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Abstract

In 2015, 195 countries signed the Paris Agreement under the United Nations Framework Convention on
Climate Change. To achieve the ambitious greenhouse gas-reduction targets therein, the electric power
sector must be transformed fundamentally. To this end, we develop a two-stage stochastic optimization
model. The proposed model determines the optimal mix of generation and transmission capacity to build to
serve future demands at least cost, while respecting technical constraints and climate-related considerations.
The model uses a mix of AC and high-voltage DC transmission lines, conventional and renewable generation,
and different types of energy-storage units to meet these objectives. Short- and long-term uncertainties are
modeled using operating conditions and scenarios, respectively.

We demonstrate the model using a case study that is based on the Texas power system, with 2050 as the
target year of the analysis. We include explicit carbon-emissions constraints. Doing so allows us to examine
the effect of carbon-reduction targets and deep decarbonization of electricity production on investment
decisions. As expected, we find that thermal-dominated power systems must transition toward having a
renewable-dominated generation mix.

Keywords: Generation-expansion planning, transmission-expansion planning, stochastic optimization,
climate policy, energy storage
JEL: C61, C63, Q4, Q5

1. Introduction

As a result of concerns surrounding climate change, 195 countries signed the Paris Agreement under
the United Nations Framework Convention on Climate Change in 2015. The agreement includes ambitious
climate-related goals, which necessitate rapid and substantive declines in carbon emissions and the carbon-
intensity of human activity. Moreover, a number of countries and regional international organizations have
adopted carbon-reduction targets of their own. For instance, the European Union has adopted the so-called
Energy Roadmap 2050, which includes targets to reduce greenhouse gas emissions by 80%–95% relative
to 1990 levels by 2050.

Electricity production represents a major source of anthropogenic carbon emissions. Thus, the electric
power system must play a substantive role in these reductions. Greater use of renewable energy sources,
such as wind and solar, is one possible means of decarbonizing electricity production. However, the real-
time availability of weather-dependent renewable energy sources is variable and uncertain. This gives rise
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to challenges in relying on such energy sources in place of dispatchable (e.g., thermal) generation. Spatial
disaggregation of renewables and energy storage are possible means to mitigate these issues that are caused
by resource variability and uncertainty.

There are a number of works in the literature that examine decarbonization pathways for electric power
systems and the role of renewables therein. Di Sbroiavacca et al. (2016) show how climate-related goals
and carbon reductions could be achieved in the Argentinean electricity sector. Along the same lines,
Calderón et al. (2016) examine decarbonization of the Colombian power system. They find that absent
climate policy, CO2 emissions increase for the foreseeable future with no stabilization. They show also that
carbon-reduction goals can be achieved with greater use of renewable resources. Qi et al. (2016) examine
how the carbon-intensity of electricity production in China declined between 2005 and 2013. The aim of
their analysis is to inform future policy designs for further decarbonization of the Chinese power system.

Although these works demonstrate that renewables can play a significant role in decarbonizing electricity
production, renewables create planning and operating challenges. As an example, Graf and Marcantonini
(2017) conduct an empirical study of the operation of the Italian power system, using historical data from
between 2005 and 2014. They show that renewables displaced thermal generation during this period, thereby
reducing emissions. However, they find also that the variability in real-time renewable output increases
cycling of thermal plants. This increased cycling reduces the operating efficiencies and increases slightly
the emissions rates of the thermal plants. Nevertheless, there is a net emissions reduction from renewables
during this period, as the former effect outweighs the latter.

Expanding upon the findings of Graf and Marcantonini (2017), achieving deep decarbonization of elec-
tricity production requires major changes in the generation mix. One must go beyond simply adding more
renewables to a power system. Instead, the balance of the system must become more flexible to accommo-
date the variability of real-time renewable availability. Denholm et al. (2010) note that energy storage is
expected to have a growing role as renewables constitute a larger portion of the generation mix. This is be-
cause energy storage can provide flexibility in shifting renewable generation through time, thereby managing
its variability.

This paper adds to this existing literature by developing a modeling methodology to make generation-
and transmission-planning decisions with decarbonization targets. Our model is formulated as a two-stage
stochastic optimization problem wherein generation- and transmission-capacity planning decisions are made
in the first stage. The second stage represents system operations during a set of representative operating days.
These operating days capture implicitly short-term/small-scale uncertainties, such as load and renewable-
supply variability. Long-term/large-scale uncertainties that are related to load growth are captured explicitly
through scenarios that define the second stage of the stochastic optimization model.

Our model is formulated from the perspective of a central planner (e.g., an integrated-resource planning
process that is undertaken by an electric utility or a regulator). A number of jurisdictions have restructured
electricity markets in place, meaning that this type of central-planning process does not occur. Nevertheless,
our model is of value in such settings, as it can provide guidance on long-term planning decisions. Moreover,
our modeling methodology provides insights as to how investments should be made by a risk-neutral agent
that operates in a perfectly competitive restructured market. Despite our making these assumptions, agents
are risk-averse in practice and markets for risk are incomplete and imperfect. de Maere d’Aertrycke et al.
(2017) investigate the issue of incomplete risk trading and its impact on investments. They do this by ana-
lyzing stochastic equilibrium problems to quantify the impact of risk, market completeness, and contracting
on generation investment while considering risk-mitigation instruments, such as contracts for differences,
reliability options, and forward capacity markets. They show that these instruments are effective comple-
ments to an energy-only market, especially when they are managed by a regulator. While risk-related issues
are important, they are beyond the scope of our work and are left for future study.

We focus our model development on representing two types of policies that can be implemented to decar-
bonize electricity production. One is an explicit cap on carbon emissions while the other is a carbon price. In
this way our model can represent capacity expansion under current European climate policy and policies that
have been contemplated in the United States. Our model accommodates a variety of technical approaches
to decarbonization. This includes the use of renewable technologies, such as wind, photovoltaic (PV) solar,
and concentrating solar power (CSP), nuclear generation, and fossil-fueled generation with carbon capture
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and sequestration (CCS) systems. Our model allows AC and high-voltage DC (HVDC) transmission lines as
well as well as stand-alone energy storage systems and integrating thermal energy storage (TES) into CSP
plants. We demonstrate our model using a case study that is based on the Texas electric power system,
using 2050 as the target planning year. Given the long planning horizon, we treat the system as having no
generation capacity (insomuch as capacity that exists today is likely to be retired by 2050) but having exist-
ing transmission capacity (as such assets are long-lived). By changing the stringency of the decarbonization
targets, we examine how the generation and transmission mixes change. We also examine a number of
sensitivity cases, which show the impacts of changes in technology development and transmission congestion
on the decarbonization pathway of the system. Although our results are specific to our Texas-based case
study, we make a number of qualitative observations that are applicable broadly. Moreover, our modeling
framework is sufficiently generic that it can be applied to determining decarbonization pathways for most
power systems.

Our work makes two primary contributions to the existing literature. First, we propose a stochastic
optimization framework that represents multi-scale uncertainties, AC and HVDC transmission, renewable
generators, and energy-storage facilities. Also, we include in our model a novel representation of the opera-
tion of TES that is incorporated into CSP plants. Second, through our case study and sensitivity analyses,
we examine the impacts of a variety of policy and technical factors on power system decarbonization. Specif-
ically, we study the effects of environmental policies, investment mix, technology improvements, demand
growth, and transmission-network congestion. We also examine trade-offs between the use of wind and solar
generation for decarbonization.

The remainder of this paper is organized as follows. Section 2 details the proposed planning model.
Section 3 summarizes our case-study data and provides more details on the technology options that are
modeled in our analysis. Section 4 summarizes our case-study results in a base case, while Section 5
provides the results of our sensitivity analyses. Section 6 concludes.

2. Model

Our model follows the approach that is used by Liu et al. (2018b) in representing capacity-planning
decisions. More specifically, we use a static two-stage stochastic investment model. The first stage concerns
all of the generation- and transmission-investment decisions. The second stage captures all of the operating
conditions. Long-term/large-scale uncertainties are represented explicitly in scenarios that define the second
stage while short-term/small-scale uncertainties are captured implicitly via different representative operating
conditions.

We proceed in this section by providing model notation first, which is followed then by a detailed model
formulation. Then, we describe the technical and economic features that are captured in the model.

2.1. Model Notation

2.1.1. Indices
c Index of thermal generation units.
g Index of non-CSP renewable generation units.
k Index of CSP generation units.
l Index of existing and candidate transmission lines.
n Index of power system nodes.
o Index of operating conditions.
ref Index for reference node.
s Index of stand-alone energy-storage units.
t Index of time periods within an operating condition.
w Index of scenarios.
τ Index of final time period within an operating condition.

Our model distinguishes two types of renewable and energy-storage technologies. The index, k, refers
to CSP units, whereas the index, g, refers to non-CSP (e.g., wind and PV solar) renewable generators. We
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distinguish these two technology types because CSP units can include TES, which necessitates modeling
these generators differently compared to other renewable technologies. In addition to the TES in CSP units,
we also model stand-alone energy storage units, which are denoted by the index, s. This can include pure
energy-storage technologies, such as electrochemical batteries, and hybrid energy-storage technologies, such
as diabatic compressed-air energy storage (CAES). As discussed by Greenblatt et al. (2007); Succar et al.
(2006); Succar and Williams (2008), diabatic CAES has different technical characteristics compared to pure
energy storage, insomuch as it uses natural gas when being discharged (which entails CO2 emissions and
fuel costs). However, we represent the two types of technologies using the same generic approach.

2.1.2. Sets
ζs(l) Sending-end node of transmission line l.
ζr(l) Receiving-end node of transmission line l.
ΩC

n Set of thermal units that are located at node n.
ΩG

n Set of non-CSP renewable units that are located at node n.
ΩK

n Set of CSP units that are located at node n.
ΩL+ Set of candidate transmission lines.
ΩL+

a Set of candidate AC transmission lines.
ΩS

n Set of stand-alone energy-storage units that are located at node n.
We divide the transmission lines into existing and candidate lines. This is because of our assumption

that transmission-infrastructure investments are sufficiently long-lived that transmission corridors that are
existing today are still operational in the future target year of the analysis (i.e., 2050 in our case study). We
subdivide the transmission lines into two technology types—AC and HVDC. The reason for this division is
that power flows along the two types of lines are modeled differently. Power flows along AC transmission lines
are represented using a linear approximation of Kirchhoff’s laws. Power flows along HVDC lines are modeled
using a ‘pipeline assumption,’ whereby power flows can be directed along each line. This is because each
HVDC line is a radial connection between a single point in the AC transmission network and a candidate
wind or CSP site.

We assume that there are no existing generation or energy-storage units in the target year of the analysis.
This is because such assets are too short-lived for units that are operational today to be available in the
target year. Thus, all thermal, wind, PV, CSP, and energy-storage units are in actuality candidate units
that must be built to be available for operational use.

2.1.3. Parameters
bk,o,t Hour-t capacity factor of CSP unit k in operating condition o [p.u.].
Bl Susceptance of transmission line l [S].
c̄k Energy-storage capacity of TES system of CSP unit k [h].
c̄s Energy-storage capacity of stand-alone energy-storage unit s [h].
fg,o,t Hour-t capacity factor of non-CSP renewable unit g in operating condition o [p.u.].
Fmax
l Capacity of transmission line l [MW].

ICc Investment cost of thermal unit c [$/MW].
IC,max Investment budget for building thermal units [$].
IGg Investment cost of non-CSP renewable unit g [$/MW].
IG,max Investment budget for building non-CSP renewable units [$].
IKk Investment cost of CSP unit k [$/MW].
IK,max Investment budget for building CSP units [$].
ILl Investment cost of candidate transmission line l [$].
IL,max Investment budget for building candidate transmission lines [$].
ISs Investment cost of stand-alone energy-storage unit s [$/MW].
IS,max Investment budget for building stand-alone energy-storage units [$].
M A large fixed constant.

PD,max
n,o,w,t Hour-t load at node n in operating condition o of scenario w [MW].

P̄C,max
c Maximum capacity of thermal unit c that can be built [MW].
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P̄G,max
g Maximum capacity of non-CSP renewable unit g that can be built [MW].

P̄K,max
k Maximum capacity of CSP unit k that can be built [MW].

P̄S,max
s Maximum capacity of stand-alone energy-storage unit s that can be built [MW].

βk Hourly energy-retention rate of TES system in CSP unit k [p.u.].
βs Hourly energy-retention rate of stand-alone energy-storage unit s [p.u.].
ǭ Carbon-emissions limit [t].
ǫc Carbon-emissions rate of thermal unit c [t/MWh].
ǫs Carbon-emissions rate of stand-alone energy-storage unit s [t/MWh].
ηKk Charging efficiency of TES system in CSP unit k [p.u.].
ηSs Roundtrip efficiency of stand-alone energy-storage unit s [p.u.].
κC
c Production cost of thermal unit c [$/MWh].

κD Load-shedding cost [$/MWh].
κG
g Production cost of non-CSP renewable unit g [$/MWh].

κK
k Production cost of CSP unit k [$/MWh].

κK,P
k Charging cost of TES system of CSP unit k [$/MWh].

κK,T
k Discharging cost of TES system of CSP unit k [$/MWh].

κS,P
s Charging cost of stand-alone energy-storage unit s [$/MWh].

κS,T
s Discharging cost of stand-alone energy-storage unit s [$/MWh].

ξdc Ramp-down limit of thermal unit c [MW/h].
ξuc Ramp-up limit of thermal unit c [MW/h].
ρo Weight of operating condition o [days].
φw Probability of scenario w.
χ Carbon-emissions price [$/t].

2.1.4. Decision Variables

pCc,o,w,t Hour-t production level of thermal unit c in operating condition o of scenario w [MW].
pC,max
c Capacity of thermal unit c that is built [MW].

pDn,o,w,t Hour-t load at node n that is shed in operating condition o of scenario w [MW].
pGg,o,w,t Hour-t production level of non-CSP renewable unit g in operating condition o of scenario w

[MW].
pG,max
g Capacity of non-CSP renewable unit g that is built [MW].

pKk,o,w,t Hour-t production level of CSP unit k in operating condition o of scenario w [MW].

pK,max
k Capacity of CSP unit k that is built [MW].

pLl,o,w,t Hour-t power flow through transmission line l in operating condition o of scenario w [MW].

pS,max
s Capacity of stand-alone energy-storage unit s that is built [MW].

xL
l Binary variable that equals 1 if candidate transmission line l is built and equals 0 otherwise.

γK,L
k,o,w,t Ending hour-t state of charge (SOC) of TES system in CSP unit k in operating condition o of

scenario w [MWh].

γK,P
k,o,w,t Hour-t charging rate of TES system in CSP unit k in operating condition o of scenario w [MW].

γK,T
k,o,w,t Hour-t discharging rate of TES system in CSP unit k in operating condition o of scenario w

[MW].

γS,L
s,o,w,t Ending hour-t SOC of stand-alone energy-storage unit s in operating condition o of scenario w

[MWh].

γS,P
s,o,w,t Hour-t charging rate of stand-alone energy-storage unit s in operating condition o of scenario w

[MW].

γS,T
s,o,w,t Hour-t discharging rate of stand-alone energy-storage unit s in operating condition o of scenariow

[MW].
θn,o,w,t Hour-t phase angle at node n in operating condition o of scenario w [rad].
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2.2. Model Formulation

Our proposed two-stage stochastic planning model is formulated as:

min
∑

c

ICc pC,max
c +

∑

g

IGg pG,max
g +

∑

k

IKk pK,max
k +

∑

s

ISs p
S,max
s +

∑

l∈ΩL+

ILl x
L
l (1)

+
∑

w,o,t

φwρo

{

∑

c

(

κC
c + χǫc

)

pCc,o,w,t +
∑

n

κDpDn,o,w,t +
∑

g

κG
g p

G
g,o,w,t

+
∑

k

(

κK
k pKk,o,w,t + κK,P

k γK,P
k,o,w,t + κK,T

k γK,T
k,o,w,t

)

+
∑

s

[

κS,P
s γS,P

s,o,w,t +
(

κS,T
s + χǫs

)

γS,T
s,o,w,t/η

S
s

]

}

s.t. 0 ≤ pC,max
c ≤ P̄C,max

c , ∀c (2)

0 ≤ pG,max
g ≤ P̄G,max

g , ∀g (3)

0 ≤ pK,max
k ≤ P̄K,max

k , ∀k (4)

0 ≤ pS,max
s ≤ P̄S,max

s , ∀s (5)

xL
l ∈ {0, 1}, ∀l ∈ ΩL+ (6)
∑

c

ICc pC,max
c ≤ IC,max (7)

∑

g

IGg pG,max
g ≤ IG,max (8)

∑

k

IKk pK,max
k ≤ IK,max (9)

∑

s

ISs p
S,max
s ≤ IS,max (10)

∑

l∈ΩL+

ILl x
L
l ≤ IL,max (11)

∑

w,o,t

φwρo

(

∑

c

ǫcp
C
c,o,w,t +

∑

s

ǫsγ
S,T
s,o,w,t

)

≤ ǭ (12)

∑

c∈ΩC
n

pCc,o,w,t +
∑

g∈ΩG
n

pGg,o,w,t +
∑

k∈ΩK
n

(

pKk,o,w,t − γK,P
k,o,w,t + γK,T

k,o,w,t

)

−
∑

s∈ΩS
n

(

γS,P
s,o,w,t − γS,T

s,o,w,t/η
S
s

)

(13)

+
∑

l,ζr(l)=n

pLl,o,w,t −
∑

l,ζs(l)=n

pLl,o,w,t = PD,max
n,o,w,t − pDn,o,w,t, ∀n, o, w, t

0 ≤ pCc,o,w,t ≤ pC,max
c , ∀c, o, w, t (14)

− ξdc ≤ pCc,o,w,t − pCc,o,w,t−1 ≤ ξuc , ∀c, o, w, t > 1 (15)

0 ≤ pGg,o,w,t ≤ fg,o,tp
G,max
g , ∀g, o, w, t (16)

0 ≤ pKk,o,w,t + γK,P
k,o,w,t ≤ bk,o,tp

K,max
k , ∀k, o, w, t (17)

0 ≤ γK,P
k,o,w,t ≤ bk,o,tp

K,max
k , ∀k, o, w, t (18)

0 ≤ pKk,o,w,t + γK,T
k,o,w,t ≤ pK,max

k , ∀k, o, w, t (19)

0 ≤ γK,T
k,o,w,t ≤ pK,max

k , ∀k, o, w, t (20)

γK,L
k,o,w,t = βkγ

K,L
k,o,w,t−1 + ηKk γK,P

k,o,w,t − γK,T
k,o,w,t, ∀k, o, w, t (21)

0 ≤ γK,L
k,o,w,t ≤ c̄kp

K,max
k , ∀k, o, w, t (22)

0 ≤ γS,P
s,o,w,t ≤ pS,max

s , ∀s, o, w, t (23)
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0 ≤ γS,T
s,o,w,t/η

S
s ≤ pS,max

s , ∀s, o, w, t (24)

γS,L
s,o,w,t = βsγ

S,L
s,o,w,t−1 + γS,P

s,o,w,t − γS,T
s,o,w,t, ∀s, o, w, t (25)

0 ≤ γS,L
s,o,w,t ≤ c̄sp

S,max
s , ∀s, o, w, t (26)

γS,L
s,o,w,τ ≥ γS,L

s,o,w,0 = 0.5pS,max
s , ∀s, o, w (27)

− Fmax
l ≤ pLl,o,w,t ≤ Fmax

l , ∀l 6∈ ΩL+, o, w, t (28)

− Fmax
l xL

l ≤ pLl,o,w,t ≤ Fmax
l xL

l , ∀l ∈ ΩL+, o, w, t (29)

pLl,o,w,t = Bl ·
(

θζs(l),o,w,t − θζr(l),o,w,t

)

, ∀l 6∈ ΩL+, o, w, t (30)

−
(

1− xL
l

)

M ≤ pLl,o,w,t −Bl ·
(

θζs(l),o,w,t − θζr(l),o,w,t

)

≤
(

1− xL
l

)

M, ∀l ∈ ΩL+
a , o, w, t (31)

− π ≤ θn,o,w,t ≤ π, ∀n, o, w, t (32)

θref,o,w,t = 0, ∀o, w, t (33)

0 ≤ pDn,o,w,t ≤ PD,max
n,o,w,t, ∀n, o, w, t. (34)

Objective function (1) consists of total investment and expected operation cost of the power system. We
assume that the investment-cost parameters, ICc , IGg , IKk , ISs , I

L
l , are annualized to make the investment and

operations costs comparable to one another. Otherwise, the costs would be skewed because the investments
are long-lived while operations may only be modeled over a short duration (e.g., for a single representative
year in our case study). The simplest way to annualize the investment costs is to multiply the overnight
cost of building each technology by:

i · (1 + i)y

(1 + i)y − 1
,

where y is the assumed lifetime of the asset and i is the real interest rate.
Operating costs are computed in each hour of each operating condition of each scenario. These operating

costs include the costs of producing energy from the thermal and renewable generators, the costs of operating
the TES that is embedded in the CSP units and the stand-alone energy-storage units, and the costs of any
load curtailments.

We also include operating costs that are associated with CO2 emissions (e.g., due to a Pigouvian-
tax or cap-and-trade policy). We assume two possible sources of CO2 emissions—thermal generators and
stand-alone energy-storage units. Any fossil-fueled thermal generator that does not have a CCS system
incorporated in it will release CO2. Diabatic CAES also releases CO2 when it is discharged, which is
associated with the combustion of natural gas. Thus, we allow for cases in which the use of energy-storage
units can result in CO2 emissions. We also examine, in two of our sensitivity cases in Sections 5.4 and 5.5, the
viability of battery energy storage (BES) and adiabatic CAES, which are pure energy-storage technologies,
the uses of which do not entail any direct CO2 emissions.

The model has two types of constraints. Constraints (2)–(12) pertain to the first (investment) stage
while the remaining pertain to the second (operating) stage. Constraints (2)–(5) impose capacity limits
on how much thermal, CSP and non-CSP renewable, and energy-storage capacity can be built at each
candidate location. These constraints may reflect land-use, resource, or other physical limitations on the
deployment of these units. Constraints (6) impose the binary nature of transmission-expansion decisions,
which have this ‘lumpy’ nature. Constraints (7)–(11) impose budget constraints on the investment decisions.
Constraint (12) imposes an expected carbon-emissions limit (e.g., due to a cap-and-trade system limiting
total system emissions). As such, our model captures two common means of imposing carbon-emissions
limits. One is an explicit limit, as imposed by Constraint (12), while the other is a more implicit cost or tax
on carbon emissions, which is captured in Objective function (1). In practice, policy makers may focus on
implementing one of these types of policy mechanisms as opposed to both.

Constraints (13) impose nodal load balance in each operating period. Constraints (14) and (15) impose
capacity and ramping limits, respectively, on the operation of the thermal units. Constraints (16) impose
capacity constraints on the output of the non-CSP renewable units. The energy that is available to be
produced in each operating period is represented using a capacity factor, which captures the impact of
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weather conditions. The same approach is used to represent the impact of weather on energy that is
available from CSP plants.

Constraints (17)–(22) pertain to the operation of the CSP units. We model the CSP units by adapting
the methodology that is developed by Sioshansi and Denholm (2010a,b). Constraints (17) restrict the total
amount of energy that each CSP unit produces and stores in its TES system to be no greater than the
amount of energy that is collected by the unit’s solar field. The energy that is collected by a CSP plant’s
solar field is thermal. As such, we apply the assumed powerblock efficiency to convert the thermal energy
into the equivalent amount of electrical energy that would be produced by the CSP unit when the stored
energy is discharged. Doing so allows for more streamlined modeling of the CSP unit and its integrated
TES system within a planning model. Constraints (18) ensure that the TES system does not store more
than its power capacity allows. Constraints (19) limit the total production of each CSP unit, either by using
directly energy from its solar field or from its TES system, to be no greater than the power capacity of its
powerblock. Constraints (20) limit the amount of energy that is discharged from the TES system based on
its power capacity. Constraints (21) define how the SOC of the TES system in each CSP unit evolves from
one operating period to the next. Finally, Constraints (22) impose energy limits on the SOC of the TES
system in each CSP unit.

Constraints (23)–(27), which are adapted from the works of Drury et al. (2011); Sioshansi et al. (2009),
describe the operation of the stand-alone energy-storage units. Constraints (23)–(24) impose power-capacity
limits on the charging and discharging, respectively, of energy-storage units. Constraints (25) define how
the SOC of each energy-storage unit changes from one operating period to the next and Constraints (26)
impose energy limits on the SOC. Constraints (27) fix the SOC of each energy-storage unit at the beginning
of each operating condition (which are taken to be representative operating days in our case study) to 50%
of its energy capacity. These constraints also require the SOC of energy-storage unit to be above this level
at the end of each operating condition. Graves et al. (1999) suggest this as a heuristic technique to ensure
that a model does not deplete fully energy storage at the end of each optimization horizon.

Constraints (28) impose power-flow limits on each existing transmission line while Constraints (29) do the
same for candidate lines. These latter constraints also force the power flow on a candidate transmission line
that is not built to equal zero, which is a physical requirement. Constraints (30) define power flows on existing
transmission lines in terms of differences in the phase angles at the two ends of the line. Constraints (31)
define power flows on candidate transmission lines analogously. These latter constraints are written in this
inequality form to allow the flows on a candidate transmission line that is not built to equal zero without
forcing the phase angles at the two ends of that line to equal one another. This is a standard approach to
modeling power flows with binary transmission-investment decisions. Conejo et al. (2016) provide further
details on how these constraints are modeled. Power flows in HVDC lines are not modeled using phase
angles. Rather, because these lines are radial connections to distant candidate wind or CSP sites, their
power flows can be set arbitrarily within their bounds without impacting power flows elsewhere in the
network. Constraints (32) impose limits on the phase angles and Constraints (33) fix the phase angles at
the reference node to be zero.

Finally, Constraints (34) limit the amount of load that is curtailed at each node to be no greater than
the nodal demand.

Our proposed capacity-expansion model is a mixed-integer linear optimization problem. Thus, it can be
solved tractably using off-the-shelf commercial software tools, such as CPLEX or Gurobi. Although we have
a stochastic optimization problem, explicit non-anticipativity constraints are not needed. This is because
the investment decisions (i.e., pC,max

c , pG,max
g , pK,max

k , pS,max
s , and xL

l ) are defined so as not to depend on
the realization of the second-stage scenarios, w. The proposed model can also be used in a rolling-horizon
fashion over time, whereby future scenarios are updated periodically (e.g., the model can be re-run every
year with updated scenarios of future conditions). Domı́nguez et al. (2015) argue that using a two-stage
stochastic planning model in such a manner can yield solutions that are similar to those that are achieved
using a more computationally costly multi-period model.
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3. Case-Study Data

Our case study considers a 28-node system, which is a modified version of the IEEE 24-node test system.
The topology of the network and other system data are adapted from the Electric Reliability Council of
Texas (ERCOT) power system. However, loads and generator and transmission-lines capacities are scaled
down so as to keep the reference load at 3.7 GW in the base case. We focus our case study on ERCOT
because it is mostly an electrically isolated power system (with the exception of some limited DC tie lines
to neighboring interconnects) with substantial load and potential for the deployment of renewables.

Figure 1 shows the topology of the network. Generating and energy-storage units that are available to be
built in the base case are labeled in the figure based on how they are indexed in the model formulation (i.e.,
c, k, g, and s for thermal, CSP and non-CSP renewable, and stand-alone energy-storage units, respectively).
Existing transmission lines are indicated by solid lines whereas candidate AC lines are indicated by dashed
lines. Dotted lines indicate candidate HVDC lines. Loads are indicated by arrows.

c, g, s

g, s

g

g

c g, s

g, s
g

k

c

g, s

k

g, s

g, s

c, g, s

Figure 1: 28-Node Network Diagram

Twenty-four of the nodes represent the center of the network where the loads and most of the candidate
generating and energy-storage units are located. As such, these nodes are connected by existing AC lines and
candidate AC lines can be built to reinforce connections within the center of the network. The remaining
nodes are isolated and can be connected to the center of the network with candidate HVDC lines. Two of
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the nodes are candidate locations for offshore-wind generators while the other two are candidate locations
for CSP plants.

Our case study includes 63 candidate units: 40 thermal, 11 onshore wind, two offshore wind, two CSP,
and eight stand-alone energy-storage units. Additional candidate CSP units are considered in one of the
sensitivity cases that is examined in Section 5.3. A sensitivity case in Section 5.4 also adds ten candidate
PV generators that are co-located with ten candidate BES units. Our base case explores specifically the
extent to which major load centers across a region can be supplied by highly efficient renewable resources
that are located sufficiently far away from the load pockets that costly HVDC links are required. These
highly efficient renewable resources include both offshore-wind units1 and CSP.2 CAES energy storage units
can also be used to maximize the utilization of these weather-dependent renewable resources and manage
their variability.

We consider ten different thermal generation technologies: advanced pulverized coal units (with and
without CCS), conventional natural gas-fired combined cycle (NGCC) units, advanced NGCC units (with
and without CCS), conventional and advanced natural gas-fired combustion turbines (CT), integrated gasi-
fication combined cycle (IGCC) units (with and without CCS), and advanced nuclear units. This represents
generating technologies that, as reported by the United States Energy Information Administration (EIA),3

are available today or that are anticipated to be available commercially by the target year of our analysis
(2050).

Table 1 summarizes the cost, maximum-capacity, and emissions-rate data for the thermal units, which are
obtained from the EIA. All of the technologies are assumed to be able to ramp over their full output range,
with the exception of nuclear units, which are assumed to have no ramping capability. Instead, nuclear units
are assumed to operate continuously at their installed capacities as must-run units. The operating costs
that are reported in Table 1 are computed using projections of future fuel prices that are published by EIA
(2017). The maximum capacity for each technology that is reported in Table 1 is the total amount that can
be installed across all of the candidate locations where that technology can be built.

Table 1: Data For Candidate Thermal Units

Investment Cost Operating Cost Maximum
Technology [$/kW] [$/MWh] Capacity [MW] ǫc

Advanced Pulverized Coal without CCS 2933 25.95 3800 0.841
Advanced Pulverized Coal with CCS 5227 38.15 3800 0.112
Conventional NGCC 917 46.82 2880 0.374
Advanced NGCC without CCS 1023 42.69 2400 0.341
Advanced NGCC with CCS 2095 52.91 2160 0.041
Conventional CT 973 81.97 1600 0.576
Advanced CT 676 70.14 2400 0.518
IGCC without CCS 3784 26.19 3800 0.743
IGCC with CCS 6599 33.22 3000 0.097
Advanced Nuclear 5530 16.06 4800 0.000

There are 11 candidate locations, which are in the center of the test system, for onshore wind. Conversely,
offshore wind can only be built at two nodes that are isolated from the center of the system. Onshore wind
has investment costs that range between $1970/kW and $2100/kW and operating costs that range between
$2.00/MWh and $2.71/MWh. A maximum of 7700 MW of wind can be built at the onshore sites. Up
to 4000 MW of offshore wind can be built. These units have higher investment costs that range between
$2900/kW and $3190/kW, which reflects the greater complexity that installing offshore wind entails. These

1https://www.tennet.eu/our-key-tasks/innovations/north-sea-wind-power-hub/
2https://theconversation.com/should-we-turn-the-sahara-desert-into-a-huge-solar-farm-114450
3https://www.eia.gov/analysis/studies/powerplants/capitalcost/
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units also have higher operating costs that range between $4.85/MWh and $5.35/MWh, which reflects the
greater challenges in their operation and maintenance. One of the candidate offshore-wind units is closer to
the shore, which results in its having a lower investment cost (and a lower cost for building the associated
HVDC line that connects it to the center of the network). The other offshore-wind unit is further from the
coast, giving it a higher average capacity factor and lower operating cost. Investment and operating costs
of the wind units are obtained from the EIA and the work of Krohn et al. (2009).

Up to 2000 MW total of CSP capacity can be built across the two candidate locations. We assume
that the solar field of each CSP plant is scaled to maintain a solar multiple of 2.0. A CSP plant with
a solar multiple of 2.0 is sized to provide sufficient thermal energy to operate the powerblock at its rated
capacity with a direct normal irradiance of 950 W/m2, a 5-m/s wind speed, and a 25-C ambient temperature.
Furthermore, we assume that each CSP plant has a TES system with c̄k = 4 hours of storage capacity. This
means that a fully charged TES system can be discharged and operated at its nameplate capacity for four
consecutive hours.4 Operating and investment costs for the CSP units are obtained from version 2017.1.17
of System Advisor Model (SAM). Blair et al. (2014) provide a general overview and description of SAM.
We assume power-tower CSP systems with investment costs ranging between $3272/kW and $3599/kW
and generation costs ranging between $3.80/MWh and $4.00/MWh. The TES systems in the CSP plants
are assumed to have operating costs of $0.1400/MWh in charging mode and $0.1549/MWh in discharging
mode. We assume that the TES systems have a 99% roundtrip efficiency and 0.1% hourly thermal-energy
losses, meaning that we have ηKk = 0.99 and βk = 0.999 for all k. As with the offshore-wind units, one of
the candidate CSP units is assumed to be closer to a load pocket in the system, meaning that this unit has
a lower cost of being connected to the system with HVDC lines. However, this unit has a lower average
capacity factor than the other CSP unit.

Our base case considers a single stand-alone energy-storage technology, which is diabatic CAES. Diabatic
CAES is a hybrid energy-storage technology that uses both electricity (to compress air) and natural gas
(when stored energy is discharged). When charged, electricity is used to drive a compressor, which injects
pressurized air into a reservoir. When discharged, the compressed air is withdrawn from the reservoir and
combined with natural gas in an open-cycle combustion turbine. Combustion produces high-pressure gas,
which is expanded through a turbine, that drives both an electric generator and the air compressor. The
benefit of using the compressed air in the discharging phase is that the combustion turbine has a heat rate
of approximately 4200 BTU/kWh,5 which is half that of a conventional CT. Because diabatic CAES is a
hybrid energy-storage technology, only 0.7 MWh of stored electric energy must be used to discharge 1 MWh
of electricity. Adiabatic CAES, further details of which are given in Section 5.5, and BES are considered in
two of the sensitivity cases. Like BES, adiabatic CAES is a pure energy-storage technology, which does not
entail the combustion of any fossil fuel when discharged.

Sioshansi et al. (2011) note that CAES is an attractive large-scale energy-storage technology with long
life expectancy, low investment and maintenance costs, and reasonable roundtrip efficiency. Moreover,
Succar and Williams (2008) find that many areas of the world that are well suited for the deployment of
CAES are also wind-rich. This includes ERCOT. This can be contrasted with the (currently) more commonly
used pumped hydroelectric storage (PHS) technology, which requires access to water and reservoirs at
different elevations. Water is scarce and the requisite geological formations are lacking in many wind-rich
areas of the world, including in Texas.

We model eight candidate CAES units. Each CAES unit is assumed to have a fixed c̄s = 10 hours of
storage capacity. Each CAES units can be built with up to 350 MW of power capacity. We take operating
and investment costs and physical properties of the CAES plants from the work of Das et al. (2011). We
assume that the investment costs range between $550/kW and $610/kW and that each CAES unit has an
operating cost of $0.50/MWh when charging energy. The discharging costs range between $28.33/MWh and

4In actuality, a fully charged TES system would operate very slightly below 100% of its nameplate capacity in the fourth
hour. The reason for this is that the TES system incurs small thermal-energy losses from one hour to the next. Thus, the
four-hour definition is based on an assumption of no thermal-energy losses.

5We report this heat rate in imperial (as opposed to SI) units, as BTU/kWh is still the most commonly used unit of
generator efficiency in the United States.
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$28.79/MWh, which reflect primarily the cost of natural gas. Each CAES unit is also assumed to have a
carbon-emissions rate of 0.259 t/MWh and an efficiency of ηSs = 0.7 (based on the characteristic that only
0.7 MWh of stored energy must be used to discharge 1 MWh of electricity).

The transmission system consists of 38 existing lines, which range in capacity from 200 MW to 800 MW
and have an average capacity of about 440 MW. These existing lines are all AC and connect the nodes in
the center of the network. Ten candidate AC lines, with capacities ranging between 400 MW and 800 MW,
can be added to create further links amongst the nodes in the center of the network. There are a further
15 candidate HVDC lines, which only connect one of the four remote nodes to one of the nodes in the
center of the network. Each of the distant nodes has multiple candidate HVDC lines with which it can be
connected to the main grid, indicating that a particular offshore-wind or CSP project has multiple potential
points of interconnection with the main network. Eight of the HVDC lines have a 2-GW capacity while the
remainder have a 1-GW capacity. Transmission-investment costs are obtained from the work of Vaillancourt
(2014).

We annualize the investment costs by assuming a 25-year depreciation period and a 10% real interest
rate. This yields an 11% cost-annualization rate.

We model different load and wind- and solar-availability conditions using scenarios and operating condi-
tions. Specifically, we represent operations in the target year through a set of operating conditions, which are
indexed by o in the model. Each operating condition is taken to be a representative day, which is modeled
at hourly time steps (i.e., the index, t, corresponds to the 24 hours of each representative day). We use
the scenarios, which are indexed by w in the model, to capture uncertainty in long-term demand growth
between today and 2050.

To capture correlations in wind and solar availabilities and load, the operating-condition data are all
obtained using historical data from the year 2012. Historical load data are obtained from ERCOT and scaled
to obtain reference loads for the system. These reference loads are apportioned to the nodes (cf. Figure 1)
based on the historical distribution of loads to different zones of the ERCOT network.

Wind-speed data are obtained from the Wind Integration National Dataset (WIND) Toolkit. Draxl et al.
(2015a,b) provide details and meteorological validation of the WIND Toolkit. Wind speeds are used to
determine the real-time availability of wind power, which is represented in the model through the capacity
factors, fg,o,t. King et al. (2014) validate the use of the WIND Toolkit for this type of simulation. We collect
wind-speed data for 33 onshore locations and for the representative southwestern Texas offshore location.
The wind-speed data are then processed using SAM, assuming the power curve of a 2-MW Vestas V80/2000
wind turbine with an 80-m hub height to generate hourly wind-availability data. Wind-availability profiles
for the 13 candidate wind locations are obtained by spatial averaging of the profiles from the locations in
the WIND Toolkit that are used.

Solar availabilities are simulated using SAM, based on weather data that are obtained from the National
Solar Radiation Database (NSRDB). Sengupta et al. (2014a,b) provide details and validation of the NSRDB
data. We consider only two candidate CSP plants in our base case. As such, we use NSRDB data for five
locations that are in relatively close proximity to one another to simulate the solar-availability of each CSP
plant (i.e., we use NSRDB data for 10 locations total). We use SAM to simulate the operation of a standard
power-tower CSP plant with a 110-MW powerblock, a solar multiple of 2.0, and a TES system with 100 hours
of storage capacity. From this simulation, we can determine the maximum amount of thermal energy that
is captured by the CSP plant in each hour (i.e., the 100-hour TES system ensures that no thermal energy is
curtailed in the SAM simulation due to power constraints on the operation of the plant). We then use the
assumed 41.2% average efficiency of the CSP plant’s powerblock to convert the simulated thermal energy
that is captured by the solar field in each hour to the amount of equivalent electrical energy that would be
produced by the powerblock. Finally, we normalize the potential electrical output by the 110-MW nameplate
capacity of the powerblock to obtain hourly capacity factors for each CSP plant that is simulated in SAM.
Again, we use spatial averaging to convert these capacity factors to the capacity factors for each of the
two candidate CSP plants that are used in our planning model. Depending on ambient weather conditions,
the capacity factor of a CSP plant can be greater than unity in some hours, indicating that the solar field
collects more thermal energy than can be utilized by the powerblock. Such excess energy can be stored in
the TES system.
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Once we have a full set of load and wind- and solar-availability data for the year, we use k-means clustering
to reduce the full year into a set of representative operating days. Thus, we obtain our final set of operating
conditions (i.e., the set over which the index, o, in our model is defined) from this process. MacQueen (1967)
is a formative work that describes the k-means clustering algorithm, while Baringo and Conejo (2013);
Liu et al. (2018a) describe its use in obtaining operating conditions that represent annual load, wind, and
solar patterns and respect their auto- and cross-correlations. The k-means clustering algorithm provides
15 clusters, each of which gives one representative day for the planning model (i.e., our planning model has
15 day-long operating conditions). The load, wind, and solar data for the operating condition that is used
to represent each cluster are obtained from the day within the cluster that is closest to the cluster centroid.
We assign a weight to the representative day (i.e., the value of ρo in the planning model) that is equal to
the number of days within its associated cluster. This clustering results in the system having a peak load
of 3.1 GW in the base scenario of the scenario tree.

In addition to short-term uncertainty in load and renewable availability, we model demand growth as
a source of long-term uncertainty. Demand growth is represented explicitly via second-stage scenarios in
the scenario tree. We assume that with probability 0.5 the demands are equal to the values that are
obtained from the k-means clustering (i.e., this is a ‘no-demand-growth’ scenario). With probability 0.3
demands are assumed to grow an additional 5% relative to this baseline value (i.e., a high-demand scenario)
and with probability 0.2 demands are 3% lower (i.e., a low-demand scenario). One reason for modeling
uncertain demand growth is that it ‘forces’ the model to build sufficient capacity to serve higher-than-
expected demands. This excess capacity that the demand-growth scenarios engender can be analogized to
planning-reserve margins, which are enforced normally as constraints in deterministic capacity-expansion
models. A benefit of modeling demand-growth scenarios (as opposed to planning-reserve margins) is that
the objective function takes into account the expected cost of operating the system under higher-demand
scenarios. Deterministic models that include planning-reserve constraints do not internalize normally the cost
of operating the excess capacity that is built to provide the reserves (in the event that these units are needed
to serve higher-than-expected demand). As such, the investments that are given by deterministic planning
models with planning-reserve constraints tend to be skewed toward technologies that are overly costly to
operate. Demand-growth uncertainty can also depend on future technology adoption and electrification
rates (e.g., the adoption of electric vehicles).6 As such, we conduct a sensitivity analysis in Section 5.6 in
which the 5% demand increase in the high-demand scenario is increased to up to 50%.

The online supplementary material includes tables that detail further our case-study data, which are
excluded here for sake of brevity. All of the cases are programmed using version 21.1.2 of the GAMS
mathematical programming language. They are solved using the hybrid branch-and-bound and cutting-
plane algorithm in version 12.5.1.0 of the CPLEX solver on a system with Windows 10, a 2.6-GHz processor,
and 8 GB of RAM.

4. Base-Case Results

Figure 2 summarizes the mix of generation and energy-storage units that are built under a variety of
cases with different carbon-emissions limits imposed on the system. The first case that is shown in the figure
is a ‘business-as-usual’ (BAU) case, in which Constraint (12) is relaxed and there is no carbon-emissions
limit. The remaining cases impose Constraint (12), with progressively more aggressive carbon-emissions
limits that are defined as reductions relative to the BAU case. The final bar in Figure 2 is labeled ‘100%
Reduction’. With our case-study data and the technologies that we consider, complete decarbonization of
the power system is very costly. As such, we allow minuscule carbon emissions in the base case and in all of
the sensitivity cases that are considered in Section 5. In all of the cases, carbon emissions are reduced by at
least 99.7% relative to the BAU case. Nevertheless, we refer to these cases as having 100% carbon reductions.
We do not impose a carbon tax in any of these cases, because we assume that explicit carbon-emissions
limits are used as the policy mechanism to achieve decarbonization.

6https://www.utilitydive.com/news/evs-could-drive-38-rise-in-us-electricity-demand-doe-lab-finds/527358/

13



Figure 2: Capacity Built In Business-As-Usual Case and with Different Carbon-Emissions Reductions Relative to Business-As-
Usual Case

The BAU case yields investments solely in thermal and energy-storage units. This shows that absent any
policy mechanism that internalizes the social cost of carbon, thermal generation is the lowest-cost source of
energy. Among the thermal-generation technologies that are available, natural gas-fired units are favored
over other generating fuels. Most of the generating capacity in the BAU case is baseload NGCC, with some
CAES and advanced CT capacity being built to serve on-peak loads.

As the carbon-emissions limit is enforced and made more stringent, the investment mix changes in
a number of ways. 25% carbon-emissions reductions are achieved through greater investments in onshore
wind. 50% and 75% carbon-emissions reductions are achieved using onshore wind and by shifting the thermal
generation mix toward having CCS. As the thermal-generation mix shifts toward using CCS, there is still a
preference for natural gas over coal as a generation fuel. These results show that onshore wind is initially
the lowest-cost source of carbon abatement. CCS is only employed with more stringent carbon-reduction
goals, once the prime onshore-wind resources are exploited.

The amount of capacity that is built to achieve 75% carbon-emissions reductions is lower than the
amount that is built to achieve 25% reductions, which is, in turn, less than the amount that is built to
achieve 50% reductions. This result is driven by the trade-off between onshore-wind units and NGCC plants
with CCS. With 75% carbon-emissions reductions, the CO2 limit is not so stringent as to make NGCC plants
without CCS unviable. As such, NGCC plants without CCS are built in this case (although less capacity is
installed compared to the cases with 25% and 50% reductions). Contemporaneously, investments in NGCC
plants with CCS increase significantly with 75% carbon-emissions reductions compared to the cases with
25% and 50% reductions. This NGCC with CCS capacity that is added to achieve 75% reductions displaces
some onshore-wind units. NGCC plants with CCS are expensive relative to onshore wind. However, NGCC
plants provide dispatchable output. Thus, it is economically preferable to use NGCC plants with CCS in
place of additional wind capacity to achieve the added emissions reductions beyond the 50% level. Greater
carbon-emissions reductions beyond 75% require the use of CSP and offshore wind. This shows that the
higher cost of these units, along with the cost of the HVDC connectors that are required to deliver their
generation to load, makes these technologies quite expensive. As such, these units are only used with
very aggressive carbon-reduction targets. The fact that offshore wind and CSP are built only to achieve
carbon-emissions reductions beyond 75% implies also that HVDC lines are built only with these aggressive
carbon-reduction goals.

Interestingly, we find that the role of CAES in providing system flexibility diminishes as the carbon-
reduction target gets more aggressive. This is because of the carbon emissions that are associated with
discharging CAES. As the carbon-emissions limit gets tighter, CAES is replaced with CSP (which has TES
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incorporated in it) as the primary source of supply-side flexibility. This diminishing use of CAES as the
carbon-emissions limit becomes more stringent results in increasing wind-curtailment rates. Unlike onshore
wind and CSP, offshore wind is used only in the most extreme case in which carbon emissions must be
eliminated fully. The ‘low priority’ for building offshore wind stems from its relatively high cost, inflexibility
(as TES cannot be incorporated in wind units), and it having little to no advantage over onshore wind in
terms of real-time availability. Indeed, the only major benefit to offshore is that its availability is more
stable. The distribution of hourly capacity factors of onshore wind has more extremes compared to that of
offshore wind.

Figure 2 shows also that as the carbon-emissions limit gets more stringent, the total installed capacity
increases considerably (e.g., from 3.4 GW in the BAU case to 13 GW to achieve 100% carbon-emissions
reductions). This is because of the lower capacity factor of wind and solar resources compared to dispatchable
thermal generation. The 100%-carbon-reduction case results in a very small amount of NGCC with CCS
being built. These units have lower emissions rates than CAES and operate only in a small handful of hours
when CSP and wind plants are not able to serve fully the load. These small number of hours in which the
NGCC units operate give the minuscule carbon emissions in the 100%-carbon-reduction case.

Although nuclear generation has no direct carbon emissions, nuclear capacity is not built in any of the
carbon-reduction cases that we examine. This shows that nuclear is an uneconomic generation source in
our case study, despite having no carbon footprint. One may attribute the lack of nuclear capacity to its
extremely inflexible ramping capability that we assume. However, if it is sufficiently inexpensive, nuclear
could be built to serve off-peak loads only, even without the capability to ramp. Doing so would result in the
plant having a 100% capacity factor, as it would operate constantly. Moreover, the availability of low-cost
CAES could allow even more nuclear capacity to be built to serve on-peak loads. Sioshansi et al. (2012)
note that this use of energy storage (i.e., to store nuclear generation overnight to serve on-peak loads) was
the major rationale for developing PHS in the United States in the 1970s. The fact that nuclear is not built
in any of the cases that we model, even for these limited uses, show that there are substantively lower-cost
energy sources, even when seeking carbon-free electricity.

Figure 3 summarizes annual expected operating and investment costs of the system with the different
carbon-reduction targets. As expected, enforcing and tightening Constraint (12) increases overall costs.
Although the BAU case is the least costly, it is interesting to note that the system can achieve non-trivial
carbon-emissions reductions with relatively small overall cost increases relative to BAU. For instance, 25%
carbon-emissions reductions can be achieved with only an 8% increase in total expected system costs. On
the other hand, complete decarbonization of the electricity sector can be much more costly. 99% emissions
reductions increase total expected system costs by 126% (relative to BAU) while complete decarbonization
increases costs by 216%.

A question that these cost results raise is the optimal level of decarbonization, taking into account its
costs and benefits. The United States Environmental Protection Agency (EPA) produced estimates of the
social cost in 2050 of carbon, under different discount rates and carbon-impact scenarios.7 We can assess
the socially optimal level of carbon reduction by relaxing Constraint (12) and setting χ (i.e., the carbon-
emissions price) equal to a given social-cost-of-carbon estimate in (1). Doing so drives the investment model
to trade-off the estimated social cost of carbon against the direct cost of achieving carbon reductions. The
EPA estimates a social cost of carbon that ranges between $69/t and $212/t. These estimates correspond to
socially optimal carbon-reduction levels that range between 25% and 85% (relative to the BAU case). Table 2
confirms these findings by reporting the value of the dual variable that is associated with Constraint (12)
with different carbon-reduction targets (the results that are reported in the table assume χ = 0). The dual
variable that is associated with Constraint (12) gives the marginal cost of carbon-emissions reductions. As
expected, the social-cost-of-carbon estimates imply that carbon reductions of up to 85% relative to BAU
can be justified economically. Moreover, the table shows that carbon reductions beyond the 85% level result
in cost escalations, reaching over $50000/t for complete decarbonization.

7These estimates, which were produced by the EPA under the administration of President Barack Obama, are archived and
publicly available at https://19january2017snapshot.epa.gov/climatechange/social-cost-carbon_.html.
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Figure 3: Expected Annual Operating and Investment Costs In Business-As-Usual Case and With Different Carbon-Emissions
Reductions Relative to Business-As-Usual Case

Table 2: Marginal Cost of Carbon-Emissions Reductions With Different Carbon-Emissions Reductions Relative to Business-
As-Usual Case

Carbon-Emissions Reduction Marginal Cost of Carbon-
[% of Emissions in BAU Case] Emissions Reductions [$/t]

75 94
85 212
95 1063
99 13167
100 53440

5. Sensitivity Analyses

This section presents the results of six sensitivity analyses, in which we examine the impacts of different
case-study assumptions on the design, cost, and operation of the power system. The first sensitivity case,
in Section 5.1, considers improvements in the generation, energy-storage, and HVDC technologies. Second,
we examine in Section 5.2 the impacts of increased transmission congestion. Next, Section 5.3 analyzes the
impacts of relaxing land-use restrictions on building CSP plants. Fourth, Section 5.4 examines the use of PV
and BES units for decarbonization. The fifth sensitivity analysis in Section 5.5 considers adiabatic CAES
as an alternative to diabatic CAES. Finally, Section 5.6 evaluates the impacts of demand growth.

5.1. Technology Improvement

Our first sensitivity case considers three different technology improvements. The first are efficiency and
investment-cost improvements in CSP plants. Lilliestam et al. (2017) examine the historical cost-reduction
trajectory of CSP. They find that although CSP has not enjoyed, to date, the same cost reductions that
PV solar has, it is beginning to achieve greater reductions. Contemporaneously, Neises and Turchi (2014);
Turchi et al. (2013) examine the use of supercritical carbon dioxide power cycles in the power blocks of CSP
plants. They find that such power cycles can achieve powerblock efficiencies that are greater than 50%, as
opposed to efficiencies ranging between 35% and 45% for the subcritical Rankine cycles that are used in
CSP plants today. Based on these findings, we consider a sensitivity case in which the investment costs of
CSP plants are 25% lower than in the base case and their efficiencies (which are used to convert the thermal
energy that is gathered by the solar fields into electricity-out capacity factors) are increased to 55%.
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The second technology improvement involves offshore wind. IEA (2016) finds that offshore wind is costly
relative to its onshore counterpart, but that there is potential for this cost difference to be closed. Moreover,
offshore wind also suffers from the need for radial HVDC lines to connect generating units to load pockets.
Thus, we consider a sensitivity case in which the investment costs of offshore-wind plants are reduced 35%
(making their costs comparable to onshore wind) and the cost of HVDC lines are reduced an average of
63%, relative to the base case.

The final technology improvement that we consider is a 10% investment-cost reduction for CAES. This
reflects the impacts of learning, which can reduce investment costs as CAES plants are developed around
the world in the coming years.

Figure 4 summarizes the capacities of generating and energy-storage units that are built under the
technology-improvement sensitivity cases. The bars in the figure are grouped into four sets of three, each
of which corresponds to a different technology-improvement case. The first three sets of bars correspond
to one of the three technology improvements (e.g., CSP, offshore wind, or CAES) occurring individually.
The fourth set of three bars correspond to a case in which all three of the technology improvements occur
simultaneously. For each of the four technology-improvement cases, we examine investment decisions under
a BAU case and in cases in which carbon emissions are limited to being 50% and 95% less than in the BAU
case.8

Figure 4: Capacity Built In Business-As-Usual Case and with Different Carbon-Emissions Reductions Relative to Business-As-
Usual Case Under Technology-Improvement Sensitivity Analysis

The figure shows that in all of the technology-improvement cases that we examine, none of the renewable
technologies are cost-competitive with thermal generation in a BAU case. This indicates that further
technology improvements and cost reductions would be needed to make the renewable technologies that
we examine cost-competitive with thermal generation in a BAU case. However, if CAES achieves the
investment-cost reductions that we examine here, there is a 15% increase in installed CAES capacity in the
BAU case. This increased CAES investment comes with the exact same reduction in CT capacity, meaning
that CAES is being used to displace this expensive peaking capacity.

The technology-improvement cases that we examine result in some changes in the generation mix
as carbon-emissions limits are imposed. Reducing carbon emissions by 50% in any of three individual
technology-improvement sensitivity cases gives investment mixes that are similar to that in the base case.
In all of these cases, there is investment in onshore wind, which displaces thermal generation, to achieve the

8The carbon-emissions limits are defined, in all of the sensitivity cases in this section, relative to the carbon emissions in the
corresponding BAU case. Thus, depending upon the technology mix that is built in each BAU case, carbon emissions under
each reduction case differ.
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requisite carbon reductions. However, the investments are different with 50% carbon-emissions reductions
in the ‘combined’ technology-improvement sensitivity case. The combined case results in less onshore-wind
and CAES investments and greater CSP capacity compared to the three sensitivity cases with individual
technology improvements. This is due to the combined impact of higher CSP efficiency and lower CSP- and
HVDC-investment costs, which make CSP an economic alternative to onshore wind. Moreover, because CSP
has integrated TES, the flexibility that this affords reduces the need for CAES. In sum, the CSP displaces
close to 200 MW of onshore wind and 500 MW of thermal capacity, relative to the base case.

These trends continue with a 95%-emissions-reduction target. In all of the sensitivity cases, except for the
case in which offshore wind only achieves technology improvements, CSP has a greater role in decarbonizing
the generation mix. Compared to the base case, the combined and CSP-only technology-improvement
sensitivity cases result in nearly 1 GW less onshore-wind, 300 MW less CAES, and 600 MW more CSP
investments. The fact that 1 GW of wind can be displaced by 600 MW of CSP capacity illustrates further
the flexibility benefit that the TES, which is integrated into the CSP plants, provides. When the system
relies on wind for decarbonization in the base case, greater capacity must be built to manage the variability
in real-time wind availability. The TES systems in the CSP plants reduce the need for such oversizing, as
the TES can be used to mitigate the impacts of variable solar availability.

The sensitivity case in which offshore wind only has technology improvements results in 1.1 GW of
offshore wind being built in place of about 200 MW of CSP (relative to the base case) to achieve 95%
emissions reductions. This can be contrasted with the base case, in which offshore wind is built only to
achieve complete decarbonization, due to its relatively high cost. Interestingly, no offshore wind is built to
achieve 95% emissions reductions in the combined technology-improvement case. This is because, although
offshore wind is economically viable in the combined technology-improvement case, so too is CSP, which is
less costly and more flexible than offshore wind.

Figure 5 summarizes the annual expected operating and investment costs of the system under the four
technology-improvement sensitivity cases. The figure shows that these sensitivity cases yield mixed cost
savings. For instance, the combined technology-improvement cases reduces the cost of achieving 50% and
95% emissions reductions by 22% and 33%, respectively, relative to the base case. The case in which CSP
only has technology improvements reduces the cost of achieving these emissions reductions by 6% and 22%,
respectively. This can be contrasted with a case in which offshore wind only has technology improvements,
which yields only an 8% reduction in the cost of achieving 95% emissions reductions. This follows from the
results that are summarized in Figure 4—the combined and CSP-only technology-improvement sensitivity
cases yield the most notable differences in the generation mix.

Figure 5: Expected Annual Operating and Investment Costs In Business-As-Usual Case and With Different Carbon-Emissions
Reductions Relative to Business-As-Usual Case Under Technology-Improvement Sensitivity Analysis
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5.2. Transmission Congestion

Our second sensitivity analysis considers the impacts of diminished transmission capacity, which can re-
sult from smaller-sized transmission equipment being installed and land-use or other restrictions on building
candidate lines. We consider a case in which the transmission capacity of all existing and candidate lines
is reduced by 25%. Furthermore, we assume that five of the candidate AC lines, which are close to load
pockets in the transmission network, are no longer available to be built.

Figure 6 shows the mix of generation and CAES units that are built in the transmission-congestion
sensitivity case with different emissions-reduction targets. Overall, the transmission-congestion sensitivity
case results in greater transmission investments and requires more generation and CAES capacity to be built,
relative to the base case. The base case does not require new transmission builds until reducing carbon
emissions by 95%. Moreover, these transmission builds in the base case are primarily to deliver energy
from remote renewable units to loads. Conversely, the transmission-congested sensitivity case requires
transmissions builds even in the BAU case. These transmission builds are needed simply to avoid load
curtailment. The 99%-carbon-reduction case requires more than double the transmission investment relative
to the base case.

Figure 6: Capacity Built In Business-As-Usual Case and with Different Carbon-Emissions Reductions Relative to Business-As-
Usual Case Under Transmission-Congestion Sensitivity Analysis

The generation and CAES units are more dispersed throughout the transmission network than in the
base case. Dispersing the energy-production and -storage capacities across the network provides greater
flexibility in having energy available in congested load pockets. One benefit of renewable units in this regard
is that they are fairly dispersed within the network. As such, renewable and CAES units jointly are able to
provide a great deal of congestion relief. One interesting observation regarding the operation of the system
in the transmission-constrained case is that energy-storage units at different locations in the network are
charged and discharged simultaneously in some hours. This is inefficient, insomuch as energy is lost when it
is stored. Simultaneous charging and discharging of energy storage is necessary, nonetheless, because load
peaks and troughs occur at different times at different locations. As such, absent transmission capacity,
excess energy must be stored at some nodes in the network despite stored energy being discharged to serve
load elsewhere in the network.

We analyze the role of the transmission system in abating CO2 emissions by examining a case in which
a carbon price of $100/t is imposed on the system but no explicit carbon constraint is enforced. We
find a minuscule 0.22% reduction in carbon emissions and 2.3% higher total costs with the downsized
transmission system relative to the base case. These changes are due to the specific network configuration,
which disadvantages the use of thermal generation in the transmission-constrained case. Downsizing the
transmission system results in some thermal units being offset by 141 MW of additional wind and 110 MW
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of additional CAES capacity to handle the added transmission congestion. Because wind and CAES units
have lower emissions rates than thermal plants, overall carbon emissions are reduced but costs increase.

5.3. Land Use

The land-use sensitivity case explores further the economic competitiveness of CSP relative to onshore
wind. Our base case places CSP at a competitive disadvantage compared to onshore wind, because CSP can
only be connected to the network via radial HVDC transmission lines. As such, CSP bears an additional cost
compared to onshore wind, which can use existing transmission corridors and can be co-located with load in
some cases. The land-use sensitivity case explores the competitiveness of CSP independent of transmission-
interconnection costs, by allowing CSP plants to be built at each node where onshore wind can be. These
additional candidate CSP plants are assumed to have the same cost and technical characteristics as the
CSP units in the base case. We use weather data for 18 additional locations, which correspond to the nodes
where onshore wind can be built, to simulate real-time availability of the added candidate CSP plants. We
also consider a sensitivity case, which removes the land-use restrictions on building CSP plants and which
assumes that CSP achieves the technology improvements that are outlined in Section 5.1.

Figure 7 summarizes the generation and energy-storage capacities that are built with different emissions-
reductions targets under the two land-use sensitivity cases. The first set of six bars corresponds to a case in
which only land-use restrictions on the deployment of CSP are relaxed. The second set of six bars corresponds
to a case in which land-use restrictions are relaxed and the CSP-technology improvements that are outlined
in Section 5.1 are achieved. The first set of bars shows that even without the cost of interconnecting with
the transmission network, CSP is not cost competitive with onshore-wind units. Indeed, the only difference
in CSP investments that results from relaxing land-use restrictions is that slightly more capacity is built to
achieve 99% emissions reductions. In fact, we find that with land-use restrictions CSP is only built when
the capacity to build onshore wind at a particular node is exhausted.

Figure 7: Capacity Built In Business-As-Usual Case and with Different Carbon-Emissions Reductions Relative to Business-As-
Usual Case Under Land-Use Sensitivity Analysis

The second set of six bars in Figure 7 shows that this result is reversed if land-use restrictions are
relaxed and CSP achieves technology improvements. Considerably more CSP capacity is built under these
assumptions compared to the base case (and the land-use-only sensitivity case) to achieve carbon-emissions
reductions between 25% and 95%. Interestingly, the amount of CSP capacity that is built to achieve 99%
carbon-emissions reductions is the same with and without the CSP-technology improvements. This suggests
that with 99%-carbon-emissions reductions, the CSP that is built is driven primarily by the emissions
constraint as opposed to the economics of the technology.
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The findings of this sensitivity case are consistent with current experience in the deployment of renewable
energy sources. Although CSP has a flexibility benefit relative to wind (and PV solar) that stems from the
ability to integrate low-cost TES, CSP has seen little deployment compared to wind. This is largely because
CSP is considerably more expensive to build (even when neglecting transmission-interconnection costs).
However, our sensitivity cases in which CSP achieves technology improvements (both the case examined
here and those in Section 5.1) reveal that CSP has the potential to become competitive with wind.

5.4. PV Solar and BES

This sensitivity analysis examines the benefits of adding PV solar and BES, the characteristics of
which are detailed in the online supplementary material, to the set of technologies that are available.
Feldman and Margolis (2018) discuss the growth of the global PV market in the past decade and the major
cost reductions that the technology has experienced. Moreover, the cost declines of energy-storage technolo-
gies are stimulating interest in combining PV with BES units to provide dispatchable energy and reliable
capacity. Fu et al. (2018) point to the favorable cost and performance characteristics of the storage medium
as a reason for the growing use of lithium-ion batteries in utility-scale PV deployments.

Given this context, this sensitivity case assumes that there are 10 candidate locations between which a
total of up to 7 GW of PV can be built. 2.1 GW of this potential capacity is rooftop installations that are
co-located with loads and have installation costs ranging between $1000/kW and $1012/kW. The remaining
4.9 GW of utility-scale PV has installation costs ranging between $790/kW and $801/kW. The PV plants
have operating costs that range between $1.50/MWh and $1.52/MWh. Solar availability of the PV units
is modeled using SAM in the same manner that is outlined in Section 3 for the CSP generators. The PV
units are assumed to have DC to AC ratios of 1.2 and 96%-efficient inverters.

Each lithium-ion BES unit, which is co-located with a candidate PV plant, is assumed to have a fixed
c̄s = 4 hours of storage capacity. Furthermore, we assume that up to 350 MW of power capacity can be
installed in each BES unit. Other characteristics of the BES are taken from the work of Fu et al. (2018).
Investment costs range between $1960/kW and $2100/kW and are scaled to account for the actual usable
SOC range of the battery, which is between 20% and 80% of the nominal battery capacity. Each unit has
an operating cost of $0.50/MWh when charging energy and $1.00/MWh when discharging. Each BES unit
is assumed also to have a 99% roundtrip efficiency and 0.1% hourly self-discharge rate.

Figure 8 summarizes the capacity of generating and energy-storage units that are built when PV solar
and BES are added to the set of technologies that can be installed. Interestingly, the figure shows that
PV units are cost-competitive with thermal generation in the BAU case. Without any carbon policy in-
place in the BAU case, 2.3 GW of PV solar is built to offset 230 MW of thermal capacity and 35 MW of
CAES relative to the base case that is discussed in Section 4. This configuration with PV solar is beneficial
from environmental and economic perspectives. CO2 emissions and total costs are 25% and 20% lower,
respectively, due to PV solar reducing operating costs by 25% with only a 3% increase in investment costs.
770 MW of CAES is still built in the BAU case to serve on-peak demand, because using CAES for peaking
purposes is less costly than using BES is.

As the carbon-emissions limit is enforced and tightened, the thermal-generation mix shifts toward the use
CCS and PV-solar capacity increases. Carbon-emissions reductions beyond 75% require the use of onshore
wind at nodes at which PV cannot be built (or at which all available PV capacity is built). 2.5 GW of
onshore wind is built to achieve 95% carbon reductions and 700 MW of BES capacity replaces almost all
CAES capacity. Achieving 99% carbon-emissions reductions shows another interesting result: PV-solar and
BES capacities both decrease in favor of CSP. Given their relative costs and efficiencies, the TES in CSP
provides the preferred source of dispatchability and flexibility to achieve these extreme carbon reductions.
This is consistent with the findings of Madaeni et al. (2012). To achieve complete decarbonization, all
available CSP capacity is built, more BES capacity is built, and offshore wind enters the generation mix.

5.5. Adiabatic CAES

This sensitivity case considers the use of adiabatic CAES as an alternative to diabatic CAES. Unlike
diabatic CAES, adiabatic CAES is a pure energy-storage technology. The primary difference between
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Figure 8: Capacity Built In Business-As-Usual Case and with Different Carbon-Emissions Reductions Relative to Business-As-
Usual Case Under PV-Solar-and-BES Sensitivity Analysis

diabatic- and adiabatic-CAES systems is the treatment of the waste heat that is produced when air is
compressed in the storage cycle. In a diabatic-CAES system, the waste heat is exhausted to the atmosphere.
As such, a diabatic-CAES system must combust natural gas as a heat source when expanding the compressed
air in the discharging cycle. An adiabatic-CAES system, conversely, stores the waste heat (often in a
dedicated TES system). This stored heat is then combined with the compressed air during the discharging
cycle, alleviating the need to use natural gas. This makes adiabatic CAES less costly to operate compared
to diabatic CAES. Moreover, adiabatic CAES involves no direct carbon emissions, unlike a diabatic-CAES
system, which emits carbon when combusting the natural gas in the discharging cycle. Barbour et al. (2015);
Barnes et al. (2015); Hartmann et al. (2012); Liu and Wang (2016); Sciacovelli et al. (2017) provide further
details regarding the technical properties and viability of adiabatic CAES.

The adiabatic-CAES sensitivity case assumes that this technology is available in place of diabatic CAES.
It is difficult to estimate the technical characteristics of adiabatic CAES, because no commercial-scale
systems exist today. Indeed, the DOE Global Energy Storage Database9 lists the 500 kW Pollegio-Loderio
Tunnel Demonstration Plant in Switzerland as the only operational adiabatic CAES plant as of July, 2018.
Thus, we rely on current and future estimates of the capabilities of these plants in modeling the adiabatic-
CAES sensitivity case.

We assume that the adiabatic-CAES plants have c̄s = 10 hours of storage capacity and that each unit can
have up to 350 MW of power capacity built. The adiabatic-CAES units are assumed to have efficiencies of
ηSs = 1.33, which means that 1.33 MWh of energy must be stored to later discharge 1 MWh of electricity. ηSs
being greater than 1 reflects the fact that adiabatic CAES is a pure energy-storage technology, meaning that
electricity is lost in the storage cycle. However, the benefit of this energy loss is that the adiabatic-CAES
units use no natural gas and have zero carbon emissions.

We consider two sets of investment and operating costs for the adiabatic-CAES plants. The first set,
which reflect current cost estimates, assumes investment costs ranging between $1187/kW and $1210/kW
and charging and discharging costs of $14/MWh and $17/MWh, respectively. The second set, which reflect
possible future cost reductions, assumes investment costs ranging between $594/kW and $605/kW and
charging and discharging costs of $12/MWh and $13/MWh, respectively.

Figure 9 summarizes the generation and energy-storage capacities that are built in the adiabatic-CAES
sensitivity case with different emissions-reduction targets. The first set of bars in the figure corresponds
to a case with high investment and operating costs for adiabatic CAES, while the second set corresponds

9https://www.energystorageexchange.org/
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to lower future cost projections. Interestingly, we find that adiabatic CAES is a less desirable energy-
storage technology compared to diabatic CAES. The base case and other sensitivity cases result in some
diabatic CAES being built, except with extremely high emissions-reduction targets. This is because once the
emissions-reduction target is sufficiently stringent, the carbon emissions that are associated with discharging
diabatic CAES makes it use infeasible.

Figure 9: Capacity Built In Business-As-Usual Case and with Different Carbon-Emissions Reductions Relative to Business-As-
Usual Case Under Adiabatic-CAES Sensitivity Analysis

Adiabatic CAES relaxes the impact of the emissions-reduction constraint on the use of CAES. However,
adiabatic CAES is more costly than diabatic CAES. This cost disadvantage overwhelms the zero-emissions
benefit of adiabatic CAES, except in the extreme case of full decarbonization. With full decarbonization,
about 10 MW and 500 MW of adiabatic CAES is built with high and low costs, respectively, as opposed to
no diabatic CAES in the base case.

5.6. Electricity Demand

According to Mai et al. (2018), electrification and the adoption of electric vehicles may cause electricity
demand in the United States to increase over the next three decades. Cooper and Schefter (2017) foresee
an additional seven million electric vehicles by 2025 in the United States, compared to the 567000 electric
vehicles as of the end of 2016. Rissman (2017) estimates that electric vehicles will compose 60%–75% of
total new light-duty vehicle sales in the United States by 2050, at which point they will represent 13%–15%
of total national electricity demand.

Given this potential for substantive electricity-demand increases, we conduct a sensitivity analysis on
demand growth by modifying the demand levels in the second-stage scenarios. Specifically, we examine
three cases in which electricity demands increase by 10%, 30%, and 50% in the high-demand scenario (as
opposed to the 5% demand growth that is assumed in the base case that is presented in Sections 3 and 4).
The no-demand-growth and low-demand scenarios are not modified in this sensitivity analysis relative to
the base case.

Figure 10 shows generation and energy-storage units that are built in the electricity-demand sensitivity
case with different emissions-reductions targets. Contrasting this with Figure 2 shows that regardless of the
demand-growth level in the high-demand scenario, the technology mix that is built is not altered fundamen-
tally. Instead, the sole substantive impact of demand growth is to ‘rescale’ the total capacity that is built
to serve the possible peak load in the high-demand scenario. This increased capacity translates into higher
system costs, which are shown in Figure 11.
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Figure 10: Capacity Built In Business-As-Usual Case and with Different Carbon-Emissions Reductions Relative to Business-
As-Usual Case Under Electricity-Demand Sensitivity Analysis

Figure 11: Expected Annual Operating and Investment Costs In Business-As-Usual Case and With Different Carbon-Emissions
Reductions Relative to Business-As-Usual Case Under Electricity-Demand Sensitivity Analysis

6. Discussion and Conclusions

This paper presents a two-stage stochastic optimization model that can be used for long-term power
system-expansion planning. We pay particular attention to modeling carbon-emissions limits and decar-
bonization of electricity production. This can be achieved in our model using two policy mechanisms:
either via an explicit carbon-emissions constraint or by pricing carbon (e.g., Pigouvian taxes on emissions).
Our model and case study consider three technical options for decarbonization—renewable energy sources,
nuclear generators, and fossil-fueled plants with integrated CCS systems.

Weather-dependent renewable generators raise modeling, planning, and operating challenges, because
their real-time resource availability is uncertain and variable. As such, we include energy-storage technologies
in the model as a flexibility source for mitigating these characteristics of renewables. We focus on two
energy-storage technologies—CAES and TES integrated in CSP plants—in our base case, which can be
deployed widely in high-renewable-penetration scenarios. The real-time variability of renewable availability
is captured in our model using a variety of different operating conditions. These operating conditions capture
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the range of weather conditions over the course of a year, which can give different load levels and wind and
solar availabilities. Large-scale uncertainties, such as long-term load growth, are captured explicitly through
second-stage scenarios in the scenario tree.

We demonstrate our model and analyze decarbonization pathways using a detailed case study that is
based on the ERCOT system. We find that absent any policy mechanism that internalizes the societal cost
of carbon, the power system still maintains a fossil-fueled generation mix with some CAES to alleviate the
need to build peaking generation capacity. Natural gas is preferred to coal as a generation fuel, given its
anticipated low cost and the high efficiency of NGCC units. This system design holds regardless of potential
future cost reductions in renewable and CAES technologies. However, when investments in PV solar and
BES units are allowed, 2.3 GW of PV-solar capacity is installed and displaces 230 MW of thermal and
35 MW of CAES in the BAU case. This provides both economic and environmental benefits and shows that
PV solar is indeed cost-competitive with thermal generation absent any carbon policy.

As the social cost of carbon is internalized (we do this in our case study via explicit carbon-emissions
limits) the system moves away from natural gas-fired generators toward onshore-wind and (when allowed)
PV solar capacity. Moreover, portions of the natural gas-fired fleet use CCS for modest carbon-emissions
limits. As the carbon-emissions limits become very stringent, fossil-fueled generation essentially is phased
out of the system completely. CAES is also phased out, because of the carbon emissions that are associated
with the combustion of natural gas in the discharging cycle. The flexibility that CAES affords is instead
provided by CSP plants, which have TES incorporated in them. Finally, achieving complete decarbonization
of the electric power system calls upon the use of offshore wind, which tends to be more costly than onshore
with only marginal relative improvements in its capacity factor. CSP plants are preferred to PV solar and
BES to achieve extreme decarbonization. Interestingly, nuclear is not used for decarbonization purposes,
given its very high cost.

Achieving modest decarbonization targets yields relatively small expected power system-cost increases.
Indeed, we find that for a wide range of social costs of carbon, reducing carbon emissions by between 25%
and 85% (relative to a BAU case) is socially optimal. One of the challenges in setting carbon policy is
that the social costs of climate change are difficult to estimate a priori. Thus, it may prove robust against
the potential for catastrophic impacts of climate change to set decarbonization targets that are toward the
upper end of this range.

Under current estimates of costs and technical characteristics, onshore wind and solar PV are the most
attractive renewable-energy technologies that we consider. We find, however, that if CSP achieves its
projected cost reductions and efficiency gains and if transmission-interconnection costs are reduced, CSP
can become an extremely competitive alternative to onshore wind. Moreover, the inherent flexibility of
CSP alleviates the need to build stand-alone energy-storage capacity. Offshore wind is not competitive with
onshore wind and CSP. This is because of its relatively high investment and operating costs and the need
to build radial HVDC lines to connect it to load centers. For these reasons, offshore wind is built only if all
other renewable-energy sources are exhausted.

Diabatic CAES is an economically feasible alternative to PHS. This is an important finding, because
many parts of the world lack either the water or geological formations that are necessary for the deployment
of PHS. Conversely, CAES has the potential to be deployed in many renewable-rich regions. The major
difficulty that diabatic CAES raises is the emission of carbon that is associated with the discharging cycle.
Adiabatic CAES, which is a technology that is currently in the demonstration phase, holds the potential to
mitigate the carbon-emissions issue of diabatic CAES. However, our adiabatic-CAES sensitivity case reveals
that with current and future projections of technology costs, adiabatic CAES is not an economic source of
supply-side flexibility. Our findings suggest that adiabatic CAES requires further development to become a
viable alternative to diabatic CAES, except under extreme carbon-reduction targets.

Our analysis focuses on using energy storage as a source of supply-side flexibility to achieve sup-
ply/demand balance. One could also consider the use of demand-side flexibility, for instance through demand
response, as a means of achieving this balance. The use of demand response is an area of future research
that is beyond the scope of our current work. The methodology that Sioshansi (2010) uses to examine the
renewable-integration benefits of demand response likely could be adapted within the modeling framework
that we develop here.
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Our analysis shows that demand growth does not affect the optimal mix of technologies that are built.
Rather, demand growth results in scaling up the total capacity that is installed with a commensurate increase
in system costs.
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Supplementary Material: A Two-Stage Stochastic Optimization

Planning Framework to Decarbonize Deeply Electric Power Systems

Luigi Boffino Antonio J. Conejo Ramteen Sioshansi Giorgia Oggioni

1 Introduction

This document provides all of the detailed input data that are used in the base-case and sensitivity analyses in the
paper “A Two-Stage Stochastic Optimization Planning Framework to Decarbonize Deeply Electric Power Systems.”
All of the investment costs are overnight costs, which must be annualized (we use an 11% annualization rate in our
analysis).

2 Data For Base Case

Table 1: Technical Characteristics of Onshore-Wind Units

Node Maximum Capacity [MW] Operating Cost [$/MWh] Investment Cost [$/kW]

1 700 2.71 2005
7 700 2.15 2022
13 700 2.06 1980
13 700 2.05 2010
14 700 2.10 1990
14 700 2.21 2020
16 700 2.04 2040
18 700 2.00 2100
21 700 2.04 2000
22 700 2.55 1970
23 700 2.02 1980

Table 2: Technical Characteristics of Offshore-Wind Units

Node Maximum Capacity [MW] Operating Cost [$/MWh] Investment Cost [$/kW]

25 2000 4.85 3190
27 2000 5.35 2900

Table 3: Technical Characteristics of CSP Units

Maximum Generation TES-Discharging TES-Charging Investment
Node Capacity [MW] Cost [$/MWh] Cost [$/MWh] Cost [$/MWh] Cost [$/kW]

26 1000 4.00 0.1400 0.1549 3272
28 1000 3.80 0.1400 0.1549 3599
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Table 4: Technical Characteristics of Diabatic-CAES Units

Maximum Discharging Charging Investment Carbon-Emissions
Node Capacity [MW] Cost [$/MWh] Cost [$/MWh] Cost [$/kW] Rate of Discharging [t/MWh]

1 350 28.79 0.5 571 0.259
7 350 28.71 0.5 560 0.259
13 350 28.33 0.5 599 0.259
14 350 28.47 0.5 550 0.259
16 350 28.55 0.5 605 0.259
21 350 28.66 0.5 610 0.259
22 350 28.75 0.5 589 0.259
23 350 28.41 0.5 600 0.259
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Table 5: Technical Characteristics of Existing Transmission Lines

From Node To Node Reactance [p.u.] Flow Limit [MW]

1 2 0.014 450
1 3 0.211 220
1 5 0.085 510
1 23 0.087 600
2 4 0.127 220
2 6 0.192 220
3 9 0.119 400
3 24 0.084 400
4 9 0.104 220
5 10 0.088 220
6 10 0.061 200
7 8 0.061 320
8 9 0.165 220
8 10 0.165 220
9 11 0.084 320
9 12 0.084 250
10 11 0.084 230
10 12 0.084 200
11 13 0.048 400
11 14 0.042 320
12 13 0.048 400
12 23 0.097 600
14 16 0.059 600
15 16 0.071 600
15 21 0.049 600
15 21 0.049 600
15 24 0.052 310
16 17 0.026 800
16 19 0.023 600
17 18 0.014 600
17 22 0.105 600
18 21 0.026 600
18 21 0.026 600
19 20 0.040 600
19 20 0.040 600
20 23 0.022 600
20 23 0.022 600
21 22 0.068 600
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Table 6: Technical Characteristics of Candidate AC Transmission Lines

From Node To Node Reactance [p.u.] Flow Limit [MW] Investment Cost [$ million]

1 9 0.026 600 210
3 15 0.026 600 200
3 18 0.049 400 312
7 10 0.026 600 201
9 14 0.026 600 190
9 21 0.049 400 315
10 11 0.026 600 180
10 13 0.026 600 195
12 22 0.049 400 290
16 17 0.026 800 190

Table 7: Technical Characteristics of Candidate HVDC Transmission Lines

From Node To Node Flow Limit [MW] Investment Cost [$ million]

25 6 2000 684.0
25 8 2000 817.5
25 13 2000 589.5
25 22 2000 503.5
26 3 1000 503.5
26 15 1000 551.0
26 16 1000 589.0
26 17 1000 617.5
27 6 2000 532.0
27 8 2000 551.0
27 13 2000 503.5
28 1 1000 817.5
28 3 1000 684.0
28 15 1000 589.5
28 18 2000 503.5
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3 Data For Sensitivity Cases

3.1 Data For Technology-Improvement Sensitivity Case

Table 8: Investment Costs of Candidate HVDC Transmission Lines

From Node To Node Investment Cost [$ million]

25 6 304.0
25 8 437.0
25 13 209.0
25 22 123.5
26 3 123.5
26 15 171.0
26 16 209.0
26 17 237.5
27 6 152.0
27 8 171.0
27 13 123.5
28 1 437.5
28 3 304.5
28 15 209.0
28 18 123.5

3.2 Data For Land-Use Sensitivity Case

Table 9: Technical Characteristics of Additional CSP Units in Land-Use Sensitivity Case

Maximum Generation TES-Discharging TES-Charging Investment
Node Capacity [MW] Cost [$/MWh] Cost [$/MWh] Cost [$/MWh] Cost [$/kW]

1 350 3.86 0.14 0.1549 3507
7 350 3.87 0.14 0.1549 3442
13 350 3.86 0.14 0.1549 3336
13 350 3.81 0.14 0.1549 3471
14 350 3.88 0.14 0.1549 3513
14 350 3.85 0.14 0.1549 3350
16 350 3.87 0.14 0.1549 3239
18 350 3.85 0.14 0.1549 3345
21 350 3.82 0.14 0.1549 3432
22 350 3.83 0.14 0.1549 3222
23 350 3.89 0.14 0.1549 3417
26 1000 4.00 0.14 0.1549 3599
28 1000 3.80 0.14 0.1549 3272
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Table 10: Technical Characteristics of Additional CSP Units in Land-Use Sensitivity Case With Technology Im-
provements

Maximum Generation TES-Discharging TES-Charging Investment
Node Capacity [MW] Cost [$/MWh] Cost [$/MWh] Cost [$/MWh] Cost [$/kW]

1 350 3.86 0.14 0.1549 2630
7 350 3.87 0.14 0.1549 2581
13 350 3.86 0.14 0.1549 2502
13 350 3.81 0.14 0.1549 2603
14 350 3.88 0.14 0.1549 2634
14 350 3.85 0.14 0.1549 2512
16 350 3.87 0.14 0.1549 2429
18 350 3.85 0.14 0.1549 2508
21 350 3.82 0.14 0.1549 2574
22 350 3.83 0.14 0.1549 2416
23 350 3.89 0.14 0.1549 2562
26 1000 4.00 0.14 0.1549 2699
28 1000 3.8 0.14 0.1549 2454

3.3 Data For Adiabatic-CAES Sensitivity Case

Table 11: Technical Characteristics of Adiabatic-CAES Units With High Costs

Maximum Discharging Charging Investment
Node Capacity [MW] Cost [$/MWh] Cost [$/MWh] Cost [$/kW]

1 350 14 17 1198
7 350 14 17 1187
13 350 14 17 1199
14 350 14 17 1210
16 350 14 17 1195
21 350 14 17 1205
22 350 14 17 1189
23 350 14 17 1200

Table 12: Technical Characteristics of Adiabatic-CAES Units With Low Costs

Maximum Discharging Charging Investment
Node Capacity [MW] Cost [$/MWh] Cost [$/MWh] Cost [$/kW]

1 350 11.5 12.5 599
7 350 11.5 12.5 593
13 350 11.5 12.5 599
14 350 11.5 12.5 605
16 350 11.5 12.5 597
21 350 11.5 12.5 602
22 350 11.5 12.5 504
23 350 11.5 12.5 600
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3.4 Data For PV and BES Sensitivity Case

Table 13: Technical Characteristics of BES Units

Maximum Discharging Charging Investment
Node Capacity [MW] Cost [$/MWh] Cost [$/MWh] Cost [$/kW]

1 350 1 0.5 1990
3 350 1 0.5 1960
5 350 1 0.5 1971
7 350 1 0.5 1989
10 350 1 0.5 2012
14 350 1 0.5 2100
16 350 1 0.5 2090
18 350 1 0.5 2000
22 350 1 0.5 1955
23 350 1 0.5 2010

Table 14: Technical Characteristics of PV-Solar Units

Maximum Operating Investment
Node Capacity [MW] Cost [$/MWh] Cost [$/kW]

1 700 1.530 799
3 700 1.520 1000
5 700 1.521 1010
7 700 1.521 795
10 700 1.520 1012
14 700 1.511 798
16 700 1.510 801
18 700 1.500 790
22 700 1.531 800
23 700 1.540 792
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