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Abstract—Electric power and natural gas systems typically are
operated independently. However, their operations are interre-
lated due to the proliferation of natural gas-fired generating
units. We analyze the independent but interrelated day-ahead
operation of the two systems. We use a direct approach to
identify operational equilibria involving these two systems, in
which the Karush-Kuhn-Tucker conditions of both electric power
and natural gas operational models are gathered and solved

jointly. We characterize the equilibria that are obtained under
different levels of temporal and spatial granularity in conveying
information between the two system operators. Numerical results
from the Belgian system are used to examine the impacts of
different levels of information interchange on prices, operational
costs, and decisions in the two systems.
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NOMENCLATURE

Indices, Sets, and Functions

C(m) set of natural gas compressors connected to node m
E(i) set of buses connected directly to bus i
G(m) set of nodes connected directly to node m
i, j indices of electric buses in set, B

k index of natural gas compressors

m,n indices of natural gas nodes in set, N

REF reference bus

t time index in set, T
v index of generating units

w index of natural gas suppliers

ΘG
i set of generating units connected to bus i

ΨG
m set of natural gas-fired units connected to node m

ΨS
m set of natural gas suppliers connected to node m

ΩG set of natural gas-fired generating units

ΩR set of non-natural gas-fired generating units

Parameters and Constants

CE value of lost electric load [$/p.u.]

CG value of lost natural gas load [$/Mm3]
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CG,v variable production cost of non-natural gas-fired gen-

erating unit v [$/p.u.]

CO,v non-fuel variable operation and maintenance cost of

natural gas-fired unit v [$/p.u.]

CS,w variable production cost of natural gas supplier w
[$/Mm3]

Fmax
C,k natural gas-transportation limit of compressor k

[Mm3/h]

FL,m,t hour-t non-generation-related natural gas demand at

node m [Mm3/h]

Fmax
S,w capacity of natural gas supplier w [Mm3/h]

Fmin
S,w minimum natural gas supply from supplier w

[Mm3/h]

F ramp
S,w ramping limit of natural gas supplier w [Mm3/h]

Km,n line-pack parameter of pipeline connecting nodes m
and n [Mm3/bar]

Lmin minimum total line-pack in the natural gas system

[Mm3]

Pmax
G,v capacity of generating unit v [p.u.]

Pmin
G,v minimum power output of generating unit v [p.u.]

P
ramp
G,v ramping limit of generating unit v [p.u./h]

Pmax
i,j capacity of the line connecting buses i and j [p.u.]

PL,i,t hour-t electric demand at bus i [p.u.]

Wm,n Weymouth constant of the pipeline connecting

nodes m and n [(Mm3/h)/bar]

ζm,t hour-t price of natural gas at node m [$/Mm3/h]

ηv heat rate of natural gas-fired unit v [Mm3/h/p.u.]

ϑk conversion efficiency of gas compressor k [p.u.]

πmax
m maximum node-m natural gas pressure [bar]

πmin
m minimum node-m natural gas pressure [bar]

ρmax
k maximum compression ratio of compressor k [p.u.]

ρmin
k minimum compression ratio of compressor k [p.u.]

σi,j susceptance of line connecting buses i and j [p.u.]

Variables

FC,k,t hour-t natural gas flow through compressor k
[Mm3/h]

FD
L,m,t non-generation-related natural gas demand at node m

that is served in hour t [Mm3/h]

Fm,n,t hour-t natural gas flow through the pipeline connect-

ing nodes m and n [Mm3/h]

F̄m,n,t average hour-t natural gas flow through the pipeline

connecting nodes m and n [Mm3/h]

FS,w,t natural gas supplied in hour t by supplier w [Mm3/h]

Lm,n,t hour-t line-pack in the pipeline connecting nodes m
and n [Mm3/h]
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PG,v,t hour-t active power output from generating unit v
[p.u.]

PD
L,i,t bus-i electric demand that is served in hour t [p.u.]

θi,t hour-t phase angle of bus i [rad]

πin
k,t hour-t inlet pressure of compressor k [bar]

πout
k,t hour-t outlet pressure of compressor k [bar]

πm,t hour-t natural gas pressure at node m [bar]

τk,t hour-t natural gas consumption of compressor k
[Mm3/h]

I. INTRODUCTION

PROLIFERATION of natural gas-fired generating units is

increasing the coupling of electric power and natural gas

systems [1], [2]. Despite this coupling, typically these systems

are planned and operated independently of one another, which

may be sub-optimal [3]–[5]. This issue may be addressed using

a joint operational model that yields an optimal solution for

both systems [6]. There are, however, non-trivial institutional

and administrative barriers to having a single entity operate

both systems. Thus, it may be preferable to operate the

two systems independently, while having some form of co-

ordination between them.

The existing literature examines several approaches to co-

ordinate the interdependencies between electric and natural gas

systems. Zlotnik et al. [7] quantify the benefits that various

levels of co-ordination between the two systems bring. Toledo

et al. [8] investigate the impact of natural gas prices on

operational costs of power systems. He et al. [9] implement

a distributed day-ahead dispatch framework for operating the

two systems. Other works examine co-ordination within a

market-equilibrium framework. Khazeni et al. [10] develop

a market-equilibrium model wherein profit-maximizing elec-

tricity and natural gas retailers are upper-level players that

are followed by cost-minimizing lower-level retail customers.

Wang et al. [11] develop an equilibrium model for strategic

producers that participate in integrated electricity and natural

gas markets. Ji and Huang [12] propose a bi-level model,

where the upper level maximizes the profits of the market

participants, while the lower level represents the independent

clearing of interdependent electricity and natural gas markets.

Wang et al. [13] study a coupled electricity and natural gas

distribution market with bilateral energy trading. An equilib-

rium of these coupled markets is identified by a best-response

decomposition algorithm.

The premise that underlies the co-ordination of the two

systems within a market-equilibrium framework is that there is

sufficient information exchanged between them. Thus, an out-

standing question, which our work addresses, is the extent to

which co-ordination can be achieved with limited information

exchange. Some works that study the co-ordination of elec-

tricity and natural gas systems through a market framework

[12], [13] employ algorithms that are sensitive to the initial

point that is chosen [14]. Thus, a second gap in the existing

literature that we address is to develop an approach that is not

iterative and does not rely on the choice of an initial point.

Building off of these two gaps in the existing literature, we

study the problem of co-ordinating the day-ahead operation

of electric and natural gas systems with limited information-

exchange between them. More specifically, the electric and

natural gas systems operate independently, under perfectly

competitive market structures, to minimize their respective

operational costs. The operations of the two systems are

interrelated, however, due to natural gas-fired units. Thus,

the two systems must achieve an operational equilibrium,

from which neither has a cost-reducing deviation. Our work

develops a comprehensive approach to deriving such oper-

ational equilibria. The electric power system is represented

using a DC load-flow model. A second-order-cone (SOC)

relaxation of a natural gas-flow model that captures line-pack

is used to represent the natural gas system [13], [15]. This

SOC relaxation is enhanced by including convex envelopes

[16]. Because these models are, respectively, linear and SOC

problems, we can find a market equilibrium by using their

Karush-Kuhn-Tucker (KKT) conditions [17]. This method is

not dependent on or sensitive to the choice of an initial point

in finding an equilibrium. Using this modeling framework, we

examine the impacts on the operations of the two systems of

having different levels of temporal and spatial granularity in

communicating natural gas demands and prices between them.

Our work is related somewhat to that of Gil et al. [18], who

study the problem of co-ordinating the operation of separate

electricity and natural gas departments within an integrated

firm that operates in both markets. Their work is related to

ours, insomuch as they examine the use of contract terms to

co-ordinate operations of the two sides of the business, much

as we examine the use of price signals to co-ordinate the

operations of the two systems. Nevertheless, our work includes

operational constraints of both electric and natural gas systems

that are not considered by Gil et al.

In light of this existing literature, our work makes the

following three contributions.

1) We characterize operational equilibria under different

levels of temporal and spatial granularity in exchanging

fuel-price information.

2) We develop a direct approach that includes the KKT

conditions of both system-operational models to identify

operational equilibria.

3) We use a case study, which is based on the Belgian

system, to explore the impacts of different levels of

granularity in exchanging information.

The remainder of this paper is organized as follows. Sec-

tion II presents the two system models. Section III details

the methodology that is employed to find solutions that are

simultaneously optimal in the two system models and how

different levels of temporal and spatial granularity in the

information exchange are modeled. Section IV summarizes

the results of our case study. Section V concludes.

II. SYSTEM MODELS

We begin this section with the formulation of the natural

gas-operational model and its convexification. We then for-

mulate the power system-operational model.
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A. Natural Gas System-Operational Model

The natural gas-operational model is formulated as [19]:

min
ΞG

∑

t∈T,m∈N,w∈ΨS
m

[CS,wFS,w,t (1)

+ CG · (FL,m,t − FD
L,m,t)]

s.t. FD
L,m,t +

∑

k∈C(m)

(τk,t + FC,k,t) +
∑

v∈ΨG
m

ηvPG,v,t (2)

+
∑

n∈G(m)

Fm,n,t =
∑

w∈ΨS
m

FS,w,t; ∀m ∈ N; t ∈ T

F̄m,n,t = (Fm,n,t − Fn,m,t)/2; ∀m,n ∈ N; t ∈ T (3)

F̄ 2
m,n,t/W

2
m,n = π2

m,t − π2
n,t; ∀m,n ∈ N; t ∈ T (4)

Fm,n,t + Fn,m,t = Lm,n,t − Lm,n,t−1; (5)

∀m,n ∈ N; t ∈ T

Lm,n,t = Km,n · (πm,t + πn,t)/2; ∀m,n ∈ N; t ∈ T (6)

τk,t = ϑkFC,k,t; ∀m ∈ N; k ∈ C(m); t ∈ T (7)

ρmin
k πin

k,t ≤ πout
k,t ≤ ρmax

k πin
k,t; (8)

∀m ∈ N; k ∈ C(m); t ∈ T

0 ≤ FC,k,t ≤ Fmax
C,k ; ∀m ∈ N; k ∈ C(m); t ∈ T (9)

Fmin
S,w ≤ FS,w,t ≤ Fmax

S,w ; ∀m ∈ N;w ∈ ΨS
m; t ∈ T (10)

− F ramp
S,w ≤ FS,w,t − FS,w,t−1 ≤ F ramp

S,w ; (11)

∀m ∈ N;w ∈ ΨS
m; t ∈ T

πmin
m ≤ πm,t ≤ πmax

m ; ∀m ∈ N; t ∈ T (12)
∑

m,n∈N

Lm,n,|T | ≥ Lmin; (13)

0 ≤ FD
L,m,t ≤ FL,m,t; ∀m ∈ N; t ∈ T ; (14)

where ΞG =
{

FC,k,t, F
D
L,m,t, Fm,n,t, F̄m,n,t, FS,w,t, Lm,n,t,

πin
k,t, π

out
k,t, πm,t, τk,t

}

is the variable set.

Objective function (1) computes the cost of operating the

natural gas system. The first term in the objective function

gives the cost of natural gas supply while the second is the cost

of any curtailed non-generation-related natural gas demand.

Constraints (2) impose hourly nodal natural gas balance be-

tween non-generation-related natural gas demand, compressor

demand, flows through compressors, generation-related natural

gas demand, natural gas flow through pipelines, and production

from natural gas sources. Constraints (3) compute the average

hourly natural gas flow in each pipeline in terms of the natural

gas flow in each direction in the pipeline. Constraints (4)

relate the hourly average natural gas flow in each pipeline

to the difference between the squared pressures at the two

ends of the pipe. We assume here that the direction of natural

gas flows are known a priori, meaning that F̄m,n,t ≥ 0.

This is a reasonable assumption for day-ahead operations

[20]. Constraints (5) compute the change in line-pack on each

pipeline between hours t and (t− 1) and relate it to the flows

on the pipeline. Constraints (6) give the linear relationship

between the hourly line-pack in each pipeline and the average

between the natural gas pressures at the two ends of the pipe.

Constraints (5) and (6) imply that decreased nodal pressure

results in a lower gas line-pack (i.e., Lm,n,t < Lm,n,t−1),

because additional natural gas from the line-pack is injected

into the network (i.e., Fm,n,t + Fn,m,t > 0). Constraints (7)

compute the hourly consumption of fuel of each compressor,

which is simplified as a fixed percentage (typically between

3% and 5%) of the transported natural gas flow [19], [21].

Constraints (8) impose minimum and maximum compression

ratios on the compressors while Constraints (9) enforce non-

negativity and the transportation limit of the natural gas

compressors. Constraints (10) and (11) impose production

and ramping limits on the natural gas suppliers, respectively.

Constraints (12) impose nodal pressure limits. Constraint (13)

imposes a minimum line-pack over the entire system in the

final period of the optimization horizon. Constraints (14)

limit the amount of non-generation-related natural gas demand

that is served to be non-negative and no greater than the

corresponding nodal demand.

B. Convexification of Natural Gas-System Operational Model

Model (1)–(14) is non-convex due to (4), which can be

equivalently written as:

F̄ 2
m,n,t/W

2
m,n ≤ π2

m,t − π2
n,t; ∀m,n ∈ N; t ∈ T ; (15)

and:

F̄ 2
m,n,t/W

2
m,n ≥ π2

m,t − π2
n,t; ∀m,n ∈ N; t ∈ T. (16)

Inequalities (15) are convex SOC constraints while (16) are

non-convex. We can convexify the latter using convex en-

velopes [22] by first creating four sets of auxiliary variables,

am,n,t, bm,n,t, κm,n,t, and ξm,n,t ∀m,n ∈ N; t ∈ T . The vari-

ables, κm,n,t and ξm,n,t, approximate F̄ 2
m,n,t and π2

m,t−π2
n,t,

respectively. With these variables, the convexification of (16)

for all m,n ∈ N and t ∈ T is given by:

am,n,t = πm,t + πn,t; (17)

bm,n,t = πm,t − πn,t; (18)

ξm,n,t ≥ amin
m,n,tbm,n,t + bmin

m,n,tam,n,t − amin
m,n,tb

min
m,n,t; (19)

ξm,n,t ≥ amax
m,n,tbm,n,t + bmax

m,n,tam,n,t − amax
m,n,tb

max
m,n,t; (20)

ξm,n,t ≤ amin
m,n,tbm,n,t + bmax

m,n,tam,n,t − amin
m,n,tb

max
m,n,t; (21)

ξm,n,t ≤ amax
m,n,tbm,n,t + bmin

m,n,tam,n,t − amax
m,n,tb

min
m,n,t; (22)

κm,n,t ≥ F̄ 2
m,n,t; (23)

κm,n,t ≤
(

Fmax
m,n,t + Fmin

m,n,t

)

F̄m,n,t − Fmax
m,n,tF

min
m,n,t; (24)

κm,n,t/W
2
m,n ≥ ξm,n,t; (25)

where amax
m,n,t, a

min
m,n,t, b

max
m,n,t, b

min
m,n,t, F

min
m,n,t, and Fmin

m,n,t are

fixed constants. Equalities (17) and (18) define am,n,t and

bm,n,t as the sum and difference, respectively, between the

hour-t nodal pressures at the two ends of the pipeline con-

necting nodes m and n. By these definitions, we have that

am,n,tbm,n,t = π2
m,t − π2

n,t. Constraints (19)–(22) give the

convex envelope that defines ξm,n,t in terms of am,n,t and

bm,n,t. Constraints (23) and (24) give the convex envelope

that defines κm,n,t in terms of F̄m,n,t. Finally, (25) relates

κm,n,t and ξm,n,t to one another.

Fig. 1 shows the convexified bounds of π2
m,t − π2

n,t for

the special case in which am,n,t = bm,n,t (we illustrate this

special case because (19)–(22) generally define hyperplanes,
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which cannot be shown easily). Fig. 2 shows the convex-

ified bounds of F̄ 2
m,n,t. With these auxiliary variables and

constraints defined, the convexification of (1)–(14) is given

by (1)–(3), (5)–(14), (15), and (17)–(25), which we refer to

hereafter as the convexified natural gas system-operational

model. The tightness of the convexified SOC natural gas flow

model is demonstrated in our previous work [16]. Thus, it is

not discussed here.

  
 

 

Fig. 1. Convexified approximation of π2

m,t−π2

n,t that is given by (19)–(22)
for the special case in which am,n,t = bm,n,t .

  

Fig. 2. Convexified approximation of F̄ 2

m,n,t that is given by (23) and (24).

Because the convexified natural gas system-operational

model is a convex SOC problem, the strong duality theorem

applies if an appropriate constraint-qualification condition is

satisfied [23]. We assume, hereafter, that such a condition

is satisfied. As such, the problem is guaranteed to have

well defined dual variables and we define specifically um,t

as the dual variable that is associated with node-m/hour-t

Constraint (2). Intuitively, um,t represents the node-m/hour-

t natural gas locational marginal price (LMP) in $/Mm3.

C. Power System-Operational Model

The power system-operational problem is formulated as:

min
ΞE

∑

t∈T





∑

m∈N,v∈ΨG
m

(CO,v + ηvζm,t)PG,v,t (26)

+
∑

v∈ΩR

CG,vPG,v,t +
∑

i∈B

CE · (PL,i,t − PD
L,i,t)

]

s.t.
∑

v∈ΘG

i

PG,v,t = PD
L,i,t +

∑

j∈E(i)

σi,j · (θi,t − θj,t); (27)

∀i ∈ B; t ∈ T

Pmin
G,v ≤ PG,v,t ≤ Pmax

G,v ; ∀v ∈ ΩG ∪ ΩR; t ∈ T (28)

− P ramp
G,v ≤ PG,v,t − PG,v,t−1 ≤ P ramp

G,v ; (29)

∀v ∈ ΩG ∪ ΩR; t ∈ T

− Pmax
i,j ≤ bi,j · (θi,t − θj,t) ≤ Pmax

i,j ; (30)

∀i ∈ B; j ∈ E(i); t ∈ T

θREF,t = 0; t ∈ T (31)

0 ≤ PD
L,i,t ≤ PL,i,t; ∀i ∈ B; t ∈ T ; (32)

where ΞE =
{

PG,v,t, P
D
L,i,t, θi,t

}

is the variable set.

Objective function (26) computes the power system-

operations cost. The first two terms in the objective function

represent the cost of operating natural gas-fired and non-

natural gas-fired units, respectively, while the third computes

load-curtailment cost. Constraints (27) impose hourly load

balance on each bus. Constraints (28) and (29) impose capacity

and ramping limits, respectively, on the generating units.

Constraints (30) impose flow limits on the transmission lines

while Constraints (31) fix the phase angle at the reference bus

equal to zero in each hour. Constraints (32) limit the amount

of load served at each bus to be non-negative and no greater

than the corresponding hourly demand. Finally, we define λi,t

as the dual variable that is associated with hour bus-i/hour-

t Constraint (27), which gives the hour bus-i/hour-t electric

LMP in $/p.u.

III. SOLUTION METHODOLOGY

Although the two systems are modeled as being operated

independently of one another, they are interdependent. This

is because the dispatch of the power system impacts natural

gas demands while the cost and availability of natural gas

impact the power system dispatch. Thus, our goal is to obtain

an operational equilibrium or a set of solutions to the two

system problems that are simultaneously optimal in both (i.e.,

neither system operator has a unilateral deviation from the

operational equilibrium that reduces the cost of operating its

system). Such an operational equilibrium can be found if the

natural gas prices that are used to dispatch the electric power

system reflect perfectly the corresponding true natural gas

LMPs (i.e., if um,t = ζm,t ∀m ∈ N and t ∈ T ). We begin in

this section by outlining the approach that we use to compute
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numerically operational equilibria under such a perfect-pricing

assumption. Then, we discuss how operational equilibria with

different levels of spatial and temporal granularity in natural

gas LMPs are computed.

A. Operational Equilibria Under Perfect-Price Assumption

To derive operational equilibria under the perfect-price

assumption (and for notational ease), we begin by writing the

convexified natural gas system-operational model in compact

matrix form as:

min
r,s

e⊤r (33)

s.t. J1r + E1s− h1 +D1y = 0; (u) (34)

J2r + E2s− h2 ≤ 0; (ν) (35)

sq ∈ ∆; ∀q ∈ Λ; (ωq) (36)

where the dual-variable vector that is associated with each

constraint appears in parentheses to its right. r and s are

decision-variable vectors. More specifically, r contains the

variables FC,k,t, FD
L,m,t, Fm,n,t, FS,w,t, Lm,n,t, πin

k,t, πout
k,t,

and τk,t, while s contains the variables F̄m,n,t and πm,t. e,

h1, and h2 are parameter vectors and J1, J2, E1, E2, and

D1 are parameter matrices. q represents the index of the

cones and Λ represents the set of cones. ∆ is a cone and

sq ∈ ∆ means sq,1 ≥
√

s2q,2 + s2q,3 + · · ·+ s2q,d, where d is

the dimension of the vector, sq . y is a vector of variables that

are determined in the power system-operational model that

impact directly the operation of the natural gas system (i.e.,

the dispatch of the natural gas-fired units). Because the value

of y is determined in the power system-operational model, it is

considered a parameter vector in (33)–(36). The dual-variable

vector, u, includes the natural gas LMPs, um,t∀m ∈ N, t ∈ T .

However, u also includes dual variables that are associated

with other equality constraints in the convexified natural gas

system model.

Similarly, we write the power system-operational model in

compact matrix form as:

min
x,y

c⊤1 x+ c⊤2 y + ζ⊤D1y (37)

s.t. A1x+B1y − g1 = 0; (λ) (38)

A2x+B2y − g2 ≤ 0; (γ) (39)

where the dual-variable vector that is associated with each

constraint is in parentheses to its right. x and y are decision-

variable vectors, where x contains the variables PG,v,t (only

for v ∈ ΩR), PD
L,i,t, and θi,t, and y contains the variables

PG,v,t (only for v ∈ ΩG). y represents decision variables that

impact directly the operation of the natural gas system (i.e.,

the dispatch of natural gas-fired units). c1, c2, g1, and g2 are

parameter vectors and A1, A2, B1, B2, and D1 are parameter

matrices. ζ is a vector that represents the cost of using natural

gas in dispatching the electric power system.

Comparing (33)–(36) and (37)–(39) reveals two interrela-

tionships in operating the two systems. First, y is a decision-

variable vector in (37)–(39) but also appears in (34). Second,

the natural gas-cost vector, ζ, which appears in (37) is related

to the dual-variable vector, u, that is associated with (34). As

such, the two problems cannot be solved independently of one

another. This inability to solve the problems independently

motivates our desire to obtain an operational equilibrium,

which we do by solving simultaneously the necessary and

sufficient KKT conditions of the two problems [14], [17].

The strong-duality theorem holds for the linear power system-

operational model. Provided that Slater constraint-qualification

conditions are satisfied, the strong-duality theorem also applies

to the convexified SOC relaxation of the natural gas system-

operational model [23].
The KKT conditions of (33)–(36) are:

e + J⊤
1 u+ J⊤

2 ν = 0; (40)

E⊤
1 u+ E⊤

2 ν − ω = 0; (41)

J1r + E1s− h1 +D1y = 0; (42)

0 ≤ ν ⊥ J2r + E2s− h2 ≤ 0; (43)

sq, ωq ∈ ∆; ∀q ∈ Λ; (44)

ω⊤
q sq = 0; ∀q ∈ Λ. (45)

Conditions (40) and (41) impose stationarity with respect to

r and s, respectively. Condition (42) is the equality constraint

of the original problem while (43) is the inequality constraint

with complementary slackness. Condition (44) forces s to be

within the cone, ∆, and imposes the same requirement on

the dual-variable variable that is associated with the SOC

constraint. Condition (45) imposes complementary slackness

between s and ω.
The KKT conditions for (37)–(39) are:

c1 +A⊤
1 λ+A⊤

2 γ = 0 (46)

c2 +D⊤
1 ζ +B⊤

1 λ+B⊤
2 γ = 0 (47)

A1x+B1y − g1 = 0 (48)

0 ≤ γ ⊥ A2x+B2y − g2 ≤ 0. (49)

Conditions (46) and (47) impose stationarity with respect to

x and y, respectively. Condition (48) is the equality constraint

while Condition (49) is the inequality constraint with comple-

mentary slackness.
We can obtain an operational equilibrium by solving (40)–

(49) and the additional perfect-pricing condition:

ζm,t = um,t; ∀m ∈ N; t ∈ T ; (50)

simultaneously. However, these conditions include two types

of non-convexities, which complicate their solution. First,

the complementary-slackness requirements in (43) and (49)

are non-convex, because, for instance, the complementary-

slackness requirement in (43) can be written as:

ν · (J2r + E2s− h2) = 0.

We use the method that is outlined by Fortuny-Amat and

McCarl [24], which requires the use of binary variables, to

linearize the complementary-slackness requirements in (43)

and (49).
The second non-convexity arises from (45). We can linearize

this by using the strong-duality condition for (33)–(36), which

is:

e⊤r = −h⊤
1 u+ y⊤D⊤

1 u− h⊤
2 ν +

∑

q∈Λ

w⊤
q sq. (51)
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Substituting this equality into (45) gives the equality:

e⊤r + h⊤
1 u− y⊤D⊤

1 u+ h⊤
2 ν = 0. (52)

This equality is non-convex because both y and u are variables

when solving the full set of KKT conditions. Thus, y⊤D⊤
1 u is

bilinear. We can linearize this term by using the strong-duality

condition for (37)–(39) [17], which is:

c⊤1 x+ c⊤2 y + ζ⊤D1y = −g⊤1 λ− g⊤2 γ. (53)

Substituting this condition and (50) into (52) gives:

e⊤r + h⊤
1 u+ c⊤1 x+ c⊤2 y + g⊤1 λ+ g⊤2 γ + h⊤

2 ν = 0. (54)

Thus, taking these linearizations together, we can obtain

an operational equilibrium by solving the mixed-integer SOC

problem:

min 1 (55)

s.t. (40)–(44), (46)–(49), (50), (54); (56)

where the complementary-slackness conditions in (43)

and (49) are replaced by their linearizations using binary

variables. The objective function of this problem arbitrarily

is fixed equal to unity, while the constraints impose the

convexified KKT conditions of the two problems and the

perfect-pricing assumption.
A diagonalization algorithm is used to verify whether a

solution that is provided by (55) and (56) is an equilibrium.

This is because (55) and (56) only provide KKT points for the

two system models, which may not necessarily be equilibria.

B. Operational Equilibria Under Different Price-Granularity

Levels

The operational equilibria that are obtained from (55)–(56)

assume perfect price-based co-ordination between the electric

and natural gas systems. In practice, the two systems do not

have this level of information exchange. Typically, wholesale

natural gas prices lack the spatial and temporal granularity of

the natural gas LMPs that are given by u. As such, we develop

a method of computing operational equilibria under different

levels of price granularity. Doing so allows us quantitatively

to analyze the value of using imperfect versus perfect natural

gas LMPs to co-ordinate the operation of the two systems.
Modeling imperfect natural gas pricing requires replac-

ing (50) with alternate conditions that define ζ as spatial or

temporal averages of u.1 Moreover, because the perfect-pricing

assumption is relaxed, the linearization of (45) that yields (54)

is no longer valid. Thus, we compute operational equilibria

using a non-convex nonlinear optimization problem, in which

the complementary-slackness conditions are not convexified.
Specifically, we examine three cases. The first considers

temporal averaging of the natural gas LMPs. In this case, (50)

is replaced with:

ζm,t =
1

|T |

∑

ι∈T

um,ι; ∀m ∈ N; t ∈ T ; (57)

1Because u is a dual-variable vector that is associated with all of the
equality constraints in the natural gas-system operational model, it includes
dual variables that are not natural gas LMPs. Thus, we replace (50) only for
values of u that correspond to the natural gas LMPs.

which defines ζm,t as the simple average (over the |T | hours

of the model horizon) of the true natural gas LMPs at node m.

The second case considers spatial averaging of the natural gas

LMPs, in which case (50) is replaced with:

ζm,t =
∑

µ∈N

FL,µ,tuµ,t/
∑

µ∈N

FL,µ,t; ∀m ∈ N; t ∈ T. (58)

This defines ζm,t as the weighted (by the non-generation-

related natural gas demands) average (over the nodes) of the

true natural gas LMPs in hour t. The final case that we examine

assumes combined temporal and spatial averaging of natural

gas LMPs. In this case (50) is replaced with:

ζm,t =
1

|T |

∑

ι∈T





∑

µ∈N

FL,µ,ιuµ,ι/
∑

µ∈N

FL,µ,ι



 ;

∀m ∈ N; t ∈ T. (59)

In all three of these cases, an operational equilibrium is

obtained by using primal/dual conditions for each of (33)–

(36) and (37)–(39). The primal/dual conditions for the former

are (40)–(42), (44), (45), and (51) while those of the latter

are (46)–(48) and (53). Thus, the operational equilibria under

imperfect pricing are obtained by solving:

min 1 (60)

s.t. (40)–(42), (44)–(48), (51), (53), (61)

and one of (57), (58), or (59).

C. Value of Perfect Pricing

Once we obtain operational equilibria under the four pricing

assumptions (i.e., perfect, temporal averaging, spatial aver-

aging, and combined averaging), we can compare the true

combined cost of operating the natural gas and electric power

systems. Comparing this cost in the three averaging cases to

the perfect-pricing case gives a measure of the value of perfect

pricing (VPP). To do this, we note that the actual cost of

operating the natural gas system is given by (1), while the

actual cost of operating the power system is given by:

∑

t∈T





∑

m∈N,v∈ΨG
m

CO,vPG,v,t +
∑

v∈ΩR

CG,vPG,v,t

+
∑

i∈B

CE · (PL,i,t − PD
L,i,t)

]

. (62)

This cost is equivalent to (26), except that the ηvζm,tPG,v,t

term is removed. This is because the cost of supplying fuel to

natural gas-fired generating units is accounted for implicitly in

computing the cost of operating the natural gas system in (1).

Thus, including ηvζm,tPG,v,t in (62) would double-count this

cost. With this definition, we can compute the cost of operating

the two systems under the four sets of operational equilibria by

substituting the values of FD
L,m,t, FS,w,t, PG,v,t, and PD

L,i,t that

are obtained under each pricing assumption into (1) and (62),

respectively. The VPP, which is measured as a percentage, is

given by:
CI

EG − CP
EG

CP
EG

· 100; (63)
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where CP
EG and CI

EG represent the sum of (1) and (62) under

perfect- and imperfect-pricing cases, respectively.

IV. CASE STUDY

This section illustrates the performance of the proposed

model using a case study that is based on the Belgian electric

and natural gas systems. Fig. 3 shows the topology of the

24-bus power system2 and 20-node natural gas system [19]

that we study. The natural gas-fired units that are at buses 2,

3, 6, 8, 16, 15 and 22 are connected to natural gas nodes 4,

3, 4, 4, 6, 11, and 13, respectively. The generating units have

an installed capacity of 13.95 GW, with natural gas-fired units

contributing 30.2% of this total. Fig. 4 summarizes the diurnal

electricity and non-generation-related natural gas demands that

are used in the case study. Electricity demands are obtained

from the same source that provides the network data. Non-

generation-related natural gas demands are obtained from the

work of Correa-Posada and Sánchez-Martı́n [19] and scaled

based on actual daily natural gas consumption data.3 All of

the case study data are provided in an online supplement.4

Fig. 4. Diurnal electricity and non-generation-related natural gas demands.

Both the perfect- and imperfect-pricing operational-

equilibrium models are programmed using GAMS 24.7. The

former is solved using CPLEX 12.6.3.0.2 while the latter is

solved using IPOPT 3.12. The computations are carried out

on a computer with a 2.5 GHz Intel Core processor and 8 GB

of memory. Modeling the perfect-pricing case requires the

selection of big-M parameters that are used to linearize the

complementary-slackness conditions. The big-M values for

primal constraints are determined based on induced bounds.

The big-M values for Lagrange multipliers are determined

based on dual-variable values that are obtained from solving

each of the convexified natural gas system-operational and

power system-operational models on their own.

Table I summarizes the system-operations costs in the

perfect- and three imperfect-pricing cases, as well as the

2https://doi.org/10.5281/zenodo.999150
3https://www.quandl.com/data/BP/GAS CONSUM D BEL
4https://doi.org/10.6084/m9.figshare.8848553.v1

VPPs. As expected, imperfect pricing results in slightly higher

system-operations costs, although the breakdown of the cost

increases differs between the four cases.

TABLE I
SYSTEM-OPERATIONS COSTS [$ MILLION] AND VPPS [%]

Pricing System-Operations Costs

Case Natural Gas Electric Total VPP

Perfect 5.529 4.384 9.913 n/a
Temporal Average 5.432 4.529 9.961 0.483

Spatial Average 5.796 4.163 9.959 0.477

Combined Average 5.609 4.359 9.968 0.558

Figs. 5 and 6 show hourly load-weighted natural gas and

electric LMPs. Contrasting the cases of perfect pricing and

temporal averaging, we see that the latter results in higher

natural gas LMPs during peak periods (hours 8–15) and lower

prices during off-peak periods (the remaining hours). These

price impacts result in noticeably lower on-peak and slightly

higher off-peak electric LMPs and a less volatile diurnal

electric-LMP profile with temporal averaging. The reduced

volatility is due to the marginal generation cost of each natural

gas-fired unit being constant over the day. Fig. 7 shows hourly

total natural gas-fired production in the four pricing cases. The

figures shows that temporal, spatial, and combined averaging

of natural gas prices result in distorted dispatch decisions

relative to the perfect-pricing case.

Fig. 5. Load-weighted natural gas LMPs with perfect, temporal, spatial, and
combined averaging.

Fig. 8 shows the range of natural gas LMPs at nodes

that are connected to natural gas-fired generators with perfect

pricing. It also shows the values of ζ that are obtained from

spatial averaging. The figure shows that in many hours, spatial

averaging increases the fuel cost of natural gas-fired units. This

is largely because natural gas-fired units in the Belgian system

are connected to nodes that are relatively unconstrained from

a fuel-supply perspective. Thus, natural gas LMPs at nodes

to which natural gas-fired units are connected are typically

lower than those at other nodes. As such, spatial averaging

https://doi.org/10.5281/zenodo.999150
https://www.quandl.com/data/BP/GAS_CONSUM_D_BEL
https://doi.org/10.6084/m9.figshare.8848553.v1
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Fig. 3. Belgian-based 24-bus power system and 20-node natural gas system.

Fig. 6. Load-weighted electric LMPs with perfect, temporal, spatial, and
combined averaging.

results in much higher fuel prices, especially during on-peak

periods (e.g., hours 9–12). These higher fuel prices yield

higher electric LMPs, particularly during the on-peak period,

as is shown in Fig. 6. Interestingly, Fig. 5 shows that in some

hours spatial averaging results in lower natural gas LMPs

compared to perfect pricing. This is because spatial averaging

results in natural gas-fired generators having higher operating

costs, which reduces their use (thereby reducing the actual cost

of supplying natural gas). These higher fuel costs with spatial

Fig. 7. Total natural-gas fired production in each hour with perfect, temporal,
spatial, and combined averaging.

averaging also yield the increased power system-operational

costs and lower natural gas system-operational costs that are

summarized in Table I. If the natural gas system is congested

highly, natural gas LMPs may differ significantly between

nodes. In such a case, the fuel costs of natural-gas fired units

that are provided by spatial averaging deviate from their ‘true’

values. Hence, in such a case spatially averaged natural gas

prices are undesirable for system operations.

Table I shows that combined averaging yields a higher
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Fig. 8. Range of natural gas LMPs at nodes with natural gas-fired generators
in perfect-pricing case and spatial-average prices.

VPP than either temporal or spatial averaging do on their

own, indicating that insufficient coordination between the

two systems results in higher operational costs. However, the

combined effect is less than the sum of the effects of temporal

and spatial averaging on their own. This suggests subadditive

efficiency losses from both temporal and spatial averaging

together. Fig. 5 shows that combined averaging yields lower

natural gas LMPs compared to perfect pricing. This is due

largely to the same effect that yields lower natural gas LMPs

with spatial averaging—combined averaging increases the

operating cost of natural gas-fired units, reducing their use

and natural gas consumption. Fig. 6 shows that combined

averaging yields higher electric LMPs during hours 1, 3–5,

7, and 14–24 compared to perfect pricing. This is due to the

same effect that causes higher electric LMPs with temporal

averaging—the operating costs of natural gas-fired units are

increased in off-peak hours relative to perfect pricing. As with

temporal averaging, combined averaging yields lower on-peak

electric LMPs relative to the LMPs that are obtained with

perfect pricing (i.e., because the operating costs of natural gas-

fired units are decreased in on-peak hours relative to perfect

pricing). Combined averaging yields the same electric LMPs

across hours 7–22, which is due to all of the natural gas-fired

units having the same fuel costs across all of the hours of the

day.

The perfect- and imperfect-pricing operational equilibrium

models require about 2310 s and 190 s, respectively, of wall-

clock time to solve.

V. CONCLUSIONS

This paper proposes an operational-equilibrium model for

the independent but interrelated day-ahead operation of elec-

tric and natural gas systems. We develop a direct approach,

which relies upon the optimality conditions of both system-

operational models to compute operational equilibria between

the two systems. We investigate the impacts of different levels

of both temporal and spatial granularity in communicating

fuel-price information between the two systems on their oper-

ations. Computational results, using a case study that is based

on the Belgian electric power and natural gas systems, indicate

that exact information interchange between the two systems is

desirable to co-ordinate their operations most efficiently. We

show that temporal, spatial, and combined averaging of natural

gas prices have spillover effects on electric LMPs. The natural

gas system-operational model that we use is a simplification,

as many natural gas systems are decentralized and involve

more than one operator. Nevertheless, our analysis provides

a formative analysis of the benefits of tighter co-ordination

between the two systems using market-based mechanisms.

Most wholesale natural gas markets employ pricing that is

akin to combined averaging. This is because these markets

have only a handful of locational pricing hubs and delivery

points. Moreover, many wholesale markets set a single daily

price for natural gas. Our results show that these pricing

practices introduce overall efficiency losses to the whole

system (i.e., considering both systems together). Moreover,

there are mixed impacts of combined averaging on the ef-

ficiency and cost of operating the two systems. In our case

study, combined averaging increases the cost of operating the

natural gas system relative to perfect pricing. This is due

largely to combined averaging decreasing the perceived cost

of operating the natural gas-fired generating fleet compared

to perfect pricing. Given these findings, operators of natural

gas systems may have incentives to implement more granular

pricing practices, to reduce the costs of operating their own

systems.
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