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Abstract—The recent leak of the Aliso Canyon natural gas-
storage facility calls for co-ordinated planning of natural gas and
electric power systems with specific consideration of electrical
energy storage. This paper proposes a co-ordinated planning
model that fills this need. The model is formulated as a two-stage
stochastic optimization problem, in which electricity- and natural
gas-demand-growth and natural gas-supply uncertainties are
represented. We analyze the trade-off between building electrical,

natural gas, and electrical energy storage infrastructure. The
sensitivity of electrical energy storage investment to the modeling
of the operating conditions is also studied. The model is tested
using a California-based case study.
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I. INTRODUCTION

ELECTRIC power systems are becoming increasingly

reliant on natural gas systems, due to the greater use

of natural gas-fired generation. This dependency can increase

the brittleness of electricity systems. Southern California is

currently experiencing this as a result of a leak at the Aliso

Canyon natural gas-storage facility, which was discovered in

late 2015. As of late 2017, the facility can still be operated

only during emergencies and at greatly reduced capacity.1

As a result, Southern California Gas Company (SoCalGas) is

operating with a 64% loss of natural gas inventory and a 51%

loss of natural gas-withdrawal capacity. In addition to affecting

the ability of SoCalGas to serve industrial and residential

natural gas demands, the limited fuel supply also affects

17 natural gas-fired generating units in southern California.

These units represent more than 70% of the local generating

capacity. To deal with the limited local fuel supply, that

California Public Utilities Commission (CPUC) authorized,

via Resolution E-4791, expedited procurement of electrical

energy storage (EES) by Southern California Edison (SCE).

SCE procured 62 MW of EES capacity in 2016, with further

procurements expected in 2017.
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Within this context, this paper proposes an integrated model

to co-optimize the expansion of EES, in conjunction with elec-

trical and natural gas infrastructures, to reliably supply electric

loads at least cost. The purpose of this work is to investigate

the role of EES in mitigating fuel-supply shortages for natural

gas-fired units. Our proposed model is formulated as a two-

stage stochastic optimization problem, in which investment

decisions are made in the first stage, followed by a variety of

operating conditions under different potential random scenar-

ios. Scenarios can represent uncertainties around electricity-

or natural gas-demand growth, and in natural gas supply (i.e.,

representing an Aliso Canyon-like event). We apply our model

to a simple example and a more comprehensive California-

based case study. We use these to analyze the trade-offs

between building electrical, EES, and natural gas facilities.

To our knowledge the extant literature does not provide a

modeling framework that can co-optimize the expansion of

electric and natural gas systems, while explicitly account-

ing for EES. Our previous work [1] develops a modeling

framework for co-ordinated expansion planning of electric

and natural gas systems without EES. This paper builds off

of our previous work by explicitly including EES, allowing

it to serve as an alternative to having to reinforce electric

or natural gas systems. Such a model would be of immense

value as power system operators, policy makers, and regulators

are increasingly having to manage supply shortages, such as

the one that is affecting California today. The inclusion of

EES requires some non-trivial changes to the structure of

our planning model, such as attention to the representation

of operating periods. These details are explored in depth in

the example and case study that are presented herein.

The remainder of this paper is organized as follows. Sec-

tion II surveys the existing literature and discusses our contri-

bution. Section III provides a detailed formulation of the pro-

posed planning model. Section IV illustrates the model through

a simple example, while Section V analyzes a California-based

case study. Section VI concludes.

II. LITERATURE REVIEW

EES-capacity planning has evolved as the role of EES has

grown. EES was initially seen as an alternative to utilities’

building peaking generation in their integrated resource plan-

ning [2]. More recent work [3] recognizes novel uses of EES

beyond alleviating generation-capacity constraints. One body

of work [4]–[9] examines the use of EES to integrate wind

generation, by accommodating the variability and uncertainty
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of its real-time availability. A second research area [10], [11]

models EES investment to maximize the value streams that

it can derive from wholesale-market prices. A third body of

work models the deployment of EES at the distribution level

[8], [12] and within microgrids [9], [13].
EES can also be used toward other industrial applica-

tions that are outside of the power system realm. Anvari-

Moghaddam et al. [14] and Clerici et al. [15] discuss the

use of EES in ships and railways, respectively. Lachuriya and

Kulkarni [16] and Zou et al. [17] survey the potential use of

different EES technologies in industrial applications.
Co-ordinated planning of electric power and natural gas

systems takes numerous approaches. Some works [18]–[21]

employ multistage deterministic models. Unsihuay-Vila et al.

[18] employ a linear model while Qiu et al. [19] and Barati

et al. [20] employ nonlinear models that are solved using

metaheuristic algorithms. Zeng et al. [21] develop a bi-level

planning model that is solved using metaheuristic algorithms.

Other works take account of uncertainty to enhance the

reliability of planning decisions, e.g., via multistage stochastic

optimization [22], robust optimization that includes N − 1
and probabilistic reliability criteria [23], or multi-objective

optimization that accounts for N − 1 criteria [24]. Qiu et

al. [25] employ Taylor series approximations and piecewise-

linear functions to linearize the nonlinear characteristics of

natural gas systems. Other works [26], [27] use natural gas-

transportation models for co-planning of the two systems to

enhance security and resilience. Another body of work [28],

[29] co-optimizes electric and natural gas systems with the

aim of reducing carbon emissions.
The existing literature has an important gap that this paper

seeks to fill. Namely, there are no works (to our knowledge)

that tackle the joint expansion planning of EES, natural gas,

and power systems. Instead, existing works treat these as

separate problems. Given the role that EES can play in mit-

igating the brittleness of electricity supply in light of natural

gas-supply disruptions, the model that we propose addresses

a timely and important issue. Our work makes three major

contributions to the existing literature. First, we propose a two-

stage stochastic optimization model, which shows that EES is

a viable alternative to expanding other (e.g., electric or natural

gas infrastructures) to mitigate fuel shortages or other supply

issues. Second, we study the impact of the representation

of operating conditions on EES-investment decisions. This

expands upon other works [30] that show the impacts of repre-

senting operating constraints on EES investments. Finally, we

use a California-based case study to test the proposed model.

In doing so, we demonstrate the benefits of EES in alleviating

fuel-supply shortages in a real-world setting.

III. MODEL FORMULATION

A. Model Notation

Sets and Indices

c index of candidate thermal units in set, ΦTC

e index of existing thermal units in set, ΦTE

g index of candidate natural gas-fired units in set,

ΦGC

i index of candidate EES units in set, ΦSC

j index of existing EES units in set, ΦSE

k index of existing natural gas-fired units in set, ΦGE

m,n indices of power system nodes in set, Λ
o index of operating conditions in set, O

p, q indices of natural gas system nodes in set, Ξ
t index of hours in each operating condition in set,

T

Λn set of nodes directly connected to node n through

existing transmission lines

Λ̂n set of nodes directly connected to node n through

candidate transmission lines

Ξp set of nodes directly connected to node p through

existing pipelines

Ξ̂p set of nodes directly connected to node p through

candidate pipelines

ΞGC
p set of candidate natural gas-fired units connected

to natural gas system node p

ΞGE
p set of existing natural gas-fired units connected to

natural gas system node p

ΦGC
n set of candidate natural gas-fired units located at

power system node n

ΦGE
n set of existing natural gas-fired units located at

power system node n

ΦSC
n set of candidate EES units located at node n

ΦSE
n set of existing EES units located at node n

ΦTC
n set of candidate thermal units located at node n

ΦTE
n set of existing thermal units located at node n

ω index of scenarios in set, Ω

Parameters

bGC
g heat rate of candidate natural gas-fired unit g

[MBTU/MWh]

bGE
k heat rate of existing natural gas-fired unit k

[MBTU/MWh]

Bm,n susceptance of existing transmission line connect-

ing nodes m and n [S]

B̂m,n susceptance of candidate transmission line con-

necting nodes m and n [S]

CT,INV
c investment cost of candidate thermal unit c

[$/MW]

CG,INV
g investment cost of candidate natural gas-fired

unit g [$/MW]

CS,INV
i investment cost of candidate EES unit i [$/MW]

CE,INV
m,n investment cost of candidate transmission line

connecting nodes m and n [$]

CG,INV
p,q investment cost of candidate pipeline connecting

nodes p and q [$/MBTU/h]

D
SC,max

i discharging capacity of candidate EES unit i

[MW]

D
SE,max

j discharging capacity of existing EES unit j [MW]

fE
ω,o,t hour-t electric load in operating condition o of

scenario ω [p.u.]

fG
ω,o,t hour-t non-generation-related natural gas load in

operating condition o of scenario ω [p.u.]

fGS
ω,o,t hour-t natural gas supply available in operating

condition o of scenario ω [p.u.]

Fmax
m,n capacity of existing transmission line connecting

nodes m and n [MW]
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FC,max
m,n capacity of candidate transmission line connecting

nodes m and n [MW]

KGC
g operation and maintenance cost of candidate nat-

ural gas-fired unit g [$/MWh]

KGE
k operation and maintenance cost of existing natural

gas-fired unit k [$/MWh]

KTC
c marginal cost of candidate thermal unit c

[$/MWh]

KTE
e marginal cost of existing thermal unit e [$/MWh]

LE
n reference electric load at node n [MW]

LG
p reference non-generation-related natural gas load

at node p [MBTU]

M a large constant

P TC,I,max
c maximum capacity of candidate thermal unit c

that can be built [MW]

P TC,RD
c ramp-down limit of candidate thermal unit c

[MW/h]

P TC,RU
c ramp-up limit of candidate thermal unit c [MW/h]

P TE,max
e capacity of existing thermal unit e [MW]

P TE,RD
e ramp-down limit of existing thermal unit e

[MW/h]

P TE,RU
e ramp-up limit of existing thermal unit e [MW/h]

PGC,I,max
g maximum capacity of candidate natural gas-fired

unit g that can be built [MW]

PGC,RD
g ramp-down limit of candidate natural gas-fired

unit g [MW/h]

PGC,RU
g ramp-up limit of candidate natural gas-fired unit g

[MW/h]

P
GE,max

k capacity of existing natural gas-fired unit k [MW]

PGE,RD
k ramp-down limit of existing natural gas-fired

unit k [MW/h]

PGE,RU
k ramp-up limit of existing natural gas-fired unit k

[MW/h]

Q
SC,max

i charging capacity of candidate EES unit i [MW]

Q
SE,max

j charging capacity of existing EES unit j [MW]

Rmax
p,q capacity of existing pipeline connecting nodes p

and q [MBTU/h]

RI,max
p,q maximum capacity of candidate pipeline connect-

ing nodes p and q that can be built [MBTU/h]

S
SC,I,max

i maximum energy capacity of candidate EES unit i

that can be built [MWh]

S
SE,max

j energy capacity of existing EES unit j [MWh]

V E value of lost electric load [$/MWh]

V G value of lost natural gas load [$/MBTU]

wo weight of operating condition o

Xmax
p reference natural gas-supply capacity at natural

gas system node p [MBTU/h]

βp,ω,o scenario-ω natural gas price at node p in operating

condition o [$/MBTU]

ηSC
i roundtrip efficiency of candidate EES unit i

ηSE
j roundtrip efficiency of existing EES unit j

θref phase angle of reference node [rad]

πω probability of scenario ω occurring

Variables

PGC,INV
g capacity of candidate natural gas-fired unit g built

[MW]

P TC,INV
c capacity of candidate thermal unit c built [MW]

R̂INV
p,q capacity of candidate pipeline connecting nodes p

and q built [MBTU/h]

SSC,INV
i capacity of candidate EES unit i built [MWh]

xm,n binary variable that equals 1 if candidate trans-

mission line connecting nodes m and n is built

and equals 0 otherwise

DSC
i,ω,o,t hour-t discharging of candidate EES unit i in

operating condition o of scenario ω [MW]

DSE
j,ω,o,t hour-t discharging of existing EES unit j in

operating condition o of scenario ω [MW]

FC
m,n,ω,o,t hour-t flow through candidate transmission line

connecting nodes m and n in operating condi-

tion o of scenario ω [MW]

Lshed,E
n,ω,o,t hour-t unserved electric load at node n in operat-

ing condition o of scenario ω [MW]

Lshed,G
p,ω,o,t hour-t unserved natural gas demand at node p in

operating condition o of scenario ω [MBTU]

P TC
c,ω,o,t hour-t production of candidate thermal unit c in

operating condition o of scenario ω [MW]

P TE
e,ω,o,t hour-t production of existing thermal unit e in

operating condition o of scenario ω [MW]

PGC
g,ω,o,t hour-t production of candidate natural gas-fired

unit g in operating condition o of scenario ω

[MW]

PGE
k,ω,o,t hour-t production of existing natural gas-fired

unit k in operating condition o of scenario ω

[MW]

QSC
i,ω,o,t hour-t charging of candidate EES unit i in oper-

ating condition o of scenario ω [MW]

QSE
j,ω,o,t hour-t charging of existing EES unit j in operat-

ing condition o of scenario ω [MW]

Rp,q,ω,o,t hour-t flow in existing pipeline connecting

nodes p and q in operating condition o of sce-

nario ω [MBTU/h]

R̂p,q,ω,o,t hour-t flow in candidate pipeline connecting

nodes p and q in operating condition o of sce-

nario ω [MBTU/h]

SSC
i,ω,o,t ending hour-t state of charge (SoC) of candidate

EES unit i in operating condition o of scenario ω

[MWh]

SSE
j,ω,o,t ending hour-t SoC of existing EES unit j in

operating condition o of scenario ω [MWh]

UGC
g,ω,o,t hour-t fuel use of candidate natural gas-fired

unit g in operating condition o of scenario ω

[MBTU]

UGE
k,ω,o,t hour-t fuel use of existing natural gas-fired unit k

in operating condition o of scenario ω [MBTU]

Xp,ω,o,t hour-t natural gas supplied at node p in operating

condition o of scenario ω [MBTU]

θn,ω,o,t hour-t phase angle at node n in operating condi-

tion o of scenario ω [rad]

B. Optimization Model

We propose a static two-stage stochastic model, in which

planning decisions are made in the first stage, followed by

operational decisions under different scenarios (ω) and op-

erating conditions (o). Our modeling framework is agnostic
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to the planning and operating horizon. Our example and case

study assume investment and operating decisions over a single

representative year. As such, investment costs are annualized

to make them comparable to the operating costs. Other opti-

mization horizons can be used, so long as the investment costs

are properly scaled. To capture the intertemporal dynamics

of EES, we use both representative days and representative

weeks in the operating conditions. This can be contrasted

with planning models that neglect EES [1], which can use

decoupled representative hours to capture operating costs. Our

model is formulated as a mixed-integer linear optimization

problem, which can be solved by standard commercial solvers

(e.g., CPLEX or Gurobi). The model formulation is:

min
∑

i∈ΦSC

CS,INV
i SSC,INV

i +
∑

g∈ΦGC

CG,INV
g PGC,INV

g (1)

+
∑

c∈ΦTC

CT,INV
c P TC,INV

c +
∑

n∈Λ,m∈Λ̂n

CE,INV
m,n xm,n

+
∑

q∈Ξ̂p

CG,INV
p,q R̂INV

p,q +
∑

ω∈Ω,o∈O,t∈T

πωwo·

[

∑

c∈ΦTC

KTC
c P TC

c,ω,o,t +
∑

e∈ΦTE

KTE
e P TE

e,ω,o,t

+
∑

g∈ΦGC

KGC
g PGC

g,ω,o,t +
∑

k∈ΦGE

KGE
k PGE

k,ω,o,t

+
∑

p

βp,ω,o ·





∑

g∈ΞGC
p

UGC
g,ω,o,t +

∑

k∈ΞGE
p

UGE
k,ω,o,t





+
∑

n

V ELshed,E
n,ω,o,t +

∑

p

V GLshed,G
p,ω,o,t





s.t. 0 ≤ PGC,INV
g ≤ PGC,I,max

g ; ∀g ∈ ΦGC (2)

0 ≤ P TC,INV
c ≤ P TC,I,max

c ; ∀c ∈ ΦTC (3)

0 ≤ SSC,INV
i ≤ S

SC,I,max

i ; ∀i ∈ ΦSC (4)

xm,n ∈ {0, 1}; ∀n ∈ Λ,m ∈ Λ̂n (5)

0 ≤ R̂INV
p,q ≤ RI,max

p,q ; ∀p ∈ Ξ, q ∈ Ξ̂p (6)
∑

g∈ΦGC
n

PGC
g,ω,o,t +

∑

k∈ΦGE
n

PGE
k,ω,o,t +

∑

c∈ΦTC
n

P TC
c,ω,o,t (7)

+
∑

e∈ΦTE
n

P TE
e,ω,o,t +

∑

j∈ΦSE
n

(

DSE
j,ω,o,t −QSE

j,ω,o,t

)

+
∑

i∈ΦSC
n

(

DSC
i,ω,o,t −QSC

i,ω,o,t

)

− fE
ω,o,tL

E
n + Lshed,E

n,ω,o,t

=
∑

m∈Λn

Bm,n · (θn,ω,o,t − θm,ω,o,t)

+
∑

m∈Λ̂n

FC
m,n,ω,o,t; ∀n ∈ Λ, ω ∈ Ω, o ∈ O, t ∈ T

− Fmax

m,n ≤ Bm,n · (θn,ω,o,t − θm,ω,o,t) ≤ Fmax

m,n ; (8)

∀n ∈ Λ,m ∈ Λn, ω ∈ Ω, o ∈ O, t ∈ T

− FC,max

m,n xm,n ≤ FC
m,n,ω,o,t ≤ FC,max

m,n xm,n; (9)

∀n ∈ Λ,m ∈ Λ̂n, ω ∈ Ω, o ∈ O, t ∈ T

−M · (1− xm,n) ≤ FC
m,n,ω,o,t (10)

− B̂m,n · (θn,ω,o,t − θm,ω,o,t) ≤ M · (1− xm,n);

∀n ∈ Λ,m ∈ Λ̂n, ω ∈ Ω, o ∈ O, t ∈ T

θN,ω,o,t = θref; ∀ω ∈ Ω, o ∈ O, t ∈ T (11)

− π ≤ θn,ω,o,t ≤ π; ∀n ∈ Λ, ω ∈ Ω, o ∈ O, t ∈ T (12)

0 ≤ Lshed,E
n,ω,o,t ≤ fE

ω,o,tL
E
n; (13)

∀n ∈ Λ, ω ∈ Ω, o ∈ O, t ∈ T

0 ≤ PGC
g,ω,o,t ≤ PGC,INV

g ; (14)

∀g ∈ ΦGC, ω ∈ Ω, o ∈ O, t ∈ T

0 ≤ PGE
k,ω,o,t ≤ P

GE,max

k ; (15)

∀k ∈ ΦGE, ω ∈ Ω, o ∈ O, t ∈ T

0 ≤ P TC
c,ω,o,t ≤ P TC,INV

c ; (16)

∀c ∈ ΦTC, ω ∈ Ω, o ∈ O, t ∈ T

0 ≤ P TE
e,ω,o,t ≤ P TE,max

e ; (17)

∀e ∈ ΦTE, ω ∈ Ω, o ∈ O, t ∈ T

− PGC,RD
g ≤ PGC

g,ω,o,t − PGC
g,ω,o,t−1 ≤ PGC,RU

g ; (18)

∀g ∈ ΦGC, ω ∈ Ω, o ∈ O, t ∈ T

− PGE,RD
k ≤ PGE

k,ω,o,t − PGE
k,ω,o,t−1 ≤ PGE,RU

k ; (19)

∀k ∈ ΦGE, ω ∈ Ω, o ∈ O, t ∈ T

− P TC,RD
c ≤ P TC

c,ω,o,t − P TC
c,ω,o,t−1 ≤ P TC,RU

c ; (20)

∀c ∈ ΦTC, ω ∈ Ω, o ∈ O, t ∈ T

− P TE,RD
e ≤ P TE

e,ω,o,t − P TE
e,ω,o,t−1 ≤ P TE,RU

e ; (21)

∀e ∈ ΦTE, ω ∈ Ω, o ∈ O, t ∈ T

0 ≤ SSC
i,ω,o,t ≤ SSC,INV

i ; (22)

∀i ∈ ΦSC, ω ∈ Ω, o ∈ O, t ∈ T

0 ≤ SSE
j,ω,o,t ≤ S

SE,max

j ; (23)

∀j ∈ ΦSE, ω ∈ Ω, o ∈ O, t ∈ T

0 ≤ QSC
i,ω,o,t ≤ Q

SC,max

i ; (24)

∀i ∈ ΦSC, ω ∈ Ω, o ∈ O, t ∈ T

0 ≤ QSE
j,ω,o,t ≤ Q

SE,max

j ; (25)

∀j ∈ ΦSE, ω ∈ Ω, o ∈ O, t ∈ T

0 ≤ DSC
i,ω,o,t ≤ D

SC,max

i ; (26)

∀i ∈ ΦSC, ω ∈ Ω, o ∈ O, t ∈ T

0 ≤ DSE
j,ω,o,t ≤ D

SE,max

j ; (27)

∀j ∈ ΦSE, ω ∈ Ω, o ∈ O, t ∈ T

SSC
i,ω,o,t = SSC

i,ω,o,t−1 + ηSC
i QSC

i,ω,o,t −DSC
i,ω,o,t; (28)

∀i ∈ ΦSC, ω ∈ Ω, o ∈ O, t ∈ T

SSE
j,ω,o,t = SSE

j,ω,o,t−1 + ηSE
j QSE

j,ω,o,t −DSE
j,ω,o,t; (29)

∀j ∈ ΦSE, ω ∈ Ω, o ∈ O, t ∈ T

SSC
i,ω,o,0 = 0; ∀i ∈ ΦSC, ω ∈ Ω, o ∈ O (30)

SSE
j,ω,o,0 = 0; ∀j ∈ ΦSE, ω ∈ Ω, o ∈ O (31)

Xp,ω,o,t −
∑

g∈ΞGC
p

UGC
g,ω,o,t −

∑

k∈ΞGE
p

UGE
k,ω,o,t (32)

− fG
ω,o,tL

G
p + Lshed,G

p,ω,o,t =
∑

q∈Ξp

Rp,q,ω,o,t
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+
∑

q∈Ξ̂p

R̂p,q,ω,o,t; ∀p ∈ Ξ, ω ∈ Ω, o ∈ O, t ∈ T

−Rmax

p,q ≤ Rp,q,ω,o,t ≤ Rmax

p,q ; (33)

∀p ∈ Ξ, q ∈ Ξp, ω ∈ Ω, o ∈ O, t ∈ T

− R̂INV
p,q ≤ R̂p,q,ω,o,t ≤ R̂INV

p,q ; (34)

∀p ∈ Ξ, q ∈ Ξ̂p, ω ∈ Ω, o ∈ O, t ∈ T

0 ≤ Xp,ω,o,t ≤ fGS
ω,o,tX

max

p ; (35)

∀p ∈ Ξ, ω ∈ Ω, o ∈ O, t ∈ T

0 ≤ Lshed,G
p,ω,o,t ≤ fG

ω,o,tL
G
p ; (36)

∀p ∈ Ξ, ω ∈ Ω, o ∈ O, t ∈ T

UGC
g,ω,o,t = bGC

g PGC
g,ω,o,t; (37)

∀g ∈ ΦGC, ω ∈ Ω, o ∈ O, t ∈ T

UGE
k,ω,o,t = bGE

k PGE
k,ω,o,t; (38)

∀k ∈ ΦGE, ω ∈ Ω, o ∈ O, t ∈ T.

Objective function (1) consists of the sum of the investment

and expected operation costs. The first five terms in (1)

represent costs of investing in the various technologies. These

technologies include EES, natural gas-fired power units, other

thermal power units, power transmission lines, and natural

gas pipelines. EES-sizing decisions can be made with respect

to both the energy and power capacities of a system [10],

[11]. Other works [12] only model energy-capacity decisions

endogenously. To simplify model notation, we take the latter

approach in which the power capacity of EES is fixed and

assume that the energy capacity is determined endogenously.

It is a straightforward extension of our proposed model to

endogenize the power capacity of EES.
The final term in (1) represents the probability-weighted

operation cost. This is computed by calculating the operating

cost (which consists of fuel and non-fuel operating costs of

candidate and existing generating units and the cost of any

unserved loads) under each scenario and operating condition.

The operating cost under scenario ω and operating condition o,

which is given by the terms in the square brackets in (1),

is multiplied by πω (the probability of scenario ω occurring)

and wo (the weight that is assigned to operating condition o).

Adding these terms over all scenarios and operating conditions

gives the probability-weighted operation cost.
The model has two sets of constraints. Constraints (2)–

(6) correspond to the first and constraints (7)–(38) to the

second stage. First-stage constraints (2)–(6) impose limits on

the amount of capacity that can be built. Constraints (5) impose

the binary nature of transmission-planning decisions.
The operating-stage constraints can be broken into three

sets. Constraints (7)–(29) pertain to power system operations.

Specifically, constraints (7) enforce nodal load balance. Con-

straints (8)–(10) enforce flow limits on existing and candidate

transmission lines, constraints (11) fix the phase angle of

reference node N , and constraints (12) impose limits on the

phase angles. Constraints (13) limit unserved nodal load to be

no greater than nodal demand. Constraints (14)–(17) impose

production limits on candidate and existing generating units.

Constraints (18)–(21) impose ramping limits on candidate

and existing generating units. Constraints (22) and (23) im-

pose SoC limits on candidate and existing EES units. Con-

straints (24)–(27) impose power limits on charging and dis-

charging of candidate and existing EES units. Constraints (28)

and (29) are energy-balance conditions which define the SoC

of each EES unit in each hour in terms of its previous SoC

and energy added or removed through charging or discharging

(net roundtrip efficiency losses). EES units have roundtrip

efficiency smaller than unity. Thus, binary variables are not

needed to avoid simultaneous charging and discharging of the

EES, as doing so would be suboptimal as a result of wasting

energy. Constraints (30) and (31) impose our assumption that

each EES unit begins each operating condition with an SoC of

zero. The types of constraints that we impose on the operation

of the EES are common in the EES-modeling literature [10]–

[12].

The second set of constraints, (32)–(36), pertain to the oper-

ation of the natural gas system. Constraints (32) impose nodal

load balance. Constraints (33) and (34) impose flow limits

on existing and candidate pipelines. Constraints (35) impose

nodal natural gas-supply limits. Constraints (36) limit unserved

natural gas load at each node to be no greater than the nodal

demand. Our natural gas model employs a transportation-

network representation, which is linear. We employ such a

simplification for purposes of computational tractability. A

nonlinear flow model would result in a mixed-integer nonlinear

stochastic optimization problem, which would raise tractability

issues.

The final set of constraints, (37) and (38), define natural

gas usage of candidate and existing natural gas-fired units.

These constraints provide the linkage between the electricity

and natural gas systems.

IV. EXAMPLE

This section illustrates our model using a four-node power

system that is coupled with a five-node natural gas system.

A. Data

The topology of the power and natural gas systems is shown

in Fig. 1. Natural gas-fired units 1–3 connect the two systems.

The operating and investment costs of the existing thermal

and natural gas-fired generating units, each of which has a

200-MW capacity, are provided in Table I. Up to 200 MW

of new candidate units of the same type can be built at each

node. A 600-MWh EES unit with a roundtrip efficiency of

0.8 and 500-MW charging and discharging capacities exists

at node 4. Up to 10000 MWh of new EES (with the same

technical characteristics) can be built at node 4.

TABLE I
GENERATOR CHARACTERISTICS OF THE EXAMPLE IN SECTION IV

Unit KTH
e KGE

k
bGE
k

CINV

e = 1 65 n/a n/a 105000

k = 1 n/a 1 9 95000

k = 2 n/a 2 10 85000

k = 3 n/a 2 10 95000
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k = 3
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n = 4

n = 1

n = 2

k = 1
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1

p = 2

p = 5

Fig. 1. System topology of the example in Section IV.

The existing transmission lines have capacities of Fmax
1,2 =

Fmax
1,3 = 700 and Fmax

2,4 = Fmax
3,4 = 220. Each of the existing

lines can be reinforced with an electrically identical parallel

transmission line at a cost of $11 million per line.

The solid lines in Fig. 1 connecting the natural gas nodes

represent existing pipelines, which are assumed to have suf-

ficient capacity to serve all existing natural gas loads ex-

cept those at node 5. The capacities of existing pipelines

can be doubled with expansion costs of CG,INV
1,2 = 750000,

CG,INV
2,3 = CG,INV

2,4 = 35000, and CG,INV
2,5 = 350000. The

dashed line connecting natural gas nodes 3 and 4 represents a

nonexistent pipeline that can be built with a maximum capacity

of 1500 MBTU/h at a cost of $35000/MBTU/h.

We model ten operating conditions, and consider cases

in which the operating conditions consist of either 24 or

168 hours. This is to determine the impact of the duration

of the operating conditions on EES investments. The refer-

ence electric and non-generation-related natural gas loads are

707 MW and 3000 MBTU/h, respectively, and the reference

natural gas supply is 300000 MBTU/h. Natural gas supply is

sufficient to meet non-generation-related demand, thus natural

gas curtailment can only occur due to insufficient pipeline

capacity. We model five equally likely scenarios in which

electric and non-generation-related natural gas demands are

scaled by factors 0.8, 0.9, 1.0, 1.1, and 1.2. Thus, there are

10× 5 = 50 operating condition/scenario pairs in total.

B. Results

We first present results for cases in which the model uses 24-

hour operating conditions. We then contrast these findings with

cases in which the model uses 168-hour (week-long) operating

conditions.

1) 24-Hour Operating Conditions: Power system node 4 is

a load pocket, which must be served using some combination

of transmission, (to import electricity from other nodes),

pipeline, (to deliver more fuel to natural gas-fired unit 3),

or EES investments. The amounts of pipeline and EES that

are built are sensitive to the starting hour of the operating

conditions that are modeled. Fig. 2 illustrates this by showing

the amounts of EES and pipeline capacities that are built to

serve node 4 if different starting hours are used. All other

investments remain the same regardless of the starting hour,

with 140 MW of capacity added to each of thermal unit 1 and

natural gas-fired unit 2, reinforcement transmission lines built

connecting node 4 to each of nodes 2 and 3, and 1400 MBTU/h

of capacity added to the pipeline connecting nodes 2 and 4.

0 3 4 6 8 10 13 15 16 19 21 22
0

500

1000

1500

Fig. 2. EES and natural gas-pipeline capacities built with different starting
hours for 24-hour operating conditions in the example in Section IV.

The sensitivity of building EES stems from how it allevi-

ates pipeline-capacity needs. This is done by storing excess

energy during low-load hours, which is then discharged when

loads are higher and the output of natural gas-fired unit 3
is constrained. If the operating conditions modeled begin

during high-load hours (i.e., between hours 3 and 19), the

load pattern does not appear as being conducive to this use

of EES. Conversely, if the operating conditions begin during

low-load hours (i.e., between hours 21 and 0), such a use

of EES is seen as a viable alternative to building pipeline

capacity. For this example, beginning the operating conditions

in hour 22 provides the greatest opportunity for using EES to

alleviate pipeline-capacity needs. Thus, beginning operating

conditions at midnight is not necessarily ‘ideal’ for capturing

these types of benefits of EES. These varying investments also

give different expected costs. Starting operating conditions in

hour 13 yields the highest costs, which are close to three times

the lowest costs that are achieved when starting in hour 22.

2) 168-Hour Operating Conditions: Fig. 3 summarizes

EES and pipeline capacities that are built using week-long

operating conditions that begin on different days of the week.

All of the operating conditions begin at midnight of the re-

spective starting day and all other investments remain the same

as in the case with 24-hour operating conditions. Fig. 3 shows

that if week-long operating conditions are modeled, there

is considerably greater potential for using EES to alleviate

pipeline-capacity needs. This is because there is opportunity

for inter-day energy shifting, especially between weekends,

when loads are relatively low, and weekdays, when loads are

relatively high. This inter-day energy shifting also explains the

sensitivity of the investment levels to the starting day of the

operating conditions. If the week-long operating conditions

begin on days with relatively low loads, the load patterns

appear more conducive to using EES as an alternative to

pipeline capacity. Week-long operating conditions that begin
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on Wednesday yield the highest expected costs, which are

about 35% greater than the lowest expected costs that are

achieved with Saturday as the starting day.

Sun Mon Tue Wed Thu Fri Sat
0

500

1000

1500

2000

2500

3000

3500

Fig. 3. EES and natural gas-pipeline capacities built with different starting
days for 168-hour operating conditions in the example in Section IV.

Combining the results in Figs. 2 and 3 shows that invest-

ments in EES are sensitive to all three of the duration, starting

hour, and starting day of the operating conditions that are

modeled.

C. Computational Details

This example is implemented using version 24.4.6 of

the GAMS modeling language and solved using the hybrid

branch-and-bound/cutting-plane algorithm with default set-

tings in the CPLEX mixed-integer linear program solver using

the NEOS server [31]. The computation times of all of the

cases using 24- and 168-hour-long operating conditions are

less than 30 minutes. Table II summarizes the sizes of the

example problems, in terms of the number of constraints and

continuous and binary variables.

TABLE II
SCALE OF OPTIMIZATION PROBLEMS IN THE EXAMPLE IN SECTION IV

Operating Number of Number of
Condition Continuous Binary Number of
Length Variables Variables Constraints

24 Hours 55215 4 116811
168 Hours 386415 4 822411

V. CALIFORNIA-BASED CASE STUDY

We now present a more detailed case study, which is based

on a representation of California and its surrounding region

that consists of ten power system and five natural gas nodes.

Given that the recent leak that has incapacitated the Aliso

Canyon natural gas storage facility is being addressed with

the deployment of EES, a California-based case study is of

particular real-world relevance.

A. Data

Fig. 4 shows the topology of the electric and natural gas

networks. The bars represent power system nodes, which are

connected by transmission lines (solid lines). The circles are

natural gas nodes, which are connected to one another by

pipelines (dashed lines). The dotted arrows pointing out of

and into natural gas nodes represent natural gas sinks (i.e.,

generation- and non-generation-related natural gas demands)

and sources, respectively.

n = 6

n = 8

p = 4

Xmax

4

p = 3

n = 9

n = 5

n = 7

Xmax

2

Xmax

5

p = 5p = 1

n = 3 n = 10

n = 4

n = 2

n = 1
p = 2

Fig. 4. System topology of the case study in Section V.

Power system nodes 1–4 represent balancing authorities in

southern California (SCE, Los Angeles Department of Water

and Power, San Diego Gas and Electric, and Imperial Irriga-

tion District, respectively), while nodes 5–7 represent Pacific

Gas and Electric’s service territory in northern California.

Nodes 8–10 represent balancing authorities that are outside of

California. Transmission and generator data are obtained from

the WECC 2026 Common Case,2 the California Independent

System Operator’s (CAISO’s) 2016–2017 Transmission Plan,

and the CPUC’s 2017 Integrated Resource Plan.

The natural gas system is modeled using data that are

obtained from the United States Energy Information Admin-

istration (EIA).3 The natural gas source at node 2 represents

natural gas-storage facilities other than Aliso Canyon that are

located in southern California while the source at node 4
represents natural gas-storage facilities in northern California

and supplies from regions that are north of California. The

natural gas source at node 5 represents supplies from Nevada,

Arizona, and Mexico.

Electric loads are modeled using historical data that are

obtained from the Federal Energy Regulatory Commission’s

(FERC’s) Form 714, which are scaled based on the CAISO’s

2016–2017 Transmission Plan. Non-generation-related natural

gas loads are modeled using historical data that are reported

by the EIA.4 The resulting hourly load data are processed

using k-means clustering to generate ten 168-hour operating

conditions. The operating condition that is used to represent

each resulting cluster is the actual point in the cluster that

2https://www.wecc.biz/SystemAdequacyPlanning/Pages/Datasets.aspx
3https://www.eia.gov/naturalgas/data.php
4https://www.eia.gov/dnav/ng/ng cons sum dcu nus a.htm

https://www.wecc.biz/SystemAdequacyPlanning/Pages/Datasets.aspx
https://www.eia.gov/naturalgas/data.php
https://www.eia.gov/dnav/ng/ng_cons_sum_dcu_nus_a.htm
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is closest to its centroid. We also examine the impact of the

duration of the operating conditions on investment decisions

by dividing each of the ten 168-hour operating conditions that

are obtained from the clustering into seven 24-hour operating

conditions (yielding 70 day-long operating conditions).

We consider five equally likely scenarios in which all of the

electricity and non-generation-related natural gas demands are

scaled relative to the reference levels that are obtained from

the FERC and EIA data. The scaling factors used are 0.98,

1.00, 1.02, 1.05, and 1.07.

The CAISO’s 2016–2017 Transmission Plan reports that the

Aliso Canyon leak directly affects 9800 MW of generation in

southern California. Thus, the pipeline capacities into natural

gas node 1 are set so that there is the equivalent of a 9800-MW

fuel shortage during hours with peak natural gas demands.

Based on data that are reported by the EIA,5 6 existing

generators at power system node 9 have higher operating costs

compared to existing units that are at other nodes. We allow

up to 2000 MW of new natural gas-fired and thermal units to

be built at each node. New natural gas-fired units in all nodes

have the same costs of KGC
g = 1 and bGC

g = 7.8, whereas

new thermal units in California have lower operating costs.

Specifically, KTC
c = 25 for new thermal units at nodes 1–7

and KTC
c = 36 for candidate units in nodes 8–10.

We examine six cases with different generation unit- and

pipeline-investment costs. Generation unit-investment costs are

summarized in Table III. We allow up to 100000 MBTU/h of

new capacity to be added to the existing pipelines serving the

Los Angeles basin (i.e., to the pipelines connecting natural

gas node 1 to nodes 2 and 5). Pipeline-investment costs

are $20000/MBTU/h in Cases 1 and 4, $50000/MBTU/h in

Cases 2 and 5, and $500000/MBTU/h in Cases 3 and 6.

A single parallel and electrically identical transmission line

can be built alongside any existing line. A new line between

northern (node 6) and southern (node 1) California or crossing

state lines (into nodes 8–10) cost $20 million each. Remaining

lines within the state of California cost $9.5 million.

TABLE III
INVESTMENT COSTS OF CANDIDATE GENERATING UNITS IN THE

EXAMPLE IN SECTION V

Cases 1–3 Cases 4–6

n CT,INV
c CG,INV

g CT,INV
c CG,INV

g

1–7 2921000 696000 2921000 1096000

8–10 796000 696000 1296000 1096000

There is an existing 50-MWh/65-MW EES unit with a

roundtrip efficiency of 0.8 at power system node 1. Up to

10000 MWh of new EES with a power capacity of 1500 MW

and a roundtrip efficiency of 0.9 can be built at node 1.

The EES-investment cost is $400000/MWh in Cases 1–3 and

$350000/MWh in Cases 4–6.

5https://www.eia.gov/naturalgas/data.php#prices
6https://www.eia.gov/electricity/annual/html/epa 08 04.html

B. Results

We first present results using 24-hour operating conditions

and then discuss the impact on investment decisions of using

168-hour operating conditions.

1) 24-hour Operating Conditions: Table IV summarizes the

investments that are made in the six cases using midnight as

the starting hour of the operating conditions. In addition to the

components listed in the table, transmission lines connecting

node 5 to nodes 6 and 9 and a third line connecting nodes 6
and 1 are built in all six cases. Contrasting pipeline investments

between the three pairs of Cases 1 and 4, 2 and 5, and 3 and 6
shows that increasing the pipeline-investment cost results in

progressively less pipeline capacity being built to alleviate the

fuel shortage at natural gas node 1.

TABLE IV
INVESTMENTS MADE WITH 24-HOUR OPERATING CONDITIONS

BEGINNING AT MIDNIGHT IN THE CASE STUDY IN SECTION V

Case

Component 1 2 3 4 5 6

Node-8 Natural 0 0 81 0 0 79

Gas-Fired Unit
Node-10 Natural 0 0 1998 0 0 1355

Gas-Fired Unit
Node-1 Energy 0 855 855 0 855 2252

Storage Unit
Nodes-1 ↔ 5 Pipeline 24060 17046 0 24060 17046 0

As the pipeline cost increases, the fuel shortage in southern

California is alleviated in varying ways in the different cases.

Generating unit-investment costs are higher in Cases 4–6 vis-

à-vis Cases 1–3, whereas the trend in EES-investment costs

is reversed amongst these cases. Thus, more EES and less

generating capacity are built in Case 6 vis-à-vis Case 3.

However, all investments in Cases 1 and 4 are identical, as

are those in Cases 2 and 5. Investments are the same in

Cases 1 and 4 because the relatively low pipeline-investment

cost results in the fuel shortage being mainly alleviated by new

pipelines. Cases 2 and 5 have moderate pipeline-investment

costs, and as such the fuel shortage is alleviated using a

combination of pipelines and EES.

The optimal set of investments in this case study are

insensitive to the starting hour of the day-long operating

conditions, unless the operating conditions begin between

hours 14 and 16. Table V summarizes the investments that

are made in Cases 2 and 3 with these hours as the starting

hour. There are also transmission lines connecting node 1 to 6
and 5 to 9 that are built in both cases with starting hours

between hours 14 and 16. The table shows that if hours 15
or 16 are used as the starting hour, no EES capacity is added.

This is because some of the operating conditions have severe

pipeline congestion into natural gas node 1 between hours 14
and 16. When hours 15 or 16 are used as the starting hour,

the load patterns require more generation capacity to be built

at power system nodes 5, 8, and 10 to serve electric loads

in southern California, making EES investment uneconomic

(because generation capacity must be built regardless of EES

investments).

https://www.eia.gov/naturalgas/data.php#prices
https://www.eia.gov/electricity/annual/html/epa_08_04.html
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TABLE V
INVESTMENTS MADE WITH 24-HOUR OPERATING CONDITIONS WITH

DIFFERENT STARTING HOURS IN THE CASE STUDY IN SECTION V

Case 2 Case 3

Hours Hours
Component Hour 14 15 or 16 Hour 14 15 or 16

Node-5 Natural 0 0 461 844

Gas-Fired Unit
Node-8 Natural 0 0 98 140

Gas-Fired Unit
Node-10 Natural 0 0 2000 2000

Gas-Fired Unit
Node-1 Energy 376 0 376 0

Storage Unit
Nodes-5 ↔ 6 Yes Yes Yes No

Transmission Line
Nodes-1 ↔ 5 Pipeline 20980 24470 0 0

A transmission line connecting nodes 5 and 6 is not built in

Case 3 if hours 15 or 16 are the starting hour. This is the result

of the natural gas-fired unit that is built at node 5. This unit

mitigates congestion on the existing line connecting nodes 5
and 6, alleviating the need for a reinforcement line. There is

also more capacity added to the pipeline connecting nodes 1
and 5 in Case 2 when the starting hour is 15:00 or 16:00
relative to Case 1 with midnight as the starting hour (which has

the lowest pipeline-investment cost). This is because in Case 1
with midnight as the starting hour, existing and new EES units

are discharged at 16:00 in some operating conditions. These

EES units cannot be discharged during the same hours if 15:00
or 16:00 is the starting hour, requiring more pipeline capacity

to accommodate electric loads.

There are 70 day-long operating conditions in each scenario

in all of the six cases that are examined. To verify that this

number of operating conditions gives a good representation

of the full year, we examine the optimal objective-function

value and investments that are made with different numbers of

operating conditions. Fig. 5 summarizes the optimal objective-

function value if between 68 and 80 days are used to represent

the operating conditions of the year (these days are obtained

using the same k-means clustering technique that is described

in Section V-A). The figure shows that the optimal objective-

function has very little variability as the number of operating

days is changed (the optimal objective-function values that

are obtained are within 0.3% of one another). The optimal

investments similarly show very little change with different

numbers of representative operating days. These results sug-

gest that 70 operating days provide a sufficiently rich mix

of load and supply conditions to accurately represent the full

year.

2) 168-Hour Operating Conditions: The results are iden-

tical if 168-hour operating conditions are used to those that

are obtained with 24-hour operating conditions. Indeed, the

investment are identical even if the starting day of the week-

long operating conditions are changed. This stems from the

load profile and generation mix of the system. Most hours

with low electric loads result in lower-cost generating units

being fully loaded. As such, EES has a limited role to play in

storing lower-cost energy to displace higher-cost units during
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Fig. 5. Optimal objective-function value with different numbers of day-long
operating conditions in the case study in Section V.

hours with high electric loads. Instead, EES is built solely to

mitigate the fuel shortage in southern California. Subject to

using the correct starting hour, day-long operating conditions

capture this use of EES. Thus, week-long operating conditions

provide no added planning benefit in this particular case study.

However, this result would not stand in a system or case study

with different generation-cost structures or load profiles.

C. Computational Details

This case study is implemented using version 24.4.6 of

the GAMS modeling language and solved using the hybrid

branch-and-bound/cutting-plane algorithm with default set-

tings in the CPLEX mixed-integer linear program solver on

the NEOS server [31]. The computation times of all cases

using day- and week-long operating conditions are less than

one hour. Table VI summarizes the scales of the optimization

problems in the case study that model 70 day-long and

10 week-long operation conditions, in terms of the number

of constraints and continuous and binary variables.

TABLE VI
SCALE OF OPTIMIZATION PROBLEMS IN THE CASE STUDY IN SECTION V

Operating Number of Number of
Condition Continuous Binary Number of
Length Variables Variables Constraints

24 Hours 1898439 13 4325326
168 Hours 1898439 13 4325326

VI. CONCLUSION

The recent failure of the Aliso Canyon natural gas-storage

facility raises the need to jointly plan natural gas and electric

power systems, with consideration of EES. This paper pro-

vides a model that allows co-ordinating such planning, under

uncertainties in electricity- and natural gas-demand growth

and natural gas supply. The case study results show that EES
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is a viable alternative to building natural gas or ‘traditional’

electrical units. The sensitivity of EES investment to the

modeling of operating conditions is studied. Using week-

as opposed to day-long operating conditions may result in

different investments, as can the choice of the starting hour of

day of operating conditions. These impacts depend, however,

on the specific load patterns and technology mix of the system.
Our work focuses on EES as a means of alleviating fuel-

supply and other issues in power system planning. In reality,

other technologies such as power-to-gas and natural gas stor-

age can also alleviate these types of issues. Moreover, natural

gas pipelines themselves provide a limited form of energy

storage, insomuch as line pack can increase fuel availability.

We do not consider such alternatives because our focus is

on the co-ordinated planning of EES with other traditional

electrical and natural gas resources. This focus is motivated

by recent real-world developments in the state of California,

which is grappling with limited natural gas storage and supply

in the Los Angeles basin through the deployment of EES.
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