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Abstract

Meeting decarbonization goals requires taking significant action on electricity systems, which are a major source of CO2

emissions. Decarbonizing island electricity systems raises additional challenges due to their heavy historical dependence
on fossil fuels and strict power-reserve and reliability requirements. To address this challenge, this paper presents a
comprehensive optimization model for long-term capacity planning of island electricity systems. Our model determines
an optimal mix of generation and transmission capacity to satisfy energy demand at least cost while respecting the
strict technical constraints that are inherent in island systems. In addition, our model considers the use of thermal and
renewable generation, electric vehicles providing electricity-system services, batteries, pumped-hydroelectric storage, and
ac and high-voltage dc transmission lines.

We demonstrate our model with a case study of the Canary Islands archipelago. Our results show that combining
the aforementioned technologies reduces generation costs by up to 25% and capacity requirements up to 50% (relative
to a case without the technologies). In addition, without any mechanism to internalize the social cost of carbon, fossil-
fueled thermal generation is the lowest-cost source of energy. Environmental considerations demonstrate the benefits of
renewable generation and result in these carbon-free energy sources supplying about 40% of the energy mix.
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1. Introduction

Decarbonization calls for greater use of renewable elec-
tricity, which raises challenges around its uncertain and
variable real-time supply. Spatial disaggregation, trans-
mission interconnection, energy storage, and electric vehi-
cles (EVs) providing electricity-system services can help
address this challenge, which raises two questions. First is
the optimal mix of the technologies. Second is how the re-
source mix should be operated. Capacity-planning models
answer both questions simultaneously [1, 2].

Much of the capacity-planning literature [3–5] focuses
on continental power systems. Models for island electricity
systems is a gap that this paper addresses. Unique features
of island electricity systems, which our model captures, in-
clude high costs due to low generating efficiencies and fuel-
transportation needs and strict reserve requirements [6].
Our model captures also short-term and small-scale uncer-
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tainties, such as variable load and renewable-energy sup-
ply [7], and includes generation, energy storage, EVs, and
transmission as technology options. Our model captures
unit-commitment and energy-capacity decisions for energy
storage [8] and co-optimizes charging cycles for EVs with
electricity-system operations [9, 10]. EV-mobility patterns
are modeled, which captures the spatial movement of these
resources and loads.

We demonstrate our model using a case study of Ca-
nary Islands, which is European Union’s outermost re-
gion with the highest economic growth and electricity con-
sumption. Generation costs on the islands may be up to
10 times higher than in mainland Spain [11]. Current reg-
ulations do not allow renewable energy, energy storage,
or EVs to provide reserves to the Canary Islands elec-
tricity system.1 This regulation is addressed by building
transmission between the islands. Allowing renewable en-
ergy, energy storage, or EVs to provide reserves may help
address decarbonization goals, which our model assesses.
Our case study considers diesel engines and oil-fired steam
(OS), combustion (OC), and combined-cycle (OCC) units
as thermal generation; wind, solar photovoltaic (PV), bio-
gas, and hydroelectric units as renewable generation; and
battery and pumped-hydroelectric (PHS) energy storage.
We examine 19 variants of our case study, which assess
the aforementioned technologies with and without carbon
pricing.

Our work makes several contributions. It presents a
capacity-planning model that is tailored to island elec-
tricity systems and captures the operation of flexibility
sources, by representing small-scale uncertainty and vari-
ability in real-time renewable-energy availability and load.
The model captures interday and spatial energy-shifting
capabilities of EVs. Finally, our case study assesses trans-
mission expansion and carbon pricing. In addition to as-
sessing them individually, we find that combining all of the
aforementioned technologies can reduce generation costs
and capacity requirements by up to 25% and 50%, respec-
tively, relative to a base case without the technologies.

The remainder of this paper is organized as follows.
Section 2 reviews relevant literature. Section 3 provides
a qualitative description of our model. Appendix A pro-
vides the detailed model formulation. Section 4 summa-
rizes case-study data and implementation, with further im-
plementation details provided in Appendix B. Section 5
summarizes case-study results. Section 6 concludes.

2. Literature Review

Characteristics of continental and island electricity sys-
tems call for capacity-planning models that are tailored for
the latter [12]. A distinct characteristic of the latter is their
vulnerability to power-quality, -reliability, and -resilience

1cf. Real Decreto 738/2015.

issues, which yield operational and planning requirements
that may be more stringent than those for the former.

Despite this need, there is scant literature that ex-
amines capacity planning for island electricity systems.
Indeed, most models of island electricity systems focus
on system operations with gross simplifications of oper-
ating requirements. Some works examine the impacts of
energy storage, EVs, and transmission interconnections
thereupon. However, most of the extant literature evalu-
ates these technologies individually and do not assess com-
binations of them [13]. These are key gaps that our work
addresses.

Kuang et al. [14] provide a review of electricity-system
planning in island systems, with a particular focus on the
use of renewable energy and energy storage. Liu and Wu
[15] conduct a similar analysis, but focus on the case of
Kinmen Island, China. Both of these works provide pri-
marily descriptive and qualitative analyses, with the aim of
assisting the planning of renewable energy in island elec-
tricity systems. However, these works lack quantitative
modeling to support their results and findings.

PHS is a technology that is studied extensively in island
electricity systems. Bueno and Carta [16] develop a model,
with which to study a wind-powered PHS plant and apply
it to a case study that is based in El Hierro. Subsequent
works [17–19] expand upon this concept. These works
consider relatively low renewable-energy penetrations and
neglect electricity-system reserves and unit-commitment
decisions for PHS-plant operations [1, 7]. Ma et al. [20]
propose a model that optimizes the energy production of
a hybrid system that consists of PV, wind, and PHS to
achieve 100% energy autonomy for remote islands. Their
work [20] does not optimize capacity-investment decisions,
however.

Other energy-storage technologies are assessed in the
literature. Demiroren and Yilmaz [21] analyze energy costs
for a Turkish island that uses combinations of wind, PV,
diesel engines, and batteries for electricity supply. This
work [21] employs HOMER [22], as opposed to a tailored
model, to optimize electricity-system operations. In addi-
tion, neither reserve requirements nor optimized capacity
levels are captured. Blechinger et al. [23] develop a generic
cost-optimization model to assess the potential for battery
energy storage globally on small islands. Given the generic
nature of the model, this work [23] does not consider the
specific physical or other characteristics of any particular
electricity system. Duić and da Graça Carvalho [24] exam-
ine the maximum penetration of renewable energy that hy-
drogen energy storage would allow in Porto Santo. Their
work neglects capacity-investment decisions and reserves
requirements are met in an heuristic manner by limiting
the renewable-energy share to a maximum of 30% on an
energy basis. This can be contrasted with our work, which
adjusts reserve levels dynamically based on supply and de-
mand conditions. Hoseinzadeh and Astiaso Garcia [25] use
HOMER [22] to assess the techno-economic suitability of
a hybrid electricity system that consists of PV, wind, and
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hydrogen energy storage. Both of these works [24, 25] find
hydrogen energy storage to have exceedingly high costs
that cannot be justified economically.

There are limited studies of using EVs for electricity-
system services on islands. Two works [26, 27] examine
such use of EVs, but do not consider EV mobility within
the network. EV mobility may be important in island
electricity systems, which may have weak transmission sys-
tems. Colmenar-Santos et al. [28] study EVs and charging
and discharging patterns, but neglect electricity-system re-
serves, costs that are incurred by battery cycling, and EV
mobility.

We find two types of works that examine interconnec-
tors within island electricity systems. One set considers
islands being connected to a continental system whereas
the other considers interconnectors within or between is-
lands. Many works of the first type analyze the role of
continental connections to increase renewable-energy use
or to reduce generation costs and examine case studies
that are based on Greek islands. Kapsali et al. [29] use
a unit-commitment model to investigate the economics of
interconnecting the island of Lesbos to mainland Greece.
Koltsaklis et al. [30] develop a planning model to assess
the benefits of interconnection between continental Greece
and Crete. Georgiou et al. [12] study the effect of intercon-
necting multiple islands to mainland Greece, with a spe-
cific emphasis on developing renewable-energy resources.
Koltsaklis et al. [31] analyze interconnection of Cyclades
and Crete to continental Greece and expansion of PHS re-
sources. Other works [32, 33] apply commercial software
packages to assess the development of an interconnected
Greek electricity system. In addition to these Greek stud-
ies, Ries et al. [34] examine the economics of linking Malta,
Sicily, and continental Europe.

The second body of works that considers interconnec-
tors within or between islands is more limited than the
first. Lobato et al. [6] examine transmission connections
between the Spanish islands Lanzarote and Fuerteventura.
However, they do not consider the role of energy storage,
EVs, or other technologies as complements to or substi-
tutes for interconnectors. Ramos-Real et al. [13] study
the relative cost and emissions benefits of operating island
electricity systems with energy storage as opposed to in-
terconnectors.

Much of this extant literature simplifies operational
constraints for the technologies that are considered, in-
cluding especially energy storage and EVs. In addition,
many of these works simplify system-wide constraints (e.g.,
reserve requirements). In addition, much of the existing
literature considers technology options and islands individ-
ually, as opposed to combinations of technologies deployed
within a (potentially) interconnected island system. Our
work aims to address these limitations.

3. Model Description

This section provides a qualitative description of our

model. Appendix A provides a detailed mathematical for-
mulation. Our model adapts to island systems the work
of Boffino et al. [2], which is focused on modeling conti-
nental electricity systems. Our model represents two sets
of decisions—the first pertains to investments (i.e., gen-
eration, transmission, and energy storage that are built)
and the second to operations (i.e., how those assets are op-
erated to serve energy demands, reserve constraints, and
other operational requirements). Our model is static, in
the sense that it assumes a single set of investment deci-
sions, which are followed by a single set of operational de-
cisions. Electricity-system operations are captured using
a set of representative operating periods, which are taken
in our case study to be week-long in duration and repre-
sented at hourly time steps, with appropriate weights. Our
model structure is flexible in capturing different operating-
period durations and temporal granularity. The model has
cost minimization as its objective. The objective function
has two major components—investment and operational
costs.

Generation investments are continuous, meaning that
any amount of capacity (which can be non-integer) can be
built, whereas transmission investments are lumpy. There
is a predetermined set of candidate transmission lines that
connect given electricity-system nodes with given capaci-
ties and each line either is built or is not built. We include
both ac and high-voltage dc (HVDC) lines, which have dif-
ferences in how power flows are modeled. Energy-storage
investments are continuous and involve two decisions—the
energy and power capacity of each unit. We assume that
the electricity system begins with existing transmission
lines but no existing generation capacity. This assumption
reflects a case in which investments are being planned far
into the future by which time existing generation capacity
surpasses its useful life, but existing transmission facili-
ties remain usable. Model inputs that pertain to invest-
ment decisions include investment costs, which are given
in e/MW for generating units, e for transmission lines,
and e/MW and e/MWh, respectively, for the power- and
energy-capacity components of energy storage. We impose
resource (e.g., land-use) and budget constraints on invest-
ments.

Operating decisions include power output of genera-
tors, charging and discharging of energy storage and EVs,
load that is shed, resultant power flows, and the provi-
sion of operating reserves to the electricity system. EVs
are classified into a set of archetypal fleets, each of which
has its own mobility pattern and energy requirement for
its associated EVs to serve their mobility roles. There are
not investment costs modeled for EVs, because we assume
that EV-purchase costs are incurred by their owners.

There are four categories of operational costs. First,
there are operational costs for generating units. Some
units (e.g., thermal generation) incur a fixed per-unit cost
for power output in addition to fixed costs when they
are shutdown or started-up. As such, we model unit-
commitment decisions for such units [35–37]. Other units
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(e.g., most renewable generators) have only a fixed per-
unit cost of power output and we do not model unit-
commitment decisions for such units. We include a fixed
per-unit carbon-emissions price and carbon-emissions rate
for generating units, which can capture cases with explicit
carbon pricing as a climate-change-mitigation policy. The
second operational-cost category is the cost of load curtail-
ment, which incurs a fixed cost per unit of demand that
is unserved. Third, there is a fixed cost on energy-storage
discharging, which can capture the actual cost of energy-
storage use on cycle-life degradation (e.g., of a battery)
[38, 39]. Fourth, there is a fixed cost on EV discharging,
which can capture cycle-life degradation or perceived costs
to EV owners from their vehicles having a lower state of
energy (SOE) [9, 40].

There are six sets of operational constraints, the first
three of which pertain to the electricity system as a whole.
The first imposes hourly nodal load balance, by ensuring
that the sum of power that is supplied at and imported (in
net) to each node during each hour equals exactly nodal
demand (which is a model input) less load that is shed.

The second constraint set pertains to operating-reserve
requirements. We model three operating-reserve types—
upward and downward spinning and upward non-spinning
reserves—and set the reserve requirements based on opera-
tional procedures of the Canary Islands electricity system
[5, 6, 13, 41]. Specifically, the hourly upward-spinning-
reserve requirement for each island is equal to half of the
highest scheduled hourly dispatch of any single generating
unit that is located on that island. Downward-spinning-
reserve requirements are set in an analogous manner. The
total of upward spinning and non-spinning reserves that
are procured on each island during each hour must be
at least twice the highest scheduled dispatch during that
hour of any single generating unit that is located on that
island. Furthermore, the sum of upward spinning and non-
spinning reserves that are procured on each island during
each hour must be at least as great as the scheduled in-
crease in total load on that island between the hour and
the previous hour. Finally, the total of upward spinning
and non-spinning reserves that are procured on each island
during each hour must be at least as great as the scheduled
hourly inflow into the island from each interconnector.

Following practice in the Canary Islands electricity sys-
tem, we allow thermal generators to provide all three types
of reserves and renewable generators to provide downward
spinning reserves only [5, 6, 13, 41]. Our model could be
adapted to allow renewable generators to provide all three
types of reserves, for instance to understand the benefits
of such a change in operating practice for greater use of
renewable energy. Unlike current practice in the Canary
Islands electricity system, we allow energy storage to pro-
vide all three reserve products and EVs to provide spinning
reserves. By allowing energy storage and EVs to provide
reserves, we examine how relaxing current rules can ease
decarbonization of island electricity systems.

The third set of operational constraints is power-flow

limits on transmission lines. Power flows along ac lines are
represented using a linearization of Kirchhoff’s laws. Con-
versely, power flows along HVDC lines are modeled using a
pipeline assumption, whereby power flows can be directed
along each line independently of other power flows.

The fourth set of operational constraints pertain to
generating units. Each generating unit has a maximum
capacity, which limits the total of power and reserves that
it can provide. A unit’s maximum capacity is determined
from the (endogenously determined) amount of capacity
that is built and a fixed per-unit time-variant availabil-
ity factor (e.g., to represent weather-dependent renewable
generators). Units for which we model unit-commitment
decisions have exogenously fixed minimum-load require-
ments when they are online, whereas power and upward
and downward spinning reserves that they provide are con-
strained to equal zero when they are offline. Units for
which unit-commitment decisions are not modeled have
zero as their minimum-output levels. Generators have
fixed upward and downward ramping limits, which con-
strain the amount that their output can change from one
hour to the next. Upward and downward reserves that
can be provided by each generating unit are constrained
to ensure that capacity and ramping constraints are not
violated if the unit is called during real-time.

The fifth set of constraints relate to energy-storage op-
erations. Each energy-storage unit has a power limit that
constrains the amount that it can be charged and dis-
charged during any given hour and an energy limit that
constrains its maximum SOE. These limits are set en-
dogenously from the corresponding investment decisions.
These constraints ensure that the deployment of reserves
would not violate the power and energy limits. We in-
clude constraints that prevent simultaneous charging and
discharging of each energy-storage unit. We use standard
inventory constraints, which account for fixed efficiency
factors on charging and discharging, to model the evolu-
tion of the SOE of each energy-storage unit from one hour
to the next [42–44]. We impose boundary conditions which
fix the starting SOE of each energy-storage unit to be 50%
of its energy limit as of the beginning of each representa-
tive operating period and require the ending SOE as of
the end of each operating period to be at least 50%. Such
boundary conditions are an heuristic approach to ascribe
value to storing energy from one operating period to an-
other [45, 46].

The final set of operational constraints pertain to EVs.
To a large extent, EVs are modeled similarly to energy-
storage units [9, 10, 47]. One key difference is that the
power and energy capacities of the EV fleets are fixed.
These parameters are determined by the configuration of
the EVs, the number of EVs that owned and operated
by drivers on the islands, and the configuration of the
EV-charging stations. Another key difference is that we
represent the mobility of EV fleets, which are given ex-
ogenously. The mobility patterns impact EVs operations
in three important ways. First, each EV has a minimum-
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SOE requirement on its battery as of the beginning of each
vehicle trip. Second, EVs are unavailable to be charged,
discharged, or provide reserves while they are driven. We
assume that EVs are grid connected and available for these
purposes when they are not being driven. Third, EVs can
move from one electricity-system node to another during a
vehicle trip. This characteristic makes EVs a mobile form
of energy storage.

4. Case-Study Data and Implementation

4.1. System Topology and Transmission Data

Fig. 1 summarizes the case-study topology. The islands
are indicated by blue rectangles with rounded corners and
the nodes by bars, which are numbered as n = 1 through
n = 13. Solid, dotted, and dashed links between islands in-
dicate existing, planned, and proposed transmission lines,
respectively. Transmission lines that are within islands are
not shown.

n = 6

La Palma

n = 7

El Hierro

n = 5

La Gomera

n = 4

n = 3

n = 2

n = 1

n = 0

Tenerife

n = 9

n = 8

Gran Canaria

n = 10

n = 11

Fuerteventura

n = 13

n = 12

Lanzarote

Figure 1: Case-study topology. Blue boxes indicate islands. Solid,
dotted, and dashed links between islands indicate existing, planned,
and proposed transmission lines, respectively.

Table 1 provides transmission-line data. Lines that are
labeled as ‘existing’ in Table 1 are the existing lines in
our model. The others are candidates that can be built.
Investment costs for ac and HVDC transmission lines are
obtained from publicly available transmission-project data
from Red Eléctrica de España, the Spanish transmission
system operator, and other studies [29, 48], respectively.

4.2. Load Data

Each island’s year-2017 load data are obtained from
Red Eléctrica de España. These loads are ascribed to
electricity-system nodes based on the proportion of each
island’s population that is served by the node. Table 2
summarizes these proportions.

Table 2: Proportion of each island’s node that is ascribed to each
electricity-system node.

Node Proportion of Load (%)

Tenerife

0 28
1 12
2 23
3 24
4 13

Gran Canaria

8 26
9 74

Fuerteventura

10 42
11 58

Lanzarote

12 41
13 59

La Palma

6 100
La Gomera

5 100
El Hierro

7 100

4.3. Generator Data

Generating-unit costs vary. Table 3 lists average un-
annualized costs and carbon-emissions rates of the can-
didate generation technologies [49–52]. Table 4 summa-
rizes the maximum capacity of the candidate technolo-
gies and nodes at which they can be built. Maximum
thermal-generation capacity is the installed capacity as
of 2017 and is spread between 83 units, which we retain
in unit-commitment modeling [51]. Maximum renewable-
generation capacity is based on projections of renewable-
energy development in Canary Islands, which is 3.8 times
the available capacity as of 2017 [53]. The hourly avail-
ability factors for the renewable generators are based on
year-2017 data.

4.4. Energy-Storage Data

There is an existing 11.2-MW, 112-MWh PHS plant
on El Hierro with a 68.88% roundtrip efficiency. Tables 5–
6 summarize the characteristics of the candidate energy-
storage technologies [8, 26, 27, 54]. The maximum energy
capacity of each energy-storage unit is 10 times the max-
imum power capacity that can be built. Energy storage
can be operated over its full SOE range.

PHS plants use an integrated turbine and pump, which
can operate in only one of the corresponding modes during
any given time [46]. Such restrictions do not apply to
batteries. Thus, for batteries we relax the constraints in
the model that restrict energy-storage units from charging
and discharging simultaneously. We allow battery energy
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Table 1: Transmission-system data.

Line Sending-End Receiving-End Transmission-Line Un-annualized
Number Node of Line Node of Line Capacity (MW) Type Status Cost (e million)

1 0 1 628 ac Existing n/a
2 0 4 107 ac Existing n/a
3 1 2 575 ac Existing n/a
4 1 3 107 ac Existing n/a
5 1 4 107 ac Existing n/a
6 2 3 107 ac Existing n/a
7 3 4 107 ac Existing n/a
8 0 4 107 ac Planned 5.1
9 2 3 575 ac Planned 0.8
10 8 9 682 ac Existing n/a
11 8 9 287 ac Planned 5.9
12 10 11 53 ac Existing n/a
13 10 11 321 ac Planned 11
14 12 13 53 ac Existing n/a
15 12 13 321 ac Planned 4.6
16 0 5 106 ac Planned 24
17 1 9 321 ac Proposed 54
18 9 10 213 ac Planned 75
19 5 6 66 ac Proposed 49
20 5 7 33 ac Proposed 49
21 11 12 66 ac Existing n/a
22 0 5 50 HVDC Planned 45
23 1 9 200 HVDC Proposed 67
24 9 10 100 HVDC Planned 70
25 5 6 50 HVDC Proposed 45
26 5 7 10 HVDC Proposed 49

Table 3: CO2-emissions rates and average costs of generation technologies.

Un-annualized Operating Cost CO2-Emissions
Technology Investment Cost (e/kW) (e/MWh) Rate (t/MWh)

Diesel 1 180 34.55 0.65
OS 1 320 6.29 0.90
OC 500 30.66 1.12
OCC 1 090 18.16 0.60
Wind 1 050 0.00 0.00
PV 1 680 0.00 0.00
Hydroelectric 910 1.24 0.00
Biogas 1 550 9.10 0.60
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Table 4: Maximum capacities of generation technologies that can be built in each island and nodes at which they can be built.

Technology Electricity-System Nodes Maximum Capacity (MW)

Tenerife

Diesel 0, 1 66.55
OS 0, 1 223.04
OC 0, 1 194.12
OCC 0 432.30
Wind 0, 4 402.00
PV 0, 1, 2, 3, 4 300.00
Hydroelectric 4 6.20
Biogas 0 43.00

Gran Canaria

Diesel 9 66.55
OS 8, 9 259.60
OC 8, 9 147.00
OCC 8 433.10
Wind 8, 9 411.00
PV 8, 9 61.52
Hydroelectric 8 1.00
Biogas 8 40.00

Fuerteventura

Diesel 11 96.28
OC 11 62.89
Wind 10, 11 81.00
PV 10, 11 22.50
Biogas 11 11.50

Lanzarote

Diesel 13 135.28
OC 13 51.94
Wind 12, 13 81.00
PV 12, 13 22.50
Biogas 13 11.50

La Palma

Diesel 6 74.84
OC 6 21.60
Wind 6 28.00
PV 6 7.93
Hydroelectric 6 6.40
Biogas 6 3.00

La Gomera

Diesel 5 14.90
Wind 5 8.00
PV 5 5.00

El Hierro

Diesel 7 11.18
Wind 7 14.00
PV 7 2.00
Biogas 7 0.50
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Table 5: Characteristics of energy-storage technologies.

Un-annualized Investment Costs Efficiency (p.u.)

Power-Related Energy-Related Discharging
Technology (e/kW) (e/kWh) Cost (e/MWh) Charging Discharging

PHS (El Hierro) 2 870 5 5.86 0.84 0.82
PHS (Other Islands) 440 5 5.86 0.84 0.82
Battery 400 150 8.00 0.95 0.95

Table 6: Maximum capacities of energy-storage technologies that can
be built in each island and nodes at which they can be built.

Electricity- Maximum
Technology System Nodes Capacity (MW)

Tenerife

PHS 0, 1, 2, 3, 4 90.0
Battery 1, 2, 3, 4 200.0

Gran Canaria

PHS 8, 9 164.0
Battery 8, 9 200.0

Fuerteventura

Battery 10, 11 40.0
Lanzarote

Battery 12, 13 40.0
La Palma

PHS 6 30.0
Battery 6 40.0

La Gomera

PHS 5 15.0
Battery 5 20.0

El Hierro

PHS 7 11.2
Battery 7 10.0

storage and PHS to provide spinning reserves and spinning
and non-spinning reserves, respectively.

4.5. EV Data

We model 25 000 EVs on Tenerife, which is about 5%
of its vehicle fleet, and use mobility data for Tenerife,
which provide 10 archetypal driving profiles [26, 28]. Mo-
bility data for other islands are unavailable. The mobility
data define vehicle flows between origins and destinations,
which we map to Tenerife’s five electricity-system nodes.
The mobility data provide means and standard deviations
of driving distances between origins and destinations. As-
suming Gaussian distributions, we use these statistics to
generate random driving distances for each EV fleet.

Table 7 summarizes the fleets’ characteristics. Each
fleet has two daily trips, which constitute a round-trip
from origin to destination and back. Driving distances are
converted into energy use by assuming a 0.25-kWh/km ef-
ficiency [3, 5]. Each EV has a 40-kWh battery and uses

a 66-kW charger which has 86% charging and discharg-
ing efficiencies [26, 55]. To mitigate degradation, we im-
pose a 25% minimum SOE on EV batteries and assume a
e40/MWh cost on discharging EVs for electricity-system
services [55]. To avoid range anxiety [40, 56, 57], we re-
quire that EV-battery SOEs be at least 70% and 30%,
respectively, as of the beginning of the two daily vehicle
trips.

4.6. Cases Analyzed

We examine 19 cases. First, we calibrate our case study
by fixing capacities equal to the levels that were in Canary
Islands during 2017. This case allows understanding dif-
ferences between our model results and how the electricity
system actually was operated during 2017.

Next, we model three business-as-usual cases (with no,
ac, and HVDC candidate transmission lines), in which
capacities are not fixed but cannot be greater than the
amounts that were in Canary Islands during 2017. These
cases allow assessing if the Canary Islands electricity sys-
tem is overcapacitated and the role of transmission lines
vis-à-vis capacity planning.

Next, we analyze three sets of technology-option cases,
which consider the same three transmission candidates.
First, we examine cases that allow additional renewable-
energy resources. Next, we consider cases that allow addi-
tional energy-storage capacity. Finally, we have cases that
include EVs. These cases allow us to understand the role
of each technology individually. A final pair of cases con-
sider all three technology options simultaneously with ac
and HVDC candidate transmission lines.

Finally, we consider four cases with all three technol-
ogy options, ac candidate transmission lines, and e5.83/t,
e24.75/t, e50.00/t, and e100.00/t carbon prices. These
prices correspond to average actual year-2017 and -2020
prices and projections of future prices, respectively.

We set the investment budgets under all of the cases
sufficiently high that they do not restrict any investment
decisions.

4.7. Case-Study Implementation

Our model is programmed with Python 3.6.8 and it is
solved with Gurobi 9.1.2 with default settings on a work-
station with two Intel Xeon E5-2697 v4 processors, each
of which has 18 2.30-GHz cores, and 270 GB of memory.
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Table 7: Characteristics of EV fleets.

Nodes Trip 1 Hours Trip 2 Hours

Fleet Number Driving
Number of EVs Origin Destination Distance (km) Departure Arrival Departure Arrival

0 1 692 0 0 8.75 7 8 15 16
1 1 692 0 0 12.35 13 14 22 23
2 1 308 0 0 7.46 8 9 12 13
3 1 308 0 0 9.59 17 18 22 23
4 26 1 2 15.39 7 8 15 16
5 26 1 2 18.01 13 14 22 23
6 13 1 2 16.12 8 9 12 13
7 13 1 2 16.48 17 18 22 23
8 10 1 3 17.54 7 8 15 16
9 10 1 3 20.27 13 14 22 23
10 5 1 3 16.81 8 9 12 13
10 5 1 3 16.81 8 9 12 13
11 5 1 3 15.02 17 18 22 23
12 10 1 0 27.03 7 8 15 16
13 10 1 0 28.56 13 14 22 23
14 10 1 0 26.11 8 9 12 13
15 10 1 0 26.99 17 18 22 23
16 44 1 1 4.92 7 8 15 16
17 44 1 1 6.25 13 14 22 23
18 23 1 1 7.03 8 9 12 13
19 23 1 1 4.35 17 18 22 23
20 1 231 2 2 5.78 7 8 15 16
21 1 231 2 2 5.82 13 14 22 23
22 989 2 2 5.30 8 9 12 13
23 989 2 2 6.44 17 18 22 23
24 433 2 3 9.69 7 8 15 16
25 433 2 3 10.42 13 14 22 23
26 348 2 3 9.28 8 9 12 13
27 348 2 3 9.67 17 18 22 23
28 432 3 2 11.18 7 8 15 16
29 432 3 2 9.59 13 14 22 23
30 302 3 2 11.00 8 9 12 13
31 302 3 2 11.29 17 18 22 23
32 1 039 3 3 2.45 7 8 15 16
33 1 039 3 3 1.88 13 14 22 23
34 726 3 3 1.18 8 9 12 13
35 726 3 3 2.67 17 18 22 23
36 140 4 2 16.17 7 8 15 16
37 140 4 2 21.01 13 14 22 23
38 132 4 2 15.42 8 9 12 13
39 132 4 2 18.85 17 18 22 23
40 194 4 3 19.17 7 8 15 16
41 194 4 3 18.43 13 14 22 23
42 183 4 3 19.12 8 9 12 13
43 183 4 3 17.35 17 18 22 23
44 1 272 4 4 18.37 7 8 15 16
45 1 272 4 4 18.03 13 14 22 23
46 1 203 4 4 19.53 8 9 12 13
47 1 203 4 4 18.42 17 18 22 23
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Table 12: Historic energy mix (%) that was supplied in Canary Is-
lands during 2017.

Technology Energy Mix

Diesel 3.42
OS 31.00
OC 33.00
OCC 25.00
Wind 4.26
PV 2.94
Hydroelectric 0.03
Biogas 0.10

Appendix B provides details regarding how the represen-
tative weeks that are used to capture electricity-system
operations are selected.

5. Case-Study Results

Tables 8–11 summarize case-study results. Insights
that are drawn from the 19 cases are provided in the sub-
sequent discussion.

5.1. Case-Study Calibration

The first row of Table 8 shows Canary Islands’s ac-
tual generation mix during 2017 and Table 12 summarizes
the corresponding actual generation mix. Contrasting Ta-
ble 12 with the first row of Table 9 shows that our case
study overestimates and underestimates energy from diesel
and OC units, respectively. This discrepancy may be due
to differences between how we model operational costs and
regulations that govern the operation of Canary Islands’s
electricity system. Regulations consider fixed operation
and maintenance and fuel-logistic costs, which are distinct
from fuel costs. Our objective function follows other works
[2, 48]. Our omission of these costs means that our model
weighs fuel costs differently than is done under current
practice [6, 13, 41]. Despite the differences between Ta-
bles 9 and 12, the optimized costs that are reported in the
first row of Table 10 are within 1% of actual estimates of
the cost of Canary Islands’s electricity system.

5.2. Business As Usual and the Role of Transmission

Table 8 reveals two major differences between actual

year-2017 generation capacity and optimized business-as-
usual capacity. Actual capacity is about 44%–46% higher
than optimized levels, with differences in the capacity mix.
There was about 412 MW of renewable-energy capacity
during 2017 as opposed to optimized capacities of 20 MW–
24 MW. The optimized capacity mixes include a subset
of relatively low-investment-cost OS units. The optimized
capacity mixes rely more on OC as opposed to diesel units,
due to high investment costs of the latter. The optimized
capacity mixes build less OCC capacity than existed dur-
ing 2017.

Table 9 shows similar energy-supply mixes with actual
and optimized capacity mixes, with one notable difference.
With the actual year-2017 capacity mix, the optimized
energy mix relies more upon renewable units, compared to
the energy mix that results from the optimized business-
as-usual capacity levels.

Developing renewable energy in Canary Islands cannot
be justified solely by pecuniary cost. Indeed, renewable-
energy resources incur additional ancillary costs, due to
the treatment of renewable-energy units in the reserve
requirements. For example, consider a candidate wind
generator with the case study’s 27% annual-average ca-
pacity factor. 3.70 MW of capacity must be built for
such a unit to produce 1.00 MWh of energy. The re-
serve criteria require an additional 2.00 MW of capacity
from a resource that can provide upward reserves, giving a
5.70-MW capacity requirement. Conversely, 3.00 MW of
thermal capacity provides the same energy and reserves.
Thus, renewable resources in Canary Islands are deployed
for reasons other than cost. The business-as-usual cases
show that OCC units are used predominantly for reserves.
Other case-study variants that yield more renewable gener-
ation have more OCC units to meet reserve requirements.

Table 11 shows that business as usual sees lines con-
necting either Tenerife and La Gomera or Gran Canaria
and Fuerteventura, which are interconnectors that are pro-
posed currently by Red Eléctrica de España, being built.
These lines allow for about 3% cost decreases compared
to no transmission investment. These cost savings arise
mainly from using relatively low-cost OCC capacity to
meet energy needs of islands with higher-cost local gen-
eration.

5.3. The Role of Renewable Energy

The renewable-energy cases yield (relative to business
as usual) higher renewable-resource penetrations. The ad-
ditional candidate renewable-generation units are econom-
ically favorable compared to resources in Canary Islands
during 2017. The amount of thermal generation built de-
creases (relative to business as usual) in the renewable-
energy cases, especially without transmission investment.
Relative to no transmission investment, transmission re-
sults in less renewable-generation capacity, which is dis-
placed by oil-fired generation, which is built on larger is-
lands to supply smaller islands.

5.4. Additional Energy-Storage Capacity

The energy-storage-technology cases yield reductions
(relative to business as usual) in the amount of genera-
tion capacity that is built. Energy storage provides oper-
ating reserves, which reduces the need for generation ca-
pacity. There are some changes in the energy mix, which
means that energy storage impacts generation-fleet oper-
ation. The energy-storage-technology cases see 237 MW–
292 MW and 290 MW–300 MW, respectively, of battery
energy storage and PHS built. This can be contrasted with
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Table 8: Optimized generation capacity (MW) that is built in 19 variants of case study.

Case Diesel OS OC OCC Wind PV Hydroelectric Biogas

Calibration 465.6 482.6 477.6 865.4 223.9 182.0 1.9 3.7
Business-as-Usual 366.5 423.4 469.9 596.4 18.9 1.3 1.9 0.0
Business-as-Usual + ac 339.5 413.2 475.3 612.1 22.0 0.0 1.9 0.0
Business-as-Usual + HVDC 296.5 403.6 476.1 648.7 18.5 0.0 1.9 0.0
Renewable 331.4 306.1 458.6 638.6 160.0 20.0 13.6 4.8
Renewable + ac 332.4 412.5 476.1 606.9 34.1 2.0 13.5 0.0
Renewable + HVDC 275.0 416.3 477.6 641.2 12.1 4.1 13.6 0.0
Energy Storage 203.5 409.6 357.8 337.6 13.7 0.0 1.9 0.0
Energy Storage + ac 206.7 404.2 357.8 382.9 14.8 0.0 1.9 0.0
Energy Storage + HVDC 145.1 424.4 357.3 413.9 15.4 0.0 1.9 0.0
EV 342.9 409.6 417.6 556.4 21.0 0.0 1.9 0.0
EV + ac 342.5 417.9 415.5 550.1 22.6 0.0 1.9 0.0
EV + HVDC 293.3 406.0 412.1 596.3 18.5 0.0 1.9 0.0
All Technology + ac 177.3 417.1 350.9 398.8 42.9 4.8 13.6 0.0
All Technology + HVDC 199.6 410.2 354.8 336.1 36.0 1.4 13.6 0.0
e5.83/t Carbon Price + ac 465.6 482.6 477.6 865.4 1 025.0 426.5 13.6 109.5
e24.75/t Carbon Price + ac 465.6 482.6 477.6 865.4 1 025.0 426.5 13.6 109.5
e50.00/t Carbon Price + ac 465.6 482.6 477.6 865.4 1 025.0 426.5 13.6 109.5
e100.00/t Carbon Price + ac 465.6 482.6 477.6 865.4 1 025.0 426.5 13.6 109.5

Table 9: Optimized energy mix (%) that is supplied in 19 variants of case study.

Case Diesel OS OC OCC Wind PV Hydroelectric Biogas

Calibration 17.2 44.6 6.2 22.9 6.0 2.9 0.2 0.1
Business-as-Usual 17.6 40.0 6.7 35.1 0.4 0.0 0.2 0.0
Business-as-Usual + ac 16.7 39.2 5.8 37.7 0.5 0.0 0.2 0.0
Business-as-Usual + HVDC 12.4 38.6 5.0 43.4 0.4 0.0 0.2 0.0
Renewable 14.1 39.0 5.2 36.2 4.2 0.3 1.1 0.0
Renewable + ac 16.0 39.1 6.2 36.6 0.9 0.0 1.1 0.0
Renewable + HVDC 11.1 39.6 4.6 42.3 1.2 0.1 1.1 0.0
Energy Storage 15.9 39.5 15.5 28.5 0.4 0.0 0.2 0.0
Energy Storage + ac 16.1 39.0 12.5 31.8 0.4 0.0 0.2 0.0
Energy Storage + HVDC 9.4 40.7 13.0 36.4 0.4 0.0 0.2 0.0
EV 17.4 38.9 7.4 35.6 0.5 0.0 0.2 0.0
EV + ac 17.4 39.4 7.0 35.5 0.5 0.0 0.2 0.0
EV + HVDC 12.1 38.5 6.1 42.6 0.4 0.0 0.2 0.0
All Technology + ac 11.6 40.0 12.0 34.0 1.2 0.1 1.1 0.0
All Technology + HVDC 15.2 39.3 14.6 28.6 1.1 0.0 1.1 0.0
e5.83/t Carbon Price + ac 14.6 36.3 1.3 11.2 25.6 6.8 1.0 3.1
e24.75/t Carbon Price + ac 14.9 33.5 0.5 12.3 25.9 6.9 1.1 4.9
e50.00/t Carbon Price + ac 14.8 4.3 0.3 42.1 25.8 6.9 1.1 4.7
e100.00/t Carbon Price + ac 15.6 1.2 0.0 44.6 25.9 6.9 1.1 4.6

11



Table 10: Breakdown of optimized cost (e million) in 19 variants of case study.

Case Investment Operation Carbon

Calibration 271.9 122.2 n/a
Business-as-Usual 179.1 149.6 n/a
Business-as-Usual + ac 177.5 142.6 n/a
Business-as-Usual + HVDC 177.3 142.4 n/a
Renewable 192.6 132.9 n/a
Renewable + ac 178.2 139.6 n/a
Renewable + HVDC 179.4 136.8 n/a
Energy Storage 148.4 151.3 n/a
Energy Storage + ac 153.6 147.3 n/a
Energy Storage + HVDC 164.5 141.8 n/a
EV 165.8 146.5 n/a
EV + ac 167.0 145.4 n/a
EV + HVDC 167.4 144.3 n/a
All Technology + ac 154.3 141.5 n/a
All Technology + HVDC 144.2 147.5 n/a
e5.83/t Carbon Price + ac 401.9 83.9 27.3
e24.75/t Carbon Price + ac 404.0 91.1 109.4
e50.00/t Carbon Price + ac 402.8 130.6 180.2
e100.00/t Carbon Price + ac 411.7 146.6 350.4

Table 11: Transmission lines that are built (indicated by ‘+’) in 11 variants of case study that allow transmission investment.

Case 0 ↔ 4 8 ↔ 9 12 ↔ 13 0 ↔ 5 1 ↔ 9 9 ↔ 10 11 ↔ 12

Calibration +
Business-as-Usual + ac + + +
Business-as-Usual + HVDC + + +
Renewable + ac + + +
Renewable + HVDC + + +
Energy Storage + ac + + +
Energy Storage + HVDC + + + +
EV + ac + +
EV + HVDC + +
All Technology + ac + + +
All Technology + HVDC +
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about 11 MW under business as usual. Our cases see more
PHS as opposed to battery energy storage built, which is
contrary to other analyses [13] and may stem from our
optimizing both the energy and power capacities of the
energy-storage units. Other works optimize power capac-
ities only.

5.5. EVs and the Provision of Electricity-System Services

Adding EVs that provide electricity-system services re-
duces the amount of generating capacity that is built rel-
ative to business as usual and the renewable-technology
cases. More renewable-energy capacity is built with EVs
relative to the energy-storage-technology cases, suggesting
that electricity-system services from EVs aid renewable-
energy integration. EV charging does not require added
generating capacity (relative to business as usual), because
EV charging is timed and co-ordinated with electricity-
system operations. Thus, subject to constraints surround-
ing mobility usage, EV charging is scheduled to use avail-
able generation capacity during off-peak periods.

Fig. 2 shows optimized hourly electricity-system opera-
tions during the first representative operating week under
case EV + ac. The positive bars indicate power that is
provided by resources and the negative bars indicate power
that is consumed for EV charging. The figure shows that
EV charging is scheduled during off-peak overnight hours.

Figure 2: Optimized hourly operation of electricity system during
first representative operating week under case EV + ac.

Fig. 2 shows that EVs discharge very little to the elec-
tricity system. The primary electricity-system benefit of
EVs is providing operating reserves, which is consistent
with some analyses [9, 47] and contrary to others [26, 27].
These differences may be due to some works using simpler
representations of electricity-system operations compared
to our model. Current regulations do not allow EVs to
provide operating reserves to the Canary Islands electric-
ity system. Our results suggest that relaxing these rules
can provide cost savings.

Despite needing charging energy, EVs provide about
2% cost saving relative to business as usual. Avoided
generation-capacity investments outweigh the cost of EV-
charging energy. Total costs are lower under the energy-
storage-technology compared to the EV-technology cases,
because the limited number of EVs do not allow the same
reduction in generation-capacity investment that energy
storage allows. Thus, if there is a larger EV fleet, there
may be additional cost savings, especially because EV
owners bear the costs of their vehicle batteries.

5.6. All Technology Options

All-technology-case costs are about 5% lower than the
renewable-technology cases, which are the least costly of
the aforementioned cases. There is more renewable-energy
and less energy-storage capacity, respectively, under the
all-technology cases than under the renewable- and energy-
storage-technology cases. With candidate ac transmission
lines, the energy-storage-technology cases yield 237 MW
and 298 MW of battery energy storage and PHS, respec-
tively. With candidate HVDC transmission lines these in-
vestment levels are 291 MW and 292 MW, respectively.
These values decrease to 126 MW, 280 MW, 160 MW,
and 291 MW, respectively, in the all-technology cases with
candidate ac and HVDC lines.

The combination of energy storage and EVs provid-
ing electricity-system services accommodates more renew-
able energy than either technology does individually. EVs
providing electricity-system services reduces the amount
of energy-storage capacity that must be built. EVs and
energy storage providing operating reserves obviates the
need to build transmission lines to deliver reserves to other
nodes. For instance, one transmission line is built under
the all-technology + HVDC case, whereas two or more are
built under all of the other cases.

5.7. Carbon Pricing

Carbon pricing yields all of the candidate units being
built and very similar energy mixes between the four price
levels. Carbon pricing necessitates a shift towards using
renewable energy, with the operating-reserve requirements
increasing the need for fossil-fueled capacity.

Higher carbon prices result in more energy-storage ca-
pacity being built to reduce the use of fossil-fueled gen-
eration. However, less energy storage is built compared
to the energy-storage- and all-technology cases, because
fossil-fueled capacity must be built with carbon pricing
to meet operating-reserve requirements. All available en-
ergy storage is not built. Thus, an expanded set of can-
didate renewable-energy units may yield more renewable-
energy and energy-storage investment compared to the lev-
els that we observe. No transmission lines are built with
carbon pricing. Without carbon pricing, transmission lines
are used to deliver low-cost fossil-fueled generation from
Tenerife to other islands. With carbon pricing, such use
of transmission lines is uneconomic.
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Costs are higher with as opposed to without carbon
pricing. Carbon pricing has an indirect effect on invest-
ments by requiring more generation capacity. Carbon pric-
ing has a more direct effect in increasing the operating cost
of fossil-fueled generation. If the carbon price internalizes
the social cost of carbon, this direct cost is not a social-
welfare loss. Rather, the carbon price is a wealth transfer
from the carbon emitter to whomever collects the payment
and should be excluded from considering the social cost of
carbon pricing [58].

6. Conclusions

Our model optimizes capacity planning for island elec-
tricity systems and capture numerous technology options.
Clustered weeks, which outperform clustered days vis-à-

vis capturing energy storage and electricity-system flexi-
bility, are used to represent electricity-system operations
[59]. We apply our model to a case study that is based
on Canary Islands, which allows us to understand how
its operating-reserve restrictions impact planning and de-
carbonization. Technologies are assessed individually and
together, with the key finding that without internalizing
the social cost of carbon, fossil-fueled generation is the
predominantly used technology. We do not opine on a
‘correct’ carbon price, as this depends upon the societal
cost of carbon emissions.

OCC and OS units are the primary technologies that
are used to meet operating-reserve and energy require-
ments, respectively. On average, they account for 31% and
25% of installed capacity and supply about 40% and 36%
of the energy mix, respectively. Transmission lines should
be assessed carefully. Their primary value is in serving
loads on remote islands with fossil-fueled generation from
larger islands, which yields modest cost savings of 3%
compared to cases with no transmission investment. This
value of transmission erodes with carbon policy. Energy-
storage technologies allow up to 50% and 23% reductions
in needed generation capacity and total costs, respectively.
The value of energy storage is maximized if its power- and
energy-capacities are optimized and the associated costs
are considered. The primary electricity-system benefit of
EVs is providing operating reserves. Thus, relaxing re-
strictions on such use of EVs would be valuable. Com-
bining all of the technologies that we consider provides
cost savings close to 25% compared to actual system costs.
However, absent explicit carbon policy, the share of renew-
able energy does not increase significantly. Indeed, carbon
pricing increases renewable-energy use, up to a maximum
of about 40% on an energy basis, with a commensurate
increase in fossil-fueled capacity to meet operating-reserve
requirements.

This work develops a capacity-planning model that is
tailored to island electricity systems. Future work could
develop a dynamic variant of the model, whereby there
are multiple investment stages [1]. Further case studies

could examine a broader set of technology options, includ-
ing alternative energy-storage and renewable-energy sys-
tems (e.g., offshore wind, ocean, and geothermal energy).
Finally, the effects of relaxing operational constraints on
renewable penetration and power reliability and quality
should be addressed.
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Appendix A. Mathematical Model Formulation

Appendix A.1. Model Notation

We begin by defining the following model indices.
c, c′ indices of thermal units
e index of EV fleets
g, g′ indices of renewable units
i index of islands
l index of transmission lines
n, n′ indices of electricity-system nodes
o index of operating conditions
ref index of reference electricity-system node
s index of energy-storage units
t index of hours that correspond to an operating

condition
ψ index of EV trips

Next, we define the following model sets.
I set of islands
N set of electricity-system nodes
Ni set of electricity-system nodes that are located

on island i
O set of operating conditions
T set of hours that correspond to an operating

condition
Ψ set of EV trips
ΩCn set of thermal units that are located at node n
ΩEn,o,t set of EV fleets that are located at node n dur-

ing hour t of operating condition o
ΩGn set of renewable units that are located at

node n
ΩL set of existing transmission lines
ΩL+ set of candidate transmission lines
ΩL,ac set of existing and candidate ac transmission

lines
ΩSn set of energy-storage units that are located at

node n
We divide the ac and HVDC transmission lines into

existing and candidate lines [2]. The set, ΩEn,o,t, is time
dependent to represent spatial mobility. EVs are used for
mobility during a set, Ψ, of trips, during which time they
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are available for neither discharging to the electricity sys-
tem nor charging. EVs are grid-connected and available for
charging and discharging while they are not being driven.

Next, we define the following model parameters.
Bl susceptance of transmission line l (S)
CC,κc shutdown cost of thermal unit c (e)
CC,λc start-up cost of thermal unit c (e)
F̄max
l capacity of transmission line l (MW)
fg,o,t hour-t capacity factor of renewable unit g dur-

ing operating condition o (p.u.)
ICc investment cost of thermal unit c (e/MW)
IC,max investment budget for thermal units (e)
IGg investment cost of renewable unit g (e/MW)
IG,max investment budget for renewable units (e)
ILl investment cost of transmission line l (e)
IL,max investment budget for transmission lines (e)
IS,γs investment cost of power capacity of energy-

storage unit s (e/MW)
IS,ξs investment cost of energy capacity of energy-

storage unit s (e/MWh)
IS,max investment budget for energy-storage units (e)
KC
c generation cost of thermal unit c (e/MWh)

KD load-shedding cost (e/MWh)
KE,T
e discharging cost of EV fleet e (e/MWh)

KG
g generation cost of renewable unit g (e/MWh)

KS,T
s cost of discharging energy from energy-storage

unit s (e/MWh)
M a large constant
P̄C,max
c maximum capacity of thermal unit c that can

be built (MW)
p̄C,min
c minimum operating point of thermal unit c

while it is online (MW)

PD,max
n,o,t hour-t load at node n during operating condi-

tion o (MW)
P̄E,max
e charging and discharging capacity of EV fleet e

(MW)
P̄G,max
g maximum capacity of renewable unit g that can

be built (MW)
p̄G,min
g minimum operating point of renewable unit g

while it is online (MW)
P̄S,γ,max
s maximum power capacity of energy-storage

unit s that can be built (MW)
P̄S,ξ,max
s maximum energy capacity of energy-storage

unit s that can be built (MW)
RC,−c maximum ramp-down rate of thermal unit c

(MW/hour)
RC,+c maximum ramp-up rate of thermal unit c

(MW/hour)
RG,−g maximum ramp-down rate of renewable unit g

(MW/hour)
RG,+g maximum ramp-up rate of renewable unit g

(MW/hour)
ξ̄S,min
s minimum state of energy (SOE) of energy-

storage unit s (MWh)
ǫCc output-based carbon-emission rate of thermal

unit c (t/MWh)
ǫGg output-based carbon-emission rate of renew-

able unit g (t/MWh)
ζrl receiving-end node of transmission line l
ζsl sending-end node of transmission line l
ηE,Pe charging efficiency of EV fleet e (p.u.)
ηE,Te discharging efficiency of EV fleet e (p.u.)
ηS,Ps charging efficiency of energy-storage unit s

(p.u.)
ηS,Ts discharging efficiency of energy-storage unit s

(p.u.)
ρ̄E,max
e maximum SOE of EV fleet e (MWh)
ρ̄E,min
e minimum SOE of EV fleet e (MWh)
ρ̄E,min,ψ
e minimum SOE of EV fleet e as of the beginning

of its ψth trip (MWh)
σEe,o,t hour-t mobility-related energy consumption of

EV fleet e during operating condition o (MWh)
Υo weight of operating condition o (weeks)
φA,ψe arrival time of EV fleet e for its ψth trip (h)
φD,ψe departure time of EV fleet e for its ψth trip (h)
χ carbon-emissions price (e/t)

Finally, we define the following decision variables.
pCc,o,t hour-t production of thermal unit c during op-

erating condition o (MW)
pC,max
c capacity of thermal unit c that is built (MW)
pDn,o,t hour-t load at node n that is curtailed during

operating condition o (MW)
pGg,o,t hour-t production of renewable unit g during

operating condition o (MW)
pG,max
g capacity of renewable unit g that is built (MW)
pLl,o,t hour-t power flow through transmission line l

during operating condition o (MW)
pS,γ,max
s power capacity of energy-storage unit s that is

built (MW)
pS,ξ,max
s energy capacity of energy-storage unit s that is

built (MW)

rC,down
c,o,t hour-t downward spinning reserve that is pro-

vided by thermal unit c during operating con-
dition o (MW)

rC,upc,o,t hour-t upward spinning reserve that is provided
by thermal unit c during operating condition o
(MW)

rE,down
e,o,t hour-t downward spinning reserve that is pro-

vided by EV fleet e during operating condi-
tion o (MW)

rE,upe,o,t hour-t upward spinning reserve that is provided
by EV fleet e during operating condition o
(MW)

rG,down
g,o,t hour-t downward spinning reserve that is pro-

vided by renewable unit g during operating
condition o (MW)

rS,down
s,o,t hour-t downward spinning reserve that is pro-

vided by energy-storage unit s during operating
condition o (MW)

rS,ups,o,t hour-t upward spinning reserve that is provided
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by energy-storage unit s during operating con-
dition o (MW)

wCc,o,t hour-t upward non-spinning reserve that is pro-
vided by thermal unit c during operating con-
dition o (MW)

wSs,o,t hour-t upward non-spinning reserve that is pro-
vided by energy-storage unit s during operating
condition o (MW)

xLl equals 1 if candidate transmission line l is built
and equals 0 otherwise

γS,Ps,o,t hour-t charging of energy-storage unit s during
operating condition o (MW)

γS,Ts,o,t hour-t discharging of energy-storage unit s dur-
ing operating condition o (MW)

δCc,o,t equals 1 if thermal unit c is online during hour t
of operating condition o and equals 0 otherwise

θn,o,t hour-t phase angle of node n during operating
condition o (rad)

κCc,o,t equals 1 if thermal unit c shuts-down during
hour t of operating condition o and equals 0
otherwise

λCc,o,t equals 1 if thermal unit c starts-up during
hour t of operating condition o and equals 0
otherwise

λSs,o,t equals 1 if energy-storage unit s is charging
during hour t of operating condition o and
equals 0 otherwise

ξSs,o,t ending hour-t SOE of energy-storage unit s
during operating condition o (MWh)

ρE,Le,o,t ending hour-t SOE of EV fleet e during oper-
ating condition o (MWh)

ρE,Pe,o,t hour-t charging of EV fleet e during operating
condition o (MW)

ρE,Te,o,t hour-t discharging of EV fleet e during operat-
ing condition o (MW)

Appendix A.2. Model Formulation

Our model formulation is:

min
∑

l∈ΩL+

ILl x
L
l +

∑

n∈N







∑

c∈ΩCn

ICc p
C,max
c (A.1)

+
∑

g∈ΩGn

IGg p
G,max
g

+
∑

s∈ΩSn

(

IS,γs pS,γ,max
s + IS,ξs pS,ξ,max

s
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Υo ·







∑

c∈ΩCn

[(

KC
c + ǫCc χ

)

pCc,o,t

+CC,κc κCc,o,t + CC,λc λCc,o,t
]

+
∑

g∈ΩGn

(

KG
g + ǫGg χ

)

pGg,o,t +KDpDn,o,t

+
∑

s∈ΩSn

KS,T
s γS,Ts,o,t +

∑

e∈ΩEn,o,t

KE,T
e ρE,Te,o,t













s.t. 0 ≤ pC,max
c ≤ P̄C,max

c ; ∀n ∈ N , c ∈ ΩCn (A.2)

0 ≤ pG,max
g ≤ P̄G,max

g ; ∀n ∈ N , g ∈ ΩGn (A.3)

0 ≤ pS,γ,max
s ≤ P̄S,γ,max

s ; ∀n ∈ N , s ∈ ΩSn (A.4)

0 ≤ pS,ξ,max
s ≤ P̄S,ξ,max

s ; ∀n ∈ N , s ∈ ΩSn (A.5)
∑

n∈N ,c∈ΩCn

ICc p
C,max
c ≤ IC,max (A.6)

∑

n∈N ,g∈ΩGn

IGg p
G,max
g ≤ IG,max (A.7)

∑

l∈ΩL+

ILl x
L
l ≤ IL,max (A.8)

∑

n∈N ,s∈ΩSn

(

IS,γs pS,γ,max
s + IS,ξs pS,ξ,max

s

)

(A.9)

≤ IS,max

∑

c∈ΩCn

pCc,o,t +
∑

g∈ΩGn

pGg,o,t (A.10)

+
∑

s∈ΩSn

(

γS,Ts,o,t − γS,Ps,o,t

)

+
∑

e∈ΩEn,o,t

(

ρE,Te,o,t − ρE,Pe,o,t

)

+
∑

l∈ΩL∪ΩL+:ζr
l
=n

pLl,o,t −
∑

l∈ΩL∪ΩL+:ζs
l
=n

pLl,o,t

= PD,max
n,o,t − pDn,o,t; ∀n ∈ N , o ∈ O, t ∈ T

0 ≤ pDn,o,t ≤ PD,max
n,o,t ; ∀n ∈ N , o ∈ O, t ∈ T (A.11)

∑

n∈Ni





∑

c∈ΩCn

rC,upc,o,t +
∑

e∈ΩEn,o,t

rE,upe,o,t (A.12)

+
∑

s∈ΩSn

rS,ups,o,t



 ≥ 0.5pCc′,o,t;

∀i ∈ I, n′ ∈ Ni, c
′ ∈ ΩCn′ , o ∈ O, t ∈ T

∑

n∈Ni





∑

c∈ΩCn

rC,upc,o,t +
∑

e∈ΩEn,o,t

rE,upe,o,t (A.13)

+
∑

s∈ΩSn

rS,ups,o,t



 ≥ 0.5pGg′,o,t;

∀i ∈ I, n′ ∈ Ni, g
′ ∈ ΩGn′ , o ∈ O, t ∈ T

∑

n∈Ni





∑

c∈ΩCn

(

rC,upc,o,t + wCc,o,t

)

+
∑

e∈ΩEn,o,t

rE,upe,o,t (A.14)

+
∑

s∈ΩSn

(

rS,ups,o,t + wSs,o,t

)



 ≥ 2pCc′,o,t;

∀i ∈ I, n′ ∈ Ni, c
′ ∈ ΩCn′ , o ∈ O, t ∈ T

∑

n∈Ni





∑

c∈ΩCn

(

rC,upc,o,t + wCc,o,t

)

+
∑

e∈ΩEn,o,t

rE,upe,o,t (A.15)
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+
∑

s∈ΩSn

(

rS,ups,o,t + wSs,o,t

)



 ≥ 2pGg′,o,t;

∀i ∈ I, n′ ∈ Ni, g
′ ∈ ΩGn′ , o ∈ O, t ∈ T

∑

n∈Ni





∑

c∈ΩCn

(

rC,upc,o,t + wCc,o,t

)

+
∑

e∈ΩEn,o,t

rE,upe,o,t (A.16)

+
∑

s∈ΩSn

(

rS,ups,o,t + wSs,o,t

)





≥
∑

n∈Ni

(

PD,max
n,o,t+1 − PD,max

n,o,t

)

; ∀i ∈ I, o ∈ O, t ∈ T

∑

n∈Ni





∑

c∈ΩCn

(

rC,upc,o,t + wCc,o,t

)

+
∑

e∈ΩEn,o,t

rE,upe,o,t (A.17)

+
∑

s∈ΩSn

(

rS,ups,o,t + wSs,o,t

)



 ≥ pLl,o,t; ∀i ∈ I, o ∈ O,

t ∈ T , l ∈ ΩL ∪ ΩL+ : ζrl ∈ Ni, ζ
s
l 6∈ Ni

∑

n∈Ni





∑

c∈ΩCn

rC,down
c,o,t +

∑

e∈ΩEn,o,t

rE,down
e,o,t (A.18)

+
∑

g∈ΩGn

rG,down
g,o,t +

∑

s∈ΩSn

rS,down
s,o,t



 ≥ 0.5pCc′,o,t;

∀i ∈ I, n′ ∈ Ni, c
′ ∈ ΩCn′ , o ∈ O, t ∈ T

∑

n∈Ni





∑

c∈ΩCn

rC,down
c,o,t +

∑

e∈ΩEn,o,t

rE,down
e,o,t (A.19)

+
∑

g∈ΩGn

rG,down
g,o,t +

∑

s∈ΩSn

rS,down
s,o,t



 ≥ 0.5pGg′,o,t;

∀i ∈ I, n′ ∈ Ni, g
′ ∈ ΩGn′ , o ∈ O, t ∈ T

− F̄max
l ≤ pLl,o,t ≤ F̄max

l ; (A.20)

∀l ∈ ΩL, o ∈ O, t ∈ T

− F̄max
l xLl ≤ pLl,o,t ≤ F̄max

l xLl ; (A.21)

∀l ∈ ΩL+, o ∈ O, t ∈ T

pLl,o,t = Bl ·
(

θζs
l
,o,t − θζr

l
,o,t

)

; (A.22)

∀l ∈ ΩL ∩ ΩL,ac, o ∈ O, t ∈ T

−M ·
(

1− xLl
)

≤ pLl,o,t (A.23)

−Bl ·
(

θζs
l
,o,t − θζr

l
,o,t

)

≤M ·
(

1− xLl
)

;

∀l ∈ ΩL+ ∩ ΩL,ac, o ∈ O, t ∈ T

− π ≤ θn,o,t ≤ π; ∀n ∈ N , o ∈ O, t ∈ T (A.24)

θref,o,t = 0; ∀o ∈ O, t ∈ T (A.25)

0 ≤ pCc,o,t ≤ pC,max
c ; (A.26)

∀n ∈ N , c ∈ ΩCn , o ∈ O, t ∈ T

pCc,o,t + rC,upc,o,t ≤ pC,max
c δCc,o,t; (A.27)

∀n ∈ N , c ∈ ΩCn , o ∈ O, t ∈ T

pCc,o,t + rC,upc,o,t + wCc,o,t ≤ pC,max
c ; (A.28)

∀n ∈ N , c ∈ ΩCn , o ∈ O, t ∈ T

p̄C,min
c δCc,o,t ≤ pCc,o,t − rC,down

c,o,t ; (A.29)

∀n ∈ N , c ∈ ΩCn , o ∈ O, t ∈ T

0 ≤ rC,upc,o,t ≤ pC,max
c ; (A.30)

∀n ∈ N , c ∈ ΩCn , o ∈ O, t ∈ T

0 ≤ wCc,o,t ≤ pC,max
c ; (A.31)

∀n ∈ N , c ∈ ΩCn , o ∈ O, t ∈ T

0 ≤ rC,down
c,o,t ≤ pC,max

c ; (A.32)

∀n ∈ N , c ∈ ΩCn , o ∈ O, t ∈ T

pCc,o,t + rC,upc,o,t + wCc,o,t − pCc,o,t−1 ≤ RC,+c ; (A.33)

∀n ∈ N , c ∈ ΩCn , o ∈ O, t ∈ T

−RC,−c ≤ pCc,o,t − rC,down
c,o,t − pCc,o,t−1; (A.34)

∀n ∈ N , c ∈ ΩCn , o ∈ O, t ∈ T

δCc,o,t − δCc,o,t−1 = λCc,o,t − κCc,o,t; (A.35)

∀n ∈ N , c ∈ ΩCn , o ∈ O, t ∈ T

0 ≤ pGg,o,t ≤ fg,o,tp
G,max
g ; (A.36)

∀n ∈ N , g ∈ ΩGn , o ∈ O, t ∈ T

p̄G,min
g fg,o,t ≤ pGg,o,t − rG,down

g,o,t ; (A.37)

∀n ∈ N , g ∈ ΩGn , o ∈ O, t ∈ T

0 ≤ rG,down
g,o,t ≤ fg,o,tp

G,max
g ; (A.38)

∀n ∈ N , g ∈ ΩGn , o ∈ O, t ∈ T

pGg,o,t − pGg,o,t−1 ≤ RG,+g ; (A.39)

∀n ∈ N , g ∈ ΩGn , o ∈ O, t ∈ T

−RG,−g ≤ pGg,o,t − rG,down
g,o,t − pGg,o,t−1; (A.40)

∀n ∈ N , g ∈ ΩGn , o ∈ O, t ∈ T

0 ≤ γS,Ps,o,t ≤ pS,γ,max
s λSs,o,t; (A.41)

∀n ∈ N , s ∈ ΩSn , o ∈ O, t ∈ T

0 ≤ γS,Ts,o,t/η
S,T
s ≤ pS,γ,max

s · (1− λSs,o,t); (A.42)

∀n ∈ N , s ∈ ΩSn , o ∈ O, t ∈ T

ξ̄S,min
s ≤ ξSs,o,t ≤ pS,ξ,max

s ; (A.43)

∀n ∈ N , s ∈ ΩSn , o ∈ O, t ∈ T

ξSs,o,t = ξSs,o,t−1 + ηS,Ps γS,Ps,o,t − γS,Ts,o,t/η
S,T
s ; (A.44)

∀n ∈ N , s ∈ ΩSn , o ∈ O, t ∈ T

ξSs,o,|T | ≥ ξSs,o,0 = 0.5pS,ξ,max
s ; (A.45)

∀n ∈ N , s ∈ ΩSn , o ∈ O
(

rS,ups,o,t + wSs,o,t

)

/ηS,Ts ≤ ξSs,o,t − ξ̄S,min
s ; (A.46)

∀n ∈ N , s ∈ ΩSn , o ∈ O, t ∈ T
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(

γS,Ts,o,t + rS,ups,o,t + wSs,o,t

)

/ηS,Ts ≤ pS,γ,max
s ; (A.47)

∀n ∈ N , s ∈ ΩSn , o ∈ O, t ∈ T

rS,down
s,o,t ≤ pS,ξ,max

s − ξSs,o,t; (A.48)

∀n ∈ N , s ∈ ΩSn , o ∈ O, t ∈ T

γS,Ps,o,t + rS,down
s,o,t ≤ pS,γ,max

s ; (A.49)

∀n ∈ N , s ∈ ΩSn , o ∈ O, t ∈ T

0 ≤ ρE,Pe,o,t ≤ P̄E,max
e ; (A.50)

∀n ∈ N , o ∈ O, t ∈ T , e ∈ ΩEn,o,t

0 ≤ ρE,Te,o,t/η
E,T
e ≤ P̄E,max

e ; (A.51)

∀n ∈ N , o ∈ O, t ∈ T , e ∈ ΩEn,o,t

ρ̄E,min
e ≤ ρE,Le,o,t ≤ ρ̄E,max

e ; (A.52)

∀n ∈ N , o ∈ O, t ∈ T , e ∈ ΩEn,o,t

ρE,Le,o,t = ρE,Le,o,t−1 + ηE,Pe ρE,Pe,o,t − ρE,Te,o,t/η
E,T
e (A.53)

− σEe,o,t; ∀n ∈ N , o ∈ O, t ∈ T , e ∈ ΩEn,o,t

ρE,L
e,o,|T | ≥ ρE,Le,o,0 = 0.5ρ̄E,max

e ; (A.54)

∀n ∈ N , o ∈ O, e ∈ ΩEn,o,0 ∪ ΩEn,o,|T |

ρE,L
e,o,φ

D,ψ
e

≥ ρ̄E,min,ψ
e ; (A.55)

∀n ∈ N , o ∈ O, ψ ∈ Ψ, e ∈ ΩE
n,o,φ

D,ψ
e

rE,upe,o,t /η
E,T
e ≤ ρE,Le,o,t − ρ̄E,min

e ; (A.56)

∀n ∈ N , o ∈ O, t ∈ T , e ∈ ΩEn,o,t
(

ρE,Te,o,t + rE,upe,o,t

)

/ηE,Te ≤ P̄E,max
e ; (A.57)

∀n ∈ N , o ∈ O, t ∈ T , e ∈ ΩEn,o,t

rE,down
e,o,t ≤ ρ̄E,max

e − ρE,Le,o,t; (A.58)

∀n ∈ N , o ∈ O, t ∈ T , e ∈ ΩEn,o,t

ρE,Pe,o,t + rE,down
e,o,t ≤ P̄E,max

e ; (A.59)

∀n ∈ N , o ∈ O, t ∈ T , e ∈ ΩEn,o,t

rE,down
e,o,t , rE,upe,o,t , ρ

E,P
e,o,t, ρ

E,T
e,o,t = 0; (A.60)

∀n ∈ N , o ∈ O, t ∈
⋃

ψ∈Ψ

[

φD,ψe , φA,ψe

]

, e ∈ ΩEn,o,t

xLl ∈ {0, 1}; ∀l ∈ ΩL+ (A.61)

δCc,o,t, κ
C
c,o,t, λ

C
c,o,t ∈ {0, 1}; (A.62)

∀n ∈ N , c ∈ ΩCn , o ∈ O, t ∈ T

λSs,o,t ∈ {0, 1}; ∀n ∈ N , s ∈ ΩSn , o ∈ O, t ∈ T (A.63)

rS,down
s,o,t , rS,ups,o,t , w

S
s,o,t ≥ 0; (A.64)

∀n ∈ N , s ∈ ΩSn , o ∈ O, t ∈ T

rE,down
e,o,t , rE,upe,o,t ≥ 0; (A.65)

∀n ∈ N , o ∈ O, t ∈ T , e ∈ ΩEn,o,t.

Objective function (A.1) minimizes cost. Investment-

cost parameters, ICc , IGg , ILl , and I
S
s , are annualized by:

j · (1 + j)y

(1 + j)y − 1
;

where y is the asset lifetime and j is the real interest rate.
Constraints (A.2)–(A.9) and (A.61) restrict investment

decisions and the remaining restrict operating decisions.
Constraints (A.2)–(A.9) impose resource and budget re-
strictions on investments. Transmission investments are
restricted to be binary by (A.61).

Constraints (A.10) impose load balance and (A.11) re-
strict curtailed load to be no greater than demand.

Constraints (A.12)–(A.19) impose requirements for up-
ward and downward spinning and upward non-spinning re-
serves on each individual island, based on procedures for
Canary Islands [5, 6, 13, 41]. Constraints (A.12)–(A.13)
require that upward spinning reserves on each island be
at least half of the highest scheduled dispatch of any gen-
erator within that island. Constraints (A.14)–(A.15) set
similar requirements for total upward reserves, which must
be at least twice the highest scheduled dispatch of a gener-
ator within each island. Additionally, (A.16) requires that
total upward reserves for each island be at least as great
as the scheduled increase in the island’s electricity demand
from one hour to the next. Finally, (A.17) requires that
total upward reserves for each island be at least as great
as scheduled inflow into the island from each interconnec-
tor. Downward-reserve requirements are set analogously
by (A.18)–(A.19) to how (A.12)–(A.13) set upward-reserve
requirements.

Thermal generators can provide all three reserve types
and renewable generators can provide downward reserves,
which follows current practice [5, 6, 13, 41]. We allow
energy storage to provide all three reserve types and EVs
to provide spinning reserves to assess the value of these
resources as sources of operating reserves.

Constraints (A.20)–(A.21) impose power-flow limits.
Constraints (A.22)–(A.23) are linearizations of Kirchhoff’s
laws and apply only to ac lines, because HVDC lines are
modeled using a pipeline assumption. Big-M method is
used in (A.23) to enforce Kirchhoff’s laws only for candi-
date lines that are built [60]. Constraints (A.24) bound
the phase angles and (A.25) fix the reference-node phase
angles.

Constraints (A.26)–(A.35) and (A.62) restrict thermal-
unit operations. Constraints (A.26)–(A.28) require non-
negative power output, impose capacity restrictions on the
sum of power and upward reserves, and ensure no power
output and spinning reserves while a unit is offline. Con-
straints (A.29) ensure that minimum-load levels are met if
downward spinning reserves are called and that they are
provided only while units are online. Constraints (A.30)–
(A.32) impose non-negativity and capacity restrictions on
reserves. Constraints (A.33)–(A.34) are ramping restric-
tions. Constraints (A.35) define the start-up and shut-
down variables from the online variables and (A.62) im-
poses integrality on the commitment decisions.
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Constraints (A.36)–(A.40) are similar to (A.26)–(A.34)
and restrict renewable-unit operations. Constraints (A.36)
impose capacity and non-negativity restrictions on power
outputs. Constraints (A.37) enforce minimum-load levels
and (A.38) limit downward-reserve levels. Ramping re-
strictions are imposed by (A.39)–(A.40).

Constraints (A.41)–(A.49) and (A.63)–(A.64) restrict
energy-storage use [42–44]. Power limits and restrictions
against simultaneous charging and discharging of energy-
storage units are imposed by (A.41)–(A.42) and (A.63).
SOE limits are imposed by (A.43) and (A.44) define SOE
evolution. Constraints (A.45) are boundary conditions on
energy-storage units’ SOE, which is an heuristic to ascribe
value to carrying energy from one period to another [45,
46]. Constraints (A.46)–(A.49) and (A.64) impose SOE,
power, and non-negativity restrictions on reserves.

Constraints (A.50)–(A.60) and (A.65) restrict EV use.
Constraints (A.50)–(A.51) impose power constraints on
EV charging and discharging. Constraints (A.52) impose
physical limits on EV SOEs and (A.53) define how the
SOEs evolve. Constraints (A.54) are boundary conditions
on EV SOEs. Constraints (A.55) impose SOE require-
ments on each EV fleet as of the departure time of each
trip. Constraints (A.56)–(A.59) and (A.65) impose SOE,
power, and non-negativity limits on reserves provided. Fi-
nally, (A.60) ensure that EVs are not charged, discharged,
or providing reserves while they are being used for mobil-
ity.

Appendix B. Selection of Operating Conditions

The elements of O are selected by applying hierarchi-
cal clustering, which requires metrics between weeks and
between clusters, to the weeks of the full year [7, 61]. To
define these metrics, we represent each week as a vector of
hourly load and solar- and wind-availability features. We
use Euclidean distance and minimax linkage as the met-
rics between weeks and clusters, respectively [62]. Mini-
max linkage provides each cluster’s prototype, which is the
week from the unclustered data that is closest to the clus-
ter center. The cluster prototype is used in modeling the
corresponding operating condition, by providing the cor-
responding values of fg,o,t and P

D,max
n,o,t . The values of Υo,

∀o ∈ O are given by the number of weeks in the clusters
that correspond to the operating conditions.

Linear scaling is applied to the features before cluster-
ing. A generic feature, µ, is re-scaled to:

µ− µmin

µmax − µmin
;

where µmin and µmax are the minimum and maximum val-
ues, respectively, of the feature that are observed in the
unclustered data.

We determine |O| based on how well (A.1)–(A.65) per-
forms using the clustered compared to unclustered data.

Table B.14: Representative operating weeks that are selected.

Week of Year Dates

8 20 February–26 February
21 22 May–28 May
27 3 July–9 July
35 28 August–3 September
43 23 October–29 October
52 25 December–31 December

Solving (A.1)–(A.65) with the unclustered data is compu-
tationally intractable. Thus, we use a reduced case study,
in which co-located generators with similar characteristics
are grouped together and represented as a single archety-
pal generating unit [63, 64], to calibrate O. The clustered
generators are diesel-fired units at nodes 0, 1, 6–9, 11,
and 13, OS units at nodes 0, 1, 8, and 9, and OC units at
nodes 0, 1, 8, 9, and 13.

We verify in two ways model fidelity with grouped gen-
erating units. First, we compare variants of (A.1)–(A.65)
with fixed capacity levels with grouped and ungrouped
generators. Second, we compare variants of (A.1)–(A.65)
for each island individually with grouped and ungrouped
generators. These comparisons show that grouped and un-
grouped generating units yields similar costs, investment
decisions, and electricity-system reliability.

Table B.13 summarizes optimized costs of operating
the electricity system from solving (A.1)–(A.65) and corre-
sponding computation times with different choices of |O|.
Based on these results, we use the six weeks that are listed
in Table B.14 in our case study, as six operating weeks pro-
vides balance between model fidelity and tractability. The
weeks that are selected are spread across the year, mean-
ing that a variety of conditions that correspond to different
seasons are represented in the clustered data.
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d’économie industrielle 148 (2014) 291–316.

[41] L. Sigrist, E. Lobato Miguélez, L. Rouco Rodŕıguez, Energy
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