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Abstract—We propose a two-stage mixed-integer linear
stochastic optimization model to analyze the scheduling of
electricity-production units under natural gas-supply uncertainty
due to pipeline congestion and natural gas-price variability. The
first stage of this stochastic optimization model represents the
day-ahead scheduling (i.e., unit commitment) stage, while the
second stage represents actual real-time operations through a
number of scenarios.

We use this model to analyze the effect on unit commitment
and dispatch of two types of natural gas-supply conditions. First,
we analyze a case involving low-cost natural gas supply with
natural gas-transmission issues related to potential natural gas-
pipeline congestion. We then examine a case involving higher-
cost natural gas, which is used solely to attain feasibility with
fast-ramping events. The first case mimics situations in the ISO
New England system, in which relatively low-cost natural gas
supply is uncertain in cold-weather conditions due to natural
gas-transmission bottlenecks. The second case is reminiscent
of situations in the California ISO system, in which relatively
expensive but flexible natural gas-fired units need to be used to
handle rapid changes in net demand in the early mornings and
late afternoons.

Index Terms—Unit commitment, natural gas supply, uncer-
tainty, stochastic optimization.

I. INTRODUCTION

THE amount of natural gas used as a primary energy

source in power system operations has increased dra-

matically in recent years. Existing natural gas-fired generation

accounted for about 42% of the total installed capacity in the

United States in 2015 [1]. Given currently low natural gas

prices, the electricity market is expected to introduce more

natural gas-fired generation into power systems. Because many

natural gas-fired units choose interruptible natural gas-supply

contracts [2], the availability of natural gas supply can threaten

the secure operation of electricity systems.
Several models are presented in the literature to study the

impact of natural gas on power system operations. Munoz

et al. [3] consider natural gas supply in power system-

reliability studies. Quelhas et al. [4] study the economic inter-

dependencies of electricity and various fuel-supply systems.
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Geidl et al. [5] present a model for optimization in cou-

pling energy systems including electricity and natural gas

systems. Liu et al. [6] present a security-constrained unit

commitment model, which considers both natural gas pipeline-

transportation and contracts limits. Li et al. [7] consider units

that can switch generating fuels in a security-constrained unit

commitment. They incorporate a set of natural gas constraints

based on daily and hourly natural gas-pipeline capacity. Both

Qadrdan et al. [8] and Alabdulwahab et al. [9] present

studies of firming wind power in an integrated natural gas

and electricity network. Qadrdan et al. [8] provide a set of

nonlinear natural gas transportation constraints that consider

natural gas flow, compressors, and linepack within the natural

gas-pipeline network. Alabdulwahab et al. [9] model both

natural gas contract limits and transportation constraints. Liu et

al. [10] present a linearly approximated natural gas flow model

embedded within a robust unit commitment model. Alabdul-

wahab et al. [2] introduce a stochastic security-constrained

unit commitment model that integrates natural gas pipeline-

transportation constraints.

In this paper, we propose a two-stage stochastic unit com-

mitment model that integrates natural gas-supply constraints

into the commitment and dispatch processes. As is customary

in stochastic optimization models, this uncertainty is modeled

via scenarios. For sake of simplicity and to focus on the effect

of natural gas-supply shortages (as a result of natural gas-

pipeline issues) on the electrical system, we do not include

a detailed representation of the natural gas-pipeline system.

However, such detailed representation can be easily incorpo-

rated into the proposed model.

Our model follows formative works on mixed-integer linear

unit commitment [11] and two-stage stochastic electricity

market-clearing models [12]. We formulate this problem as

having day-ahead unit commitment decisions in the first stage,

with real-time dispatch and market-balancing decisions in

the second stage. The proposed model assumes a set of

known real-time demands, and can thus be used for day-ahead

market-clearing. As such, the model is prognostic of real-

time operations, based on forecasted demand, in the stochastic

optimization sense. The objective of the model is to minimize

the sum of day-ahead commitment and expected real-time

dispatch costs. We consider both hourly and daily natural

gas-supply constraints. The former are intended to represent

physical constraints on instantaneous pipeline flows while the

latter represent a limit on the amount of fuel that is contracted

for delivery during the day. The scenarios in the stochastic

optimization model capture uncertainties in the hourly natural
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gas-pipeline capacities. These scenarios, which are inputs to

the model, can easily represent any physical condition of the

natural gas-supply system (e.g., reduced or no pipeline capac-

ity). The extent to which natural gas-supply scenarios have

major impacts on electricity system operations depends on

how much the generation mix relies on natural gas-fired units.

To clearly show the effect on electricity system operations

of natural gas-supply shortages (which is the focus of this

paper), we neglect uncertainties other that those pertaining to

natural gas supply. Incorporating other sources of uncertainty

can be easily done. The proposed model can also be refined

by employing reserve policies that depend on the extent of the

uncertainty [13], [14].

We use our proposed model to study the effects of natural

gas-supply constraints on power system operations under two

system paradigms that are becoming increasingly common

today. The first is a case in which natural gas prices are

relatively low but potential natural gas-pipeline congestion

limits the extent to which the system can rely on natural gas-

fired units. The second case has relatively high natural gas

prices, but the flexibility of natural gas-fired units must be

used to accommodate steep ramps in the load profile. The

first case is reminiscent of the ISO New England system

[1], where few natural gas-fired units hold firm fuel-supply

contracts. Thus, the system faces potential natural gas-supply

constraints during cold winter days [1]. The second case is

based on the California ISO system [15], which is facing fast-

ramping conditions due to diurnal wind and solar production

patterns. We examine the effects of these two types of natural

gas supply conditions on unit commitment, dispatch, and day-

ahead energy prices.

This work and our choice of the two system paradigms

examined are motivated by recent events in the ISO New

England [1] and California ISO [16] systems. The overarching

goal of the work is to reveal insights into the effects of

having power systems with increasing penetrations of natural

gas-fired generation, which we believe to be of value to the

power system engineering community. This paper makes two

contributions, which add to the existing literature studying the

interactions of electricity- and natural gas-supply networks:

1) developing a stochastic unit commitment model with a

representation of the constraints imposed by the natural

gas-supply network, and

2) carrying out detailed numeral simulations involving (a)

stochastic natural gas-supply uncertainty and (b) -price

variability.

The remainder of this paper is organized as follows. The

formulation of the proposed model is detailed in Section II.

Section III presents and analyzes a simple example based on

a four-node transmission network under the two natural gas-

supply paradigms discussed above. Section IV conducts the

same analysis using an eight-zone test system based on the

ISO New England system [17] and a 240-node system based

on the Western Electricity Coordinating Council (WECC) area

[18]. Section V concludes.

II. MODEL FORMULATION

This section provides a detailed formulation of the proposed

model. We first introduce the model notation followed by the

mathematical formulation of the model.

A. Notation

Sets and Indices

∆ Set of natural gas pipelines

∆p Set of natural gas-fired units connected to

pipeline p

Λ Set of buses

Λn Set of buses directly connected to bus n by a

transmission line

Ξ Set of scenarios

ΩG Set of natural gas-fired units

ΩG
n Set of natural gas-fired units connected to bus n

ΩT Set of thermal units

ΩT
n Set of thermal units connected to bus n

g Index of natural gas-fired units

i Index of thermal units

Constants

m,n Index of system buses

p Index of natural gas pipelines

t Index of time periods

ξ Index of scenarios

REF Reference bus with phase angle fixed equal to 0
bg Heat rate of natural gas-fired unit g [MBTU/MWh]

Bn,m Susceptance of transmission line connecting

buses n and m [p.u.]

cG
g Marginal cost of natural gas-fired unit g [$/MWh]

cT
i Marginal cost of thermal unit i [$/MWh]

CG,NL
g No-load cost of natural gas-fired unit g [$]

CG,SU
g Start-up cost of natural gas-fired unit g [$]

CT,NL
i No-load cost of thermal unit i [$]

CT,SU
i Start-up cost of thermal unit i [$]

Cmax
n,m Capacity of transmission line connecting buses n

and m [MW]

F G,NL
g No-load gas consumption of natural gas-fired unit g

[MBTU]

F G,SU
g Start-up gas consumption of natural gas-fired unit g

[MBTU]

Fmax
p,ξ,t Hour-t capacity of natural-gas pipeline p in sce-

nario ξ [MBTU]

Fmax
p One-day contract limit of natural-gas pipeline p

[MBTU]

Ln,t Hour-t load at bus n [MW]

P G,max
g Generating capacity of natural gas-fired unit g

[MW]

P G,min
g Minimum-generation level of natural gas-fired

unit g [MW]

P
T,max

i Generating capacity of thermal unit i [MW]

P
T,min

i Minimum-generation level of thermal unit i [MW]

RG,D
g Maximum downward reserve of natural gas-fired

unit g [MW]

RG,U
g Maximum upward reserve of natural gas-fired

unit g [MW]
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RT,D
i Maximum downward reserve of thermal unit i

[MW]

RT,U
i Maximum upward reserve of thermal unit i [MW]

RDG
g Downward ramping limit of natural gas-fired unit g

[MW/hour]

RDT
i Downward ramping limit of thermal unit i

[MW/hour]

RUG
g Upward ramping limit of natural gas-fired unit g

[MW/hour]

RUT
i Upward ramping limit of thermal unit i [MW/hour]

T Number of hours in the study horizon

V LOL Value of lost of load [$/MWh]

πξ Probability of scenario ξ

ρ Natural gas price [$/MBTU]

Variables

F G
g,t Hour-t natural gas consumption of natural gas-fired

unit g in the scheduling stage [MBTU]

F S
p,t Hour-t natural gas flow through pipeline p in the

scheduling stage [MBTU]

fG
g,ξ,t Hour-t change in natural gas consumption of nat-

ural gas-fired unit g in scenario-ξ operating stage

[MBTU]

LSHED
n,ξ,t Hour-t load shed at node n in scenario ξ operating

stage [MW]

P G
g,t Hour-t production of natural gas-fired unit g in the

scheduling stage [MW]

P T
i,t Hour-t production of thermal unit i in the schedul-

ing stage [MW]

rG,D
g,ξ,t Hour-t downward reserve of natural gas-fired unit g

deployed in scenario ξ operating stage [MW]

rG,U
g,ξ,t Hour-t upward reserve of natural gas-fired unit g

deployed in scenario ξ operating stage [MW]

rT,D
i,ξ,t Hour-t downward reserve of thermal unit i de-

ployed in scenario ξ operating stage [MW]

rT,U
i,ξ,t Hour-t upward reserve of thermal unit i deployed

in scenario ξ operating stage [MW]

xG
g,t Hour-t commitment status of natural gas-fired

unit g: equals 1 if on, 0 otherwise

xT
i,t Hour-t commitment status of thermal unit i: equals

1 if on, 0 otherwise

yG
g,t Hour-t startup indicator of natural gas-fired unit g:

equals 1 if started up at the beginning of hour t, 0
otherwise

yT
i,t Hour-t startup indicator of thermal unit i: equals 1

if started up at the beginning of hour t, 0 otherwise

zG
g,t Hour-t shutdown indicator of natural gas-fired

unit g: equals 1 if shutdown at the beginning of

hour t, 0 otherwise

zT
i,t Hour-t shutdown indicator of thermal unit i: equals

1 if shutdown at the beginning of hour t, 0 other-

wise

θ0n,t Hour-t phase angle of node n in the the scheduling

stage [rad]

θn,ξ,t Hour-t phase angle of node n in scenario ξ oper-

ating stage [rad]

B. Optimization Model

We now detail the formulation of the optimization model,

which has two types of constraints. The first, which consists of

constraint sets (2)–(11), represents the scheduling stage, when

day-ahead unit commitment decisions are made. The second,

consisting of constraint sets (12)–(28), represent the operating

stage, when per-scenario real-time operations are determined.

min

T
∑

t=1

{

∑

i∈ΩT

(

yT
i,tC

T,SU
i + xT

i,tC
T,NL
i + cT

i P
T
i,t

)

(1)

+
∑

g∈ΩG

(

ρF G
g,t + yG

g,tC
G,SU
g + xG

g,tC
G,NL
g + cG

g P
G
g,t

)

+
∑

ξ∈Ξ

πξ ·

(

∑

i∈ΩT

cT
i ·
(

rT,U
i,ξ,t − rT,D

i,ξ,t

)

+
∑

g∈ΩG

ρfG
g,ξ,t

+
∑

g∈ΩG

cG
g ·
(

rG,U
g,ξ,t − rG,D

g,ξ,t

)

+
∑

n∈Λ

V LOLLSHED

n,ξ,t

)}

s.t.
∑

i∈ΩT
n

P T
i,t +

∑

g∈ΩG
n

P G
g,t − Ln,t (2)

=
∑

m∈Λn

Bn,m · (θ0n,t − θ0m,t); ∀n ∈ Λ, t ∈ T ;

θ0REF,t = 0; ∀t ∈ T ; (3)

xG
g,tP

G,min

g ≤ P G
g,t ≤ xG

g,tP
G,max

g ; ∀g ∈ ΩG, t ∈ T ; (4)

xT
i,tP

T,min

i ≤ P T
i,t ≤ xT

i,tP
T,max

i ; ∀i ∈ ΩT, t ∈ T ; (5)

F G
g,t = bgP

G
g,t + F G,NL

g xG
g,t + F G,SU

g yG
g,t; (6)

∀g ∈ ΩG, t ∈ T ;

F S
p,t =

∑

g∈∆p

F G
g,t; ∀p ∈ ∆, t ∈ T ; (7)

yG
g,t − zG

g,t = xG
g,t − xG

g,t−1; ∀g ∈ ΩG, t ∈ T ; (8)

yT
i,t − zT

i,t = xT
i,t − xT

i,t−1; i ∈ ΩT, ∀t ∈ T ; (9)

xG
g,t, y

G
g,t, z

G
g,t ∈ {0, 1}; ∀g ∈ ΩG, t ∈ T ; (10)

xT
i,t, y

T
i,t, z

T
i,t ∈ {0, 1}; ∀i ∈ ΩT, t ∈ T ; (11)

∑

i∈ΩT
n

(rT,U
i,ξ,t − rT,D

i,ξ,t) +
∑

g∈ΩG
n

(rG,U
g,ξ,t − rG,D

g,ξ,t) + LSHED

n,ξ,t

=
∑

m∈Λn

Bn,m · (θ0n,t − θn,ξ,t − θ0m,t + θm,ξ,t); (12)

∀n ∈ Λ, t ∈ T, ξ ∈ Ξ;

θREF,ξ,t = 0; ∀t ∈ T, ξ ∈ Ξ; (13)

− Cmax

n,m ≤ Bn,m · (θn,ξ,t − θm,ξ,t) ≤ Cmax

n,m ; (14)

∀n ∈ Λ,m ∈ Λn, t ∈ T, ξ ∈ Ξ;

0 ≤ LSHED

n,ξ,t ≤ Ln,t; ∀n ∈ Λ, t ∈ T, ξ ∈ Ξ; (15)

xG
g,tP

G,min

g ≤ P G
g,t + (rG,U

g,ξ,t − rG,D
g,ξ,t) (16)

≤ xG
g,tP

G,max

g ; ∀g ∈ ΩG, t ∈ T, ξ ∈ Ξ;

0 ≤ rG,U
g,ξ,t ≤ xG

g,tR
G,U
g ; ∀g ∈ ΩG, t ∈ T, ξ ∈ Ξ; (17)

0 ≤ rG,D
g,ξ,t ≤ xG

g,tR
G,D
g ; ∀g ∈ ΩG, t ∈ T, ξ ∈ Ξ; (18)

(P G
g,t + rG,U

g,ξ,t − rG,D
g,ξ,t)− (P G

g,t−1 + rG,U
g,ξ,t−1

− rG,D
g,ξ,t−1

)

≤ RUG
g ; ∀g ∈ ΩG, t ∈ T, ξ ∈ Ξ; (19)
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(P G
g,t−1 + rG,U

j,ξ,t−1
− rG,D

g,ξ,t−1
)− (P G

g,t + rG,U
g,ξ,t − rG,D

g,ξ,t)

≤ RDG
g ; ∀g ∈ ΩG, t ∈ T, ξ ∈ Ξ; (20)

xT
i,tP

T,min

i ≤ P T
i,t + (rT,U

i,ξ,t − rT,D
i,ξ,t) ≤ xT

i,tP
T,max

i ; (21)

∀i ∈ ΩT, t ∈ T, ξ ∈ Ξ;

0 ≤ rT,U
i,ξ,t ≤ xT

i,tR
T,U
i ; ∀i ∈ ΩT, t ∈ T, ξ ∈ Ξ; (22)

0 ≤ rT,D
i,ξ,t ≤ xT

i,tR
T,D
i ; ∀i ∈ ΩT, t ∈ T, ξ ∈ Ξ; (23)

(P T
i,t + rT,U

i,ξ,t − rT,D
i,ξ,t)− (P T

i,t−1 + rT,U
i,ξ,t−1

− rT,D
i,ξ,t−1

)

≤ RUT
i ; ∀i ∈ ΩT, t ∈ T, ξ ∈ Ξ; (24)

(P T
i,t−1 + rT,U

i,ξ,t−1
− rT,D

i,ξ,t−1
)− (P T

i,t + rT,U
i,ξ,t − rT,D

i,ξ,t)

≤ RDT
i ; ∀i ∈ ΩT, t ∈ T, ξ ∈ Ξ; (25)

fG
g,ξ,t = bg · (r

G,U
g,ξ,t − rG,D

g,ξ,t); (26)

∀g ∈ ΩG, t ∈ T, ξ ∈ Ξ;

F S
p,t +

∑

g∈∆p

fG
g,ξ,t ≤ Fmax

p,ξ,t ; ∀p ∈ ∆, t ∈ T, ξ ∈ Ξ; (27)

T
∑

t=1

(F S
p,t +

∑

g∈∆p

fG
g,ξ,t) ≤ Fmax

p ; ∀p ∈ ∆, ξ ∈ Ξ. (28)

Objective function (1) minimizes the total expected operational

costs of all thermal and natural gas-fired units over the T -hour

model horizon. This objective consists of several terms. The

first two terms represent the cost of committing and scheduling

thermal and natural gas-fired units in the day-ahead scheduling

stage.

For reasons of generality, we assume that natural gas-fired

plants incur two types of costs. The first is a fuel cost, which

depends on the amount of natural gas consumed for generator

startups, no-load fuel use, and actual electricity production.

The second are non-fuel costs, which are also associated with

generator startups, no-load, and actual production. These latter

costs can encompass variable operations and maintenance,

among other costs. Fuel cost is computed by calculating the

total amount of natural gas consumed by a natural gas-fired

unit and multiplying this quantity by the assumed natural gas

price.

The remaining objective-function terms represent the ex-

pected cost of operating the thermal and natural gas-fired units

and the system in real-time. Specifically, the:

∑

i∈ΩT

cT
i ·
(

rT,U
i,ξ,t − rT,D

i,ξ,t

)

,

term represents the cost of adjusting the output of thermal

generators in real-time, the:

∑

g∈ΩG

[

ρfG
g,ξ,t + cG

g ·
(

rG,U
g,ξ,t − rG,D

g,ξ,t

)]

,

term represents the cost of adjusting the output of natural gas-

fired generators in real-time (including incremental natural gas

costs), and the:
∑

n∈Λ

V LOLLSHED

n,ξ,t,

term represents the cost of any load that must be shed in real-

time.

As noted before, the proposed model has two types of

constraints. The first, consisting of constraint sets (2)–(11), im-

pose day-ahead scheduling-stage restrictions. Constraints (2)

enforce load-balance at each node in the scheduling stage. The

left-hand side of each equality is the total power generated by

all of the units connected to bus n in hour t, less the load at

that node. The right-hand side of the equality gives the total

net power flow in hour t through the transmission lines directly

connected to node n. We assume a well designed power system

that is able to supply the demand under normal operating con-

ditions. Thus, load shedding is not considered at the scheduling

stage, which represents an average normal condition. Load

shedding is, however, considered at the operating stage in the

event of an extreme natural gas-supply scenario. Load-balance

is imposed at the scheduling stage in the model to be able to

compute day-ahead locational marginal prices (LMPs), once

binary variables are fixed to their optimal values. In this way

we can examine the impacts of natural gas-supply conditions

on day-ahead LMPs. Because LMPs are computed using dual

variables of equality constraints, they can be negative.

Constraints (3) fix the phase angle at the reference node

to zero in each hour at the scheduling stage. Constraints (4)

and (5) impose minimum- and maximum-generating capaci-

ties on the natural gas-fired and thermal units, respectively.

Constraints (6) and (7) define fuel usage of each natural gas-

fired unit and total pipeline capacity scheduled for use in each

hour at the scheduling stage.

Constraints (8) and (9) impose the state transitions that

define the values of the y and z variables for the natural gas-

fired and thermal units, respectively, in terms of changes in

the x variables from one hour to the next. Constraints (10)

and (11) require these variables to take on binary values.

The remaining constraints impose operating-stage restric-

tions. Constraints (12) impose hourly nodal load-balance. We

define real-time load-balance in terms of incremental changes

(relative to the scheduling stage) in generation and load shed

on the left-hand sides of the equalities. The right-hand sides

of the equalities give incremental changes in power flows,

which are based on incremental changes (relative to the

scheduling stage) in phase angles. The operating-stage load-

balance constraints are formulated in this manner (i.e., in

terms of incremental changes relative to the scheduling stage)

to avoid redundancy with the scheduling-stage load-balance

constraints. If such redundancy is included in the constraints,

dual variables cannot be reliably used to compute LMPs.

Constraints (13) fix the phase angles at the reference node

to zero. Constraints (14) impose the flow limits on each

transmission line in each scenario and hour. The flow limits

are represented at the operating stage, which is when they are

relevant in the sense that they may be binding. Thus, these

constraints do not need to be represented at the scheduling

stage. Constraints (15) restrict load shedding to be less than

actual load in each hour.

Constraints (16)–(20) are technical limits on the opera-

tions of natural gas-fired units. Constraints (16) impose min-

imum and maximum generating capacities on natural gas-

fired units. Constraints (17) and (18) enforce upward and

downward reserve limits, respectively, for natural gas-fired
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units. Constraints (19) and (20) impose upward and downward

ramping restrictions on natural gas-fired units, respectively.

Constraints (21)–(25) are analogous technical restrictions on

the operation of thermal units. Because ramping limits are

represented at the operating stage, which is when they are

relevant in the sense that they may be binding, they do not

need to be represented at the scheduling stage.

Finally, constraints (26) compute incremental (relative to

the scheduling stage) fuel usage by each natural gas-fired

unit in each hour of each scenario. Constraints (27) and (28)

impose the two types of natural gas-supply constraints dis-

cussed in the introduction. Specifically, constraints (27) are

physical pipeline-capacity restrictions in each hour while con-

straints (28) impose the contract limit on daily natural gas

use.

C. Value of Stochastic Solution Computations

One way that we demonstrate the benefits of our proposed

two-stage stochastic planning model is by computing the value

of stochastic solution (VSS). VSS gives an estimate of the

benefit of modeling uncertainty when making stage-1 unit

commitment decisions [19].

We compute the VSS by first solving the following deter-

ministic version of the model introduced in Section II-B in

which the uncertain natural gas-pipeline capacities, Fmax
p,ξ,t , are

replaced by their expected values:

F̄max

p,t =
∑

ξ∈Ξ

πξF
max

p,ξ,t .

This model is formulated as:

min
T
∑

t=1

{

∑

i∈ΩT

(

yT
i,tC

T,SU
i + xT

i,tC
T,NL
i + cT

i P
T
i,t

)

(29)

+
∑

g∈ΩG

(

ρF G
g,t + yG

g,tC
G,SU
g + xG

g,tC
G,NL
g + cG

g P
G
g,t

)

}

s.t.
∑

i∈ΩT
n

P T
i,t +

∑

g∈ΩG
n

P G
g,t − Ln,t (30)

=
∑

m∈Λn

Bn,m · (θ0n,t − θ0m,t); ∀n ∈ Λ, t ∈ T ;

θ0REF,t = 0; ∀t ∈ T ; (31)

xG
g,tP

G,min

g ≤ P G
g,t ≤ xG

g,tP
G,max

g ; ∀g ∈ ΩG, t ∈ T ; (32)

xT
i,tP

T,min

i ≤ P T
i,t ≤ xT

i,tP
T,max

i ; ∀i ∈ ΩT, t ∈ T ; (33)

F G
g,t = bgP

G
g,t + F G,NL

g xG
g,t + F G,SU

g yG
g,t; (34)

∀g ∈ ΩG, t ∈ T ;

F S
p,t =

∑

g∈∆p

F G
g,t; ∀p ∈ ∆, t ∈ T ; (35)

yG
g,t − zG

g,t = xG
g,t − xG

g,t−1; ∀g ∈ ΩG, t ∈ T ; (36)

yT
i,t − zT

i,t = xT
i,t − xT

i,t−1; i ∈ ΩT, ∀t ∈ T ; (37)

xG
g,t, y

G
g,t, z

G
g,t ∈ {0, 1}; ∀g ∈ ΩG, t ∈ T ; (38)

xT
i,t, y

T
i,t, z

T
i,t ∈ {0, 1}; ∀i ∈ ΩT, t ∈ T ; (39)

− Cmax

n,m ≤ Bn,m · (θn,t − θm,t) ≤ Cmax

n,m ; (40)

∀n ∈ Λ,m ∈ Λn, t ∈ T ;

P G
g,t − P G

g,t−1 ≤ RUG
g ; ∀g ∈ ΩG, t ∈ T ; (41)

P G
g,t−1 − P G

g,t ≤ RDG
g ; ∀g ∈ ΩG, t ∈ T ; (42)

P T
i,t − P T

i,t−1 ≤ RUT
i ; ∀i ∈ ΩT, t ∈ T ; (43)

P T
i,t−1 − P T

i,t ≤ RDT
i ; ∀i ∈ ΩT, t ∈ T ; (44)

F S
p,t ≤ F̄max

p,t ; ∀p ∈ ∆, t ∈ T ; (45)

T
∑

t=1

F S
p,t ≤ Fmax

p ; ∀p ∈ ∆. (46)

Objective function (29) is the same as that of the stochastic

problem, except that there are no recourse decisions and, as

such, no second-stage cost. Constraints (30)–(39) are iden-

tical to constraints (2)–(11) of the stochastic model. Con-

straints (40)–(46) impose operating-stage constraints from the

stochastic model on the deterministic problem. Specifically,

constraints (40) impose flow limits on transmission lines, con-

straints (41)–(44) impose ramping limits and constraints (45)

and (46) impose natural gas capacities. Constraints (45) are

analogous to constraints (27), except that natural gas usage

is restricted to the expected capacity of each pipeline in each

hour.

Once this deterministic problem is solved, the values of

the scheduling-stage variables (i.e., F G
g,t, F

S
p,t, P

G
g,t, P

T
i,t, x

G
g,t,

xT
i,t, yG

g,t, yT
i,t, zG

g,t, zT
i,t, and θ0n,t) are fixed in the original

stochastic problem, which is solved to determine the operating-

stage variables and the optimal objective-function value of the

stochastic model, which we denote z∗D. If we let z∗S denote

the optimal objective-function value obtained from solving

the stochastic problem (without fixing the scheduling-stage

variables using the deterministic model), then the VSS is given

by:
z∗D − z∗S

z∗S
.

III. EXAMPLES

This section analyzes two simple examples, which illustrate

the model detailed in Section II. The first is what we term

a ‘low-gas-price’ example, in which both thermal and natural

gas-fired generators are sufficiently flexible to serve the load.

However, potential restrictions on natural gas use limit the

extent to which the system can rely on natural gas-fired

generators to serve load. The second, which we call a ‘high-

gas-price’ example, requires the use of flexible but expensive

natural gas-fired units to accommodate fast-ramping events

that cannot be met by thermal units alone.

Both examples are based on the four-node electricity net-

work shown in Fig. 1. The network includes two thermal

units, located at nodes of their own, two natural gas-fired

units, that are located at the same node and served by a

single natural gas pipeline, and a single demand node. The

corresponding transmission line data are provided in Table I,

although there is no transmission congestion in this example.

We study the commitment and dispatch of the system over a

12-hour planning horizon. We assume that the single pipeline

serving the two natural gas-fired units can have binding hourly

flow capacities. Fig. 2 shows the hourly pipeline capacities

under the three scenarios that we model. Scenario 1 represents
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an ‘uncapacitated’ scenario, in which the hourly pipeline

capacities are not binding even if the two natural gas-fired

units are operating at maximum load. The other two scenarios

represent cases in which some contingency restricts pipeline

use, especially in the middle of the planning horizon.

Load

Thermal

unit 1

Thermal

unit 2

Gas 

unit 1
Gas 

unit 2
Gas pipeline

1

2

3

4

Fig. 1. Four-node power system and single natural gas pipeline used in the
examples of Section III.

TABLE I
FOUR-NODE POWER SYSTEM TRANSMISSION DATA

From Node To Node B Cmax

1 2 4.48 1200
1 3 5.05 1200
2 4 5.75 1200
3 4 5.67 1200
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Scenario 1
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Fig. 2. Natural gas pipeline hourly capacity scenarios.

We now detail the other data and results of the two exam-

ples.

A. Low-Gas-Price Example

1) Data: Table II summarizes the cost and constraint data

for the thermal and natural gas-fired units in the low-gas-

price example. The natural gas price used in this case is

$4/MBTU. Fig. 3 shows the load data used. Due to their

relatively low operating costs, the system operator prefers

using the natural gas-fired generators to serve the system

load. However, the possibility of binding natural gas-supply

constraints in Scenarios 2 and 3 (cf. Fig. 2) may limit their

use.

TABLE II
THERMAL AND NATURAL GAS-FIRED UNIT DATA FOR THE

LOW-GAS-PRICE EXAMPLE

Marginal Start-Up

Unit Cost Cost RU,RD Pmax Pmin

Thermal
1 75.0 800 100 600 30
2 80.5 900 100 600 20

Natural Gas
1 55.0 560 250 600 25
2 50.0 420 250 600 25
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Fig. 3. Load data for the low-gas-price example.

2) Results: We examine system operations and market

outcomes under two probability distributions for the pipeline-

capacity scenarios. The first distribution assumes an 80%

probability that the pipeline is uncapacitated, otherwise each

of scenarios 2 and 3 are equally likely with 10% probabili-

ties each. Thus, this first distribution has scenario-probability

vector π = (0.8, 0.1, 0.1). The second distribution assumes

that the pipeline is uncapacitated with probability 1, or π =
(1.0, 0.0, 0.0).

The thermal units are not committed when the pipeline

is uncapacitated with probability 1, i.e., with the second

probability distribution vector, π = (1.0, 0.0, 0.0). When there

is a nonzero probability that the pipeline will be capacitated,

this results in committing the thermal units. In this latter

case the two thermal units are committed between hours 3
and 10 and from hours 3 to 9, respectively. These thermal units

are committed with the latter distribution because there is a

nonzero probability that a binding pipeline-capacity constraint

will prevent the natural gas-fired units from serving all of the

loads in hours 3 through 10. Table III provides detailed unit

commitment decisions.

TABLE III
OPTIMAL UNIT COMMITMENT DECISIONS FOR THE LOW-GAS-PRICE

EXAMPLE

Distribution 1 Distribution 2
π = (0.8, 0.1, 0.1) π = (1.0, 0, 0)
Thermal Natural Gas Thermal Natural Gas

Hour 1 2 1 2 1 2 1 2

1 0 0 1 1 0 0 1 1
2 0 0 1 1 0 0 1 1
3 1 1 1 1 0 0 1 1
4 1 1 1 1 0 0 1 1
5 1 1 1 1 0 0 1 1
6 1 1 1 1 0 0 1 1
7 1 1 1 1 0 0 1 1
8 1 1 1 1 0 0 1 1
9 1 1 1 1 0 0 1 1
10 1 0 1 1 0 0 1 1
11 0 0 0 1 0 0 0 1
12 0 0 0 1 0 0 0 1
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π = (1.0,0.0,0.0)

Fig. 4. Day-ahead prices at the demand node in the low-gas-price example.

Fig. 4 shows hourly day-ahead prices at the demand node

under the two pipeline-capacity distributions. As expected,

prices tend to be higher with the capacitated probability

distribution. This is because the pipeline-capacity constraints

result in greater use of higher-cost thermal units, which set

the margin during hours when the pipeline could be binding.

It is important to stress that the possibility of binding pipeline

constraints impact day-ahead prices, regardless of whether

those binding constraints are actually realized in real-time.
The VSS for this example, with probability distribution

vector π = (0.8, 0.1, 0.1), is 0.0638 (the VSS is, by definition,

0 with probability distribution vector π = (1.0, 0.0, 0.0),
because there is no uncertainty in this case). This means

that when there is uncertainty regarding available natural

gas, explicitly modeling this uncertainty in determining unit

commitments reduces expected operating costs by 6.38%.

Expected operation costs increase if the system is committed

using expected pipeline capacities (in the deterministic model)

because less thermal generation is committed (compared to

the stochastic model). As a result, loads must be curtailed in

some of the scenarios in which the natural gas pipeline is

capacitated.

B. High-Gas-Price Example

1) Data: This example assumes the same physical power

system structure shown in Fig. 1 and summarized in Table I

and the same pipeline-capacity scenarios shown in Fig. 2.

Table IV and Fig. 5 summarize the generator and load data,

respectively, for this example. This example has higher natural

gas prices of $12/MBTU, resulting in a cost reversal between

the thermal and natural gas-fired units relative to the low-gas-

price example. The load profile in this example has steeper

ramps before and after the peak, which requires the use of the

expensive natural gas-fired units.

TABLE IV
THERMAL AND NATURAL GAS-FIRED UNIT DATA FOR THE

HIGH-GAS-PRICE EXAMPLE

Marginal Start-Up

Unit Cost Cost RU,RD Pmax Pmin

Thermal
1 75.0 600 100 600 30
2 80.5 700 100 600 20

Natural Gas
1 105.0 680 250 600 25
2 100.0 440 250 600 25
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Fig. 5. Load data for the high-gas-price example.
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Fig. 6. Day-ahead prices at the demand node in the high-gas-price example.

2) Results: We examine system operations and market out-

comes assuming that the natural gas pipeline is uncapacitated

with probability 1, i.e., with π = (1.0, 0.0, 0.0). Because of

the steep ramps in hours 3, 4, 8, and 9 and the limited ramping

capabilities of the thermal units, the more expensive natural

gas-fired units must be committed. Table V summarizes the

optimal unit commitment decisions. Fig. 6 shows the resulting

effect on day-ahead energy prices at the demand node. Prices

are seen to rise exactly during the hours when binding ramping

constraints require the use of expensive natural gas-fired units.

Prices in hours 2 and 10 are lower than the marginal cost of

the thermal units. This is because increasing demand in either

of hours 2 or 10 allows greater use of thermal generation (in

place of natural gas-fired generation) in hours 3 and 9. The

prices reflect this value of shifting loads to hours 2 and 10.

Sioshansi et al. provide a formal analysis of this pricing rule

when ramping constraints are binding [20].

TABLE V
OPTIMAL UNIT COMMITMENT DECISIONS FOR THE HIGH-GAS-PRICE

EXAMPLE

Thermal Natural Gas
Hour 1 2 1 2
1 1 1 0 0
2 1 1 0 0
3 1 1 1 1
4 1 1 0 1
5 1 1 0 1
6 1 1 0 0
7 1 1 0 1
8 1 1 0 1
9 1 1 1 1
10 1 1 0 0
11 1 0 0 0
12 1 0 0 0

IV. CASE STUDY

In this section we further analyze the effects of the low- and

high-gas-price examples examined in Section III, using case

studies that are modeled around real-world power systems.

More specifically, we examine a reduced eight-zone model of
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the ISO New England system [17] and a 240-node representa-

tion of the WECC, which includes the California ISO system

[18]. Both cases assume a 24-hour optimization horizon in the

unit commitment model.

A. Eight-Zone Test System

The eight-zone case study, which is modeled around the ISO

New England system, is used to further study the effects of

the low-gas-price case. The setting studied in Section III-A is

reminiscent of recent events in the ISO New England system,

in which the system is not able to rely on normally low-

cost natural gas-fired units due to binding pipeline-capacity

constraints [1].

1) Data: This case examines an eight-zone model of the

ISO New England system [17].1. For sake of simplicity

and to focus on the effect of natural gas-supply shortages,

only thermal and natural gas-fired units are considered in

our case study. The units in the system are aggregated into

37 units total—17 thermal and 20 natural gas-fired. Table VI

summarizes the location, marginal generation cost, ramping

limits (upward and downward ramping limits are assumed to

be the same for each unit), and generating capacity of each

unit. All of the units are assumed to have a minimum output

level of 0 MW.

Loads are modeled using actual historical load data,2 which

are scaled based on the generation capacity modeled in this

case study. Fig. 7 shows the load profile, which is aggregated

over the eight zones in the network. Our case study uses

the electric system topology reported by Krishnamurthy et al.

[17]. We assume two natural gas pipelines. Natural gas-fired

units 1–5 are supplied by one pipeline and units 6 and 20 are

supplied by the other. We assume that there are 10 equally

likely pipeline-capacity scenarios. These scenarios result in a

variety of pipeline-capacity conditions. Some scenarios have

binding pipeline capacities during the full 24-hour optimiza-

tion horizon, others have binding pipeline capacity constraints

during peak hours, and some have uncapacitated natural gas

pipelines. The scenarios are selected to be realistic (i.e., to

mimic recent conditions under which the ISO New England

system experiences binding pipeline constraints) and to obtain

the desired price behavior. Needless to say, other scenario

selections may result in different price behavior.
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Fig. 7. Load data for the ISO New England-based eight-zone case study.

1https://bitbucket.org/kdheepak89/eightbustestbedrepo/src/
2http://iso-ne.com/isoexpress/web/reports/load-and-demand/

TABLE VI
UNIT LOCATION, COST, AND CONSTRAINT DATA FOR ISO NEW

ENGLAND-BASED EIGHT-ZONE CASE STUDY

Unit Zone Marginal Cost RU,RD Pmax

Thermal
1 ME 160.55 120.0 600.4
2 ME 233.00 120.0 431.0
3 ME 154.16 115.5 115.5
4 VT 185.00 120.0 620.2
5 NH 54.57 120.0 400.2
6 SEMA 153.16 120.0 558.7
7 SEMA 192.06 120.0 553.0
8 RI 192.00 120.0 435.0
9 CT 160.00 120.0 447.9
10 CT 233.42 120.0 407.4
11 CT 200.14 120.0 400.0
12 CT 192.06 120.0 236.0
13 CT 151.16 120.0 168.0
14 CT 152.16 120.0 130.5
15 CT 192.06 117.0 117.0
16 CT 54.00 81.0 81.0
17 CT 325.00 120.0 225.0

Natural Gas
1 ME 51.13 400.0 693.8
2 ME 53.14 400.0 685.3
3 ME 51.00 400.0 490.4
4 ME 80.00 244.9 244.9
5 NH 51.13 400.0 508.0
6 WCMA 53.00 238.3 238.3
7 WCMA 123.00 141.0 141.0
8 SEMA 85.00 400.0 675.5
9 SEMA 86.00 244.8 244.8
10 SEMA 85.25 141.1 141.1
11 SEMA 85.50 104.9 104.9
12 RI 55.72 400.0 515.5
13 RI 55.72 270.9 270.9
14 RI 85.00 264.9 264.9
15 RI 50.23 248.7 248.7
16 RI 85.50 238.6 238.6
17 RI 84.50 149.0 149.0
18 RI 85.00 149.0 149.0
19 CT 78.00 400.0 447.9
20 CT 85.03 43.9 43.9

2) Results: Fig. 8 shows load-weighted day-ahead LMPs.

As expected, prices increase during peak-load hours and de-

crease in off-peak hours. The LMPs in hour 9 are dramatically

high because the upward ramping constraints for thermal

units 4, 10, and 12 are binding in scenario 10. Scenario 10
is the one in which natural gas availability is highly limited.

The proposed model commits natural gas-fired units during all

24 hours of the optimization horizon. Lower-cost natural gas-

fired units are prioritized in the commitment and dispatch over

higher-cost units. Although the natural gas pipelines are not

capacitated in all scenarios, low-cost natural gas-fired unit are

not fully loaded in the scheduling stage. Rather, the dispatch

of each natural gas-fired unit is adjusted in the operating stage

depending on how much pipeline capacity is available in the

recourse stage. The model limits the commitment and dispatch

of higher-cost thermal units, which is consistent with the cost-

minimization objective.

On the other hand, reducing the capacities of the electricity

transmission lines that directly connect zones ME and NH

results in transmission congestion. Fig. 9 shows load-weighted

average (across the entire system footprint) day-ahead LMPs

as well as day-ahead LMPs for the ME zone and the load-

weight average LMPs of the other zones. The nodal price

https://bitbucket.org/kdheepak89/eightbustestbedrepo/src/
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Fig. 8. Load-weighted day-ahead LMPs in the ISO New England-based
eight-zone case study.
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Fig. 9. Load-weighted day-ahead LMPs for the entire system footprint, ME
zone, and other zones in the ISO New England-based eight-zone case study
with restricted transmission capacity.

differences are caused by transmission-line congestion. The

commitment status of the thermal and gas-fired units are

similar between the congested and uncongested cases, showing

that the commitment decisions are fundamentally driven by

natural gas-pipeline capacities. The high prices in hour 16 are

caused by binding upward ramping limit for all of the thermal

units that are on-line as well as limited natural gas availability

in some scenarios. Additional thermal unit would be started-up

if the load in hour 16 is further increased.

The VSS for the cases with and without transmission con-

gestion are 0.0724 and 0.074, respectively. As with the low-

gas-price example examined in Section III-A, if the system is

committed using a deterministic model with expected pipeline

capacities, fewer thermal units are committed as compared to

those committed by the stochastic model. As a result, there is

non-zero energy curtailment in some of the scenarios in which

the natural gas pipelines are capacitated.

The model is programmed using GAMS version 24.4.6 and

solved using CPLEX version 12.6.2.0 on a computer with

an Intel Core i7 2.6 GHz processor with 8 GB of RAM.

The computation time of each of the eight-zone cases is

approximately 15 minutes.

B. 240-Node Test System

The 240-node case study, which is modeled around the

WECC system, is used to further study the effects of the

high-gas-price case. The assumptions underlying the analysis

in Section III-B are reminiscent of what is expected to

occur in the California ISO system in the near future. As

the penetrations of solar photovoltaic and wind generators

increase, high ramps in the net load (i.e., load less renewable

production) profile are expected in the mornings and evenings.

These ramps are anticipated to be met using relatively high-

cost natural gas-fired generators [15], [16].
1) Data: This case study is based on a 240-node reduced

model of the WECC system [18] and analyzes the effect of

high natural gas prices. To reduce computational complexity,

the system is modeled as consisting of 31 units—16 thermal

and 15 natural gas-fired. The loads are modeled as being at

25 of the nodes. Unit, transmission line, and load data are

based on the reduced WECC model provided by Price and

Goodin [18]. Fig. 10 shows the aggregated (over the 25 load

nodes) load profile, which has steep ramps in the morning and

afternoon.
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Fig. 10. Load data for the WECC-based 240-node case study.

Table VII shows marginal cost, ramping limit, capacity, and

minimum generation level data for the thermal and natural

gas-fired units. The system is assumed to have two natural

gas pipelines. The first pipeline is shared by natural gas-fired

units 1–7 while the other serves natural gas-fired units 8–15.

Due to the relatively low demand of natural gas in this high-

gas price case study, we only consider one scenario in which

the natural gas pipelines are uncapacitated with probability 1.

The case study assumes a natural gas price of $11/MBTU,

based on historical natural gas prices in California.3

2) Results: Because of their relatively high cost, only

natural gas-fired unit 11, the cheapest among all of the natural

gas-fired units, is committed in hours 9, 13, and 14. This unit

is committed solely because of the steep ramps and the need

for its greater ramping capability (compared to the thermal

units). Fig. 11 shows load-weighted average day-ahead LMPs,

which are computed once binary variables are fixed to their

optimal values. There is no transmission line congestion in this

case, so all the LMPs at each of the 240 nodes in each same

hour are the same. As in the high-gas-price example examined

in Section III-B, day-ahead prices spike when natural gas-

fired units must be committed to accommodate steep ramps.

Moreover, we find that day-ahead prices in hours 8 and 15 are

much lower than the marginal cost of any unit (indeed, they are

negative). This is because of the same phenomenon that higher

loads in these hours allows more lower-cost thermal generation

to substitute high-cost natural gas-fired generation in hours 9
and 14. High LMPs in hours 10 and 11 due to binding ramping

limits of thermal units, and higher load in these hours require

the use of high-cost natural gas-fired generation.

3https://www.eia.gov/dnav/ng/hist/n3045ca3m.htm

https://www.eia.gov/dnav/ng/hist/n3045ca3m.htm


10 IEEE TRANSACTIONS ON POWER SYSTEMS

TABLE VII
UNIT LOCATION, COST, AND CONSTRAINT DATA FOR WECC-BASED

240-NODE CASE STUDY

Unit Node Marginal Cost RU,RD Pmax Pmin

Thermal
1 180 80 50 1100 25
2 202 83 50 900 25
3 230 80 50 800 25
4 160 79 50 1100 25
5 164 79 50 1000 25
6 167 84 50 800 25
7 172 85 50 800 25
8 188 85 50 800 25
9 192 77 50 900 25
10 208 79 50 800 25
11 215 82 50 800 25
12 221 80 50 800 25
13 223 76 50 1200 25
14 239 80 50 1000 25
15 240 79 50 800 25
16 237 82 50 900 25

Natural Gas
1 191 170 200 1000 20
2 201 145 400 900 20
3 204 165 400 1200 20
4 210 180 400 1200 20
5 214 175 400 1200 20
6 224 160 400 1600 20
7 238 165 400 1200 20
8 159 185 200 1200 20
9 187 165 200 800 20
10 218 173 200 800 20
11 220 144 400 500 20
12 229 173 400 950 20
13 175 166 400 1400 20
14 225 173 400 900 20
15 233 167 200 1000 20
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Fig. 11. Load-weighted day-ahead LMPs in the WECC-based 240-node case
study.

As in the case examined in Section IV-A, reducing the

capacity of the transmission lines directly connecting node 77
to 55 and node 77 to 145 causes congestion to occur in

hour 10. This results in LMP differences across the nodes

in hour 10. Fig. 12 shows load-weighted LMPs and LMPs

at two nodes—55 and 77—that have large price differences

in hour 10. Node 77 is connected to a low-cost thermal unit

through an uncongested transmission line. Thus, increased de-

mand in this node can be served by this low-cost thermal unit.

However, additional demand in node 55 can only be served by

high-cost natural gas-fired units, due to binding transmission

and ramping constraints. This explains the significant LMPs

differences between these two nodes. The congested case also

sees some differences in the units committed compared to

the uncongested case, again due to locational constraints that
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Fig. 12. Load-weighted day-ahead LMPs for the entire system footprint and
for nodes 55 and 77 in the WECC-based 240-node case study with restricted
transmission capacity.

require the use of natural gas-fired units to serve the fast-

ramping event.

The case study is implemented in the same environment that

the eight-zone case study is, and requires about three minutes

of computation time.

V. CONCLUSIONS

This paper proposes a two-stage stochastic unit commitment

model that integrates natural gas-supply conditions into power

system operations. Our modeling framework assumes that unit

commitment decisions are made day-ahead, in the face of

natural gas-capacity-constraint uncertainties. The second stage

of our model allows the dispatch of the committed units to

respond to real-time natural gas availability.

We use this model to study the effects on power system

operations of two types of natural gas-supply conditions. The

first has low natural gas prices, but potential natural gas-

supply bottlenecks. These possible natural gas-supply con-

straints necessitate the use of higher-cost thermal units and

have an effect on day-ahead prices. It is important to stress

that these effects occur regardless of whether any natural

gas pipeline is actually capacitated in real-time. The second

assumes relatively high natural gas prices. The system must

use expensive natural gas-fired generation, due to the operating

flexibility of those units (relative to thermal units) to handle

fast-ramping events. We demonstrate the effects of these fast-

ramping events on day-ahead LMPs. We do not study the

impacts of uplifts, which are necessitated by the non-convex

nature of unit commitments to ensure that the commitment and

dispatch is economically nonconfiscatory. While such uplifts

will have some impacts on market settlement, they should not

alter the general conclusions derived [21].

The two types of natural gas-supply conditions that we mod-

eled are inspired by conditions facing the ISO New England

and California ISO systems. It is important to note, however,

that these types of fuel-supply conditions may increasingly

become an issue in other power systems. Models, such as

the one that we propose here, could be used to help system

operators, generators, and utilities mitigate the effects of such

conditions. Indeed, a key contribution of the model proposed

here is providing a tool to ‘quantify’ the impact of natural

gas-supply uncertainty and natural gas prices on LMPs and

the scale and extent of such impacts.
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Comprehensive modeling of the natural gas pipeline system

will make the proposed model more realistic, but will not

change the conclusions derived. Enhancing the modeling of

the natural gas-pipeline system is an area for further research.

It should also be noted that any technique aimed at improving

computational efficiency or achieving tractability in large-scale

systems (e.g., decomposition or scenario-reduction techniques)

can be applied to the proposed model.
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