
pricing signals, which are detailed in Section II-D.

We now provide detailed formulations of the SO and LA
problems. We then describe the iterative technique used to
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compute equilibria between the SO and LA and the pricing
schemes considered in our analysis. The model formulations
and theoretical results in this section and the next assume that
there is a single LA that has perfect foresight of future PEV
charging demand. We examine case studies, in which these
two assumptions are relaxed, in Sections V and VI.

A. System Operator’s Economic Dispatch Problem

The system operator is assumed to solve a standard eco-
nomic dispatch problem, the formulation of which is:

min
∑

t∈T

[

∑

i∈I

Fi(qi,t) + V · (Dt − σt)

]

; (1)

s.t.
∑

i∈I

qi,t = Lt + σt; ∀ t ∈ T ; (2)

P−
i ≤ qi,t ≤ P

+
i ; ∀ i ∈ I; t ∈ T ; (3)

R−
i ≤ qi,t − qi,t−1 ≤ R

+
i ; ∀ i ∈ I; t ∈ T ; (4)

0 ≤ σt ≤ Dt; ∀ t ∈ T. (5)

Objective function (1) minimizes cost and we assume convex
subdifferentiable generator cost functions. The model allows
the SO to not serve PEV charging loads scheduled by the LA.
Doing so incurs a cost, however, which is given by an assumed
value of lost load,V . The ability to curtail PEV charging is
included to ensure that the SO’s problem is feasible for any
charging load scheduled by the LA. We assume throughout,
however, thatV is greater than the marginal cost of generation,
meaning that if generating capacity is available it is optimal
for the SO to serve PEV charging demand.

Constraint set (2) enforces the load-balance requirement
that generation and demand be exactly equal in each hour.
Constraint sets (3) and (4) are output and ramping limits on
conventional generators. We assume that the non-PEV loads
are such that there is always some excess generating capacity
available to serve PEV charging needs in every hour—although
the amount of generation capacity may be insufficient to serve
all of the PEV charging demand in any given hour. Constraint
set (5) limits the amount of PEV charging energy served to
be no greater than the energy scheduled by the LA. We let
V ∗

SO(D) denote the optimal objective function value when the
LA submits the PEV charging schedule,D.

B. Load Aggregator’s Charging Scheduling Problem

We assume that the LA classifies the PEVs by groups and
that all of the PEVs within a group arrive and depart the
charging station at the same time. We further assume that
all of the PEVs within a group have the same demand for
charging energy upon arrival. We make this assumption to
simplify notation and it can be relaxed without losing any of
our theoretical results. The LA schedules PEV charging to
minimize costs, with these costs based on a price signal sent
by the SO. We defineCt(·) as the total cost of PEV charging
energy levied on the LA, as a function of the total hour-t
charging load. To provide a general formulation of the LA’s
problem, we do not assume that these pricing functions have
any specific structure. We detail the pricing schemes that we

examine, and the corresponding form of these functions, in
Section II-D. The formulation of the LA’s problem is:

min
∑

t∈T

Ct(bt) + V ·
∑

γ∈Γ

uγ ; (6)

s.t. bt =
∑

γ∈Γ

δγ,t; ∀ t ∈ T ; (7)

0 ≤ δγ,t ≤ R ·Nγ · Iγ,t; ∀ γ ∈ Γ; t ∈ T ; (8)
∑

t∈T

δγ,t + uγ = Xγ ; ∀ γ ∈ Γ; (9)

uγ ≥ 0; ∀ γ ∈ Γ. (10)

Objective function (6) minimizes PEV charging costs. The
model allows the LA to leave PEV charging demand unserved,
which incurs a penalty given by the value of lost load.
Constraint set (7) defines the total amount of charging energy
scheduled in each hour as the sum of charging energy allocated
to the different PEV groups. Constraint set (8) limits the
amount of charging energy scheduled to each group in each
hour to be less than the capacity of the chargers—which
are assumed to be homogeneous. It further restricts PEVs
within each group to only be charged during hours in which
they are parked at the charging station. Constraint set (9)
defines the amount of unserved charging demand for each
PEV group as the difference between the charging demand
and scheduled load while constraint set (10) requires unserved
charging demand to be non-negative.

C. Equilibrium Computation

We compute a Nash equilibrium between the SO and LA
using an iterative technique, which is outlined in Algorithm 1
[19], [20]. When k = 0 the algorithm initializes by fixing
the PEV demands equal to zero (Step 4), solving the SO’s
problem (Step 9), and determining the initial price signalsto
send the LA (Step 10). In subsequent iterations, the LA solves
its PEV scheduling problem based on the most recent price
information (Step 6) and these updated charging schedules are
used in the SO’s problem (Steps 7 and 9) and price updating
(Step 10). This iterative process repeats until reaching a Nash
equilibrium (i.e., neither the SO nor LA has an incentive to
unilaterally deviate from its optimal decision in the previous
iteration) or we conduct more than̄k iterations. This iteration
limit is needed for some pricing schemes, which can yield
unstable Nash equilibria that are difficult to compute.

D. Price Signals

Commodity pricing is typically based on the marginal cost
of an incremental unit of demand. In the context of our
problem, this would be given by the values of the Lagrange
multipliers associated with constraint set (2) in the SO’s prob-
lem. We letλt(D) denote the Lagrange multipliers of these
constraints when the LA submits the PEV charging schedule,
D, and specifically defineλk

t as the Lagrange multipliers
of these constraints when solving the SO’s problem in the
kth iteration of Algorithm 1. We now detail the two pricing
schemes that we study.
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Algorithm 1 Equilibrium Computation
1: k ← 0 ⊲ Set iteration count to zero
2: repeat
3: if k = 0 then
4: Dt ← 0 for all t ∈ T
5: else
6: (bk, δk, uk)← arg min (6) s.t. (7)− (10)
7: Dt ← bkt for all t ∈ T
8: end if
9: (qk, σk)← arg min (1) s.t. (2)− (5)

10: UpdateCt(·) based on{qκ, σκ}kκ=0

11: k ← k + 1
12: until k ≥ k̄ or

[

(bk−2, δk−2, uk−2) = (bk−1, δk−1, uk−1)
and (qk−2, σk−2) = (qk−1, σk−1)

]

1) Marginal Pricing: The marginal pricing scheme as-
sumes that the price of charging energy in each hour is equal
to the value of the corresponding Lagrange multiplier from the
most recent solution of the SO’s problem. Thus, the updated
marginal pricing function after thekth iteration of Algorithm 1
is defined as:

Ct(bt) = λk−1
t · bt + ξ · (bt − b

k−1
t )2. (11)

Theξ ·(bt−b
k−1
t )2 term, whereξ ≥ 0, is a regularization term

that penalizes the LA for changing its charging schedule from
the schedule submitted in the previous iteration. We include
this term based on the work of Maet al. [19], who show that it
ensures convergence of Algorithm 1, so long asξ is properly
chosen. Whenk = 0, the regularization term is excluded.

2) Price/Quantity-Based Signal:This pricing scheme uses
all of the marginal price data collected in all of the previous
iterations of Algorithm 1 to construct a non-decreasing stepped
price function. This price function is constructed iteratively,
since each updated vector of PEV charging demands results
in different optimal solution/Lagrange multiplier pairs of the
SO’s problem. We letΛk

t (bt) denote the updated price function
constructed in Step 10 of thekth iteration of Algorithm 1 and
describe howΛk is iteratively constructed.

When k = 0, we fix Λ0
t (bt) = λ0

t , ∀ t. For anyk ≥ 1
we defineḃk,0

t , ḃk,1
t , . . . , ḃk,k

t , to be the set of breakpoints in
Λk−1

t (bt), where by convention we takėbk,0
t = 0 and ḃk,k

t =
+∞. We then define:

Dk,−
t = max

i

{

ḃk−1,i
t : Λk−1

t (ḃk−1,i
t ) < λk

t , ḃ
k−1,i
t < Dt

}

,

(12)
as the largest breakpoint inΛk−1

t (bt) which is smaller than
Dt and gives a smaller price than the corresponding Lagrange
multiplier. If no such breakpoint exists, by convention we let
Dk,−

t = 0. Similarly, we define:

Dk,+
t = min

i

{

ḃk−1,i
t : lim

ν→0+
Λk−1

t (ḃk−1,i
t + ν) ≥ λk

t

}

,

(13)
as the smallest breakpoint inΛk−1

t (bt) that has a larger price
than the Lagrange multiplier found in the current iteration. If
no such breakpoint exists, we letDk,+

t = +∞. The new prices

are then defined as:

Λk
t (bt) =

{

λk
t , if βk,− < bt ≤ β

k,+,

Λk−1
t (bt), otherwise,

(14)

where:

βk,− = Dt −min

{

∆,
Dt −D

k,−
t

2

}

, (15)

βk,+ = max
{

Dt, D
k,+
t

}

, (16)

and∆ > 0 is a fixed parameter. The total cost of energy levied
on the LA in thekth iteration of Algorithm 1 is defined as:

Ct(bt) =

∫ bt

0

Λk−1
t (ψ)dψ. (17)

In essence, our method begins with an underestimate of
the true cost of PEV charging, since we fixΛ0

t (bt) equal to
the marginal cost of energy ifD = 0. At each iteration, we
observe a new Lagrange multiplier value associated with the
latest PEV charging load and assume that this marginal cost
applies in a small neighborhood of the current charging bid,
Dt.

Fig. 1 illustrates our proposed price-updating scheme for a
particular hour through two iterations of Algorithm 1. When
k = 0, Λ0

t (bt) is initially fixed equal toλ0
t . Whenk = 1, the

LA solves its charging control problem and schedulesb1t MW,
resulting in a Lagrange multiplier value ofλ1

t in the SO’s
problem. To update the price function, the SO determines that
D1,−

t = 0 andD1,+
t = +∞. The updated price function is

then:

Λ1
t (bt) =

{

λ0
t , if bt ≤ D

2,−
t ,

λ1
t , if D2,−

t < bt.
(18)

Note that in this example,∆ < (b1t − D1,−
t )/2, since the

second segment of theΛ1
t (bt) function does not extend down

to the midpoint betweenb1t andD1,−
t .

b1tb2t0 ḃ
2,1
t D

2,+
t

λ
0
t

λ
2
t

λ
1
t

PEV Charging Energy Demand [MWh]

E
n
er
g
y
P
ri
ce

[$
/
M
W

h
]

 

 
Actual Cost
Λ
0
t (b)

Λ
1
t (b)

Λ
2
t (b)

Fig. 1. Updated price function after three iterations of Algorithm 1 used
with price/quantity-based signal.

Whenk = 2, the LA reoptimizes PEV charging using the
updated price function and schedulesb2t MW, resulting in
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Lagrange multiplier valueλ2
t . The SO also determines that

D2,−
t = 0 andD2,+

t is the value noted in Fig. 1. This gives
the updated price function:

Λ2
t (bt) =







λ0
t , if bt ≤ ḃ

2,1
t ,

λ2
t , if ḃ2,1

t < bt ≤ D
2,+
t ,

λ1
t , if D2,+

t < bt.

(19)

E. Convergence of Algorithm 1

Convergence of Algorithm 1 can be guaranteed with both
pricing schemes. In the case of the price-only scheme, con-
vergence is governed by the choice ofξ, insomuch as the
algorithm is guaranteed to terminate if this parameter is chosen
properly [19]. We prove (cf. Lemma 2) that the price/quantity-
based scheme is guaranteed to converge, with the convergence
rate governed by the choice of∆.

F. Social Planner’s Problem

The social planner’s problem assumes that a single entity
optimizes both power system dispatch and PEV charging. This
is the counterfactual ‘ideal’ case against which we benchmark
our price-based charging control schemes. This problem is
formulated as:

min
∑

t∈T

[

∑

i∈I

Fi(qi,t) + V · (Dt − σt)

]

+
∑

γ∈Γ

V · uγ ; (20)

s.t. (2)–(5) and (7)–(10); (21)

bt = Dt; ∀ t ∈ T. (22)

The social planner’s problem minimizes the cost of generation
and unserved PEV charging demand subject to the same set
of power system and PEV charging constraints in the SO and
LA problems. Constraint set (22) defines the PEV charging
demand parameters in the SO’s problem in terms of the
charging decision variables in the LA’s problem.

III. SOCIAL OPTIMALITY OF PRICING SCHEMES

We now turn to proving that the price/quantity-based control
scheme proposed in Section II-D2 can yield a socially optimal
PEV charging schedule. This discussion is divided into two
parts. We first show that a socially optimal PEV charging
schedule is optimal for the LA, if the LA is given the
true price/quantity functions. We then show that the iterative
technique used to construct theΛk

t (bt) functions causes the
LA’s optimal charging pattern to converge to a near-social
optimum. Before proceeding, we explicitly state an assumption
underlying our theoretical results.

Assumption 1:The non-PEV loads are such that there is
generating capacity available to provide some PEV charging
energy in each hour. Moreover, the value of lost load,V , is
sufficiently large compared to the marginal cost of generation
that it is optimal for the SO to provide some PEV charging
energy in each hour, if it is requested by the LA.

We next note that we can rewrite the social planner’s
problem as:

min
∑

γ∈Γ

V · uγ +























min
∑

t∈T

[

∑

i∈I

Fi(qi,t)

+V · (bt − σt)

]

s.t. (2)–(5)























; (23)

s.t. (7)–(10), (24)

where constraint (22) is explicitly substituted into the objec-
tive. By the principal of optimality, this is equivalent to:

min V ∗
SO(b) +

∑

γ∈Γ

V · uγ ; (25)

s.t. (7)–(10), (26)

Thus, the Karush-Kuhn Tucker (KKT) conditions of the social
planner’s problem are:

∂

∂bt
V ∗

SO(bt) + µ7
t = 0 (27)

−µ7
t − µ

8,−
γ,t + µ8,+

γ,t + µ9
γ = 0 (28)

V + µ9
γ − µ

10
γ = 0, (29)

whereµ7
t , µ8

γ,t, andµ9
γ are Lagrange multipliers on constraint

sets (7), (8), and (9), respectively. We also prove in Lemma 3
(cf. the appendix) that:

∂

∂bt
V ∗

SO(bt) = λt(b). (30)

Hence, condition (27) becomes:

λt(b) + µ7
t = 0. (31)

We let Λ∗
t (bt) = λt(b) denote the true function that gives

the Lagrange multiplier value associated with constraint (2)
in hour t when D = b in the SO’s problem. We show in
Lemma 4 (cf. the appendix) thatΛ∗

t (bt) is non-decreasing inbt.
Based on these two lemmas, we now show that if the price of
PEV charging energy levied on the LA is given by (17) using
the true price functions, an optimum of the social planner’s
problem is also an optimum of the LA’s problem.

Lemma 1:Suppose that Assumption 1 is true and that the
price levied on the LA for PEV charging energy is given
by (17) using theΛ∗(·) price functions and all of theΛ∗

t (bt)
functions are non-decreasing. Then an optimum of the social
planner’s problem is also an optimum of the LA’s problem.

Proof: The KKT conditions1 for the LA’s problem are:

C′
t(bt) + µ7

t = 0 (32)

−µ7
t − µ

8,−
γ,t + µ8,+

γ,t + µ9
γ = 0 (33)

V + µ9
γ − µ

10
γ = 0. (34)

1Since theΛ∗

t (bt) functions may be discontinuous (e.g., step functions), the
LA’s objective function is not necessarily continuously differentiable. We can,
however, appeal to a generalized form of the KKT conditions for a convex
subdifferentiable objective, which the LA’s problem is guaranteed to have,
that gives the same result.



6

From (17) we have that:

C′
t(bt) =

d

dbt

∫ bt

0

Λ∗
t (ψ)dψ (35)

= Λ∗
t (bt)

= λt(bt).

Since we assume that theFi(·) functions are convex and
Λ∗

t (bt) functions non-decreasing, the LA’s and social planner’s
problems are both convex, and the KKT conditions are also
sufficient for optima. Since optima of the LA’s and social
planner’s problems have the same necessary conditions, an
optimum of the social planner’s problem must be optimal in
the LA’s problem as well.

We hereafter letb∗ denote a PEV charging schedule that
is optimal in the LA’s problem, if the price levied on the
LA is given by (17) using theΛ∗(·) price functions. Suppose
that bk, the solution to the LA’s problem in thekth iteration
of Algorithm 1, is not equal tob∗. Given the high cost of
unscheduled PEV charging in the LA’s problem, it must be
true that for some pairs of hours,t and t′, we havebkt > b∗t
and bkt′ < b∗t′ . We refer to t as the hour in which PEV
charging is overscheduled andt′ as the hour in which it is
underscheduled. Thus, for{bk} to get close tob∗ we must have
PEV charging shifted from over- to under-scheduled hours. We
show in the following lemma that our price function updating
scheme achieves this.

Lemma 2:Suppose that Assumption 1 is true, the price
levied on the LA for PEV charging energy is given by (17)
using theΛk(·) price functions, and that all of theΛ∗

t (bt)
functions are non-decreasing. Then there exists a function,
d(∆), with:

d(∆) ≥ 0, lim
∆→0+

d(∆) = 0; (36)

such that after receiving a new approximation of the price
functions in each iteration, the LA always prefers to reduce
(increase) scheduled charging energy in hours in which it is
initially overscheduled (underscheduled), unless|bkt − b

∗
t | ≤

d(∆) for all t, in which casebk = bk+1.
Proof: Note that our pricing mechanism starts with

Λ0
t (bt) = Λ∗

t (0) for all t, which is an underestimate of the true
marginal price, since theΛ∗

t (bt) functions are non-decreasing.
Suppose thatb1 6= b∗, meaning that there must bet and t′

such thatb1t > b∗t and b1t′ < b∗t′ . Since PEV charging loads
can be feasibly shifted from hourt to t′, it must be true
that Λ∗

t (0) ≤ Λ∗
t′(0). Moreover, sinceΛ∗

t′(·) is assumed to
be non-decreasing, it must be true thatΛ∗

t (0) ≤ Λ∗
t′(bt′) for

all bt′ ≥ 0.
We now prove the desired result using an inductive argu-

ment. Whenk = 1 our updated price functions have:

Λ1
t (bt) = Λ∗

t (0), if bt ≤ b1t − η
1
t , (37)

and:

Λ1
t′(bt′) = λ1

t′ , if bt′ ≥ b1t′ , (38)

whereη1
t = min{∆, b1t/2}. We now define the PEV charging

schedule,̂b(η1
t ), as:

b̂r(η
1
t ) =







b1t − η
1
t , if r = t,

b1t′ + η1
t , if r = t′,

b1r, otherwise.
(39)

Note that with the updated price functions, the difference
between the LA’s cost of charging scheduleb1 and b̂(η1

t ) is
η1

t · (λ
1
t − λ1

t′). If λ1
t > λ1

t′ , the cost difference is positive,
and the LA preferŝb(η1

t ) and would update its charging
schedule accordingly in the following iteration. Otherwise, the
LA prefersb1 and does not update its schedule in the following
iteration. Moreover, the LA would be unwilling to change its
schedule to anŷb(η) with η ≥ η1

t with theΛ1 price functions,
since doing so further substitutes lower-priced energy in hour
t with higher-priced energy in hourt′. Note, however, that by
construction,Λ1

t (·) and Λ1
t′(·) underestimate the true cost of

PEV charging schedules of the form̂b(η) with η ≥ η1
t . Since

with these underestimated prices the LA has no desire to adjust
its charging schedule, there is no need to determine the true
marginal cost of energy forbt < b1t and bt′ > b1t′ to find a
near-socially optimal charging schedule. Thus, the incumbent
solution is near-socially optimal.

Suppose that in thekth iteration we havebk 6= b∗ and that
bkt > b∗t andbkt′ < b∗t′ . According to the price updating scheme
we have:

Λk
t (bt) = Λ∗

t (0), if bt ≤ bkt − η
k
t , (40)

and:
Λk

t′(bt′) = λk
t′ , if bt′ ≥ bkt′ , (41)

whereηk
t = min{∆, bkt /2}. We can define the PEV charging

schedule,̂b(ηk
t ), as in (39). The difference between the LA’s

cost of charging schedulebk and b̂(ηk
t ) is ηk

t · (λ
k
t − λk

t′).
If λk

t > λk
t′ the LA updates it charging schedule tôb(ηk

t )
in the next iteration. Otherwise, it does not. Repeating the
same argument as whenk = 1, theΛk

t (·) andΛk
t′(·) function

underestimate the true cost of PEV charging schedules of the
form b̂(η) with η ≥ ηk

t . Since charging schedules of this form
are suboptimal with underestimated costs, there is again no
need to determine the true marginal cost of energy forbt < bkt
andbt′ > bkt′ to find a near-socially optimal charging schedule.
Thus, the incumbent solution is again near-socially optimal.

We finally note that adjusting the value of∆ gives Λk

functions and the resultingbk that can be made arbitrarily
close toΛ∗ andb∗.

The crux of this result is that if PEV charging is over- and
under-scheduled in a pair of hours,t and t′, respectively, the
updating scheme makes the price of charging energy in hourt
relatively less attractive than that in hourt′. This incentivizes
the LA to shift some of its charging load from hourt to t′.
This process repeats iteratively until the approximated price
functions,Λk

t (·) and Λk
t′(·), give reasonable approximations

of the true price functions in a neighborhood ofb∗t andb∗t′ , at
which point bkt and bkt′ are near-socially optimal and the LA
does not update its schedule. Note that depending on how far
b0r is from b∗r , it may take a different number of iterations
for the price functions and schedules in different hours to
converge. The parameter,∆, controls the rate of convergence



7

and final solution quality. Larger values result in a more coarse
approximation of theΛ∗

r(·) functions, but also means that
fewer iterations must be conducted before convergence.

IV. CASE STUDY

We examine three numerical case studies to demonstrate
the benefits of directly controlling PEV charging and the
relative performance of the two price-based control schemes.
We begin, in this section, with a case that conforms to
the assumptions underlying our theoretical results. Namely,
there is a single LA that knows PEV arrival and departure
times and charging demands with certaintya priori. We then
examine two sensitivity cases with multiple LAs and random
PEV driving patterns in Sections V and VI, respectively.
These are intended to study the effectiveness of the control
schemes when these assumptions are relaxed. We measure the
performance of the control schemes by system cost and the
number of iterations, amount of CPU time, and amount of data
exchanged between the SO and LA to compute equilibria.

A. Case Study Data

We examine power system operations and PEV charging
over a one-day period. The modeled power system consists of
three thermal generators. Generator characteristics are summa-
rized in Table I. We assume each conventional generator,i, has
a convex quadratic cost function, identical ramp-up and -down
limits given by Ri, and starting generation levels given by
qi,0. We assume24500 PEV arrivals, with times parked at the
charging station and charging demands that are summarized in
Table II (the24500 PEV arrivals corresponds to the sum of the
Nγ values reported). This gives a total PEV charging demand
of 200 MWh, which amounts to a4% increase in electricity
demand over the one-day period. Each PEV charging station
is assumed to have a4 kW power limit. Fig. 2 shows the
system’s non-PEV load and the net load when the social
planner schedules PEV charging or in an uncontrolled case
in which PEVs charge immediately upon arrival at a charging
station.

TABLE I
CONVENTIONAL GENERATORCHARACTERISTICS

Unit P−

i
P+

i
Ri qi,0 Fi(qi)

1 10 120 15 70 110.85 + 5.36 · q1 + 0.0050 · q2
1

2 10 80 10 55 80.87 + 10.72 · q2 + 0.0137 · q2
2

3 20 150 100 60 85.24 + 36.51 · q3 + 0.0087 · q2
3

When computing equilibria using the marginal pricing
scheme, we use different values ranging between0.05 and
20 for the regularization penalty term,ξ. We assume∆ =
0.5 kWh when definingβk,− in the price/quantity-based
signal. We terminate Algorithm 1 if the maximum absolute
difference between the charging profiles of two consecutive
iterations is less than0.1% and set an iteration limit of
k̄ = 2000. This high iteration limit is needed for the price-only
control scheme, the convergence properties of which is highly
sensitive to the choice ofξ. All of the models are formulated
using version12.1.0 of the AMPL modeling package and
solved with version12.1.0 of theCPLEX optimization package
on a quad-core2.7 GHz Linux system with4 GB of RAM.

TABLE II
PEV ARRIVAL AND DEPARTURET IMES AND CHARGING ENERGY

DEMANDS

Hours Hours
γ Parked Nγ Xγ γ Parked Nγ Xγ

1 1–7 500 3.75 22 8–17 500 5.5
2 1–8 1000 7.5 23 9–15 250 2.5
3 1–9 500 3.5 24 9–16 1250 13
4 1–10 500 4 25 9–17 2500 17
5 1–11 250 2 26 9–18 1000 10
6 1–12 250 1.75 27 10–16 1000 9.5
7 2–7 250 2 28 10–17 1500 14
8 2–8 1000 7.5 29 10–18 1000 11
9 2–9 1000 6 30 11–17 1000 8
10 2–10 250 3 31 11–18 1000 7.5
11 2–11 250 2 32 12–17 500 3
12 2–12 250 1.75 33 12–18 500 5
13 3–9 250 2 34 12–19 500 4
14 3–10 250 2.5 35 13–18 250 3
15 3–11 250 2 36 13–19 500 2
16 3–12 250 1.75 37 14–19 500 2
17 4–11 250 1.5 38 14–20 500 5
18 4–12 250 1.5 39 15–20 500 5
19 5–11 250 1.25 40 15–21 250 1
20 8–15 500 5 41 16–20 500 3
21 8–16 500 5 42 16–21 250 2
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Fig. 2. System load.

B. Case Study Results

We compare system performance between the cases listed
in Table III, which rely on different forms of PEV charging
scheduling. Case 1 assumes that there are no PEVs whereas
Case 5 assumes uncontrolled charging. Case 2 assumes that
charging is controlled by a social planner and cases 3a
through 3d assume price-only control with different regular-
ization penalty terms. Case 3c, which usesξ = 1.025, has the
best performance in terms of cost and equilibrium computation
time. Case 4 uses the proposed price/quantity-based control
scheme. Table III lists total generation and PEV charging
curtailment costs. Since all PEV charging demands are met
in all of the cases, curtailment costs are zero.

The cost differences between each of Cases 2 through 5
and Case 1 represent incremental PEV charging costs with
different control schemes. Table IV reports these charging
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TABLE III
CASESEXAMINED AND TOTAL COSTS

Case PEV Charging Total Cost [$]
1 None 68589
2 Social Planner 73972
3a Price-Only(ξ = 0.1) 74195
3b Price-Only(ξ = 1) 73974
3c Price-Only(ξ = 1.025)∗ 73973
3d Price-Only(ξ = 20) 74098
4 Price/Quantity 73973
5 Uncontrolled 74708

costs in the different cases examined. These cost are given as
absolute dollar amounts and on a per-MWh (of PEV charging
load) basis. As expected, the social planner minimizes PEV
charging costs whereas uncontrolled charging is the most
costly, resulting in14% higher driving costs than the social
optimum.

TABLE IV
PEV CHARGING COSTS

Case [$] [$/MWh]
Social Planner 5383 26.88
Price-Only(ξ = 0.1) 5606 28.00
Price-Only(ξ = 1) 5385 26.89
Price-Only(ξ = 1.025)∗ 5384 26.89
Price-Only(ξ = 20) 5509 27.51
Price/Quantity 5384 26.89
Uncontrolled 6119 30.56

The price/quantity-based mechanism results in very slight
cost increases compared to the social planner. This increase
reflects the incremental cost of relying on price-based charging
control. The increase is due to the iterative price updating
process terminating before reaching the true social optimum
(cf. Lemma 2) and is a consequence of the approximate nature
of the price function (i.e., the choice of∆). The cost difference
between the price/quantity and social planner cases decreases
as ∆ → 0, although with more computation needed. Our
choice of∆ = 0.5 kWh requires25 iterations of Algorithm 1
and3.23 s of CPU time to compute an equilibrium, with trivial
efficiency losses.

Performance of the price-only mechanism, both in terms of
charging cost and equilibrium computation, is highly sensitive
to the choice ofξ. If this term is chosen correctly (i.e.,
ξ = 1.025), the resulting charging patterns have costs that are
nearly identical to the price/quantity and social planner cases.
Poorly-chosen values result in Algorithm 1 not converging
and much higher costs. This is illustrated in Fig. 3, which
shows charging costs and equilibrium computation time with
price-only charging control as a function ofξ. It also shows
charging costs with social planning and uncontrolled charging,
indicating how price-only control performs compared to these
extreme cases. It should be noted that with price-only control,
Algorithm 1 only converges withξ between0.95 and 2.5.
However, the amount of time it takes to compute an equi-
librium ranges between448 iterations, which takes41.8 s of
CPU time, up to1107 iterations taking106.3 s.

There is also the related issue of information exchange
between the SO and LA. Each iteration of Algorithm 1
requires the exchange of48 numbers between the SO and
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Fig. 3. PEV charging costs (solid line) and equilibrium computation time
(dashed line) with price-only mechanism as a function ofξ.

LA when the price-only mechanism is used—the SO must
communicate the updated hourly prices to the LA and the LA
must send hourly charging loads back to the SO. By contrast,
each iteration of Algorithm 1 requires the exchange of up to
96 numbers between the SO and LA with the price/quantity
mechanism. This is because each iteration updates the price
function by imposing a new price in each hour between two
breakpoints (the price outside of these breakpoints remainthe
same as in the previous iteration, as illustrated in Fig. 1).
Thus, the SO sends24 hourly prices and48 corresponding
breakpoints to the LA, and the LA sends24 hourly charging
loads back. In the25 iterations it takes for Algorithm 1 to
converge with the price/quantity mechanism,2400 numbers
are exchanged. With the price-only mechanism, a minimum of
21504 number are exchanged (i.e., with the best-case choice
of ξ = 1.025).

C. Sensitivity of Optimalξ to Problem Parameters

A further limitation of the price-only mechanism is that the
optimal choice ofξ is highly sensitive to the underlying prob-
lem parameters. To demonstrate this, we examine three addi-
tional variations of the base case described in Section IV-A.
The first assumes different costs for the three generators, given
by:

F1(q1) = 110.85 + 5.36 · q1 + 0.0424 · q21 ,

F2(q2) = 80.87 + 10.72 · q2 + 0.0312 · q22 ,

and:
F3(q3) = 85.24 + 12.59 · q3 + 0.0137 · q23 .

The second assumes the same generation costs as in the base
case, but that generator 1’s ramp-up and generator 2’s ramp-
down capabilities change to30 and20 MW, respectively. The
third case assumes the same generation costs and ramping
capabilities as in the base case, but that there are twice as
many PEV arrivals before hour 12 and70% fewer after hour
12, compared to the base case.

Table V shows the optimal choice ofξ, which gives the
lowest PEV charging cost and equilibrium computation time,
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in the base and sensitivity cases. It also gives the range ofξ
values for which Algorithm 1 converges in2000 iterations or
less. The table shows that the price-only mechanism does not
converge in2000 iterations in the last sensitivity case for any
value ofξ tested.

TABLE V
OPTIMAL ξ IN DIFFERENTCASES

Optimal Range ofξ for which Algorithm 1
Case ξ Converges in 2000 Iterations
Base Case 1.025 0.95–2.5
Generation Cost 0.1 0.07–1.25
Ramp Limits 0.475 0.45–1.5
PEV Numbers 0.67 none

The discussion in Section IV-B shows that the price-only
mechanism faces the added difficulty that its performance is
highly sensitive to choosing a good regularization penalty
parameter,ξ. Otherwise, equilibrium computation time and
resulting costs can be significantly higher than the social
optimum. The results in Table V further show that the optimal
choice of ξ is very sensitive to the underlying problem
parameters. This suggests that one may have to rely on real-
time tuning to determine an optimal choice ofξ, which can be
cumbersome and difficult. Moreover, this tuning process would
have to be repeated as the generation mix, number of PEVs,
driving patterns, and other system characteristics changeover
time.

V. M ULTIPLE-LOAD AGGREGATORCASE

In this case we assume that PEV charging is managed by
multiple LAs.

A. Model Refinement

Before discussing the case study data and results, we first
refine the model formulations and pricing schemes outlined in
Section II to account for multiple LAs.

1) SO’s Problem:The SO’s problem is given by:

min
∑

t∈T

[

∑

i∈I

Fi(qi,t) + V ·

(

∑

a∈A

Da,t − σt

)]

; (42)

s.t.
∑

i∈I

qi,t = Lt + σt; ∀ t ∈ T ; (43)

P−

i ≤ qi,t ≤ P
+
i ; ∀ i ∈ I; t ∈ T ; (44)

R−
i ≤ qi,t − qi,t−1 ≤ R

+
i ; ∀ i ∈ I; t ∈ T ; (45)

0 ≤ σt ≤
∑

a∈A

Da,t; ∀ t ∈ T. (46)

2) LAs’ Problems:LA a’s problem is formulated as:

min
∑

t∈T

Ca,t(ba,t) + V ·
∑

γ∈Γa

ua,γ ; (47)

s.t. ba,t =
∑

γ∈Γa

δa,γ,t; ∀ t ∈ T ; (48)

0 ≤ δa,γ,t ≤ R ·Na,γ · Ia,γ,t; (49)

∀ γ ∈ Γa; t ∈ T ;
∑

t∈T

δa,γ,t + ua,γ = Xa,γ ; ∀ γ ∈ Γa; (50)

ua,γ ≥ 0; ∀ γ ∈ Γa. (51)

3) Equilibrium Computation:We compute a Nash equilib-
rium between the SO and LAs using Algorithm 1, with several
refinements that account for having multiple LAs. Specifically,
Steps 4, 6, 7, 10, and 12 are updated to reflect there being
multiple LAs. In Step 6 the optimal charging schedule is
determined as(bka, δ

k
a , u

k
a) ← arg min (47) s.t. (48) − (51)

and in Step 9 the optimal dispatch schedule is determined as
(qk, σk)← argmin (42) s.t. (43)− (46).

4) Price Signals: We study the same two price-based
signals as before. The marginal pricing scheme updates the
pricing function after thekth iteration of Algorithm 1 as:

Ca,t(ba,t) = λk−1
t · ba,t + ξ · (ba,t − b

k−1
a,t )2, (52)

for all a and t.
To define the pricing function with the price/quantity-based

scheme, we defineΛk
a,t(ba,t) as the updated price function

constructed in thekth iteration of Algorithm 1. As before, we
initialize these function asΛ0

a,t(ba,t) = λ0
t , ∀ a, t. For k ≥ 1

we defineḃk,0
a,t , ḃ

k,1
a,t , . . . , ḃ

k,k
a,t , to be the set of breakpoints in

Λk−1
a,t (ba,t), where by convention we takėbk,0

a,t = 0 andḃk,k
a,t =

+∞. We then define:

Dk,−
a,t = max

i

{

ḃk−1,i
a,t : Λk−1

a,t (ḃk−1,i
a,t ) < λk

t , ḃ
k−1,i
a,t < Da,t

}

,

(53)
and:

Dk,+
a,t = min

i

{

ḃk−1,i
a,t : lim

ν→0+
Λk−1

a,t (ḃk−1,i
a,t + ν) ≥ λk

t

}

.

(54)
If no such points exists, we letDk,−

a,t = 0 andDk,+
a,t = +∞,

as appropriate. The new prices are then defined as:

Λk
a,t(ba,t) =

{

λk
a,t, if βk,−

a < ba,t ≤ β
k,+
a ,

Λk−1
a,t (ba,t), otherwise,

(55)

where:

βk,−
a = Da,t −min

{

∆,
Da,t −D

k,−
a,t

2

}

, (56)

βk,+
a = max

{

Da,t, D
k,+
a,t

}

. (57)

The total cost of energy levied on LAa in the kth iteration
of Algorithm 1 is defined as:

Ca,t(ba,t) =

∫ ba,t

0

Λk−1
a,t (ψ)dψ. (58)
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5) Social Planner’s Problem:As in the single-LA case, the
social planner is assumed to control all SO and LA decisions
simultaneously. Thus, the social planner’s problem is given by:

min
∑

t∈T

[

∑

i∈I

Fi(qi,t) + V ·

(

∑

a∈A

Dt − σt

)]

(59)

+
∑

a∈A,γ∈Γa

V · ua,γ ;

s.t. (43)–(46) (60)

(48)–(51); ∀ a ∈ A; (61)

ba,t = Da,t; ∀ a ∈ A, t ∈ T. (62)

B. Case Study Data

This case assumes the same underlying system, consisting
of the three conventional generators and non-PEV loads as
shown in Table I and Fig. 2. We assume that there are26270
PEV arrivals over the course of the day and that the vehicles
arrive at charging stations operated by three independent LAs.
The first LA is assumed to serve exactly half of the PEVs
in the base case. Thus, we assume thatN1,γ andX1,γ are
equal to exactly half of the values reported in Table II. The
remaining PEVs are divided among the other two LAs based
on the values reported in Tables VI and VII.

TABLE VI
PEV ARRIVAL AND DEPARTURET IMES AND CHARGING ENERGY

DEMANDS OF LOAD AGGREGATOR2

Hours Hours
γ Parked N2,γ X2,γ γ Parked N2,γ X2,γ

1 7–12 50 0.4 24 10–16 100 0.78
2 7–13 100 0.9 25 10–19 300 2.4
3 7–15 100 0.8 26 10–20 200 1.75
4 7–16 300 2.4 27 10–21 50 0.4
5 7–17 200 1.6 28 11–17 50 0.4
6 7–18 100 0.8 29 11–18 50 0.4
7 7–19 50 0.4 30 11–19 100 0.8
8 8–13 100 0.8 31 12–16 150 1.2
9 8–14 100 1 32 12–17 250 2
10 8–16 300 2.75 33 12–18 200 1.6
11 8–17 600 4.8 34 12–19 100 0.82
12 8–18 400 3.45 35 12–20 50 0.4
13 8–19 200 1.6 36 13–18 150 1.2
14 8–20 50 0.6 37 13–19 100 0.8
15 9–14 200 1.6 38 13–20 100 0.8
16 9–15 50 0.4 39 13–21 50 0.4
17 9–16 200 1.6 40 14–19 300 2.5
18 9–17 900 7.9 41 14–20 100 0.9
19 9–18 500 4.3 42 14–22 200 1.85
20 9–19 100 0.8 43 14–23 100 0.8
21 9–20 100 0.8 44 15–22 100 0.8
22 9–21 50 0.45 45 15–23 400 3.7
23 10–15 100 0.84

C. Case Study Results

Table VIII summarizes total system costs with multiple LAs,
considering the same set of PEV charging cases as in the base
case. As before, all of the PEV loads are satisfied, thus only
generation costs are reported in the table (as there is zero
curtailment cost). As expected, the social planner minimizes
cost and the price/quantity mechanism yields the same cost-
minimizing charging patterns. A value ofξ = 3.5 is optimal

TABLE VII
PEV ARRIVAL AND DEPARTURET IMES AND CHARGING ENERGY

DEMANDS OF LOAD AGGREGATOR3

Hours Hours
γ Parked N3,γ X3,γ γ Parked N3,γ X3,γ

1 1–7 200 1.55 17 3–11 100 0.78
2 1–8 350 2.82 18 3–14 100 0.78
3 1–9 700 5.5 19 3–15 60 0.6
4 1–10 300 2.3 20 3–16 150 1.2
5 1–11 100 0.88 21 3–17 50 0.38
6 2–8 100 0.78 22 15–20 50 0.39
7 2–9 200 1.56 23 15–21 150 1.2
8 2–10 400 3.6 24 15–22 100 0.78
9 2–11 200 1.56 25 15–23 100 0.78
10 2–12 50 0.4 26 16–20 30 0.24
11 2–14 80 0.65 27 16–22 200 1.56
12 2–15 180 1.45 28 16–23 500 3.9
13 2–16 280 2.2 29 16–24 100 0.78
14 2–17 120 0.95 30 17–22 100 0.74
15 2–18 60 0.5 31 17–23 260 2.1
16 3–10 200 1.56 32 17–24 400 3.7

for the price-only mechanism, yielding the smallest charging
cost that is comparable to the social planner’s solution.

TABLE VIII
CASESEXAMINED AND TOTAL COSTS WITHMULTIPLE LOAD

AGGREGATORS

Case PEV Charging Total Cost [$]
1 None 68589
2 Social Planner 73850
3a Price-Only(ξ = 0.1) 74187
3b Price-Only(ξ = 1) 73881
3c Price-Only(ξ = 3.5)∗ 73852
3d Price-Only(ξ = 20) 73906
4 Price/Quantity 73850
5 Uncontrolled 74725

The performance of the price-only mechanisms is further il-
lustrated in Fig. 4, which shows charging costs and equilibrium
computation times as a function ofξ. Contrasting this with
Fig. 3 shows that the range ofξ’s that result in Algorithm 1
converging is markedly different in the multiple-LA case.
Whereas values between0.95 and2.5 give a convergent solu-
tion in the single-LA case, values between3 and10 do so in
the multiple-LA case. As before, the price/quantity mechanism
takes considerably less computational effort—23 iterations,
taking 7.3 s of CPU time and the exchange of2208 numbers
between the SO and LA—to find an equilibrium. The price-
only mechanism takes a minimum of91 iterations,39.1 s of
CPU time, and the exchange of4368 numbers with the optimal
choice of ξ = 3.5. If ξ = 3 is chosen instead, Algorithm 1
converges in1090 iterations, taking452.3 s of CPU and the
exchange of52320 numbers.

VI. RANDOM PEV DRIVING PATTERN CASE

We now consider a case in which there is a single LA
but future PEV arrivals, departures, numbers, and charging
demands are unknown when making current-hour charging and
dispatch decisions.

A. Model Refinement

All of the optimization problems are formulated as two-
stage stochastic programs, wherein the first stage is the first
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Fig. 4. PEV charging costs (solid line) and equilibrium computation time
(dashed line) with price-only mechanism and multiple load aggregators as a
function of ξ.

hour and the second stage the remaining hours of the opti-
mization horizon. We assume that PEV arrivals are perfectly
known in the first stage and scenarios represent uncertain PEV
arrivals during the second stage. PEV uncertainty affects the
SO problem since it may be optimal to adjust the current-hour
dispatch so future charging demands can be met at minimum
expected cost while respecting generator constraints. To the
extent that the driving patterns allow, the SO may also want
to intertemporally shift PEV charging to help manage this
uncertainty. To achieve this, we allow the SO to provide the
LA with scenario-dependent price signals.

1) SO’s Problem: Since the SO provides the LA with
scenario-dependent price signals, the PEV charging schedule
is modeled as being scenario-dependent. The SO’s stochastic
economic dispatch problem is formulated as:

min
∑

t∈T ;s∈S

πs ·

[

∑

i∈I

Fi(qi,t,s) + V · (Dt,s − σt,s)

]

; (63)

s.t.
∑

i∈I

qi,t,s = Lt + σt,s; ∀ t ∈ T ; s ∈ S; (64)

P−

i ≤ qi,t,s ≤ P
+
i ; ∀ i ∈ I; t ∈ T ; s ∈ S; (65)

R−
i ≤ qi,t,s − qi,t−1,s ≤ R

+
i ; (66)

∀ i ∈ I; t ∈ T ; s ∈ S;

0 ≤ σt,s ≤ Dt,s; ∀ t ∈ T ; s ∈ S; (67)

qi,1,s = qi,1,s′ ; ∀ s, s′ ∈ S; (68)

σ1,s = σ1,s′ ; ∀ s, s′ ∈ S. (69)

This is nearly identical to the base-case formulation in
Section II-A. The objective minimizes expected costs and
the generation, charging limit, and ramping constraints are
imposed in each scenario. Non-anticipativity constraints(68)
and (69) encode the two-stage structure by forcing the first-
stage decisions to be the same across all scenarios. The
second-stage decisions can be scenario-dependent, however.

2) LA’s Problem: The LA’s problem is formulated as:

min
∑

t∈T ;s∈S

πs · Ct,s(bt,s) + V ·
∑

γ∈Γ;s∈S

πs · uγ,s; (70)

s.t. bt,s =
∑

γ∈Γ

δγ,t,s; ∀ t ∈ T ; s ∈ S; (71)

0 ≤ δγ,t,s ≤ R ·Nγ,s · Is,γ,t; (72)

∀ γ ∈ Γ; t ∈ T ; s ∈ S;
∑

t∈T

δγ,t,s + uγ,s = Xγ,s; ∀ γ ∈ Γ; s ∈ S; (73)

uγ,s ≥ 0; ∀ γ ∈ Γ; s ∈ S; (74)

b1,s = b1,s′ ; ∀ s, s′ ∈ S; (75)

δγ,1,s = δγ,1,s′ ; ∀ γ ∈ Γ; s, s′ ∈ S. (76)

The objective minimizes expected cost and the same con-
straints as in the base-case formulation are included but
enforced scenario-wise. Non-anticipativity constraintsare also
included to force the first-stage decisions to be the same among
all of the scenarios.

3) Equilibrium Computation:A Nash equilibrium is com-
puted using a rolling-horizon iterative technique. The gist of
the algorithm is that we roll through each hour of the entire
optimization horizon, computing an equilibrium between the
SO and LA in that hour. This equilibrium accounts for pos-
sible future PEV arrivals and charging demands. Algorithm 2
summarizes the steps involved in determining hour-r Nash
equilibrium generator dispatch and PEV charging decisions.
Algorithms 1 and 2 are nearly identical, except that the
optimizations in Steps 6 and 9 are only carried out for hours
r, . . . , |T |. Once Algorithm 2 terminates, only hour-r generator
dispatch and PEV charging decisions are fixed based on
the final solution (i.e., qk, σk, bk, δk, and uk). We then roll
forward, settingr ← r + 1 and repeat Algorithm 2 with
updated PEV data and forecasts to determine the next hour’s
equilibrium generator dispatch and PEV charging decisions,
again taking into account all future scenarios over the full
optimization horizon,T .

Algorithm 2 Hour-r Equilibrium Computation with Random
PEV Driving

1: k ← 0 ⊲ Set iteration count to zero
2: repeat
3: if k = 0 then
4: Dt,s ← 0 for all t = r, . . . , |T |; s ∈ S
5: else
6: (bk, δk, uk)← arg min (70) s.t. (71)− (76)
7: Dt,s ← bkt,s for all t = r, . . . , |T |; s ∈ S
8: end if
9: (qk, σk)← arg min (63) s.t. (64)− (69)

10: UpdateCt,s(·) based on{qκ, σκ}kκ=0

11: k ← k + 1
12: until k ≥ k̄ or

[

(bk−2, δk−2, uk−2) = (bk−1, δk−1, uk−1)
and (qk−2, σk−2) = (qk−1, σk−1)

]

4) Price Signals: We examine the same two price-based
signals that are considered in the base case. The only mod-
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ification to the price updating procedures detailed in Sec-
tion II-D is that the Lagrange multipliers found in solving
the SO’s problem are scenario-dependent, since load-balance
constraints (64) are enforced for each scenario. We thus update
the price functions,Ct,s(·), using the corresponding scenario’s
Lagrange multiplier.

5) Social Planner’s Problem:The social planner’s problem
is formulated as:

min
∑

t∈T ;s∈S

πs ·

[

∑

i∈I

Fi(qi,t,s) + V · (Dt,s − σt,s)

]

(77)

+ V ·
∑

γ∈Γ;s∈S

πs · uγ,s;

s.t. (64)–(69) and (71)–(76); (78)

bt,s = Dt,s; ∀ t ∈ T ; s ∈ S. (79)

The social planner’s problem is solved using a similar iterative
rolling-horizon procedure to that used in Algorithm 2. Specif-
ically, we start withr ← 1 and solve the social planner’s
problem using the two-stage scenario tree to determine hour-
1 dispatch and PEV charging, which are fixed. We then roll
forward and letr ← r + 1, update the scenario tree, and
resolve to determine the next hour’s decisions. This is repeated
iteratively until we determine optimal decisions over the entire
planning horizon,T .

B. Case Study Data

This case assumes the same underlying generation mix and
non-PEV loads as in the base case. We further assume that
the actual PEV arrival and departure times, vehicle numbers,
and charging demands are the same as in the base case (i.e.,
the values given in Table II). We generate the scenario tree
for the PEV charging problem by assuming that the LA relies
on forecasts of future PEV arrivals, departures, and demands,
which are denoted as̃τγ,s, τ̃ ′γ,s, Ñγ,s, andX̃γ,s. We assume
the arrival and departure time forecasts have the following
unbiased distribution:

(τ̃γ,s, τ̃
′
γ,s) =







(τγ + 1, τ ′γ), with probability 0.2,
(τγ , τ

′
γ), with probability 0.6,

(τγ , τ
′
γ − 1), with probability 0.2;

(80)

where τγ and τ ′γ are the actual arrival and departure times,
given in Table II. The distribution of the number of PEVs and
charging demand forecasts are given by:

(Ñγ,s, X̃γ,s) =







0.85 · (Nγ , Xγ), with probability 0.2,
(Nγ , Xγ), with probability 0.6,
1.15 · (Nγ , Xγ), with probability 0.2.

(81)
These distributions are assumed to be jointly independent.We
randomly generate 100 sample paths ofτ̃γ,s, τ̃ ′γ,s, Ñγ,s, and
X̃γ,s to populate the scenario tree.

C. Case Study Results

Table IX summarizes total system costs with random PEV
driving patterns in the different charging control cases. The
values shown arerealizedcosts, meaning that they are the costs

incurred at the end of the day after vehicles arrive according
to the data in Table II. Since all PEV loads are satisfied,
only generation costs are reported in the table. Although the
social planner still yields the most efficient charging schedule,
there is a slight cost increase compared to the base case. This
is because the uncertainty in future PEV charging demands
results in different generator dispatch decisions, givingthe
cost increase. The cost difference between these two cases
is the value of perfect PEV driving pattern information.
Both the price-only and price/quantity mechanisms give costs
that are comparable to the social planner’s solution, if the
correct value ofξ is chosen. Indeed, the optimal choice of
ξ = 0.7 gives PEV charging costs that are slightly lower than
the price/quantity mechanism does. As noted before, this is
attributable to our choice of∆ = 0.5 in definingβk,−. If a
value of ∆ ≤ 0.325 is used, the price/quantity mechanism
outperforms the price-only one on the basis of cost.

TABLE IX
CASESEXAMINED AND TOTAL REALIZED COSTS WITHRANDOM PEV

DRIVING PATTERNS

Case PEV Charging Total Cost [$]
1 None 68589
2 Social Planner 74015
3a Price-Only(ξ = 0.1) 74105
3b Price-Only(ξ = 0.7)∗ 74016
3b Price-Only(ξ = 1) 74018
3c Price-Only(ξ = 20) 74045
4 Price/Quantity 74019
5 Uncontrolled 74746

As before, the price-only mechanism takes considerably
more effort to compute a Nash equilibrium. This is shown
in Table X, which summarizes the computational performance
of the two pricing schemes. The first column reports the range
of iterations required to compute an equilibrium in each hour.
This range reflects Algorithm 2 computing an equilibrium one
hour at a time in a rolling fashion. Thus, it may take more
iterations to find an equilibrium in one hour than another. The
second column reports the number of hours of the day for
which Algorithm 2 does not converge within 2000 iterations.
The third column reports the total CPU time required to
simulate the one-day period studied while the fourth shows
the total amount of information exchange between the SO and
LA to compute the one-day equilibrium. There is considerably
more information exchanged in the random driving pattern
case compared to the others due to the scenario-dependent
pricing assumption and the rolling equilibrium computation.
Specifically, each iteration of Algorithm 2 requires the ex-
change of1+(|T |−r−1)·|S| scenario-dependent hourly prices
from the SO to the LA and the same number of charging loads
from the LA to the SO when computing an hour-r equilibrium
with the price-only mechanism. The price/quantity mechanism
requires the SO to send the LA3 · (1 + (|T | − r − 1) · |S|)
numbers in each iteration, corresponding to the new prices and
breakpoints in each pricing function.

VII. C ONCLUSIONS

We study decentralized price-based PEV charging control.
Although centralized control by the SO or a social planner
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TABLE X
COMPUTATIONAL PERFORMANCE OFPRICE-BASED CONTROL SCHEMES

WITH RANDOM PEV DRIVING PATTERNS

Non-Conv. CPU Numbers
Case Iterations Hours Time [s] Exchanged [m]
Price/Quantity

∆ = 0.5 10–25 0 436 0.3
∆ = 0.325 14–45 0 614 0.4

Price-Only
ξ = 0.1 163–2000 20 32382 387.9
ξ = 0.5 207–2000 4 13032 127.5
ξ = 0.65 188–2000 1 11029 88.6
ξ = 0.7∗ 101–498 0 7532 66.7
ξ = 0.75 173–786 0 8934 73.5
ξ = 1 595–1267 0 20146 150.4
ξ = 2.5 310–2000 21 38490 405.4
ξ = 5 258–2000 15 33253 290.9
ξ = 10 175–2000 3 29488 87.6
ξ = 20 104–2000 17 29898 331.9

maximizes coordination benefits, it may have implementation
issues. We propose a decentralized pricing scheme that con-
veys both price and quantity information gathered by the SO as
it and the LA iteratively reoptimize system dispatch and PEV
charging. We demonstrate that this method has theoretically
attractive properties. Furthermore, our method does not rely
on any regularization terms to guarantee convergence.

We use numerical case studies to demonstrate the benefits of
our proposed pricing scheme, showing that it can find a near-
socially optimal equilibrium. While the price-only mechanism
can as well, its performance is highly sensitive to the choice
of the regularization penalty term,ξ. If ξ is not chosen
properly, PEV charging costs in the price-only case can be
considerably higher than with the price/quantity mechanism.
Regardless of the choice ofξ, the price-only mechanism
requires considerably more computational effort and data
exchange between the SO and LA to find an equilibrium. We
also examine numerical case studies, in which the single-LA
and deterministic driving pattern assumptions are relaxed. Our
proposed method performs well in these cases as well.

Our pricing scheme assumes that the LA is minimizing
charging costs on behalf of PEV owners. If charging schedul-
ing is carried out by another agent with a different objective
(e.g., a profit-maximizing utility), our pricing scheme may not
have the beneficial properties that we demonstrate. In such a
case, one would have to cast this as a broader mechanism
design problem, which aligns the LA’s incentives with those
of the social planner.

APPENDIX

PROPERTIES OF THEMARGINAL COST OFPEV CHARGING

LOAD IN THE SO’S PROBLEM

Lemma 3:Suppose that Assumption 1 is true. Then:

∂

∂bt
V ∗

SO(bt) = λt(b). (82)

Proof: Let (q∗, σ∗) ∈ arg minV ∗
SO(b) and µ5,+

t denote
the Lagrange multiplier associated with the upper-bound in
hour-t constraint (5). We now consider two possible cases for
the values that this Lagrange multiplier can take. We show
that in both cases we have∂

∂bt
V ∗

SO(bt) = λt(b).

1) µ5,+
t = 0: This indicates thatσ∗

t < bt. The Karush-
Kuhn-Tucker (KKT) stationarity condition of the SO’s
problem associated with the variableσt is:

λt(b) = V + µ5,−
t , (83)

whereµ5,−
t is the Lagrange multiplier associated with

the lower-bounds of constraint (5). Since there is
sufficient generating capacity to provide some PEV
charging, and sinceV is assumed to be higher than the
marginal cost of generation, we must haveσ∗

t > 0 and

µ5,−
t = 0, which implies thatλt(b) = V .

We can also show that in this case∂
∂bt
V ∗

SO(bt) = V . To
see this, definẽbǫ as:

b̃ǫr =

{

br + ǫ, if r = t,
br, otherwise,

(84)

where ǫ satisfies σ∗
t + ǫ ≤ bt. Let (q̃, σ̃) ∈

argmin V ∗
SO(b̃ǫ). We now argue thatσ∗ = σ̃. To see

this, note that(q∗, σ∗) is feasible in the SO’s problem
whenD = b̃ǫ. Moreover, we must havẽσ ≥ σ∗, other-
wise the SO can feasibly increaseσ̃, giving a lower cost
(due toV being assumed higher than the marginal cost
of generation). Furthermore, we cannot haveσ̃ > σ∗.
To see this, note that if so, then constraints (2) give:

∑

i∈I

q̃i,t >
∑

i∈I

q∗i,t. (85)

This means that̃q must not be feasible whenD = b,
since q∗ would then not be optimal (as the unserved
load cost associated withσ∗ is larger than that with
σ̃). However, the technical generator constraints are
identical in the two cases (i.e., withD = b andD = b̃ǫ),
giving a contradiction. Hence, we must haveσ∗ = σ̃.

We finally note that:

∂

∂bt
V ∗

SO(bt) = lim
ǫ→0

V ∗
SO(b̃ǫ)− V ∗

SO(b)

ǫ
(86)

= V

= λt(b).

2) µ5,+
t 6= 0: In this case we haveσ∗

t = bt. Thus, the
hour-t constraint (2) can be rewritten as:

∑

i∈I

qi,t = Lt + bt. (87)

Sincebt is the parameter on the right-hand side of (87),
we have that:

∂

∂bt
V ∗

SO(bt) = λt(b). (88)

Lemma 4:Suppose that Assumption 1 is true and that the
generation cost functions,Fi(·), are convex. Thenλt(b) is
non-decreasing inb.
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Proof: We defineλt(b) as the Lagrange multiplier of
constraint (2) whenD = b in the SO’s problem. From
constraint (2) we have that:

∂

∂σt

λt(b) =
∂

∂qi,t
λt(b). (89)

Note that if, for a particulart, at least one of theqi,t is
not bounded by its generating capacity or ramping limit, the
system has sufficient capacity to satisfy all of the hour-t PEV
demand. Thus, we must haveσt = bt, otherwise the SO
could feasibly serve more load and incur less cost, due to the
assumed high value of lost load. If there is an unconstrained
qi,t, the KKT conditions of the SO’s problem give:

λt(b) =
∂

∂qi,t
Fi(qi,t), (90)

wherei is the index of an unconstrained generator. We then
have:

∂

∂bt
λt(b) =

∂2

∂q2i,t
Fi(qi,t) ≥ 0. (91)

If, conversely, all of the qi,t are capacity- or ramp-
constrained for a particulart, this means there is insufficient
generation capacity to satisfy all of the hour-t PEV demand.
Thus, we must haveδt < bt. The KKT conditions then give
λt(b) = V > 0 and by assumption we know that:

λt(b) >
∂

∂qi,t
Fi(qi,t), (92)

for all i. Thus, we have that:

∂

∂bt
λt(b) ≥ 0, (93)

indicating thatλt(b) is non-decreasing inb.
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