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Abstract—Many wholesale electricity markets call on the inde-
pendent system operator (ISO) to determine day-ahead schabks
for generators based on a centralized unit commitment. Up
until recently, the Lagrangian relaxation (LR) algorithm w as the
only practical means of solving an 1SO-scale unit commitmen

problem, and was the solution technique used by most ISOs.

Johnson et al [1] demonstrate, however, that equity, incentive,
and efficiency issues will arise from use of LR solutions, betise

different commitments that are similar in terms of total system

costs can result in different surpluses to individual units Recent

advances in computing capabilities and optimization algathms

now make solution of the mixed-integer programming (MIP)

formulation by means of branch and bound (B&B) tractable,

often with optimality gaps smaller than those of LR algorithms,

which has led some ISOs to adopt B&B algorithms and others
proposing to do so.

With the move towards B&B, one obvious question is whether
the use of MIP will eliminate or reduce the issues with LR raigd
by Johnson et al. Using actual market data from an ISO we
demonstrate that both LR and MIP solutions will suffer the same
equity issues, unless the ISO unit commitment problems caneb
solved to complete optimality within the allotted timeframe—
which is beyond current computational capabilities. Our results
further demonstrate that the size of the payoff deviations e
not monotone in the size of the optimality gap, meaning smadr
optimality gaps from B&B will not necessarily mitigate the issues
Johnson et al raise. We show that the use of ‘make-whole’
payments, which ensure units recover any startup and no-lah
costs not recovered by inframarginal energy rents, can helgo
reduce surplus volatility and differences to some extent.

Index Terms—Power systems economics, electricity market
design, unit commitment

I. INTRODUCTION

on load forecasts and multipart offers including nonconvex
costs and unit operating constraints. Until recently, tree L
grangian relaxation (LR) algorithm was the practical meafns
solving a commercial-scale unit commitment. Johnataad [1]
demonstrate, however, that centralized scheduling oliress
owned by multiple parties by means of an LR algorithm
may face difficulties that do not arise when resources are
centrally owned. A case study based on load data and a stylize
generator set from Pacific Gas and Electric Company shows
that variations in near-optimal unit commitments that have
negligible effects on total system costs could yield sigatfitly
different payoffs to individual resources—meaning theadst
underlying the solution methodology could impact which
generators are ‘winners’ and ‘losers’ in dispatch deteatiam.
Johnsoret al [1] further raise an incentive issue: generators,
knowing the dispatches and payoffs resulting from LR solu-
tions are sensitive to the specific solution found, may pabft
misrepresent their cost and constraint parameters totaffec
outcome of the market. Indeed, Newbery [2] notes that one of
the criticisms of the original British Electricity Pool walsat
generators were able to manipulate their offers to maximize
their payoffs. The potential for misrepresented bids wpuld
of course, call into question the efficiency of the resulting
commitment, since it may potentially be based on incorrect
cost and constraint parameters. Another issue complgatin
a market with nonconvex costs is that linear price payments
that compensate generators only for energy produced may be
confiscatory, a prime example of which is a near-marginal
unit which does not receive sufficient inframarginal remesyf
linear prices to recover its offer-based fixed costs. Thesgeis

ITH many jurisdictions moving towards competitiveraise concerns regarding the feasibility of proper medasi
wholesale electricity markets, an important but corto oversee an equitable centrally committed market andrgene
tentious issue has been the proper role of the independent $yfors’ incentives to submit truthful offers in such a market
tem operator (ISO) in determining unit commitments. In margalling into question the efficiency of the underlying unit
restructured systems, an ISO operates central energy tsark@mmitment solution.
and has the authority to commit and schedule generatorslbaseOne of the issues that has traditionally plagued the use of
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mixed-integer programming (MIP) in solving unit commit-
ment problems has been the inability of branch and bound
(B&B) algorithms to provide a solution within a reasonable
amount of time. Because many markets frequently resolve
commitment and dispatch problems with limited solution
times, 1SOs rely on software to provide a feasible and near-
optimal commitment within a short time frame. Streiffettal

[3] demonstrate, however, that recent advances in congputin
capabilities and improvements in optimization algorithmasv
allow MIP to be a viable alternative to LR. Even if the



B&B algorithm times-out before finding an optimum, ondghe problem studied by Johnsehal [1], by comparing LR
is still left with a primal-feasible solution and a bound orsolutions to the actual MIP optimum. Our results are coesist
the optimality gag. These intermediate solutions are oftemwith those in Johnsomt al [1] showing that LR solutions
found within the same amount of time an LR-based algorithmith near-optimal system costs can result in vastly difiére
takes, and typically have optimality gaps of the same sipayoffs for the individual units, both when the LR solutiare
or smaller than LR commitments. Moreover, Streiffettal compared to one another and to the MIP optimum. We further
[3] and Li and Shahidehpour [4] note that B&B benefitshow these payoff differences are due not only to units being
more in comparison to LR from having additional solutiomommitted and dispatched suboptimally in the LR solutions,
time, as the B&B algorithm is able to find better solutionbut also because of different energy prices resulting froen t
or tighten the optimality gap with additional time. Streiff suboptimal LR dispatches.
et al [3] also note that a MIP-based algorithm can representWe show that these market design issues can be reduced
complex units such as combined-cycle combustion turbinestwo ways. First, the use of a B&B algorithm which can
(CCCTs), pumped storage, and cascaded watershed hysbitve a unit commitment to optimality will guarantee units
systems better than LR can. The units within a watersheeceive their optimal dispatches and payoffs. We dematestra
hydro system, for instance, violate the problem decomjowsit however, that this relies crucially on solving the problem t
assumptions underlying LR, meaning approximations such @amplete optimality. If the B&B algorithm times out or is
peak-shaving are typically employed to use an LR algorithm interrupted before reaching optimality and is just a mimlesc
systems with these types of units. CCCT units also violate tfraction of a percent away from optimal, the payoffs to
decoupling assumption and require special algorithmsh suadividual units and energy prices can vary significantlyewh
as that proposed by Lu and Shahidehpour [5]. A MIP-basedmpared to the MIP optimur.
implementation does not require such special algorithnis an Secondly, due to the possible confiscatory nature of lin-
can typically more fully represent complex units. Finaldy, ear energy-only price payments, most ISOs which operate a
MIP-based solution algorithm allows 1SOs to easily introelu central commitment market make supplemental ‘make-whole’
new types of unit-operating and system constraints to tpayments, which guarantee that units recover their offer-
formulation of the problem, whereas LR-based techniqubased costs over the course of the day. We argue that such
generally require extensive reprogramming of the fedsibil a make-whole provision has an added benefit of helping to
heuristics to ensure that the final commitment satisfieshall t'smooth out’ the payoffs of near-marginal units which may
necessary conditions. These overwhelming advantagesiandriot receive their MIP-optimal commitment in a suboptimal
tractability of MIP algorithms have led several ISOs, sush &R or intermediate MIP solution. Because such a unit would
PJM, to implement MIP-based solution methods as oppodee close to marginal it would likely require a make-whole
to LR. Moreover, the California 1ISO’s Market Redesign angayment, implying that the unit breaks even (in terms of
Technology Update and the new ERCOT nodal market wiliffer-based costs) regardless of whether it is dispatched i
feature centralized commitment solved using MIP, and I1SfBe final commitment or not. We show that while such make-
New England (ISONE) is similarly exploring the switch fromwhole provisions reduce payoff deviations between the MIP
LR to MIP. optimum and suboptimal commitments, such deviations will
Due to the computational complexity of unit commitmenmnot generally be completely eliminated.
problems and limited solution times, 1SOs which implement
B&B-based algorithms do not solve their unit commitment Il. PROPERTIES OFLR AND B&B SOLUTIONS

roblems to complete optimality or prove that the best smut . . . .
P P b yorp At its heart, the unit commitment problem finds the least-

found is optimal. PJM, for instance, allows its MIP optinrize ¢ " t and dispatch of t of i it
to run within a certain period of time or until the optimalityCOS commitment and dispaich of a set of generating units
meet expected load over a time horizon consisting of a

gap is below some maximal threshold, and uses whate\%grd ber of period hich take | tai
intermediate integer-feasible solution the solver hasibi\n Ixed number o periods, which we take in our computations

obvious issue raised in using MIP to solve the commitmetﬂ be twenty-four sn_wgle-hour periods. .The problem can b?
is whether its use of the B&B algorithm will mitigate or ormulated as a MIP in which the operating status of each unit

eliminate the issues raised by Johnsanal [1], especially (online or offline) in each planning period is characteribgd

in light of the fact that ISO commitments are not solved 1§ Set of binary variables, and a set of continuous variables
complete optimality using MIP indicate the generating output of each unit in each planning

We revisit these issues raised in the design of a cent quod. In addition to a load balance constraint, which egsu

. . : Rat expected demand is met in each period, unit commitment
unit commitment market by studying test problems from . : . ) . .
qrmula‘uons will typically also have ancillary servicegugre-

ISONE data set. We examine properties of a simple unj . - .
ents, upper- and lower-generating capacities for eact) uni

commitment problem, which is meant to be comparable fpents . L ) .
ramping constraints, minimum up and down times when units

i he BB alcorith _ before findi , are started and stopped, startup costs which are deperent o
n theory, the algorithm may time out before finding aneigér- - : : oo
feasible solution, in which case heuristics or an alteveasiolution method the Iength of time a unit has been offline, and transmission

would have to be employed. Nonetheless, PIM currentlysreiie B&B and  network constraints.

the California 1ISO and ERCOT are planning to use MIP in thearkat

redesigns, which are to be implemented in 2008, since thiseisloes not  2This can also be true for alternative optimal MIP solutichthe optimum
tend to arise in practice. is non-unique.



Historically, solving a commercial-scale problem with hunis not finely tuned, the results we report are for solutions
dreds of generating units was impractical using a B&B alvhich are all within 1.82% of the MIP optimum. The different
gorithm. As such, LR techniques were employed in whicéolutions are obtained by adjusting the rate of convergence
a Lagrangian dual is obtained by relaxing the load balana#, the step-size sequence used in the subgradient algorithm
reserve, and any other ‘coupling’ constraints and pemajizistep. Our calculations of unit payoffs assume the market
violations in the objective. When these constraints arexesd, settles with a uniform energy price in each hour based on
the problem decouples in the sense that there is no lon¢iee dual variable associated with the load-balance cdnstra
an interdependency between the generating units, makeg Bricing energy based on these dual variables captures the
dual problem relatively simple to solve. The LR algorithrerth correct marginal cost of serving the system’s loads, andheas
works iteratively to try and find a set of energy and resery@operty that it ‘smooths out’ prices between periods inchhi
capacity ‘prices’ (the objective function penalty coeficts), intertemporal constraints are binding. In practice, havev
which incent an optimal commitment and dispatch of themost ISOs settle based on prices resulting from the dayehhea
units. As Wolsey [6] notes, the LR algorithm finds a dualeptimal power flow (OPF) model, which generally do not
feasible/primal-infeasible solution which is a local (butt capture these intertemporal constraints and as such will no
necessarily global) optimum, with additional processifithe correctly account for binding ramp constraints in deteingn
LR solution and heuristics needed to restore primal-féiitgib prices® In the context of our simple unit commitment, these

Our results comparing LR and MIP solutions are based orOPF prices would be equivalent to setting the hourly energy
simplified model of the ISONE commitment problem, whiclprice based on the highest marginal cost unit which is rumnin
includes minimum up and down times, ramping constraintis, that hour but not held at minimum load. Unit payoffs are
hourly load balance constraints, and a single type of loadearly identical with both pricing schemes, and as such we
based ancillary service requirement. To simplify the mpdeinly report calculations with energy prices based on thé uni
marginal generating costs are assumed to be constantpstacommitment dual variables.
costs are not time dependent, and transmission consteamts Table | summarizes the eleven near-optimal LR solutions
ignored—making our model similar to that studied by Johnsarsed in our analysis, showing the size of the final optimality
et al [1]. The specific formulation studied is given in thegap (with primal-feasibility of the dual solution restojeahd
appendix. the number of units affected by not receiving their MIP-

Johnsoret al [1] further simplify their model by eliminating optimal offer-based surplus.
never-used resources and units which are not economically

dispatchable from the generator set and only considering 17 TABLE |
.p . . . 9 y g COMPARISON OFLR SOLUTIONS AND MIP OPTIMUM, WITH LINEAR
units in their commitment proble_m. Our model, b_y contrast, ENERGY PAYMENTS ONLY
includes the full ISONE generating set of 276 dispatchable o _
units. This both reflects our desire to study a commercial- _ Optimality  Units
| it itment problem and to highlight drastic im- Solution | Total Cost () _Gap (%) Affected
scale unit commi prob ghlight ar MIP 8,074,002.55
provements in the capabilities of MIP solvers, which could 1 8,181,665.93  1.33 125
not solve a unit commitment problem of this size a decade 2 8,212,269.01  1.71 128
3 The data used is based on actual cost and operatin 3 8,202,929.15 180 132
ago- It _ ) p 9 4 8,171,416.63 121 141
constraint offers, which are submitted by generators toNEO 5 8,125,904.86  0.64 109
on a daily basis. Because the cost parameters used in the unit 6 8,220,547.52  1.82 128
it t ists of offered costs, they may not reflect ! 8.211,208.66  L.70 182
commitment consIsts » they may not 8 8,124,84551  0.63 112
a unit's actual operating costs. As such our calculations of 9 8,180,528.20  1.32 129
a unit’s net payoffs will not necessarily reflect revenuessle 10 8,189,867.05  1.44 125
11 8,116,566.01  0.53 112

costs, but rather its ‘offer-based surplfis.’

. . 1) Unit Surplus Comparisons: Table Il provides summary
A. Comparisons of LR Solutions statistics of the offer-based surpluses of five select @uitess
The LR algorithm we employ is a ‘textbook’ subgradienthe eleven LR solutions, showing the extent to which the
algorithm which utilizes a geometric step-size sequense, surplus of individual units can vary between the different
described by Wolsey [6]. A myopic recommitment heuristisolutions and deviate from the MIP optimum. For computation
is then used to obtain a primal-feasible commitment frowf surplus per MWh generated, this value is set to zero for
the dual solution, and finally a linear program is used t@ unit which receives no dispatch. Furthermore, the columns
determine a least-cost dispatch based on the fixed primabeled ‘cv’ report the coefficient of variation, which iseth
feasible commitment of the units. Although our LR algorithmatio of the standard deviation and mean, and provides a unit
, _ . free metric of surplus variability. Units 1 and 5, for instan
Indeed, the 17-unit model studied by Johngbml could not be tractably gre not committed at all under the MIP optimum but are
solved by MIP solvers a decade ago. . . . .
4If a generator’s revenues resulting from its commitment disgatch is dlspatChed in a number of the LR solutions, always running at
given by R and its actual cost of meeting the schedule, ihen the generator’s
actual profits will be given byl = R—c. The generator, in making an offer to  SAlthough it is possible to include ramping constraints in altiperiod

generate to the ISO will state its costs are givercpwhich may be different OPF, most ISOs solve each period individually and do notuiel these
from c, thus its offer-based surplus will ¢ = R — ¢. constraints.



a net loss. Unit 1, when committed by the LR algorithm, ruris committed in an LR solution. As such, if the stated cost
at a substantial loss as it is given little dispatch with vahic  in the offers of these marginal units reflect their actualtgos
recover the large startup cost it incurs. Although somesunithen these marginal units which must be made whole will
are made worse off by the LR commitments, others such laeak even regardless of whether they're committed or not.
units 3 and 4 are generally run at a net gain under the Rble IV presents summary statistics comparing the absolut
solutions whereas they are run at a loss in the MIP optimunalue of differences in net offer-based surplus to indiaidu
Table 1l demonstrates a further complication in marketgenerators between each LR solution and the MIP optimum,
with nonconvex costs—that linear prices can be confiscatorywith and without make-whole payments. The results show that
indeed, all of our LR and the MIP-optimal commitmentvhen measured on a per MWh-generated basis, the make-
leave some generators with net losses. Absent a nonlinednole payments reduce the difference in and variability of
pricing scheme, the potential for confiscation could lead-gepayoffs, both by truncating the distribution and smoothing
erators to withhold themselves from the market or to distoout net payoffs to near-marginal units. When looking atltota
the cost or constraint parameters in their offers to enswarplus, the average in the deviations is reduced, however
themselves sufficiently high energy rents, with the pogntithe maxima are not affected since some units receive much
to lead to an inefficient commitment. Most 1SOs overcomigher payoffs under the LR commitment than under the
this confiscation problem by paying uniform hourly energiIP-optimum, which would not be affected by a make-
and ancillary service prices with supplemental make-wholghole provision. Importantly, comparing across the 11 LR
payments, which guarantee that a unit will recover any porti solutions, we see that with a make-whole provision the dayof
of its offer-based costs not covered by inframarginal epergifferences are on average the same (with the one exception
and ancillary service rents over the planning hori2o@ne of solution 4), despite non-trivial differences in the opality
shortcoming of this make-whole payment scheme is that tgap of the LR solutions, indicating that with regard to the
linear prices are not market-clearing, which is to say thatuity of generators’ offer-based surplus there are onlglesb
if price-taking generators could adjust their generatio a gains from closing the optimality gap of a near-optimal LR
reserved capacity to maximize profits there would generaltpmmitment.
be load imbalances. Recently, O'Neill al [7] propose a set  2) Energy Pricing: Because an LR solution generally yields
of nonlinear prices which yield a Walrasian equilibrium ana suboptimal commitment, it is possible that the energyegric
ensure nonconfiscation in a general competitive market wiitund in the least-cost dispatch will be ‘incorrect’ in the
indivisible units or other nonconvexities, overcoming dbe sense that they do not reflect the correct marginal cost of
issues. Despite the attractive properties of the pricepgeed dispatch from a least-cost commitment. Such commitment
by O'Neill et al, ISOs do not implement their pricing schemeand the resulting pricing errors have the potential to affec
Table 11l shows the total settlements paid to the five unigenerator incentives, send incorrect price signals to atark
in Table Il, assuming that the market makes energy paymepgticipants, and leave uncommitted generators who would
only (i.e. no payments for ancillary services) and includes lze ‘in the money’ out of profitable dispatch. Moreover, these
make-whole provision. Comparing the range of settlemerpsicing errors can further confound the deviations in gatuer
paid to individual units and the range of total settlementsyoffs.
for all the units between the different solutions, we sed tha Fig. 1 plots the load profile for our test problem, the
payments to individual units can vary between different LIRIIP-optimal energy prices, and energy prices from the LR
solutions even though total payments to all generators tendcommitments. In 22 of the hours the prices in the LR solutions
be relatively close. The high settlement cost of unit 1 in sonare identical to one another and the range of the prices
of the LR solutions, for example, reflects the fact that uriig 1 are plotted for the other 2, which show little variability.
started up in these solutions and must be given a supplemehtarthermore, the LR prices are the same as the MIP-optimal
make-whole payment but because it displaces another hait, prices in 10 of the hours, indicating that our LR algorithm
impact on total settlement costs is small. is capable of dispatching the ‘correct’ marginal unit in ®om
An added benefit of including a make-whole provisiohours. There is, however, a large deviation in hour 19 with
is that it can help to ‘smooth out’ the payoff differencethe LR commitments yielding energy prices which are more
between the LR solutions and MIP optimum and reduce tiigan $45 higher than the corresponding MIP-optimal price.
volatility of the LR payoffs by truncating the distributicmt Importantly, this mispricing appears in all our LR solutser
zero. Moreover, when compared to the MIP optimum, LRven the ones with smaller optimality gaps—reflecting thog fa
solutions generally commit the correct baseload and midtmethat such errors can occur in general regardless of the $ize o
units and differ mainly in the dispatch of marginal unitsthe duality gap. One of the issues of such mispricings isithat
Because a marginal unit often receives little inframarginfurther confounds the issue of payoff deviations resulfiogn
energy rents and requires make-whole payments, the net ofteR solutions. Unit 3 in Table I, for instance, receives it$fv
based surplus of such a unit is zero regardless of whethepjitimal commitment and dispatch in most of the LR solutions,
yet because much of its generation is dispatched in hour 19 it
8Using our notation from before, if a generator's revenuesilting fromits  runs at a net offer-based gain in the LR commitments whereas

commitment and dispatch is given and its offer-based costs of generatingit should run at a net loss in the MIP optimum from linear
according its commitment and dispatch is given dythen its make-whole

payment will bemax{0, é¢— R}, which ensures that the generator’s net offer—enerQY'Only pa_ym_ents.
based surplus i%S = R — ¢+ max{0,é— R} > 0. This result highlights the fact that an individual generato



TABLE Il
OFFER-BASED SURPLUS OFSELECTEDUNITS UNDER LR SOLUTIONS AND MIP OPTIMUM WITH LINEAR ENERGY PAYMENTS ONLY

MIP Offer-Based  MIP Offer-Based
Unit || Surplus ($/MWh)  Surplus ($) LR Offer-Based Surplus ($/MWh) LR Offer-Based Surplus ($)
Mean Max Min cv | Mean Max Min cv
1 0.00 0.00 -685.40 0.00 -952.56 -0.64 -7,458.07 0.00 -13,715.84 -0.73
2 -7.97 -6,886.92 -0.40 0.48 -0.69 -0.87] -348.94 414.92 -595.33 -0.83
3 -16.58 -2,387.39 3.44 4.68 3.98 0.73| 478.53 673.22 -764.94 0.83
4 -1.73 -18,498.82 0.02 0.47 -0.13 9.89| 152.48 4,186.96 -1,182.71 10.20
5 0.00 0.00 -42.43 -20.33  -50.03 -0.19 -12,564.29 -2,642.30 -19,510.97 -0.39
All 30.06 9,047,685.89 30.90 31.18 30.65 0.01] 9,298,276.20 9,385,277.46  9,224,431.24 0.01
TABLE Il
TOTAL SETTLEMENTS OFSELECTEDUNITS UNDER LR SOLUTIONS AND MIP OPTIMUM WITH LINEAR ENERGY AND MAKE-WHOLE PAYMENTS
Unit || MIP Settlements ($) LR Settlements ($)
Mean Max Min cv
1 0.00 7,967.03 14,485.50 0.00 0.80
2 59,887.67 60,006.78 60,380.20 59,965.29 0.00
3 11,800.00 12,259.62 15,400.00 11,832.53 0.09
4 638,994.42 552,554.96 559,340.71 535,352.53 0.01
5 0.00 36,270.18 51,557.40 17,585.80 0.27
All 17,283,791.33 17,643,817.52 17,719,380.91 17,567,988.90 0.00
TABLE IV
ABSOLUTEVALUE OF UNIT OFFER-BASED SURPLUSDEVIATIONS BETWEENLR SOLUTIONS AND MIP OPTIMUM
($/MWh) ($)
Without Make-Whole Payments ~ With Make-Whole Payments  WithMake-Whole Payments ~ With Make-Whole Payments
Solution || Mean  Max cv Mean Max cv Mean Max cv Mean Max cv
1 61.19 94224 3.66 0.33 468 1.76 1,605.50 26,950.13 2.54 | 972.35 26,950.13 3.59
2 7192 94592 3.38 0.33 4.80 1.79 1,716.95 26,950.13 2.42 | 972.63 26,950.13 3.59
3 73.66 939.30 3.31 0.33 480 1.79 1,686.54 26,950.13 2.43 | 972.63 26,950.13 3.59
4 57.46 943,55 3.33 0.39 4.80 1.61 1,806.36 33,641.06 2.63 | 1,225.27 33,641.06 3.56
5 7.28 952.56 8.20 0.33 4.80 1.79 1,404.04 26,950.13 2.82 | 972.63 26,950.13 3.59
6 7190 94592 3.38 0.29 454 1.80 1,604.52 23,556.04 2.41 | 845.49 23,556.04 3.60
7 73.64 939.30 3.31 0.29 454 1.80 1,574.11 23,556.04 2.42 | 845.49 23,556.04 3.60
8 5.57 353.56 5.00 0.29 454 1.80 1,261.20 23,556.04 2.87 | 845.49 23,556.04 3.60
9 62.95 931.94 3.56 0.29 454 1.80 1,462.95 23,556.04 2.49 | 845.49 23,556.04 3.60
10 61.22 942.24 3.66 0.29 454 1.80 1,493.36 23,556.04 2.48 | 845.49 23,556.04 3.60
11 5.60 353.56 4.97 0.33 480 1.79 1,373.63 26,950.13 2.87 | 972.63 26,950.13 3.59
15000 1120

Load
““““ MIP Price

feasibility heuristic, meaning the final set of energy psice
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B. MIP Implementation

Although recent computational and algorithmic advances
Ly make direct solution of the unit commitment by B&B tractgble
12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 . .

Hour ISOs cannot currently solve their commitment problems to
complete optimality within the allotted timeframe. MosQS,
upon receiving generation offers and other market data day-
ahead, must return commitments and an schedule to gergerator
within a few hours. The formation of these schedules often-

payoff is dependent not only on it receiving its correct catam times requires solving multiple unit commitment, OPF, and
ment, but also on the commitments of other units. Moreover,, _ _

b the LR dual uti . I . l-inf . Although the payments are wealth transfers which do notriconsumer
ecause. e ) .ua soluuon Is generally p”m?‘ -in eZﬂ?s'b\k/elfare losses, the suboptimal commitment and dispatchhef gystem

the marginal unit in some hours may be determined by thBviously results in productive efficiency losses.

9000

Fig. 1. LR and MIP Prices.



other optimization problems. As such, ISOs which have implenergy price in hour 11 which is nearly twice the MIP-optimal
mented or are proposing to use MIP in their unit commitmeptice.
set limits on the solution time and rely on the best integer-

feasible solution found at the end of that time. Although $SO TABLE VI
. . . . . . . ENERGY PRICES OFINTERMEDIATE SOLUTIONS FOUND IN BRANCH AND
boast their ability to find feasible solutions with minuseul BOUND TREE

optimality gaps, if an ISO is left to rely on an intermediate
integer-feasible but suboptimal solution, the same issafes ‘ Energy Price of Solution ($/MWh)
.. . . . Hour | 1 2 3 4 5 Optimum
generator payoffs, energy pricing, and inequity of the ltesy 5 584 4430 4430 4430 4430 4430
dispatch arise as with suboptimal LR commitments. 11 114.95 6449 59.72 59.72 59.72 59.72
Table V summarizes the progression of the MIP optimizerin 23 | 48.96  50.24  48.96  50.24  50.24  50.24
CPLEX 9.120 solving our simple unit commitment with the
default settings. The problem was formulated using AMPL Although our results show that when the market includes
10.100 using default presolver settings. We note that anlinake-whole payments the intermediate solutions to our unit
commercial MIP-based unit commitment software package®mmitment problem have virtually eliminated the genarato
we did not fine-tune the formulation of the problem, th@ayoff issues prevalent with LR commitment, the formulatio
settings in CPLEX, or introduce problem-specific cuttingr@  used is a simplification of any actual unit commitment solved
algorithms to improve the solutions or solution times of they an I1SO and excludes many important system details.
problem® CPLEX finds 5 intermediate suboptimal integerTable VIII summarizes the progression of integer-feasible
feasible solutions, all of which have smaller optimalitypga solutions found by CPLEX in solving ISONE’s complete unit
than our LR commitments. Moreover, should the ISO ug®mmitment problem, which includes virtual, transactianc
one of the intermediate solutions but include a make-whol@mand bids, time-dependent startup costs, stepped genera
provision, the net offer-based surplus to each unit is idaht Costs, multiple types of ancillary service requirements] a
to that under the MIP optimum in all but the first solution, lwit DC-load flow model. Due to the inclusion of the demand bids,
the largest deviation being $0.02/MWh in the first solution. the problem is formulated to maximize total social surplus
Table VI shows that should the ISO not include a makéom energy traded. The problem is once again formulated
whole provision, then the surplus of individual units cabsing AMPL 10.100 and solved by CPLEX 9.120 using default
differ between the suboptimal solutions and the MIP optimurfiettings except that the integrality and optimality totexes in
indicating intermediate solutions from a B&B algorithm Wil CPLEX were set to zero to ensure the final solution given
suffer the same issues as LR commitments, regardless of ithéhe MIP-optimum. CPLEX iterates through 38 suboptimal
size of the optimality gap. Units 7 and 8, for instance, aigteger-feasible solutions before finding the MIP optimum.
identical in terms of the stated cost and operating comstrai As the table clearly highlights, complex unit commitment
parameters in their offers, and receive the exact same cd@fmulations, which are more reminiscent of the actual prob
mitment and dispatch in the MIP optimum, but are givelgms which must be solved by ISOs, still present market desig
different commitments and dispatches in every intermedidgsues even when solved using a B&B algorithm. Solutions
MIP solution. which are a minuscule fraction of a percent away from optimal
nonetheless result in different payoffs to individual geters.
TABLE VI Moreover, the progression of solutions shows that the sarpl
PROFITABILITY OF SELECTUNITS UNDER OPTIMAL AND INTERMEDIATE L. . . .
B&B SOLUTIONS OF SIMPLE UNIT COMMITMENT WiTH LINEAR Exercy  d€Viations are not a decreasing function of the size of the

PAYMENTS ONLY optimality gap. Solution 17, for instance, gives generator
. . _ surpluses which are on average within $0.04/MWh of the MIP
Unit || MIP Offer-Based Suboptimal MIP Solution . h i uti Il of which h I
Surplus ($/MWh) Offer-Based Surplus ($/MWh) opt!mur_n yet the next our so utions, all of whic 1ave snalle
Mean Max Min cv optimality gaps, result in larger average and maximum swsrpl
6 0.00 -10261 -100.70 -10549 -0.03  deviations.
7 -90.70 7256 0.00 -90.70  -0.56 . . : . .
8 -90.70 1814 000 90.70 -2.24 Ju_st as with the suboptlm_al LR commitments, |nter_meQ|ate
Al 30.06 30.06 30.08 30.06 0.00 solutions found by CPLEX in solving the MIP to optimality

can lead to energy pricing errors, with some extreme cases

Table VII shows that as with suboptimal LR commitment®f the intermediate prices being more than 10% from the
the intermediate MIP solutions can also yield incorrectrgpe MIP-optimal prices. Although our unit commitment model

prices due to an incorrect dispatch. With our simple problefcluded network flow constraints, none were binding in the

there are only differences in three of the hours and onfjPimum or in any of the intermediate solutions, and as

in the first three solutions—energy prices in all other houdch the locational marginal prices were identical acrbss t
equal the MIP-optimal prices in all the intermediate saing, "€Work. Table IX summarizes the range of energy price
and the last two intermediate solutions had the same enep@ylatlons between the 38 intermediate solutions and the M
prices as the MIP optimum. Nonetheless, the first solutiom, tOPimum, showing again that solutions which are a millicoth
optimality gap of which is a fraction of a percent, yields af Percent away from optimal can nonetheless have substantiv
price differences. Moreover, the size of the deviationsds n

8We did set the integrality and optimality gap tolerances @cozn order monOtO_ne in th? size of the optimality .gap, as _Shown by
to ensure the final solution given by CPLEX is indeed the Mffroum. comparing solution 31 to all the intermediate solutionsnidu



TABLE V
PROGRESSION OHNTEGER-FEASIBLE SOLUTIONS FOUND IN B&B T REE OFSIMPLE UNIT COMMITMENT PROBLEM WITH MAKE-WHOLE PAYMENTS

Total Cost ($) MIP Gap (%) Absolute Value of Unit Offer-
Based Surplus Deviations ($/MWh)
Solution Mean Max cv
1 8,074,400.39 0.0049275 0.00 0.02 1.56
2 8,074,045.70 0.0005345 0.00 0.00 n/a
3 8,074,020.25 0.0002192 0.00 0.00 n/a
4 8,074,014.91 0.0001531 0.00 0.00 n/a
5 8,074,003.06 0.0000063 0.00 0.00 n/a
TABLE VIl
PROGRESSION OHNTEGER-FEASIBLE SOLUTIONS FOUND IN B&B T REE OFCOMPLETEUNIT COMMITMENT PROBLEM WITH MAKE-WHOLE
PAYMENTS
Optimality Absolute Value of Unit Offer-
Total Surplus Gap (%) Based Surplus Deviations ($/MWh)
Solution Mean Max cv
Optimum || 10,873,267.23
1 10,743,126.26  0.011968893 0.44 3.07 139
2 10,780,344.54  0.00854597[7 0.49 297 1.38
3 10,791,726.53  0.00749919| 0.71 3.64 137
4 10,836,621.47 0.00337026R 0.62 254 137
5 10,837,058.63  0.00333005f7 0.59 243 137
6 10,837,740.91  0.00326730p 0.76 3.01 137
7 10,837,952.97 0.003247806 0.76 3.01 137
8 10,839,184.76  0.00313452| 0.73 291 137
9 10,839,379.80 0.00311658p 0.66 3.04 137
10 10,839,458.47 0.00310934f 0.71 3.04 137
11 10,839,613.51  0.00309508B 0.69 294 137
12 10,839,764.98 0.003081158 0.67 288 1.37
13 10,842,307.12 0.00284736| 0.25 1.04 1.38
14 10,859,035.14  0.00130890p 0.19 0.82 138
15 10,859,165.69 0.0012969 | 0.20 085 1.38
16 10,859,165.78  0.00129689p 0.19 0.82 138
17 10,859,280.44  0.00128634(r 0.04 0.32 146
18 10,863,244.27  0.000921798 0.19 0.84 138
19 10,866,290.84  0.00064160p 0.17 413 190
20 10,866,499.64 0.000622406 0.20 561 2.06
21 10,866,761.13  0.00059835 0.19 430 181
22 10,870,211.13  0.00028106p 0.04 441 6.90
23 10,871,577.89  0.000155366 0.23 1.67 141
24 10,871,675.08  0.000146428 0.23 1.81 141
25 10,871,987.07 0.00011773p 0.25 137 1.39
26 10,872,163.04 0.00010155 0.27 1.44 1.39
27 10,872,312.67 0.00008779| 0.22 435 171
28 10,872,789.77  0.00004391[L 0.24 392 160
29 10,872,868.80 0.000036643 0.23 201 142
30 10,872,961.30  0.00002813p 0.01 0.79 434
31 10,872,961.38  0.00002812p 0.01 0.73 7.45
32 10,872,995.32  0.00002500f 0.03 0.20 1.39
33 10,872,995.41  0.00002499p 0.02 0.14 141
34 10,873,156.39  0.000010194 0.26 1.08 1.38
35 10,873,156.48 0.00001018p 0.25 1.03 1.38
36 10,873,193.80  0.00000675(B 0.24 099 138
37 10,873,256.39  0.00000099f 0.02 0.11 1.40
38 10,873,267.14  0.000000008 0.01 0.07 141
after it. market with price-responsive demand. With an LR algorithm,
these mispricings can be further seen as nontransparent or
I1l. CONCLUSIONS ‘black-box’ pricing insomuch as these energy prices will be

determined by the marginal unit in each hour which is often
found by the feasibility heuristic, which may be viewed as
bapaque, arbitrary, or convoluted.

We have revisited some of the issues raised by Johetsain
[1] surrounding the design and implementation of a cerzealli
unit commitment. We demonstrated that different near-,
sub-optimal commitments from an LR or B&B algorithm can We showed that make-whole payments can reduce the prob-
result in different payoffs to individual generators, galinto lem of generator surplus differences. Make-whole payments
guestion the incentive properties of a market with certeali help to smooth out the net offer-based surplus earned by near
unit commitment. We further showed that the suboptimaharginal units, and if the stated costs of these units reflect
commitments will generally yield incorrect energy pricesactual costs these units would be indifferent between veagi
which will present additional efficiency implications in atheir optimal commitments with make-whole payments or not



TABLE IX
PERCENTDIFFERENCES INENERGY PRICE DEVIATIONS BETWEENINTERMEDIATE INTEGER-FEASIBLE SOLUTIONS AND MIP OPTIMUM

Solution | Mean Max Min Solution| Mean Max Min

1 2.27% 7.13% -2.36% 20 0.89% 5.03% -2.08%
2 2.51% 9.87% -4.40% 21 0.89% 5.03% -2.08%
3 3.65% 10.22% -2.08% 22 0.14% 5.03% -3.03%
4 3.17% 10.22% -3.44% 23 1.18% 5.03% -1.83%
5 3.05% 10.22%  -3.44% 24 1.21% 5.03% -1.06%
6 3.90% 10.40% -5.08% 25 1.33% 5.03% -1.83%
7 3.90% 10.40%  -5.08% 26 1.41% 5.03% -0.47%
8 3.81% 10.22% -2.08% 27 1.10% 4.60% -1.83%
9 3.31% 10.22% -5.08% 28 1.20%  4.60% -0.47%
10 3.60% 10.22%  -5.08% 29 1.20% 4.60% -0.47%
11 3.48% 10.22% -5.08% 30 0.04% 1.43% -0.47%
12 3.38% 10.22% -5.08% 31 -0.02% 0.00% -0.47%
13 1.29% 4.60% -4.40% 32 0.17% 3.13% -0.47%
14 1.00%  4.60% -4.40% 33 0.11% 3.13% -0.47%
15 1.05%  4.60% -4.40% 34 1.35% 4.60% 0.00%
16 1.00% 4.60% -4.40% 35 1.29% 4.60% 0.00%
17 -0.19% 5.03% -7.19% 36 1.23%  4.60% -1.06%
18 1.03% 5.03% -7.19% 37 -0.13% 0.00% -3.03%
19 0.77% 5.03% -4.40% 38 0.06% 1.43% 0.00%

being committed. While the use of a B&B algorithm which « T number of planning periods
could solve the problem to complete optimality can, in tigeor « SU;: startup cost of unii’s offer
overcome these issues entirely, this is as of yet intragfabl « N;: no-load cost of unit’s offer
If the ISO must, instead, rely on an intermediate near-agitim « M C;: marginal generating cost of units offer
solution, we demonstrated the same issues of surplus at&l pri « K : minimum generating capacity of unit offer
differences will arise, even with solutions which are a fiat « K;7: maximum generating capacity of unig offer
of a percent away from optimal. o R;: maximum ramp rate of units offer
As such, one should expect the issues raised by Johnsom SP;: maximum spinning capacity of units offer
et al [1] to remain in centrally committed markets, regardless « n;: minimum up-time of unit’s offer
of the solution technique used. Moreover, our results skhowe « f;: minimum down-time of unit’s offer
that payoff and price deviations are not monotone in thee D;: load forecast in period
size of the optimality gap—which is contrary to common e p: percentage of load which must be available in addi-
belief. Guaret al [8] state, for example, that the 1-2% duality  tional spinning reserves
gaps achieved with LR were sufficient for monopoly utilities
but that the development of competitive markets in whicRecision Variables
generators compete to provide their products has increased ¢, ,: generation provided by unitin period¢
the need for more accurate unit commitment solutions. Oure r;,: spinning reserve provided by unitin period¢
results show, however, that this market design issue wolilo  « wu, ;: binary variable indicating if unit is up in periodt
regardless of how accurate the unit commitment solution is,« s, ;: binary variable indicating if unit is started in period
unless an optimum can be found. As such, even though the ¢
B&B algorithm can typically achieve smaller optimality gap « h;,: binary variable indicating if unit is stopped in
than LR, this does not guarantee that the equity issues willb  periodt¢
‘smaller’ under MIP than LR. Overall, our results demontgra
that centralized markets in which the ISO makes bindinghe problem is formulated as minimizing total commitment
commitment decisions will suffer from the issues raised 3osts:

Johnsoret al [1], which cannot be fully addressed with current .
min Z(MCiQi,t + Niui ¢ + SU;sit);

computational limits. Girsih S
2
APPENDIX subject to load-balance:
PROBLEM FORMULATION
. . . . _ Z%‘,t =1, YV
The simple unit commitment formulation used in our com- P

parison of MIP and LR solutions is presented. We first define . . . .
the following notation: spinning-reserve requirement:

Problem Parameters Z(q%f +rig) 2 (L+p)le, VE;
« I: generator index set ’
unit minimum-load requirement:

9Similarly, if an LR algorithm could yield a MIP-optimal conitment, then
these issues would be resolved. K uis < g, Vi, b



unit maximum-load requirement:

Qi +1ig < K uiyg, Vi, t;

unit spinning capacity:

0<ri: <SPu;:, Vit

unit ramping limit:

—Ri < @it — i1 < Ry, Vit

unit minimum up-time:

t

E Sir < Ui, Vit

T=t—m;+1

unit minimum down-time:

t
> hir <1—uiy, Vit
T=t—fi+1

startup definition:

Sit > Uit — Wit—1, V4,1

shutdown definition:

Pit > Uip—1 — Uiz, V1,85

and variable integrality:

Uity Sits hi,t € {07 1}7 v Zat7

constraints.
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