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Abstract—We study decentralized plug-in electric vehicle C. Load Aggregator’'s Decision Variables

(PEV) charging control, wherein the system operator (SO) sals
price-based signals to a load aggregator (LA) that optimize
charging of a PEV fleet. We study a pricing scheme that conveys
price and quantity information to the LA and compare it to

a simpler price-only scheme. We prove that the price/quanty-
based mechanism can yield a socially optimal solution. We
also examine several numerical case studies to demonstratiee
superior performance of the price/quantity-based schemeThe
price/quantity scheme yields nearly identical PEV chargilg costs
compared to the social optima, whereas the price-only schesns
highly sensitive to the choice of a regularization penaltye¢rm that
is needed to ensure convergence. We also show that the time to “
compute an equilibrium with the price-only mechanism can beup
to two orders of magnitude greater than with the price/quanity
scheme and can involve 24 times more information exchange

between the SO and LA.

Index Terms—Plug-in electric vehicles, economic dispatch,

charging control, market design

NOMENCLATURE

A. Sets, Parameters, and Functions

T set of hours in optimization horizon
1 set of conventional generators

r

set of plug-in electric vehicle (PEV) groups
¢ indicator that PEVs in group € I" are parked at

Z

2

the charging station during houre T
number of PEVs in group
total energy demand of PEV group
power capacity of PEV charger
hour+ PEV energy demand
Ly hour+ non-PEV energy demand

. generator € I's minimum power capacity

e

<.

Pt generator’s maximum power capacity

R; generator’s ramp-down limit

R generator’s ramp-up limit

F;() generator’s generation cost function

Ci(+) load aggregator’s (LA's) hourPEV charging energy

cost function

regularization penalty in LA's cost function
price-quantity function updating parameter
value of lost load

< b

B. System Operator’'s Decision Variables

Qit hour+ output of generatot
oy hour+ PEV charging load served
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by total hourt charging energy scheduled by the LA

Oyt hour+ charging energy scheduled by the LA for PEV
group~y

Uny charging energy for PEV groupthat is unscheduled
by the LA

D. Multiple-Load Aggregator Case

A set of LAs

set of PEV groups that arrive at LA € A’s

charging station

Za  indicator that PEVs in group of LA « are parked
at the charging station during hotir

Ny number of PEVs in group of LA «a

Xa,y total energy demand of PEV groupof LA a

D+ hour+ PEV energy demand of LA

Co1() LA a’s hourt PEV charging energy cost function

bat total hour# charging energy scheduled by LA

Syt hour+ charging energy scheduled by L&for PEV
group~y

U,y charging energy for PEV groupthat is unscheduled
by LA a

E. Random PEV Driving Pattern Case

S set of future PEV arrival scenarios

s probability that scenarie € S occurs

Z,~: indicator that PEVs in group are parked at the
charging station during hourin scenarios

Ny number of PEVs in group in scenarios

X5 total energy demand of PEV groupin scenarios

Dy s hour< PEV energy demand in scenako

C¢s(-) LAs hourt PEV charging energy cost function in
scenarios

Qit,s hour+ output of generatof in scenarios

Ot,s hour+ PEV charging load served in scenakio

be.s total hour# charging energy scheduled by the LA in
scenarios

Oy ts hour+ charging energy scheduled by the LA for PEV
group~ in scenarios

Uny,s charging energy for PEV groupthat is unscheduled
by the LA in scenarics

I. INTRODUCTION

ECENT developments have increased interest in plug-in

electric vehicles (PEVs). PEVs can introduce costs and
benefits to electric power systems. The primary cost is that
PEVs add new loads, which can increase strains on generation
transmission, and distribution assets [1]. A number of work
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model the effects of PEV charging on generation costs [2$ that equilibria may be unstable or difficult to compute][21
[3], transmission [4], and distribution transformer loagli[5], without any convergence guarantee. ktaal. [19] overcome
[6] these issues by adding a regularization term, which pesaliz
PEVs can offer benefits, however, since there is flexibilitgifferences between each PEV’s charging profile and the
in when charging loads can be served. Sioshanal [7]-[10] population average, to the LAs’ objective functions. While
demonstrate that if PEV charging is properly coordinatetth wiproviding convergence guarantees, there is no clear edgnom
commitment and dispatch, system-wide generator efficien@tionale for including such penalties. This is because the
can be improved. This is because the mix of generators thateégularization term does not reflect the social cost of a good
committed can be changed to include more efficient units that service being consumed by the LA.
due to operational constraints, could not be used withoait th Following on these seminal works, this paper further ex-
PEV charging loads. Wet al [11] model energy allocation plores the use of price-based techniques to coordinate PEV
among a fleet of PEVs between day-ahead and real-timigarging with power system operations. We examine a simple
timeframes. They model a day-ahead block energy purchagsece-only control mechanism, in which LAs are given the
based on price and PEV energy demand forecasts. They thewst recent marginal prices at each iteration. We conthisst t
optimize actual energy delivery to the fleet based on read-ti with a scheme that sends price and quantity information to
conditions. Sortomme and El-Sharkawi [12], [13] demortstrathe LAs. Specifically, the LA is given data specifying prices
the benefits of what they term unidirectional vehicle-t@gr as a function of the quantity of charging load scheduleds Thi
services, wherein PEVs adjust their real-time chargingldoafunction is iteratively constructed by collecting mardipaice
to provide regulation and other ancillary services. Clemerdata as the SO and LA interact. We prove that under mild
Nyns et al. [5] demonstrate the benefits of coordinated PEWonditions the price/quantity scheme induces an equilibri
charging in minimizing distribution feeder losses. Riasn that is an optimum of the social planner’s problem, without
et al [14], [15] model distribution impacts of PEV chargingthe need for any regularization terms. We also use numerical
with the objective of maximizing energy delivered to veb&l case studies to compare the performance of the two con-
while respecting network constraints. trol schemes. Our results demonstrate that the price/tyant
These benefits of PEVs presuppose some form of controlt@chanism can find an equilibrium that is close to a social
coordinate charging and power system operations. Most Plegtimum. While the price-only scheme can provide similar
analyses assume centralized control by the system operatwsts to a social optimum, its performance is very sensitive
(SO), which schedules PEV charging subject to minimuto the choice of regularization penalty term. Moreover, we
service requirements [2], [7], [16]. This is akin to solvingshow that the price-only mechanism typically requires much
a social planner’'s problem. While centralized control maximore computational effort to find an equilibrium than the
mizes coordination between power system operations and PgiNtce/quantity one does.
charging, it may be difficult to implement. Centralized goht ~ The remainder of this paper is organized into six sections.
may require the SO to track the status of each PEV, raisiray dgectior1l describes the setting that we study, providesfer
management and computational issues. Bashash and Fadligns of the SO’s, LA, and social planner’s problemsy an
[17] suggest the use of a universal control signal that maletails the pricing schemes examined. Sedfidn Ill presaunts
overcome this limitation, however. Otherwise, decertmli theoretical results showing that the price/quantity magma
control, for instance through price signals, is offered as &an achieve social optimality. Sectidad [V3-VI summarize ou
alternative [1], [18]. Under such a scheme, charging decsi numerical case studies and their results. Sefich VI cated.
are left to PEV owners or perhaps to a load aggregator
(LA) that optimizes charging for a fleet of PEVs. Time-
variant electricity tariffs are designed to encourage ropti
charging behavior. For instance, a time-of-use rate leasies We model the market as consisting of two interacting
lower energy price during certain hours, encouraging dhgrg players—an SO, which determines generator dispatch, and
at these times. Real-time pricing, which dynamically se@ LA, which schedules PEV charging. The SO solves an
prices based on real-time marginal energy costs, proviti® Peconomic dispatch problem to minimize the cost of serving
owners with even finer-grained price signals. Indeed, iégsi PEV and non-PEV loads. Based on the dispatch solution, the
are set equal to the marginal cost of energy from the socBD sends a price signal to the LA, which is used in the LAs
planner’s solution, they should support a Nash equilibriom charging scheduling problem to minimize fleet-wide costs.
which a self-interested SO and LAs follow the social plarmerThe LA is assumed to have complete discretion to schedule
solution. charging within the window of time that each PEV is parked.
A difficulty in implementing such a scheme is that ondhe optimized charging schedule is sent to the SO, which then
must typically solve the social planner's problem to findeoptimizes the system dispatch and sends an updated tignal
equilibrium-supporting prices. Alternatively, one mayeus the LA. We compute an equilibrium by iterating between the
erative price discovery [19], [20]. Such a framework asssim&O and LA problems, until neither player changes its deassio
that the SO sends real-time prices to LAs after receivirgetween two successive iterations. We examine two differen
charging demands, while LAs adjust their charging patterpsicing signals, which are detailed in SectignlI-D.
in response to the prices. This is done repeatedly untliregtt  We now provide detailed formulations of the SO and LA
at an equilibrium. A shortcoming of this approach, howeveproblems. We then describe the iterative technique used to
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compute equilibria between the SO and LA and the pricirexamine, and the corresponding form of these functions, in
schemes considered in our analysis. The model formulatidbsctionII=I}). The formulation of the LA's problem is:
and theoretical results in this section and the next asshate t

there is a single LA that has perfect foresight of future PEV minz Ci(b)) +V - Z Uy (6)
charging demand. We examine case studies, in which these teT ver
two assumptions are relaxed, in Sectigds V VI s.t.b = Z Oy VteT; (7)
yell
A. System Operator's Economic Dispatch Problem 0<0,t<R-N, I,y YyeliteT; (8)
The system operator is assumed to solve a standard eco- Z‘S%t +u, =Xy Voyely 9)
nomic dispatch problem, the formulation of which is: teT
uy >0; Vryel. (20)
min ) _ZFi(qivt) +V - (De—od)|; @ Objective function [[6) minimizes PEV charging costs. The
tet Liel model allows the LA to leave PEV charging demand unserved,
S.t. ZQi,t =Ly + oy VieT; (2) which incurs a penalty given by the value of lost load.
i€l Constraint setl{7) defines the total amount of charging gnerg
Pm<¢.<P" VieliteT; (3) scheduled in each hour as the sum of charging energy altbcate

Ry <gi+—qi+ 1 <R'; VielteT;, (4 10 the different PEV groups. Constraint s€l (8) limits the

. amount of charging energy scheduled to each group in each
0soisDy VieT. ©®) hour to be less than the capacity of the chargers—which
Obijective function[{ll) minimizes cost and we assume convare assumed to be homogeneous. It further restricts PEVs
subdifferentiable generator cost functions. The modeivadl within each group to only be charged during hours in which
the SO to not serve PEV charging loads scheduled by the Lihey are parked at the charging station. Constraint [Set (9)
Doing so incurs a cost, however, which is given by an assumeéeffines the amount of unserved charging demand for each
value of lost load,V. The ability to curtail PEV charging is PEV group as the difference between the charging demand
included to ensure that the SO’s problem is feasible for amyd scheduled load while constraint §eil (10) requires uader
charging load scheduled by the LA. We assume throughoaharging demand to be non-negative.
however, thal/ is greater than the marginal cost of generation,
meaning that if generating capacity is available it is opiim
for the SO to serve PEV charging demand.

Constraint set[§2) enforces the load-balance requiremeniVe compute a Nash equilibrium between the SO and LA
that generation and demand be exactly equal in each hdifing an iterative technique, which is outlined in Algonitdl
Constraint setd13) an@(4) are output and ramping limits d&9], [20]. Whenk = 0 the algorithm initializes by fixing
conventional generators. We assume that the non-PEV lodd@ PEV demands equal to zero (Step 4), solving the SO's
are such that there is always some excess generating gapddieblem (Step 9), and determining the initial price sigrtals
available to serve PEV charging needs in every hour—althougend the LA (Step 10). In subsequent iterations, the LA solve
the amount of generation capacity may be insufficient toeserlfs PEV scheduling problem based on the most recent price
all of the PEV charging demand in any given hour. Constraifitformation (Step 6) and these updated charging schedtges a
set [B) limits the amount of PEV charging energy served tsed in the SO’s problem (Steps 7 and 9) and price updating
be no greater than the energy scheduled by the LA. We (&tep 10). This iterative process repeats until reachingishN
VZ, (D) denote the optimal objective function value when th@quilibrium .e., neither the SO nor LA has an incentive to

LA submits the PEV charging schedulb, unilaterally deviate from its optimal decision in the praws
iteration) or we conduct more thaniterations. This iteration

, . . limit is needed for some pricing schemes, which can yield
B. Load Aggregator's Charging Scheduling Problem unstable Nash equilibria that are difficult to compute.

We assume that the LA classifies the PEVs by groups and
that all of the PEVs within a group arrive and depart the
charging station at the same time. We further assume e
all of the PEVs within a group have the same demand for Commaodity pricing is typically based on the marginal cost
charging energy upon arrival. We make this assumption ¢ an incremental unit of demand. In the context of our
simplify notation and it can be relaxed without losing any gbroblem, this would be given by the values of the Lagrange
our theoretical results. The LA schedules PEV charging toultipliers associated with constraint st (2) in the SQ&bp
minimize costs, with these costs based on a price signal skm. We let\;(D) denote the Lagrange multipliers of these
by the SO. We defin€;(-) as the total cost of PEV chargingconstraints when the LA submits the PEV charging schedule,
energy levied on the LA, as a function of the total hour-D, and specifically define\f as the Lagrange multipliers
charging load. To provide a general formulation of the LA'®f these constraints when solving the SO’s problem in the
problem, we do not assume that these pricing functions hauth iteration of Algorithm[. We now detail the two pricing
any specific structure. We detail the pricing schemes that wehemes that we study.

C. Equilibrium Computation

Price Signals



Algorithm 1 Equilibrium Computation are then defined as:
1. k<0 > Set iteration count to zero

" A, if g < b < g,
; rep(iafaltf =0 then A (he) { Af~(by), otherwise (14)
4 D;«—OforalteT where: .
5: else G4~ — D, — min {A, D; — Dy } ’ (15)
6: (b*, 6% uF) « argmin (@) s.t. @) — (@0 2
7: Dy« bk forallteT
g endif BT = max {Dt, Df’*} ; (16)
o: (¢*, %) « argmin @) s.t. @ — @)

andA > 0 is a fixed parameter. The total cost of energy levied
on the LA in thekth iteration of Algorithml is defined as:

N
=4

UpdateC;(-) based on{q”, o~ }k_,
11: k—k+1
12: until k> k or [(bF=2 §F=2 yk=2) = (ph—1 gh—1 k-1 e
and (g2 Uk—g() — (gt Uk—l)]) ( ) Ci(be) Z/ AP (@)dy. (17)
) ) 0

In essence, our method begins with an underestimate of
the true cost of PEV charging, since we ¥ (b;) equal to
1) Marginal Pricing: The marginal pricing scheme as-the marginal cost of energy iD = 0. At each iteration, we
sumes that the price of charging energy in each hour is eqohiserve a new Lagrange multiplier value associated with the
to the value of the corresponding Lagrange multiplier friwea t latest PEV charging load and assume that this marginal cost
most recent solution of the SO’s problem. Thus, the updategplies in a small neighborhood of the current charging bid,
marginal pricing function after theth iteration of Algorithnd D;.

is defined as: Fig. [ illustrates our proposed price-updating scheme for a
particular hour through two iterations of Algorithith 1. When
Ci(be) = M1 oby + € (b — b2 (11) k=0, A(b,) is initially fixed equal toA?. Whenk = 1, the

LA solves its charging control problem and schedwesw,
The¢- (b, —by~")? term, wheret > 0, is a regularization term resulting in a Lagrange multiplier value off in the SO's
that penalizes the LA for changing its charging schedulefroproblem. To update the price function, the SO determings tha
thg schedule submitted in the previous iteration. We ms_luqbtlﬁ =0 and D" = +o0. The updated price function is
this term based on the work of Ma al [19], who show that it then:
ensures convergence of Algorittth 1, so longéds properly Alby) = A if by < Df”,
chosen. Whert = 0, the regularization term is excluded. L\ AL i DT < by

2) Price/Quantity-Based SignalThis pricing scheme uses
all of the marginal price data collected in all of the prexsou
iterations of AlgorithnilL to construct a non-decreasinggésl
price function. This price function is constructed itevaly,
since each updated vector of PEV charging demands resilte
in different optimal solution/Lagrange multiplier pair$ the
SO’s problem. We lef¥ (b;) denote the updated price functior —O— AL(b)
constructed in Step 10 of tHeh iteration of Algorithn{l and V' [L=8=4®) 586829
describe howA” is iteratively constructed.

When k = 0, we fix A%(b,) = A2V t. For anyk > 1
we defineb?, pF! .. ,bfﬁ“, to be the set of breakpoints in
AF=1(b,), where by convention we také"® = 0 and b}"* =
+o00. We then define:

(18)

Note that in this exampleA < (b! — D;7)/2, since the
second segment of th&} (b;) function does not extend down
to the midpoint betweeh! and D,

T T T

Actual Cost
0(h

Energy Price [$/MWh]

D = mas (i AT <Y < DY,
(12) At

as the largest breakpoint in*~!(b,) which is smaller than
D, and gives a smaller price than the corresponding Lagrar
multiplier. If no such breakpoint exists, by convention ve¢ |

k.— . ! )\ o=8—8-8-8-8-8
Dy~ = 0. Similarly, we define: idiadidil by .
¢ Y 0 i B D¥* b
. . PEV Charging Energy Demand [MWh]
DF* = min {bf‘“ lim ARV ) > A,’f} :
t v—0F Fig. 1. Updated price function after three iterations of axithm [ used

(13) with price/quantity-based signal.
as the smallest breakpoint i ~!(b,) that has a larger price
than the Lagrange multiplier found in the current iteratidn ~ When k& = 2, the LA reoptimizes PEV charging using the
no such breakpoint exists, we I@lf”r = +o00. The new prices updated price function and schedules MW, resulting in



Lagrange multiplier value\?. The SO also determines that We next note that we can rewrite the social planner’s
D}~ =0 andD?" is the value noted in Figl1. This givesproblem as:
the updated price function:

min ] [ZFi(Qi,t)

A0 if b < B2 . ter Liel
M) = a8 B <p <D, g mind Ve oo (&
AL if DY < b, ver ¢ OB
S.L
s.t. [@)-{1D) (24)

E. Convergence of Algorithfd 1
. ] where constrainf{22) is explicitly substituted into thgemh
Convergence of Algorithrill1 can be guaranteed with boffye gy the principal of optimality, this is equivalent to:
pricing schemes. In the case of the price-only scheme, con-

vergence is governed by the choice &finsomuch as the min Vo (b) + ZV Uy (25)
algorithm is guaranteed to terminate if this parameter éseh ~er
properly [19]. We provedf. Lemmd®) that the price/quantity- s.t. [@)-1D) (26)
based scheme is guaranteed to converge, with the convergenc
rate governed by the choice df. Thus, the Karush-Kuhn Tucker (KKT) conditions of the social
planner’s problem are:
. , 0
F. Social Planner’s Problem a—tiS*O(bt) + ”ltﬂ =0 (27)
The social planner’s problem assumes that a single entity - + _
optimizes both power system dispatch and PEV charging. This _ﬂ B J?t + /Et + ”g =0 (28)
is the counterfactual ‘ideal’ case against which we benekma V+ ug - u@ =0, (29)
our price-based charging control schemes. This problem is
formulated as: whereyif, Lgt, andp[g are Lagrange multipliers on constraint

sets [¥),[[(B), and9), respectively. We also prove in Leriima 3

cf. the appendix) that:
minz ZFi(qi,t)-i-V-(Dt—at) +ZV~u,Y; (20) ( P )

teT Liel ~Er 0 _ .
— Vo (by) = Me(b). 30
s.t. @)-5) and7)E10) (21) o, V50 (b) = M (b) (30)
by =Dy ViteT. (22) Hence, condition[{d7) becomes:
The social planner’s problem minimizes the cost of genenati At (D) + ;Jtz =0. (31)

and unserved PEV charging demand subject to the same set . . )
of power system and PEV charging constraints in the SO andMe 1€t A7 (b:) = A:(b) denote the true function that gives
LA problems. Constraint seE1P2) defines the PEV chargiﬂBe Lagrange multiplier value associated with constrddt (

demand parameters in the SO’s problem in terms of ti& hourt whenD = b in the *SO’s_probIem. We show in
charging decision variables in the LA's problem. Lemmel3 Cf. the appendix) thak} (b;) is non-decreasing iby.
Based on these two lemmas, we now show that if the price of

PEV charging energy levied on the LA is given Iiy](17) using
I11. SoclAL OPTIMALITY OF PRICING SCHEMES the true price functions, an optimum of the social planner’s
problem is also an optimum of the LA's problem.

We now turn to proving that the price/quantity-based cdntro | emyma 1: Suppose that Assumptidd 1 is true and that the
scheme proposed in SectibnIED2 can yield a socially oftimgrice levied on the LA for PEV charging energy is given
PEV charging schedule. This discussion is divided into Wey {I7) using theA*(-) price functions and all of the\? (b,)
parts. We first show that a socially optimal PEV chargingnctions are non-decreasing. Then an optimum of the social
schedule is optimal for the LA, if the LA is given thepjanners problem is also an optimum of the LA's problem.

true price/quantity functions. We then show that the ifeeat Proof: The KKT conditionl for the LA’ problem are:

technique used to construct thg' (b;) functions causes the

LAs optimal charging pattern to converge to a near-social C(by) +ﬂlt2|: 0 (32)

optimum. Before proceeding, we explicitly state an assionpt _ i B

underlying our theoretical results. _JZI_ *Et T /Et - “g_ 0 (33)
Assumption 1:The non-PEV loads are such that there is V+ ug— pgn: 0. (34)

generating capacity available to provide some PEV charging
energy in each hour. Moreover, the value of lost lo&d,is 1Since theA¥ (b¢) functions may be discontinuoue.g., step functions), the

sufficiently Iarge Compared to the marginal cost of genemti LA's objective function is not necessarily continuouslyfetientiable. We can,
however, appeal to a generalized form of the KKT conditioois & convex

that it iS_ optimal for the SO to provide some PEV CIﬂlargingglbdifferentiable objective, which the LA's problem is garteed to have,
energy in each hour, if it is requested by the LA. O that gives the same result.



From [IT) we have that: wheren; = min{A, bi/2}. We now define the PEV charging
schedulep(n}), as:

d ™ ,
Cib) = o [ Aj(was @) (e et
0 be(n) = b+t ifr=t, (39)
= Ak bL, otherwise
Ar(be). Note that with the updated price functions, the difference

between the LAs cost of charging scheduleand b(n}!) is

Since we assume that thg;(:) functions are convex and,l .\l — \L). If A} > AL, the cost difference is positive,
Aj (b,) functions non-decreasing, the LA's and social plannerghd the LA prefersg(ng) and would update its charging
problems are both convex, and the KKT conditions are algghedule accordingly in the following iteration. Othereyithe
sufficient for optima. Since optima of the LAs and sociaj A prefersb! and does not update its schedule in the following
planner’s problems have the same necessary conditions,j@fation. Moreover, the LA would be unwilling to change its
optimum of the social planner's problem must be optimal i§chedule to anyi(n) with > n! with the A! price functions,
the LAs problem as well. B since doing so further substitutes lower-priced energyaarh

We hereafter leb* denote a PEV charging schedule that with higher-priced energy in hout. Note, however, that by
is optimal in the LAs problem, if the price levied on theconstruction,A}(-) and A% (-) underestimate the true cost of
LA is given by [IT) using the\*(-) price functions. Suppose PEV charging schedules of the forbty)) with > n!. Since
that b*, the solution to the LA's problem in thkth iteration with these underestimated prices the LA has no desire teadju
of Algorithm [, is not equal ta*. Given the high cost of its charging schedule, there is no need to determine the true
unscheduled PEV charging in the LA's problem, it must bgarginal cost of energy fob, < b} andb, > b}, to find a
true that for some pairs of hours,andt’, we haveb} > b; near-socially optimal charging schedule. Thus, the incemb
and b}, < bj. We refer tot as the hour in which PEV solution is near-socially optimal.
charging is overscheduled artias the hour in which it is  Suppose that in théth iteration we havé* # b* and that

underscheduled. Thus, féb*} to get close té* we must have by > by andbl, < by,. According to the price updating scheme
PEV charging shifted from over- to under-scheduled houes. We have:

show in the following lemma that our price function updating Ak (by) = A (0), if by < bF —nk, (40)
scheme achieves this. _

Lemma 2:Suppose that Assumptidd 1 is true, the priceemd' k ko &
levied on the LA for PEV charging energy is given y1(17) Agrlber) = gy 1 b = B, (41)
using the A*(-) price functions, and that all of tha;(b;) wheren® = min{A,bF/2}. We can define the PEV charging
functions are non-decreasing. Then there exists a functieshedulep(n}), as in [3D). The difference between the LAs

d(A), with: cost of charging schedulé® and b(nF) is nfF - (AF — AE).
. If \¥ > \r the LA updates it charging schedule b6n*)
> —0- . t t . - . . _t
d(A) 20, A11—>H01+ d(B) =0; (36) in the next iteration. Otherwise, it does not. Repeating the

same argument as whén= 1, the A¥(-) and A% (-) function
such that after receiving a new approximation of the priagnderestimate the true cost of PEV charging schedules of the
functions in each iteration, the LA always prefers to reduggrm 5(77) with > 7. Since charging schedules of this form
(increase) scheduled charging energy in hours in which itdge suboptimal with underestimated costs, there is again no
initially overscheduled (underscheduled), unlégs— b;| < need to determine the true marginal cost of energyfor b*
d(A) for all t, in which case)* = b+ andb, > bk to find a near-socially optimal charging schedule.
Proof: Note that our pricing mechanism starts withThus, the incumbent solution is again near-socially optima
A%(b;) = A(0) for all ¢, which is an underestimate of the true  We finally note that adjusting the value @ gives A*
marginal price, since tha; (b;) functions are non-decreasingfunctions and the resulting® that can be made arbitrarily
Suppose thab! # b*, meaning that there must bleand ¢ close toA* andb*. ]
such thatb; > b; and b, < b},. Since PEV charging loads The crux of this result is that if PEV charging is over- and
can be feasibly shifted from hour to ¢, it must be true under-scheduled in a pair of houtsandt’, respectively, the
that A7 (0) < A} (0). Moreover, sinceAj,(-) is assumed to updating scheme makes the price of charging energy in hour
be non-decreasing, it must be true tigt(0) < A}, (by) for relatively less attractive than that in hotir This incentivizes
all by > 0. the LA to shift some of its charging load from hotrto ¢'.
We now prove the desired result using an inductive arglihis process repeats iteratively until the approximatedepr
ment. Whenk = 1 our updated price functions have: functions, A7 (-) and Af;(-), give reasonable approximations
of the true price functions in a neighborhoodigfandb;,, at
AL(by) = AZ(0), if by < b —n}, (37) Which point b} and b}, are near-socially optimal and the LA
does not update its schedule. Note that depending on how far
b0 is from b, it may take a different number of iterations
for the price functions and schedules in different hours to
AL (b)) = A, if by > b}, (38) converge. The parametek, controls the rate of convergence

and:



and final solution quality. Larger values result in a morersea

TABLE Il

PEV ARRIVAL AND DEPARTURETIMES AND CHARGING ENERGY

approximation of theA’(-) functions, but also means that DEMANDS
fewer iterations must be conducted before convergence.
Hours Hours
¥ Parked N, Xy v Parked N, Xy
IV. CASE STupY T 17 500 375 22817 500 55
We examine three numerical case studies to demonstrate 2 | 1-8 1000 7.5 23| 9-15 250 25
the benefits of directly controlling PEV charging and the i i:io ggg i‘S 2‘5‘ gj? ;ggg i?
relative performance of the two price-based control scleeme 5 | 1-11 250 2 26| 9-18 1000 10
We begin, in this section, with a case that conforms to 6 ;—12 558 %-75 2287 18—16 1088 9.5
; : ; 7 -7 5 10-17 15 14
the as_sumpyons underlying our theoreuc_al results. Ngmel s | 28 1000 75 2o 10-18 1000 11
there is a single LA that knows PEV arrival and departure g | 29 1000 6 30| 11-17 1000 8
times and charging demands with certaiatyriori. We then 10 | 2-10 250 3 31} 11-18 1000 7.5
; Y ; : 11| 2-11 250 2 32| 12-17 500 3
examine two sensitivity cases with multiple LAs and random
- ) . , 12 | 2-12 250 175 33 12-18 500 5
PEV driving patterns in Section§lV arld1VI, respectively. 13| 3-9 250 2 34| 1219 500 4
These are intended to study the effectiveness of the control 14 | 3-10 250 25 35 13-18 250 3
schemes when these assumptions are relaxed. We measure th 51311 250 2 36 13-19 500 2
: 3-12 250 1.75 371 14-19 500 2
performance of the control schemes by system cost and the 17 | 24-11 250 1.5 38| 1420 500 5
number of iterations, amount of CPU time, and amount of data 18 | 4-12 250 15 39| 15-20 500 5
D 19 | 5-11 250 1.25 40/ 1521 250 1
exchanged between the SO and LA to compute equilibria. 20 | 815 500 5 a1l 1620 500 3
21| 816 500 5 42| 16-21 250 2

A. Case Study Data

We examine power system operations and PEV chargi 2so

over a one-day period. The modeled power system consists
three thermal generators. Generator characteristicaiarma-
rized in Tabldll. We assume each conventional generatoas
a convex quadratic cost function, identical ramp-up andvsdo
limits given by R;, and starting generation levels given by
gi,0- We assum@4500 PEV arrivals, with times parked at the 290
charging station and charging demands that are summarize:g,
Table[ (the24500 PEV arrivals corresponds to the sum of thig

. . . 2 200
N, values reported). This gives a total PEV charging dema
of 200 MWh, which amounts to @% increase in electricity
demand over the one-day period. Each PEV charging stati
is assumed to have & kW power limit. Fig.[2 shows the
system’s non-PEV load and the net load when the soc
planner schedules PEV charging or in an uncontrolled ca

260

240

180

160

Non-PEV Load
+ Social Planner PEV Load
+ Uncontrolled PEV Load

in which PEVs charge immediately upon arrival at a chargir 140

station.

TABLE |
CONVENTIONAL GENERATORCHARACTERISTICS

Fig. 2. System load.

Hour

123 456 7 8 910111213141516 171819 20 21 2223 24

Unit | P~ PY Ri g0 Fi(a:)

1 10 120 15 70 110.85 +5.36 - q1 + 0.0050 - qi B. Case Study Results

2 10 80 10 55 80.87+410.72-¢2 +0.0137-¢ )

3 20 150 100 60 85.24 + 36.51 - g3 + 0.0087 - qé We compare system performance between the cases listed

in Table[I, which rely on different forms of PEV charging

When computing equilibria using the marginal pricingcheduling. Case 1 assumes that there are no PEVs whereas
scheme, we use different values ranging betwed3 and Case 5 assumes uncontrolled charging. Case 2 assumes that
20 for the regularization penalty terng, We assumeA = charging is controlled by a social planner and cases 3a
0.5 kWh when definings*~ in the price/quantity-basedthrough 3d assume price-only control with different regula
signal. We terminate Algorithrl 1 if the maximum absolutézation penalty terms. Case 3c, which uges 1.025, has the
difference between the charging profiles of two consecutibest performance in terms of cost and equilibrium compaorati
iterations is less thar).1% and set an iteration limit of time. Case 4 uses the proposed price/quantity-based tontro
k = 2000. This high iteration limit is needed for the price-onlyscheme. Tablé_lll lists total generation and PEV charging
control scheme, the convergence properties of which ishhigteurtailment costs. Since all PEV charging demands are met
sensitive to the choice &f. All of the models are formulated in all of the cases, curtailment costs are zero.
using version12.1.0 of the AMPL modeling package and The cost differences between each of Cases 2 through 5
solved with versiori2.1.0 of the CPLEX optimization package and Case 1 represent incremental PEV charging costs with
on a quad-cor@.7 GHz Linux system witd GB of RAM.  different control schemes. Tab[E]IV reports these charging



TABLE Il

CASESEXAMINED AND TOTAL COSTS

Case PEV Charging Total Cost [$]
1 None 68589
2 Social Planner 73972
3a Price-Only(¢ = 0.1) 74195
3b Price-Only(¢ = 1) 73974
3c Price-Only(¢ = 1.025)* | 73973
3d Price-Only(¢ = 20) 74098
4 Price/Quantity 73973
5 Uncontrolled 74708

costs in the different cases examined. These cost are gsver
absolute dollar amounts and on a per-MWh (of PEV chargit
load) basis. As expected, the social planner minimizes PE
charging costs whereas uncontrolled charging is the me
costly, resulting in14% higher driving costs than the social
optimum.

TABLE IV
PEV CHARGING COSTS

6200

220

—
M =
61000 VY A v 200
CA
6000 ,' Price-only  [|180
1 —&e— Social Planner
5900 ] —— Uncontrolled ~ [1160

(%]
o]
o
o

Charging Cost [$]
ol
~
o
o

5600

Fig. 3.

1140

1120

ML I
051525

40

5 10 20

Equilibrium Computation CPU Time [s]

PEV charging costs (solid line) and equilibrium cartgtion time
(dashed line) with price-only mechanism as a functiorg .of

Case [$] [$/MWh]
Social Planner 5383 26.88
Price-Only (¢ = 0.1) 5606 28.00
Price-Only (¢ = 1) 5385 26.89
Price-Only (¢ = 1.025)* | 5384  26.89
Price-Only (¢ = 20) 5509 27.51
Price/Quantity 5384 26.89
Uncontrolled 6119 30.56

LA when the price-only mechanism is used—the SO must
communicate the updated hourly prices to the LA and the LA
must send hourly charging loads back to the SO. By contrast,
each iteration of Algorithnll1 requires the exchange of up to
96 numbers between the SO and LA with the price/quantity
mechanism. This is because each iteration updates the price
function by imposing a new price in each hour between two

breakpoints (the price outside of these breakpoints remhain
The price/quantity-based mechanism results in very slighdme as in the previous iteration, as illustrated in Elg. 1).
cost increases compared to the social planner. This inereagus, the SO send®4 hourly prices andt8 corresponding
reflects the incremental cost of relying on price-basedgihgr breakpoints to the LA, and the LA sends hourly charging
control. The increase is due to the iterative price updatingads back. In the25 iterations it takes for Algorithnfill to
process terminating before reaching the true social optimonverge with the price/quantity mechanis?d00 numbers
(cf. Lemma2) and is a consequence of the approximate natgfe exchanged. With the price-only mechanism, a minimum of

of the price functionite., the choice ofA). The cost difference 21504 number are exchangeild, with the best-case choice
between the price/quantity and social planner cases d®seaf ¢ = 1.025).

as A — 0, although with more computation needed. Our
Choice OfA =0.5 kWh requireSZ5 iterations Of Algo”thnﬂ- C Sensm\”ty of Opumaf to Prob|em Parameters
and3.23 s of CPU time to compute an equilibrium, with trivial A further limitation of the price-only mechanism is that the

efficiency losses. . : e . )
Performance of the price-only mechanism, both in terms ?)P“mal choice o is highly sensitive to the underlying prob-

charging cost and equilibrium computation, is highly st em parameters. To demonstrate this, we examine three addi-
to the choice ofé. If this term is chosen correctlyi.é., tional variations of the base case described in SefionlIV-A

& = 1.025), the resulting charging patterns have costs that 'Fg.e first assumes different costs for the three generatves g

nearly identical to the price/quantity and social planreses.
Poorly-chosen values result in Algorithbh 1 not converging
and much higher costs. This is illustrated in Hg. 3, which
shows charging costs and equilibrium computation time with
. : . and:
price-only charging control as a function ¢f It also shows
charging costs with social planning and uncontrolled cimarg
indicating how price-only control performs compared tosthe The second assumes the same generation costs as in the base
extreme cases. It should be noted that with price-only obntrcase, but that generator 1's ramp-up and generator 2's ramp-
Algorithm [ only converges witié between0.95 and 2.5. down capabilities change &0 and20 MW, respectively. The
However, the amount of time it takes to compute an equhird case assumes the same generation costs and ramping
librium ranges between48 iterations, which taked1.8 s of capabilities as in the base case, but that there are twice as
CPU time, up tol107 iterations takingl06.3 s. many PEV arrivals before hour 12 arrd% fewer after hour
There is also the related issue of information exchand®@, compared to the base case.
between the SO and LA. Each iteration of AlgoritHth 1 Table[M shows the optimal choice d@f which gives the
requires the exchange a8 numbers between the SO andowest PEV charging cost and equilibrium computation time,

Fi(q) = 110.85+5.36 - ¢ + 0.0424 - ¢2,
Fy(q2) = 80.87 4 10.72 - g + 0.0312 - ¢2,

F3(q3) = 85.24 + 12.59 - g3 + 0.0137 - 3.



in the base and sensitivity cases. It also gives the range of 2) LAS’ Problems:LA a's problem is formulated as:
values for which Algorithnill converges 000 iterations or

less. The table shows that the price-only mechanism does not minz Ca,t(bas) +V - Z Ua,ys (47)
converge in2000 iterations in the last sensitivity case for any teT 7€la
value of¢ tested. Stbag= Y Oane; VEET; (48)
Y€l
TABLE V 0< 6@,7,15 < R- Na,v : Ia,'y,t; (49)
OPTIMAL £ IN DIFFERENTCASES Vel teT;
Optimal  Range of for which Algorithm[1 ) +u =Xug~; Vel 50
Case I3 Converges in 2000 lterations ; @t o o K ¢ (50)
Base Case 1025 09525 €
Generation Cost 0.1 0.07-1.25 Ugy > 0; Vyel,. (51)
Ramp Limits 0.475 0.45-1.5
PEV Numbers | 0.67 none 3) Equilibrium Computation:We compute a Nash equilib-

rium between the SO and LAs using Algoritliin 1, with several

) o ] ) refinements that account for having multiple LAs. Specifical
The discussion in Sectidl TVIB shows that the price-onliiens 4 6, 7, 10, and 12 are updated to reflect there being

mechanism faces the added difficulty that its performancer}ﬁmime LAs. In Step 6 the optimal charging schedule is

highly sensitive to choosing a good regularization penalfystarmined agbk, ok uk) — argmin @) s.t. @8 — &)

. age . . . a’ra? a
parameter. Otherwise, equilibrium computation time and,nq i Step 9 the optimal dispatch schedule is determined as

resulting costs can be significantly higher than the SOCi?#k o) — argmin @2 s.t. @3) — [@9).
optimum. The results in TablglV further show that the optima 4’) Price Signals: We study the same two price-based

choice of  is very sensitive to the underlying problemyignaig as before. The marginal pricing scheme updates the

parameters. This suggests that one may have to rely on regfzinq function after theith iteration of Algorithmil as:
time tuning to determine an optimal choicegfwhich can be

cumbersome and difficult. Moreover, this tuning processldiou Cai(ba) = )\f’l “bat+ & (bgt — b’;;l)?, (52)
have to be repeated as the generation mix, number of PEVS,

driving patterns, and other system characteristics change °f all @ andt. o , _
time. To define the pricing function with the price/quantity-bése

scheme, we defind” (b, ) as the updated price function
constructed in théth iteration of AlgorithnTl. As before, we
initialize these function ad\) ;(bs:) = A\{,¥ a,t. Fork > 1

V. MULTIPLE-LOAD AGGREGATORCASE we defined?, b1, ... bk, to be the set of breakpoints in
A’;;l(baﬂt), where by convention we také:? =0 andbfj:f =

+o00. We then define:
m&rlli;Téstsse we assume that PEV charging is managed liy;;:t_ _ max{B’;;l’i : AI;;I(bZ;l,i) < )\5751;;1,1‘ < Da,t},
' (33)
and:

D];;r = min {bst“ : 1i1rn+ Ai;l(bszll +v)> /\f} .
A. Model Refinement ’ v=0 (54)
If no such points exists, we Idt)’;jt_ =0and D’;f = +o0,
Before discussing the case study data and results, we figstappropriate. The new prices are then defined as:
refine the model formulations and pricing schemes outlimed i

Sectior[D to account for multiple LAs. AE (bat) = Nt if ﬁf’__< ba < BT, (55)
o a,ti7a, AFZ1(b,), otherwise
1) SO’s Problem:The SO’s problem is given by: " '

where:
ko— . Dll,t - D::t_
mlnz ZE(th)—f—V <Z Da,t —0t>] ; (42) 607 :Daat — A7 2 9 (56)
teT Liel acA
St gu=Li+o; VteT; (43) gt = max { Do, DY} (57)
iel
Pm<q.<Pf Viel;teT; (44) The total cost of energy levied on LA in the kth iteration
R <qii—qi1<RF: VielteT: (45) of Algorithm[d is defined as:
ba,t
0<ou<) Doy V€T (46) Conlbar) = [ Ak o) (58)

acA 0
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. , . . TABLE VII
5) Social Planner’s ProblemAs in the single-LA case, the PEV ARRIVAL AND DEPARTURETIMES AND CHARGING ENERGY

social planner is assumed to control all SO and LA decisions DEMANDS OF LOAD AGGREGATOR3
simultaneously. Thus, the social planner’s problem ismylwg

Hours Hours
¥ Parked N3, X3, o' Parked N3, X3,
min Fila: V. D —0o 59 1 [ 17 200  1.55 17 3-11 100  0./8
Z Z i(gie) + Z Lot (59) 2 | 18 350  2.82 18/ 3-14 100  0.78
teT Liel acA 3 | 1-9 700 55 19| 3-15 60 0.6
V-u 4 | 110 300 23 20| 3-16 150 1.2
+ Z @ 5 | 1-11 100 0.88 21| 3-17 50 0.38
acAvelq 6 | 2-8 100 0.78 22| 15-20 50 0.39
st 2B 60 7 | 2-9 200 156 23| 1521 150 1.2
(&3) ) (60) 8 | 210 400 36 24| 1522 100 0.78
@E9)-Bl) VacA (61) 9 | 2-11 200 156 25 1523 100  0.78
_ . 10| 2-12 50 0.4 26| 16-20 30 0.24
bai = Day; VaecAteT (62) 11| 2-14 80 065 27| 16-22 200 156
12 | 2-15 180  1.45 28| 16-23 500 3.9
13| 2-16 280 2.2 29| 16-24 100  0.78
B. Case Study Data 14| 2-17 120 095 30| 17-22 100  0.74
This case assumes the same underlying system, consistingi5 2-18 60 0.5 3lj 17-23 260 21
6|3-10 200 156 32| 17-24 400 3.7

of the three conventional generators and non-PEV loads as
shown in Tabld]l and Fid]2. We assume that there2a650

PEV arrivals over the course of the day and that the vehiclgs e price-only mechanism, yielding the smallest chaggi
arrive at charging stations operated by three independ&sit L ot that is comparable to the social planner’s solution.
The first LA is assumed to serve exactly half of the PEVs

in the base case. Thus, we assume tNat, and X; , are TABLE VIII
equal to exactly half of the values reported in Teile Il. The ~ CASESEXAMINEDAND TOTAL COSTS WITHMULTIPLE LOAD

. L AGGREGATORS
remaining PEVs are divided among the other two LAs based
on the values reported in Tablgs] VI andivil. Case PEV Charging Total Cost [$]
1 None 68589
TABLE VI 2 Social Planner 73850
PEV ARRIVAL AND DEPARTURETIMES AND CHARGING ENERGY 3a Price-Only(¢ = 0.1) | 74187
DEMANDS OF LOAD AGGREGATOR2 3b Price-Only(¢£ = 1) 73881

3c Price-Only(¢ = 3.5)* | 73852

Hours Hours id Er_ice/—((?)nly(tgt: 20) ;gggg
v | Parked Nay Xo. v | Parked Nay Xo, ree/uantity
1 [712 50 04 24 10-16 100  0.78 5 Uncontrolled 74725
2 | 7-13 100 09 25 10-19 300 2.4
2 ;—ig %88 2'3 g? ig—gfl) 280 (1)-15 The performance of the price-only mechanisms is further il-
5 | 7-17 200 16 o8l 11-17 50 04 lustrated in Flg_l:kl, which shows_ charging costs_and e_qluuln_br
6 | 7-18 100 08 29| 11-18 50 0.4 computation times as a function gf Contrasting this with
; g—ig igo 8-‘; 2(1] E—}g 1g8 2-2 Fig.[@ shows that the range ¢fs that result in Algorithn{IL
9 | 814 100 1 3| 19-17 250 o converging is markedly different |n_the multiple-LA case.
10 | 8-16 300 275 33 12-18 200 1.6 Whereas values betwe@d5 and2.5 give a convergent solu-
i% g-g 283 g'is 245 12'28 280 8-22 tion in the single-LA case, values betwegmnd10 do so in
13| 8-19 200 16 36| 13-18 150 1.2 the multlple_-LA case. As before, the_ pnce/quantrFy me_cﬁmm
14 | 820 50 0.6 37| 13-19 100 0.8 takes considerably less computational effoeB—iterations,
15 9-14 200 16 38 13-20 100 0.8 taking 7.3 s of CPU time and the exchange 2#08 numbers
16 | 9-15 50 0.4 39| 1321 50 0.4 bet the SO and LA—to find ilibri The ori
17 | o-16 200 16 20 14-19 300 25 etween the SO an —to find an equilibrium. The price-
18 | 9-17 900 7.9 41| 1420 100 0.9 only mechanism takes a minimum 6f iterations,39.1 s of
;g g-ig ?83 g-g 35 ii-gg igg 3-25 CPU time, and the exchange 468 numbers with the optimal
21 | 9-20 100 08 a4l 15-22 100 08 choice ofg_: 3.5._If & = 3is chosen instead, Algorithid 1
22| 921 50 0.45 45| 15-23 400 3.7 converges inl090 iterations, takingt52.3 s of CPU and the
23 | 10-15 100  0.84 exchange 052320 numbers.

VI. RANDOM PEV DRIVING PATTERN CASE
C. Case Study Results We now consider a case in which there is a single LA

Table[VIIl summarizes total system costs with multiple LAst,JUt future PEV arrivals, departu_res, numbers, and ch_arging
considering the same set of PEV charging cases as in the bdg@ands are unknown when making current-hour charging and
case. As before, all of the PEV loads are satisfied, thus offlipPatch decisions.
generation costs are reported in the table (as there is zero ]
curtailment cost). As expected, the social planner minimizA- Model Refinement
cost and the price/quantity mechanism yields the same costAll of the optimization problems are formulated as two-
minimizing charging patterns. A value §f= 3.5 is optimal stage stochastic programs, wherein the first stage is the firs
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6200 = 900

e 2) LA’'s Problem: The LAs problem is formulated as:

6100] 27 qso0
4 .
6000 .’ 1700 Z min Z s - Ci,s(b,s) + V- Z Ts - ty,s; - (70)
. ) teT;seS yel;seS
5900 e 1 E
_ - Jooo 5 Sths=>» 0yus VteTiseS; (71)
5 5800 ‘ 19 ~er
S ™z 0< 61y <R-Nyy Tomss 72
@ 5700 3 = Oyits > v,8 s,7,t» ( )
5 1400
£ 5600 | § VyeliteT;seS,
5500 picoomy || 2 Z Oyts +Uys=Xys; Vyelisels, (73)
5400 —&A— Social Planner {200 u:cf teT
—— Uncontrolled Uny,s > O’ A2 v €e I" s € S7 (74)
5300 . —wo ’
4 bl,s = bl,s’; v S, S/ € S; (75)
5200 5 2 5 10 20 dyi,s =0y1,55 Vy€eTl;s s €S (76)

i _ o . o The objective minimizes expected cost and the same con-
Fig. 4. PEV charging costs (solid line) and equilibrium cartgpion time traint in the b f lati included but
(dashed line) with price-only mechanism and multiple logdragators as a straints as In : e - ase-case _Or_mu_a.'on are |!’1(; ude u
function of ¢. enforced scenario-wise. Non-anticipativity constraars also

included to force the first-stage decisions to be the sam@&gmo
all of the scenarios.

hour and the second stage the remaining hours of the opti3) Equilibrium Computation:A Nash equilibrium is com-
mization horizon. We assume that PEV arrivals are perfecijtéd using a rolling-horizon iterative technique. Thet gis
known in the first stage and scenarios represent uncertain Pi€ algorithm is that we roll through each hour of the entire
arrivals during the second stage. PEV uncertainty affduss tOPtimization horizon, computing an equilibrium betweee th
SO problem since it may be optimal to adjust the current-hogfo @nd LA in that hour. This equilibrium accounts for pos-
dispatch so future charging demands can be met at minimgfhle future PEV arrivals and charging demands. Algorifim 2
expected cost while respecting generator constraintsh@o fummarizes the steps involved in determining houtash
extent that the driving patterns allow, the SO may also wa@fluilibrium generator dispatch and PEV charging decisions
to intertemporally shift PEV charging to help manage thidlgorithms [1 and[P are nearly identical, except that the
uncertainty. To achieve this, we allow the SO to provide tHPtimizations in Steps 6 and 9 are only carried out for hours
LA with scenario-dependent price signals. r,...,|T]. Once AlgorithnP terminates, only houigenerator

1) SO's Problem: Since the SO provides the LA with dispatch and PEV charging decisions are fixed based on

. . . . he final solution i(e., ¢*, ", b*, 8% and u*). We th Il
scenario-dependent price signals, the PEV charging s&rhec#ge inal solution ke., ¢%,o",b",0%, andu’). We then ro

. . ; ) rward, settingr «— r + 1 and repeat Algorithnid2 with
IS mode_led as being scenan_o-dependent. The SO's St(mheﬁsdated PEV data and forecasts to determine the next hour's
economic dispatch problem is formulated as:

equilibrium generator dispatch and PEV charging decisions
again taking into account all future scenarios over the full
optimization horizon".

min Z T+ Z Fi(git,s) +V - (Dys — Ut,s)] ; (63)

teT;sesS el

Algorithm 2 Hour+ Equilibrium Computation with Random

S.t. Z Qit,s = Lt + 0¢.5; VteT;seS; (64) pEV Driving
el 1. k<0 > Set iteration count to zero
P <qus<P" VieliteT;seS; (65) 2. repeat
R < qits—Git—1,s < R?'; (66) 3 if k=0 then
Viel;teT;s€S; 4 | Dys—O0foralt=r,...,|T|;s€S
5: else
0 <ots < Dis; the T;s e S5; (67) 6: (b%, 6% u¥) « argmin [@0) s.t. () — (78
qil,s = Qi,1,s"5 Vs,s €8, (68) 7 Dt,s — b?,s forallt=r,..., |T|§ seSs
o1s=015; Vs €S (69) 8 endif
o: (¢%, %) « argmin @3 s.t. ©4) — €9
0. UpdateC, () based on{g",o"}*_,

This is nearly identical to the base-case formulation in_ .
. . L 11: k—k+1
Section[I-A. The objective minimizes expected costs an;I‘fZL, until & > J or [(bk_g §h=2 yk=2) — (ph=L k=1 k1)
the generation, charging limit, and ramping constraines ar and (q,;g oh=2) — (ék—l ék‘l)} ’ ’
imposed in each scenario. Non-anticipativity constraigt) ' '
and [69) encode the two-stage structure by forcing the first-
stage decisions to be the same across all scenarios. Thé) Price Signals: We examine the same two price-based

second-stage decisions can be scenario-dependent, roweagnals that are considered in the base case. The only mod-
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ification to the price updating procedures detailed in Seimcurred at the end of the day after vehicles arrive accgrdin
tion is that the Lagrange multipliers found in solvingto the data in Tabl€lll. Since all PEV loads are satisfied,
the SO’s problem are scenario-dependent, since load-tmlaanly generation costs are reported in the table. Although th
constraints[{§4) are enforced for each scenario. We thuatapdsocial planner still yields the most efficient charging shiie,

the price functions('; s(-), using the corresponding scenario’shere is a slight cost increase compared to the base case. Thi

Lagrange multiplier. is because the uncertainty in future PEV charging demands
5) Social Planner’s ProblemThe social planner’s problem results in different generator dispatch decisions, givihg
is formulated as: cost increase. The cost difference between these two cases

is the value of perfect PEV driving pattern information.
min Z g - ZFi(qi,t,s)JrV- (Dis —o01s)| (77) Both the price-only and price/quantity mechanisms givescos

teT;seS il that are comparable to the social planner’s solution, if the
. correct value of¢ is chosen. Indeed, the optimal choice of
+V. Z Ts * Uy,s) ) ) .
JeTaes & = 0.7 gives PEV charging costs that are slightly lower than
" the price/quantity mechanism does. As noted before, this is
st. [63)-(EP) and{T)ETS) (78) attributable to our choice o = 0.5 in defining 3% ~. If a
bis=Dis; VieT;sels. (79) value of A < 0.325 is used, the price/quantity mechanism
The social planner’s problem is solved using a similar tteea outperforms the price-only one on the basis of cost.
rolling-horizon procedure to that used in Algoritfiin 2. Spec TABLE IX
ically, we start withr < 1 and solve the social planner’s CAsSeSEXAMINED AND TOTAL REALIZED COSTS WITHRANDOM PEV
problem using the two-stage scenario tree to determine-hour DRIVING PATTERNS
1 dispatch and PEV charging, which are fixed. We then roll Case PEV Charging Total Cost []
forward and letr «— r + 1, update the scenario tree, and 1 None 68589
resolve to determine the next hour’s decisions. This isatguk 2 Social Planner 74015
iteratively until we determine optimal decisions over tingire a  PriceOnly(¢ =0.1) | 74105
' vely unt p 3b  Price-Only(é = 0.7)* | 74016
planning horizon7'. 3b Price-Only(¢ = 1) 74018
3c Price-Only(¢ = 20) 74045
4 Price/Quantity 74019
B. Case Study Data 5 Uncontrolled 74746

This case assumes the same underlying generation mix and ) ) ]
non-PEV loads as in the base case. We further assume thdtS Pefore, the price-only mechanism takes considerably

the actual PEV arrival and departure times, vehicle numberg10re effort to compute a Nash equilibrium. This is shown
and charging demands are the same as in the baseiaase (! TableX, V\{h_lch summarizes the_ computational performance
the values given in TablElll). We generate the scenario trakthe two pricing schemes. The first column reports the range

for the PEV charging problem by assuming that the LA religd iterations required to compute an equilibrium in eachrhou
Jhis range reflects Algorithid 2 computing an equilibrium one

on forecasts of future PEV arrivals, departures, and desjan ! ) X ’ :
which are denoted a8, ,, 7 ,, N, , and X, ,. We assume _hourt_at attlr?edm a roII!Ir_lg _fash_lon. Tt;us, |:hmay taltf m_(I)_Le
the arrival and departure time forecasts have the followidfgrations to find an equilibrium in one hour than anothee
unbiased distribution: second column reports the number of hours of the day for
, ) - which Algorithm[2 does not converge within 2000 iterations.
o (7y +11’T'V)’ with probability 0.2, The third column reports the total CPU time required to
(Ty.7,5) = (TV’Ty)’ with probability 0.6, (80)  gimylate the one-day period studied while the fourth shows
(74,75 = 1), with probability 0.2; the total amount of information exchange between the SO and

where, and 7/, are the actual arrival and departure timeg;A {0 compute the one-day equilibrium. There is consideyabl

given in Tabldl. The distribution of the number of PEVs anénore information exchanged in the random driving pattern
charging demand forecasts are given by: case compared to the others due to the scenario-dependent

_ . pricing assumption and the rolling equilibrium computatio
L 0.85- (N5, X), with probability 0.2, Specifically, each iteration of Algorithrl 2 requires the ex-
(Nyss Xoys) = § (N, X5), with probability 0.6, change ofl +(|T'|—r—1)-|S| scenario-dependent hourly prices
1.15 - (Ny, Xy), with probability 0.2. from the SO to the LA and the same number of charging loads
(81) from the LA to the SO when computing an hauequilibrium

These distributions are assumed to be jointly independféat. with the price-only mechanism. The price/quantity mechami

r§1ndomly generate 100 sample paths7of, 7 ., N, s, and requires the SO to send the LA (1 + (|| —r — 1) - |S])

X5 to populate the scenario tree. numbers in each iteration, corresponding to the new pricds a

breakpoints in each pricing function.
C. Case Study Results

Table[TX summarizes total system costs with random PEV VII. CONCLUSIONS
driving patterns in the different charging control casese T We study decentralized price-based PEV charging control.
values shown arealizedcosts, meaning that they are the costalthough centralized control by the SO or a social planner
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TABLE X n ] L
COMPUTATIONAL PERFORMANCE OFPRICE-BASED CONTROL SCHEMES 1) Jtﬂ = 0: This 'nd|cate_s thgbf < bz_f-_ The Karush-
WITH RANDOM PEV DRIVING PATTERNS Kuhn-Tucker (KKT) stationarity condition of the SO’s
roblem associated with the variahte is:
Non-Conv. CPU Numbers P big
Case Iterations Hours Time [s] Exchanged [m] _
Price/Quantity Ae(b) =V + Jtﬂ ) (83)
A=05 10-25 0 436 0.3
Pricﬁ_gn?f’% 14-45 0 614 04 where /}?’ is the Lagrange multiplier associated with
£€=0.1 163-2000 20 32382 387.9 the lower-bounds of constrain{](5). Since there is
£=05 207-2000 4 13032 127.5 sufficient generating capacity to provide some PEV
§ =065 188-2000 1 11029 88.6 charging, and sinc& is assumed to be higher than the
£E=0.7* 101-498 0 7532 66.7 9ng, ) 9
£=0.75 173-786 0 8934 735 marginal cost of generation, we must hayge > 0 and
&= 595-1267 O 20146 150.4 - _ inh imnli _
£=25 3102000 21 38490 405.4 Jfﬂ 0, which implies thatk(b) = V.
£=5 258-2000 15 33253 290.9 _ _
£=10 175-2000 3 29488 87.6 We can also show that in this ca%V;O(bt) =V.To
£=20 104-2000 17 29898 331.9 see this, definé* as:
- dination benefits. it mav have imol . el brte i r=t (84)
maximizes coordination benefits, it may have implementatio T by, otherwise

issues. We propose a decentralized pricing scheme that con-

veys both price and quantity information gathered by the SOa  Where ¢ satisfies of + ¢ < . Let (¢,6) €

it and the LA iteratively reoptimize system dispatch and PEV ~ argmin Vg, (b°). We now argue that* = 5. To see
charging. We demonstrate that this method has theorgticall  this, note that(¢*, c*) is feasible in the SO’s problem
attractive properties. Furthermore, our method does rigt re when D = b°. Moreover, we must havé > o, other-

on any regularization terms to guarantee convergence. wise the SO can feasibly increasegiving a lower cost

We use numerical case studies to demonstrate the benefits of (due toV’ being assumed higher than the marginal cost

our proposed pricing scheme, showing that it can find a near-  of generation). Furthermore, we cannot have- o*.

socially optimal equilibrium. While the price-only meclism To see this, note that if so, then constraifils (2) give:
can as well, its performance is highly sensitive to the ohoic _

of the regularization penalty ternmg. If ¢ is not chosen qu’vt > Zq;t- (85)
properly, PEV charging costs in the price-only case can be el el

considerably higher than with the price/quantity mechanis This means tha§ must not be feasible whe® = b,
Regardless of the choice o, the price-only mechanism since ¢* would then not be optimal (as the unserved

requires considerably more computational effort and data |oad cost associated with* is larger than that with
exchange between the SO and LA to find an equilibrium. We  5). However, the technical generator constraints are

also examine numerical case studies, in which the single-LA  identical in the two case$.é., with D = b andD = ),
and deterministic driving pattern assumptions are rela®ent giving a contradiction. Hence, we must have= 5.
proposed method performs well in these cases as well.

Our pricing scheme assumes that the LA is minimizing We finally note that:
charging costs on behalf of PEV owners. If charging schedul-

ing is carried out by another agent with a different objestiv iV* B = i Vo (b9) = V5o (D) 86
(e.g., a profit-maximizing utility), our pricing scheme may not by solbr) = e € (86)
have the beneficial properties that we demonstrate. In such a =V
case, one would have to cast this as a broader mechanism = (D).
design problem, which aligns the LAs incentives with those
of the social planner. 2) /}?Jr # 0: In this case we have; = b,. Thus, the
hour+ constraint[[R) can be rewritten as:
APPENDIX
PROPERTIES OF THEMARGINAL COST OFPEV CHARGING Z git = Ly + by (87)
LoAD IN THE SO’S PROBLEM i€l
Lemma 3:Suppose that Assumptidh 1 is true. Then: Sinceb, is the parameter on the right-hand side[cfl (87),
Q. we have that:
B_tiSO(bt) = Ae(b). (82) 5
== Vo (be) = Ae(b). (88)

Proof: Let (¢*,0*) € argmin V,(b) and Jta* denote Oby
the Lagrange multiplier associated with the upper-bound in ]
hour+ constraint[[(b). We now consider two possible cases for Lemma 4:Suppose that Assumptid 1 is true and that the
the values that this Lagrange multiplier can take. We shayeneration cost functions;;(-), are convex. Them(b) is
that in both cases we ha\%vgo(bt) = (D). non-decreasing im.
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Proof: We define \;(b) as the Lagrange multiplier of [g]
constraint [R) whenD = b in the SQO’s problem. From
constraint[[R) we have that:

i/\t(b)

El
0

B aQi,t

Note that if, for a particulat, at least one of the; . is
not bounded by its generating capacity or ramping limit, th&1]
system has sufficient capacity to satisfy all of the hoBEV
demand. Thus, we must have = b;, otherwise the SO [17]
could feasibly serve more load and incur less cost, due to the
assumed high value of lost load. If there is an unconstrainﬁg]
qi+, the KKT conditions of the SO’s problem give:

9
8%‘,1&

wherei is the index of an unconstrained generator. We thets]
have: 5 o2
—M(b) = =—Fi(¢git) > 0.
abt t( ) aqzt (q 7t)

If, conversely, all of theg;; are capacity- or ramp-
constrained for a particular, this means there is insufficient[17]
generation capacity to satisfy all of the hauREV demand.
Thus, we must haveé; < b;. The KKT conditions then give
At(b) =V > 0 and by assumption we know that:

Ae(b). (89)

[10]

)\t (b) [14]

Fi(git), (90)

(91) [16]

(18]

At(b) > ——Fi(qi), (92)
3%‘,1& [19]
for all 4. Thus, we have that:
0
— >
a5, 1 (0) =0, (93) 20
indicating that\;(b) is non-decreasing ih. [ |

[21]
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