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Abstract—Many wholesale electricity markets call on the inde-
pendent system operator (ISO) to determine day-ahead schedules
for generators based on a centralized unit commitment. Up
until recently, the Lagrangian relaxation (LR) algorithm w as the
only practical means of solving an ISO-scale unit commitment
problem, and was the solution technique used by most ISOs.
Johnson et al [1] demonstrate, however, that equity, incentive,
and efficiency issues will arise from use of LR solutions, because
different commitments that are similar in terms of total system
costs can result in different surpluses to individual units. Recent
advances in computing capabilities and optimization algorithms
now make solution of the mixed-integer programming (MIP)
formulation by means of branch and bound (B&B) tractable,
often with optimality gaps smaller than those of LR algorithms,
which has led some ISOs to adopt B&B algorithms and others
proposing to do so.

With the move towards B&B, one obvious question is whether
the use of MIP will eliminate or reduce the issues with LR raised
by Johnson et al. Using actual market data from an ISO we
demonstrate that both LR and MIP solutions will suffer the same
equity issues, unless the ISO unit commitment problems can be
solved to complete optimality within the allotted timeframe—
which is beyond current computational capabilities. Our results
further demonstrate that the size of the payoff deviations are
not monotone in the size of the optimality gap, meaning smaller
optimality gaps from B&B will not necessarily mitigate the issues
Johnson et al raise. We show that the use of ‘make-whole’
payments, which ensure units recover any startup and no-load
costs not recovered by inframarginal energy rents, can helpto
reduce surplus volatility and differences to some extent.

Index Terms—Power systems economics, electricity market
design, unit commitment

I. I NTRODUCTION

W ITH many jurisdictions moving towards competitive
wholesale electricity markets, an important but con-

tentious issue has been the proper role of the independent sys-
tem operator (ISO) in determining unit commitments. In many
restructured systems, an ISO operates central energy markets
and has the authority to commit and schedule generators based
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on load forecasts and multipart offers including nonconvex
costs and unit operating constraints. Until recently, the La-
grangian relaxation (LR) algorithm was the practical meansof
solving a commercial-scale unit commitment. Johnsonet al [1]
demonstrate, however, that centralized scheduling of resources
owned by multiple parties by means of an LR algorithm
may face difficulties that do not arise when resources are
centrally owned. A case study based on load data and a stylized
generator set from Pacific Gas and Electric Company shows
that variations in near-optimal unit commitments that have
negligible effects on total system costs could yield significantly
different payoffs to individual resources—meaning the details
underlying the solution methodology could impact which
generators are ‘winners’ and ‘losers’ in dispatch determination.
Johnsonet al [1] further raise an incentive issue: generators,
knowing the dispatches and payoffs resulting from LR solu-
tions are sensitive to the specific solution found, may profitably
misrepresent their cost and constraint parameters to affect the
outcome of the market. Indeed, Newbery [2] notes that one of
the criticisms of the original British Electricity Pool wasthat
generators were able to manipulate their offers to maximize
their payoffs. The potential for misrepresented bids would,
of course, call into question the efficiency of the resulting
commitment, since it may potentially be based on incorrect
cost and constraint parameters. Another issue complicating
a market with nonconvex costs is that linear price payments
that compensate generators only for energy produced may be
confiscatory, a prime example of which is a near-marginal
unit which does not receive sufficient inframarginal rents from
linear prices to recover its offer-based fixed costs. These issues
raise concerns regarding the feasibility of proper mechanisms
to oversee an equitable centrally committed market and gener-
ators’ incentives to submit truthful offers in such a market—
calling into question the efficiency of the underlying unit
commitment solution.

One of the issues that has traditionally plagued the use of
mixed-integer programming (MIP) in solving unit commit-
ment problems has been the inability of branch and bound
(B&B) algorithms to provide a solution within a reasonable
amount of time. Because many markets frequently resolve
commitment and dispatch problems with limited solution
times, ISOs rely on software to provide a feasible and near-
optimal commitment within a short time frame. Streiffertet al
[3] demonstrate, however, that recent advances in computing
capabilities and improvements in optimization algorithmsnow
allow MIP to be a viable alternative to LR. Even if the
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B&B algorithm times-out before finding an optimum, one
is still left with a primal-feasible solution and a bound on
the optimality gap.1 These intermediate solutions are often
found within the same amount of time an LR-based algorithm
takes, and typically have optimality gaps of the same size
or smaller than LR commitments. Moreover, Streiffertet al
[3] and Li and Shahidehpour [4] note that B&B benefits
more in comparison to LR from having additional solution
time, as the B&B algorithm is able to find better solutions
or tighten the optimality gap with additional time. Streiffert
et al [3] also note that a MIP-based algorithm can represent
complex units such as combined-cycle combustion turbines
(CCCTs), pumped storage, and cascaded watershed hydro
systems better than LR can. The units within a watershed
hydro system, for instance, violate the problem decomposition
assumptions underlying LR, meaning approximations such as
peak-shaving are typically employed to use an LR algorithm in
systems with these types of units. CCCT units also violate the
decoupling assumption and require special algorithms, such
as that proposed by Lu and Shahidehpour [5]. A MIP-based
implementation does not require such special algorithms and
can typically more fully represent complex units. Finally,a
MIP-based solution algorithm allows ISOs to easily introduce
new types of unit-operating and system constraints to the
formulation of the problem, whereas LR-based techniques
generally require extensive reprogramming of the feasibility
heuristics to ensure that the final commitment satisfies all the
necessary conditions. These overwhelming advantages and the
tractability of MIP algorithms have led several ISOs, such as
PJM, to implement MIP-based solution methods as opposed
to LR. Moreover, the California ISO’s Market Redesign and
Technology Update and the new ERCOT nodal market will
feature centralized commitment solved using MIP, and ISO
New England (ISONE) is similarly exploring the switch from
LR to MIP.

Due to the computational complexity of unit commitment
problems and limited solution times, ISOs which implement
B&B-based algorithms do not solve their unit commitment
problems to complete optimality or prove that the best solution
found is optimal. PJM, for instance, allows its MIP optimizer
to run within a certain period of time or until the optimality
gap is below some maximal threshold, and uses whatever
intermediate integer-feasible solution the solver has found. An
obvious issue raised in using MIP to solve the commitment
is whether its use of the B&B algorithm will mitigate or
eliminate the issues raised by Johnsonet al [1], especially
in light of the fact that ISO commitments are not solved to
complete optimality using MIP.

We revisit these issues raised in the design of a central
unit commitment market by studying test problems from an
ISONE data set. We examine properties of a simple unit
commitment problem, which is meant to be comparable to

1In theory, the B&B algorithm may time out before finding an integer-
feasible solution, in which case heuristics or an alternative solution method
would have to be employed. Nonetheless, PJM currently relies on B&B and
the California ISO and ERCOT are planning to use MIP in their market
redesigns, which are to be implemented in 2008, since this issue does not
tend to arise in practice.

the problem studied by Johnsonet al [1], by comparing LR
solutions to the actual MIP optimum. Our results are consistent
with those in Johnsonet al [1] showing that LR solutions
with near-optimal system costs can result in vastly different
payoffs for the individual units, both when the LR solutionsare
compared to one another and to the MIP optimum. We further
show these payoff differences are due not only to units being
committed and dispatched suboptimally in the LR solutions,
but also because of different energy prices resulting from the
suboptimal LR dispatches.

We show that these market design issues can be reduced
in two ways. First, the use of a B&B algorithm which can
solve a unit commitment to optimality will guarantee units
receive their optimal dispatches and payoffs. We demonstrate,
however, that this relies crucially on solving the problem to
complete optimality. If the B&B algorithm times out or is
interrupted before reaching optimality and is just a minuscule
fraction of a percent away from optimal, the payoffs to
individual units and energy prices can vary significantly when
compared to the MIP optimum.2

Secondly, due to the possible confiscatory nature of lin-
ear energy-only price payments, most ISOs which operate a
central commitment market make supplemental ‘make-whole’
payments, which guarantee that units recover their offer-
based costs over the course of the day. We argue that such
a make-whole provision has an added benefit of helping to
‘smooth out’ the payoffs of near-marginal units which may
not receive their MIP-optimal commitment in a suboptimal
LR or intermediate MIP solution. Because such a unit would
be close to marginal it would likely require a make-whole
payment, implying that the unit breaks even (in terms of
offer-based costs) regardless of whether it is dispatched in
the final commitment or not. We show that while such make-
whole provisions reduce payoff deviations between the MIP
optimum and suboptimal commitments, such deviations will
not generally be completely eliminated.

II. PROPERTIES OFLR AND B&B SOLUTIONS

At its heart, the unit commitment problem finds the least-
cost commitment and dispatch of a set of generating units
to meet expected load over a time horizon consisting of a
fixed number of periods, which we take in our computations
to be twenty-four single-hour periods. The problem can be
formulated as a MIP in which the operating status of each unit
(online or offline) in each planning period is characterizedby
a set of binary variables, and a set of continuous variables
indicate the generating output of each unit in each planning
period. In addition to a load balance constraint, which ensures
that expected demand is met in each period, unit commitment
formulations will typically also have ancillary service require-
ments, upper- and lower-generating capacities for each unit,
ramping constraints, minimum up and down times when units
are started and stopped, startup costs which are dependent on
the length of time a unit has been offline, and transmission
network constraints.

2This can also be true for alternative optimal MIP solutions,if the optimum
is non-unique.
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Historically, solving a commercial-scale problem with hun-
dreds of generating units was impractical using a B&B al-
gorithm. As such, LR techniques were employed in which
a Lagrangian dual is obtained by relaxing the load balance,
reserve, and any other ‘coupling’ constraints and penalizing
violations in the objective. When these constraints are relaxed,
the problem decouples in the sense that there is no longer
an interdependency between the generating units, making the
dual problem relatively simple to solve. The LR algorithm then
works iteratively to try and find a set of energy and reserve
capacity ‘prices’ (the objective function penalty coefficients),
which incent an optimal commitment and dispatch of the
units. As Wolsey [6] notes, the LR algorithm finds a dual-
feasible/primal-infeasible solution which is a local (butnot
necessarily global) optimum, with additional processing of the
LR solution and heuristics needed to restore primal-feasibility.

Our results comparing LR and MIP solutions are based on a
simplified model of the ISONE commitment problem, which
includes minimum up and down times, ramping constraints,
hourly load balance constraints, and a single type of load-
based ancillary service requirement. To simplify the model,
marginal generating costs are assumed to be constant, startup
costs are not time dependent, and transmission constraintsare
ignored—making our model similar to that studied by Johnson
et al [1]. The specific formulation studied is given in the
appendix.

Johnsonet al [1] further simplify their model by eliminating
never-used resources and units which are not economically
dispatchable from the generator set and only considering 17
units in their commitment problem. Our model, by contrast,
includes the full ISONE generating set of 276 dispatchable
units. This both reflects our desire to study a commercial-
scale unit commitment problem and to highlight drastic im-
provements in the capabilities of MIP solvers, which could
not solve a unit commitment problem of this size a decade
ago.3 The data used is based on actual cost and operating
constraint offers, which are submitted by generators to ISONE
on a daily basis. Because the cost parameters used in the unit
commitment consists of offered costs, they may not reflect
a unit’s actual operating costs. As such our calculations of
a unit’s net payoffs will not necessarily reflect revenues less
costs, but rather its ‘offer-based surplus.’4

A. Comparisons of LR Solutions

The LR algorithm we employ is a ‘textbook’ subgradient
algorithm which utilizes a geometric step-size sequence, as
described by Wolsey [6]. A myopic recommitment heuristic
is then used to obtain a primal-feasible commitment from
the dual solution, and finally a linear program is used to
determine a least-cost dispatch based on the fixed primal-
feasible commitment of the units. Although our LR algorithm

3Indeed, the 17-unit model studied by Johnsonet al could not be tractably
solved by MIP solvers a decade ago.

4If a generator’s revenues resulting from its commitment anddispatch is
given byR and its actual cost of meeting the schedule isc, then the generator’s
actual profits will be given byΠ = R−c. The generator, in making an offer to
generate to the ISO will state its costs are given byĉ, which may be different
from c, thus its offer-based surplus will bêS = R − ĉ.

is not finely tuned, the results we report are for solutions
which are all within 1.82% of the MIP optimum. The different
solutions are obtained by adjusting the rate of convergence
of the step-size sequence used in the subgradient algorithm
step. Our calculations of unit payoffs assume the market
settles with a uniform energy price in each hour based on
the dual variable associated with the load-balance constraint.
Pricing energy based on these dual variables captures the
correct marginal cost of serving the system’s loads, and hasthe
property that it ‘smooths out’ prices between periods in which
intertemporal constraints are binding. In practice, however,
most ISOs settle based on prices resulting from the day-ahead
optimal power flow (OPF) model, which generally do not
capture these intertemporal constraints and as such will not
correctly account for binding ramp constraints in determining
prices.5 In the context of our simple unit commitment, these
OPF prices would be equivalent to setting the hourly energy
price based on the highest marginal cost unit which is running
in that hour but not held at minimum load. Unit payoffs are
nearly identical with both pricing schemes, and as such we
only report calculations with energy prices based on the unit
commitment dual variables.

Table I summarizes the eleven near-optimal LR solutions
used in our analysis, showing the size of the final optimality
gap (with primal-feasibility of the dual solution restored) and
the number of units affected by not receiving their MIP-
optimal offer-based surplus.

TABLE I
COMPARISON OFLR SOLUTIONS AND MIP OPTIMUM , WITH L INEAR

ENERGY PAYMENTS ONLY

Optimality Units
Solution Total Cost ($) Gap (%) Affected
MIP 8,074,002.55
1 8,181,665.93 1.33 125
2 8,212,269.01 1.71 128
3 8,202,929.15 1.60 132
4 8,171,416.63 1.21 141
5 8,125,904.86 0.64 109
6 8,220,547.52 1.82 128
7 8,211,208.66 1.70 132
8 8,124,845.51 0.63 112
9 8,180,528.20 1.32 129
10 8,189,867.05 1.44 125
11 8,116,566.01 0.53 112

1) Unit Surplus Comparisons: Table II provides summary
statistics of the offer-based surpluses of five select unitsacross
the eleven LR solutions, showing the extent to which the
surplus of individual units can vary between the different
solutions and deviate from the MIP optimum. For computation
of surplus per MWh generated, this value is set to zero for
a unit which receives no dispatch. Furthermore, the columns
labeled ‘cv’ report the coefficient of variation, which is the
ratio of the standard deviation and mean, and provides a unit-
free metric of surplus variability. Units 1 and 5, for instance,
are not committed at all under the MIP optimum but are
dispatched in a number of the LR solutions, always running at

5Although it is possible to include ramping constraints in a multiperiod
OPF, most ISOs solve each period individually and do not include these
constraints.
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a net loss. Unit 1, when committed by the LR algorithm, runs
at a substantial loss as it is given little dispatch with which to
recover the large startup cost it incurs. Although some units
are made worse off by the LR commitments, others such as
units 3 and 4 are generally run at a net gain under the LR
solutions whereas they are run at a loss in the MIP optimum.

Table II demonstrates a further complication in markets
with nonconvex costs—that linear prices can be confiscatory—
indeed, all of our LR and the MIP-optimal commitment
leave some generators with net losses. Absent a nonlinear
pricing scheme, the potential for confiscation could lead gen-
erators to withhold themselves from the market or to distort
the cost or constraint parameters in their offers to ensure
themselves sufficiently high energy rents, with the potential
to lead to an inefficient commitment. Most ISOs overcome
this confiscation problem by paying uniform hourly energy
and ancillary service prices with supplemental make-whole
payments, which guarantee that a unit will recover any portion
of its offer-based costs not covered by inframarginal energy
and ancillary service rents over the planning horizon.6 One
shortcoming of this make-whole payment scheme is that the
linear prices are not market-clearing, which is to say that
if price-taking generators could adjust their generation and
reserved capacity to maximize profits there would generally
be load imbalances. Recently, O’Neillat al [7] propose a set
of nonlinear prices which yield a Walrasian equilibrium and
ensure nonconfiscation in a general competitive market with
indivisible units or other nonconvexities, overcoming these
issues. Despite the attractive properties of the prices proposed
by O’Neill et al, ISOs do not implement their pricing scheme.

Table III shows the total settlements paid to the five units
in Table II, assuming that the market makes energy payments
only (i.e. no payments for ancillary services) and includes a
make-whole provision. Comparing the range of settlements
paid to individual units and the range of total settlements
for all the units between the different solutions, we see that
payments to individual units can vary between different LR
solutions even though total payments to all generators tendto
be relatively close. The high settlement cost of unit 1 in some
of the LR solutions, for example, reflects the fact that unit 1is
started up in these solutions and must be given a supplemental
make-whole payment but because it displaces another unit, the
impact on total settlement costs is small.

An added benefit of including a make-whole provision
is that it can help to ‘smooth out’ the payoff differences
between the LR solutions and MIP optimum and reduce the
volatility of the LR payoffs by truncating the distributionat
zero. Moreover, when compared to the MIP optimum, LR
solutions generally commit the correct baseload and mid-merit
units and differ mainly in the dispatch of marginal units.
Because a marginal unit often receives little inframarginal
energy rents and requires make-whole payments, the net offer-
based surplus of such a unit is zero regardless of whether it

6Using our notation from before, if a generator’s revenues resulting from its
commitment and dispatch is given byR and its offer-based costs of generating
according its commitment and dispatch is given byĉ, then its make-whole
payment will bemax{0, ĉ−R}, which ensures that the generator’s net offer-
based surplus isdNS = R − ĉ + max{0, ĉ − R} ≥ 0.

is committed in an LR solution. As such, if the stated cost
in the offers of these marginal units reflect their actual costs,
then these marginal units which must be made whole will
break even regardless of whether they’re committed or not.
Table IV presents summary statistics comparing the absolute
value of differences in net offer-based surplus to individual
generators between each LR solution and the MIP optimum,
with and without make-whole payments. The results show that
when measured on a per MWh-generated basis, the make-
whole payments reduce the difference in and variability of
payoffs, both by truncating the distribution and smoothing
out net payoffs to near-marginal units. When looking at total
surplus, the average in the deviations is reduced, however
the maxima are not affected since some units receive much
higher payoffs under the LR commitment than under the
MIP-optimum, which would not be affected by a make-
whole provision. Importantly, comparing across the 11 LR
solutions, we see that with a make-whole provision the payoff
differences are on average the same (with the one exception
of solution 4), despite non-trivial differences in the optimality
gap of the LR solutions, indicating that with regard to the
equity of generators’ offer-based surplus there are only modest
gains from closing the optimality gap of a near-optimal LR
commitment.

2) Energy Pricing: Because an LR solution generally yields
a suboptimal commitment, it is possible that the energy prices
found in the least-cost dispatch will be ‘incorrect’ in the
sense that they do not reflect the correct marginal cost of
dispatch from a least-cost commitment. Such commitment
and the resulting pricing errors have the potential to affect
generator incentives, send incorrect price signals to market
participants, and leave uncommitted generators who would
be ‘in the money’ out of profitable dispatch. Moreover, these
pricing errors can further confound the deviations in generator
payoffs.

Fig. 1 plots the load profile for our test problem, the
MIP-optimal energy prices, and energy prices from the LR
commitments. In 22 of the hours the prices in the LR solutions
are identical to one another and the range of the prices
are plotted for the other 2, which show little variability.
Furthermore, the LR prices are the same as the MIP-optimal
prices in 10 of the hours, indicating that our LR algorithm
is capable of dispatching the ‘correct’ marginal unit in some
hours. There is, however, a large deviation in hour 19 with
the LR commitments yielding energy prices which are more
than $45 higher than the corresponding MIP-optimal price.
Importantly, this mispricing appears in all our LR solutions—
even the ones with smaller optimality gaps—reflecting the fact
that such errors can occur in general regardless of the size of
the duality gap. One of the issues of such mispricings is thatit
further confounds the issue of payoff deviations resultingfrom
LR solutions. Unit 3 in Table II, for instance, receives its MIP-
optimal commitment and dispatch in most of the LR solutions,
yet because much of its generation is dispatched in hour 19 it
runs at a net offer-based gain in the LR commitments whereas
it should run at a net loss in the MIP optimum from linear
energy-only payments.

This result highlights the fact that an individual generator’s
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TABLE II
OFFER-BASED SURPLUS OFSELECTED UNITS UNDER LR SOLUTIONS AND MIP OPTIMUM WITH L INEAR ENERGY PAYMENTS ONLY

MIP Offer-Based MIP Offer-Based
Unit Surplus ($/MWh) Surplus ($) LR Offer-Based Surplus ($/MWh) LR Offer-Based Surplus ($)

Mean Max Min cv Mean Max Min cv
1 0.00 0.00 -685.40 0.00 -952.56 -0.64 -7,458.07 0.00 -13,715.84 -0.73
2 -7.97 -6,886.92 -0.40 0.48 -0.69 -0.87 -348.94 414.92 -595.33 -0.83
3 -16.58 -2,387.39 3.44 4.68 3.98 0.73 478.53 673.22 -764.94 0.83
4 -1.73 -18,498.82 0.02 0.47 -0.13 9.89 152.48 4,186.96 -1,182.71 10.20
5 0.00 0.00 -42.43 -20.33 -50.03 -0.19 -12,564.29 -2,642.30 -19,510.97 -0.39
All 30.06 9,047,685.89 30.90 31.18 30.65 0.01 9,298,276.20 9,385,277.46 9,224,431.24 0.01

TABLE III
TOTAL SETTLEMENTS OFSELECTED UNITS UNDER LR SOLUTIONS AND MIP OPTIMUM WITH L INEAR ENERGY AND MAKE-WHOLE PAYMENTS

Unit MIP Settlements ($) LR Settlements ($)
Mean Max Min cv

1 0.00 7,967.03 14,485.50 0.00 0.80
2 59,887.67 60,006.78 60,380.20 59,965.29 0.00
3 11,800.00 12,259.62 15,400.00 11,832.53 0.09
4 638,994.42 552,554.96 559,340.71 535,352.53 0.01
5 0.00 36,270.18 51,557.40 17,585.80 0.27
All 17,283,791.33 17,643,817.52 17,719,380.91 17,567,988.90 0.00

TABLE IV
ABSOLUTEVALUE OF UNIT OFFER-BASED SURPLUSDEVIATIONS BETWEEN LR SOLUTIONS AND MIP OPTIMUM

($/MWh) ($)
Without Make-Whole Payments With Make-Whole Payments Without Make-Whole Payments With Make-Whole Payments

Solution Mean Max cv Mean Max cv Mean Max cv Mean Max cv
1 61.19 942.24 3.66 0.33 4.68 1.76 1,605.50 26,950.13 2.54 972.35 26,950.13 3.59
2 71.92 945.92 3.38 0.33 4.80 1.79 1,716.95 26,950.13 2.42 972.63 26,950.13 3.59
3 73.66 939.30 3.31 0.33 4.80 1.79 1,686.54 26,950.13 2.43 972.63 26,950.13 3.59
4 57.46 943.55 3.33 0.39 4.80 1.61 1,806.36 33,641.06 2.63 1,225.27 33,641.06 3.56
5 7.28 952.56 8.20 0.33 4.80 1.79 1,404.04 26,950.13 2.82 972.63 26,950.13 3.59
6 71.90 945.92 3.38 0.29 4.54 1.80 1,604.52 23,556.04 2.41 845.49 23,556.04 3.60
7 73.64 939.30 3.31 0.29 4.54 1.80 1,574.11 23,556.04 2.42 845.49 23,556.04 3.60
8 5.57 353.56 5.00 0.29 4.54 1.80 1,261.20 23,556.04 2.87 845.49 23,556.04 3.60
9 62.95 931.94 3.56 0.29 4.54 1.80 1,462.95 23,556.04 2.49 845.49 23,556.04 3.60
10 61.22 942.24 3.66 0.29 4.54 1.80 1,493.36 23,556.04 2.48 845.49 23,556.04 3.60
11 5.60 353.56 4.97 0.33 4.80 1.79 1,373.63 26,950.13 2.87 972.63 26,950.13 3.59
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Fig. 1. LR and MIP Prices.

payoff is dependent not only on it receiving its correct commit-
ment, but also on the commitments of other units. Moreover,
because the LR dual solution is generally primal-infeasible
the marginal unit in some hours may be determined by the

feasibility heuristic, meaning the final set of energy prices
can be sensitive to the specifics of the heuristics utilized in
restoring feasibility of the dual solution. In our simple model
with fixed loads these mispricings represent wealth transfers
between suppliers and consumers, meaning there are no wel-
fare losses from the prices themselves.7 In a more general
setting with price-elastic demand, transaction, or virtual bids,
such mispricings could cause efficiency losses both from prices
being too low, which could result in inefficient trade, or prices
being too high, which could result in efficient trades being
priced out of the market.

B. MIP Implementation

Although recent computational and algorithmic advances
make direct solution of the unit commitment by B&B tractable,
ISOs cannot currently solve their commitment problems to
complete optimality within the allotted timeframe. Most ISOs,
upon receiving generation offers and other market data day-
ahead, must return commitments and an schedule to generators
within a few hours. The formation of these schedules often-
times requires solving multiple unit commitment, OPF, and

7Although the payments are wealth transfers which do not incur consumer
welfare losses, the suboptimal commitment and dispatch of the system
obviously results in productive efficiency losses.
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other optimization problems. As such, ISOs which have imple-
mented or are proposing to use MIP in their unit commitment
set limits on the solution time and rely on the best integer-
feasible solution found at the end of that time. Although ISOs
boast their ability to find feasible solutions with minuscule
optimality gaps, if an ISO is left to rely on an intermediate
integer-feasible but suboptimal solution, the same issuesof
generator payoffs, energy pricing, and inequity of the resulting
dispatch arise as with suboptimal LR commitments.

Table V summarizes the progression of the MIP optimizer in
CPLEX 9.120 solving our simple unit commitment with the
default settings. The problem was formulated using AMPL
10.100 using default presolver settings. We note that unlike
commercial MIP-based unit commitment software packages,
we did not fine-tune the formulation of the problem, the
settings in CPLEX, or introduce problem-specific cutting plane
algorithms to improve the solutions or solution times of the
problem.8 CPLEX finds 5 intermediate suboptimal integer-
feasible solutions, all of which have smaller optimality gaps
than our LR commitments. Moreover, should the ISO use
one of the intermediate solutions but include a make-whole
provision, the net offer-based surplus to each unit is identical
to that under the MIP optimum in all but the first solution, with
the largest deviation being $0.02/MWh in the first solution.

Table VI shows that should the ISO not include a make-
whole provision, then the surplus of individual units can
differ between the suboptimal solutions and the MIP optimum,
indicating intermediate solutions from a B&B algorithm will
suffer the same issues as LR commitments, regardless of the
size of the optimality gap. Units 7 and 8, for instance, are
identical in terms of the stated cost and operating constraint
parameters in their offers, and receive the exact same com-
mitment and dispatch in the MIP optimum, but are given
different commitments and dispatches in every intermediate
MIP solution.

TABLE VI
PROFITABILITY OF SELECT UNITS UNDER OPTIMAL AND INTERMEDIATE

B&B SOLUTIONS OFSIMPLE UNIT COMMITMENT WITH L INEAR ENERGY
PAYMENTS ONLY

Unit MIP Offer-Based Suboptimal MIP Solution
Surplus ($/MWh) Offer-Based Surplus ($/MWh)

Mean Max Min cv
6 0.00 -102.61 -100.70 -105.49 -0.03
7 -90.70 -72.56 0.00 -90.70 -0.56
8 -90.70 -18.14 0.00 -90.70 -2.24
All 30.06 30.06 30.08 30.06 0.00

Table VII shows that as with suboptimal LR commitments,
the intermediate MIP solutions can also yield incorrect energy
prices due to an incorrect dispatch. With our simple problem
there are only differences in three of the hours and only
in the first three solutions—energy prices in all other hours
equal the MIP-optimal prices in all the intermediate solutions,
and the last two intermediate solutions had the same energy
prices as the MIP optimum. Nonetheless, the first solution, the
optimality gap of which is a fraction of a percent, yields an

8We did set the integrality and optimality gap tolerances to zero in order
to ensure the final solution given by CPLEX is indeed the MIP-optimum.

energy price in hour 11 which is nearly twice the MIP-optimal
price.

TABLE VII
ENERGY PRICES OFINTERMEDIATE SOLUTIONS FOUND IN BRANCH AND

BOUND TREE

Energy Price of Solution ($/MWh)
Hour 1 2 3 4 5 Optimum
2 45.84 44.30 44.30 44.30 44.30 44.30
11 114.95 64.49 59.72 59.72 59.72 59.72
23 48.96 50.24 48.96 50.24 50.24 50.24

Although our results show that when the market includes
make-whole payments the intermediate solutions to our unit
commitment problem have virtually eliminated the generator
payoff issues prevalent with LR commitment, the formulation
used is a simplification of any actual unit commitment solved
by an ISO and excludes many important system details.
Table VIII summarizes the progression of integer-feasible
solutions found by CPLEX in solving ISONE’s complete unit
commitment problem, which includes virtual, transaction,and
demand bids, time-dependent startup costs, stepped generation
costs, multiple types of ancillary service requirements, and a
DC-load flow model. Due to the inclusion of the demand bids,
the problem is formulated to maximize total social surplus
from energy traded. The problem is once again formulated
using AMPL 10.100 and solved by CPLEX 9.120 using default
settings except that the integrality and optimality tolerances in
CPLEX were set to zero to ensure the final solution given
is the MIP-optimum. CPLEX iterates through 38 suboptimal
integer-feasible solutions before finding the MIP optimum.

As the table clearly highlights, complex unit commitment
formulations, which are more reminiscent of the actual prob-
lems which must be solved by ISOs, still present market design
issues even when solved using a B&B algorithm. Solutions
which are a minuscule fraction of a percent away from optimal
nonetheless result in different payoffs to individual generators.
Moreover, the progression of solutions shows that the surplus
deviations are not a decreasing function of the size of the
optimality gap. Solution 17, for instance, gives generator
surpluses which are on average within $0.04/MWh of the MIP
optimum yet the next four solutions, all of which have smaller
optimality gaps, result in larger average and maximum surplus
deviations.

Just as with the suboptimal LR commitments, intermediate
solutions found by CPLEX in solving the MIP to optimality
can lead to energy pricing errors, with some extreme cases
of the intermediate prices being more than 10% from the
MIP-optimal prices. Although our unit commitment model
included network flow constraints, none were binding in the
optimum or in any of the intermediate solutions, and as
such the locational marginal prices were identical across the
network. Table IX summarizes the range of energy price
deviations between the 38 intermediate solutions and the MIP
optimum, showing again that solutions which are a millionthof
a percent away from optimal can nonetheless have substantive
price differences. Moreover, the size of the deviations is not
monotone in the size of the optimality gap, as shown by
comparing solution 31 to all the intermediate solutions found
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TABLE V
PROGRESSION OFINTEGER-FEASIBLE SOLUTIONS FOUND IN B&B T REE OFSIMPLE UNIT COMMITMENT PROBLEM WITH MAKE-WHOLE PAYMENTS

Total Cost ($) MIP Gap (%) Absolute Value of Unit Offer-
Based Surplus Deviations ($/MWh)

Solution Mean Max cv
1 8,074,400.39 0.0049275 0.00 0.02 1.56
2 8,074,045.70 0.0005345 0.00 0.00 n/a
3 8,074,020.25 0.0002192 0.00 0.00 n/a
4 8,074,014.91 0.0001531 0.00 0.00 n/a
5 8,074,003.06 0.0000063 0.00 0.00 n/a

TABLE VIII
PROGRESSION OFINTEGER-FEASIBLE SOLUTIONS FOUND IN B&B T REE OFCOMPLETEUNIT COMMITMENT PROBLEM WITH MAKE-WHOLE

PAYMENTS

Optimality Absolute Value of Unit Offer-
Total Surplus Gap (%) Based Surplus Deviations ($/MWh)

Solution Mean Max cv
Optimum 10,873,267.23
1 10,743,126.26 0.011968893 0.44 3.07 1.39
2 10,780,344.54 0.008545977 0.49 2.97 1.38
3 10,791,726.53 0.00749919 0.71 3.64 1.37
4 10,836,621.47 0.003370262 0.62 2.54 1.37
5 10,837,058.63 0.003330057 0.59 2.43 1.37
6 10,837,740.91 0.003267309 0.76 3.01 1.37
7 10,837,952.97 0.003247806 0.76 3.01 1.37
8 10,839,184.76 0.00313452 0.73 2.91 1.37
9 10,839,379.80 0.003116582 0.66 3.04 1.37
10 10,839,458.47 0.003109347 0.71 3.04 1.37
11 10,839,613.51 0.003095088 0.69 2.94 1.37
12 10,839,764.98 0.003081158 0.67 2.88 1.37
13 10,842,307.12 0.00284736 0.25 1.04 1.38
14 10,859,035.14 0.001308906 0.19 0.82 1.38
15 10,859,165.69 0.0012969 0.20 0.85 1.38
16 10,859,165.78 0.001296892 0.19 0.82 1.38
17 10,859,280.44 0.001286347 0.04 0.32 1.46
18 10,863,244.27 0.000921798 0.19 0.84 1.38
19 10,866,290.84 0.000641609 0.17 4.13 1.90
20 10,866,499.64 0.000622406 0.20 5.61 2.06
21 10,866,761.13 0.000598357 0.19 4.30 1.81
22 10,870,211.13 0.000281065 0.04 4.41 6.90
23 10,871,577.89 0.000155366 0.23 1.67 1.41
24 10,871,675.08 0.000146428 0.23 1.81 1.41
25 10,871,987.07 0.000117735 0.25 1.37 1.39
26 10,872,163.04 0.000101551 0.27 1.44 1.39
27 10,872,312.67 0.00008779 0.22 4.35 1.71
28 10,872,789.77 0.000043911 0.24 3.92 1.60
29 10,872,868.80 0.000036643 0.23 2.01 1.42
30 10,872,961.30 0.000028136 0.01 0.79 4.34
31 10,872,961.38 0.000028129 0.01 0.73 7.45
32 10,872,995.32 0.000025007 0.03 0.20 1.39
33 10,872,995.41 0.000024999 0.02 0.14 1.41
34 10,873,156.39 0.000010194 0.26 1.08 1.38
35 10,873,156.48 0.000010186 0.25 1.03 1.38
36 10,873,193.80 0.000006753 0.24 0.99 1.38
37 10,873,256.39 0.000000997 0.02 0.11 1.40
38 10,873,267.14 0.000000008 0.01 0.07 1.41

after it.

III. C ONCLUSIONS

We have revisited some of the issues raised by Johnsonet al
[1] surrounding the design and implementation of a centralized
unit commitment. We demonstrated that different near-, but
sub-optimal commitments from an LR or B&B algorithm can
result in different payoffs to individual generators, calling into
question the incentive properties of a market with centralized
unit commitment. We further showed that the suboptimal
commitments will generally yield incorrect energy prices,
which will present additional efficiency implications in a

market with price-responsive demand. With an LR algorithm,
these mispricings can be further seen as nontransparent or
‘black-box’ pricing insomuch as these energy prices will be
determined by the marginal unit in each hour which is often
found by the feasibility heuristic, which may be viewed as
opaque, arbitrary, or convoluted.

We showed that make-whole payments can reduce the prob-
lem of generator surplus differences. Make-whole payments
help to smooth out the net offer-based surplus earned by near-
marginal units, and if the stated costs of these units reflect
actual costs these units would be indifferent between receiving
their optimal commitments with make-whole payments or not
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TABLE IX
PERCENTDIFFERENCES INENERGY PRICE DEVIATIONS BETWEEN INTERMEDIATE INTEGER-FEASIBLE SOLUTIONS AND MIP OPTIMUM

Solution Mean Max Min Solution Mean Max Min
1 2.27% 7.13% -2.36% 20 0.89% 5.03% -2.08%
2 2.51% 9.87% -4.40% 21 0.89% 5.03% -2.08%
3 3.65% 10.22% -2.08% 22 0.14% 5.03% -3.03%
4 3.17% 10.22% -3.44% 23 1.18% 5.03% -1.83%
5 3.05% 10.22% -3.44% 24 1.21% 5.03% -1.06%
6 3.90% 10.40% -5.08% 25 1.33% 5.03% -1.83%
7 3.90% 10.40% -5.08% 26 1.41% 5.03% -0.47%
8 3.81% 10.22% -2.08% 27 1.10% 4.60% -1.83%
9 3.31% 10.22% -5.08% 28 1.20% 4.60% -0.47%
10 3.60% 10.22% -5.08% 29 1.20% 4.60% -0.47%
11 3.48% 10.22% -5.08% 30 0.04% 1.43% -0.47%
12 3.38% 10.22% -5.08% 31 -0.02% 0.00% -0.47%
13 1.29% 4.60% -4.40% 32 0.17% 3.13% -0.47%
14 1.00% 4.60% -4.40% 33 0.11% 3.13% -0.47%
15 1.05% 4.60% -4.40% 34 1.35% 4.60% 0.00%
16 1.00% 4.60% -4.40% 35 1.29% 4.60% 0.00%
17 -0.19% 5.03% -7.19% 36 1.23% 4.60% -1.06%
18 1.03% 5.03% -7.19% 37 -0.13% 0.00% -3.03%
19 0.77% 5.03% -4.40% 38 0.06% 1.43% 0.00%

being committed. While the use of a B&B algorithm which
could solve the problem to complete optimality can, in theory,
overcome these issues entirely, this is as of yet intractable.9

If the ISO must, instead, rely on an intermediate near-optimal
solution, we demonstrated the same issues of surplus and price
differences will arise, even with solutions which are a fraction
of a percent away from optimal.

As such, one should expect the issues raised by Johnson
et al [1] to remain in centrally committed markets, regardless
of the solution technique used. Moreover, our results showed
that payoff and price deviations are not monotone in the
size of the optimality gap—which is contrary to common
belief. Guanet al [8] state, for example, that the 1-2% duality
gaps achieved with LR were sufficient for monopoly utilities,
but that the development of competitive markets in which
generators compete to provide their products has increased
the need for more accurate unit commitment solutions. Our
results show, however, that this market design issue will loom
regardless of how accurate the unit commitment solution is,
unless an optimum can be found. As such, even though the
B&B algorithm can typically achieve smaller optimality gaps
than LR, this does not guarantee that the equity issues will be
‘smaller’ under MIP than LR. Overall, our results demonstrate
that centralized markets in which the ISO makes binding
commitment decisions will suffer from the issues raised by
Johnsonet al [1], which cannot be fully addressed with current
computational limits.

APPENDIX

PROBLEM FORMULATION

The simple unit commitment formulation used in our com-
parison of MIP and LR solutions is presented. We first define
the following notation:

Problem Parameters

• I: generator index set

9Similarly, if an LR algorithm could yield a MIP-optimal commitment, then
these issues would be resolved.

• T : number of planning periods
• SUi: startup cost of uniti’s offer
• Ni: no-load cost of uniti’s offer
• MCi: marginal generating cost of uniti’s offer
• K−

i : minimum generating capacity of uniti’s offer
• K+

i : maximum generating capacity of uniti’s offer
• Ri: maximum ramp rate of uniti’s offer
• SPi: maximum spinning capacity of uniti’s offer
• ni: minimum up-time of uniti’s offer
• fi: minimum down-time of uniti’s offer
• Dt: load forecast in periodt
• ρ: percentage of load which must be available in addi-

tional spinning reserves

Decision Variables

• qi,t: generation provided by uniti in period t

• ri,t: spinning reserve provided by uniti in periodt

• ui,t: binary variable indicating if uniti is up in periodt

• si,t: binary variable indicating if uniti is started in period
t

• hi,t: binary variable indicating if uniti is stopped in
periodt

The problem is formulated as minimizing total commitment
costs:

min
q,r,u,s,h

∑

i,t

(MCiqi,t + Niui,t + SUisi,t);

subject to load-balance:
∑

i

qi,t = lt, ∀ t;

spinning-reserve requirement:
∑

i

(qi,t + ri,t) ≥ (1 + ρ)lt, ∀ t;

unit minimum-load requirement:

K−

i ui,t ≤ qi,t, ∀ i, t;
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unit maximum-load requirement:

qi,t + ri,t ≤ K+

i ui,t, ∀ i, t;

unit spinning capacity:

0 ≤ ri,t ≤ SPiui,t, ∀ i, t;

unit ramping limit:

−Ri ≤ qi,t − qi,t−1 ≤ Ri, ∀ i, t;

unit minimum up-time:
t∑

τ=t−ni+1

si,τ ≤ ui,t, ∀ i, t;

unit minimum down-time:
t∑

τ=t−fi+1

hi,τ ≤ 1 − ui,t, ∀ i, t;

startup definition:

si,t ≥ ui,t − ui,t−1, ∀ i, t;

shutdown definition:

hi,t ≥ ui,t−1 − ui,t, ∀ i, t;

and variable integrality:

ui,t, si,t, hi,t ∈ {0, 1}, ∀ i, t;

constraints.
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