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Abstract—Understanding energy use is critical. While simula-
tion is valuable, such models are simplified abstractions of actual
energy systems. We present an energy system multi-model imple-
mented with the newly developed LAPIS computational steering
API. We present an adaptable framework for the integration and
development of multi-model simulations. This framework has
key advantages including allowing independent development of
component simulations, limiting coordination overhead between
developers, and allowing modularity and flexibility in the overall
multi-model simulation. We use case studies to demonstrate the
capabilities of the multi-model energy system simulation and
LAPIS.

Index Terms—Multi-model simulation, computational steering,
energy system modeling, energy policy

I. INTRODUCTION

ENERGY-related issues are increasingly important. Re-
liance on fossil fuels has significant environmental,

geopolitical, energy supply, and macroeconomic effects. A
number of technologies, including renewable energy sources,
plug-in electric vehicles (PEVs), and efficient and smart ap-
pliances, are proposed to mitigate these issues. These are not
panacean solutions, however, and their use can have unin-
tended consequences. Moreover, most modern energy systems
are not centrally planned. Rather, energy technologies are
adopted and used by individuals, based on cost and other
considerations. Thus, governments, policymakers, and others
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often rely on indirect policy measures to guide energy system
development.

Understanding interactions between new and existing en-
ergy technologies, and policy impacts therein, is key to driving
sustainable energy use and economic growth. This endeavor
is easier said than done. With more complex technologies
and greater resource constraints, understanding the complete
energy generation, distribution, and consumption picture is
daunting. Fully understanding the intricacies of how renew-
able energy sources, an aging energy infrastructure, increas-
ing global energy demand, and PEVs interact is complex,
involving multiple domains of expertise. This multifaceted
problem lends itself to designing and implementing a large-
scale, interactive simulation that allows users to gain insights
into these topics to help inform their decision making.

By building a multidisciplinary team with expertise in
engineering, computer science, and economics, we are devel-
oping such a large-scale simulation. This paper presents the
energy system models and the computational solution used
to integrate the multi-model simulation. Illustrative results,
demonstrating the models’ value in energy system simula-
tion and policy analysis, are also presented. The tools and
techniques being developed are applicable to a wide array of
domains and computational tasks. Thus, we also summarize
the performance of our computational system in steering large-
scale multi-model simulations.

A. Integrated Computational System for Energy Pricing and
Policy

A computational model, called the Integrated Computational
System for Energy Pricing and Policy (ICS-EPP), is currently
being developed at The Ohio State University. The purpose
of the ICS-EPP (see Fig. 1) is to assist the formulation of
energy policy, pricing, and investment decisions. The ICS-EPP
includes interacting sub-models of: (i) individuals’ behavior;
(ii) sector- and time-resolved electricity demand; (iii) the
electric power system with distributed and stochastic supplies;
(iv) vehicle energy consumption; (v) long-term technology
investments; and (vi) different technology options.

The ICS-EPP is intended to help users explore the space
of possible policy options. The model simulates the effects of
policy on energy use and technology adoption. This allows
users to design a new energy system that meets their desired
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Fig. 1. The ICS-EPP multi-model simulation. Development of residential,
commercial and industrial, and transportation energy demand and unit com-
mitment and dispatch models is in progress. The remaining models have yet
to be implemented and will be added at future stages of the project.

objectives (e.g., reduced CO2 emissions, greater renewable
use, or minimized energy costs), while accounting for energy
system dynamics and individuals’ self-interested behavior.
This requires access to a comprehensive model that allows the
exploration of ‘what-if?’ scenarios over large regional areas
and long time scales. Integration of the models comprising
the ICS-EPP is accomplished using a computational steer-
ing platform developed at the Ohio Supercomputer Center
(OSC), called the Language and Platform Independent Steer-
ing (LAPIS) system.

ICS-EPP has important differences from existing energy
system models. The ICS-EPP is explicitly designed to model
disparate decision making by interacting autonomous agents.
This contrasts with the ‘command-and-control’ structure of
existing models, which assume that all agents make socially
optimal (e.g., cost-minimizing) decisions, neglecting incentive
or externality issues. The ICS-EPP is also agnostic to the
overall objective, since the user steers the simulation based
on his or her desired outcome. Many existing national energy
models assume cost minimization. Finally, the use of LAPIS
makes the ICS-EPP modular, allowing users to customize the
simulation by plugging in purpose-built models. For example,
if a user has a detailed power flow model, incorporation into
the broader simulation is simple. This is because the LAPIS
API allows codes using different languages and platforms
to interact in a steered simulation. Although some existing
models have a modular design, users are typically limited
to the single language in which the underlying model is
developed.

B. Computational Steering

Computational steering is defined as the interactive control
over an executing simulation by a human or other agent in real-
time [1]. Traditional scientific computation relies on a heavily
structured, iterative process, or ‘open loop’ simulation. This
methodology has numerous disadvantages with regard to effi-
ciency, usefulness, and simulation methodology [1]–[3]. Com-
putational steering addresses these inefficiencies by ‘closing

the loop,’ allowing researchers to visualize and interact with
simulations as they are running, thereby becoming an active
simulation participant rather than just interpreting results (see
Fig. 2, which illustrates how the researcher interacts with a
traditional and steered simulations).

Fig. 2. Computational steering systems let the researcher act as a part of the
simulation itself, allowing hard-to-capture domain knowledge to be applied
directly to the problem at hand.

Steering also allows a number of simulation models that
are otherwise unavailable, inefficient, or difficult to imple-
ment. Of particular note are model exploration, performance
optimization, algorithm exploration, and multi-model systems.
Model exploration systems allow the user to interaction with
a simulation, algorithm, or model in real-time to gain in-
creased depth of understanding, insight, and intuition [4].
One early example is the 3D turbulence model of Lake
Erie developed at the OSC [5]. Later model exploration
systems include the SCIRun programming environment [2].
Performance optimization steering systems manipulate the
running simulation in ways that only affect its performance,
not the simulation results. An example is the balancing of
computational workload between processors in a distributed
computation [6], [7]. Algorithm exploration allows users to
experiment with computational methodologies within simu-
lation code. Examples are limited in the literature, however
LAPIS provides a mechanism for coarse-grain algorithmic
steering. Finally, computational steering can be leveraged to
create robust and dynamic multi-model simulations. Multi-
model simulations are used successfully in many domains
and a wide range of architectures [8]–[11], most notably in
the field of environmental science. Nevertheless, few free or
commercially available tools for their creation exist, and multi-
model simulations are largely one-off development projects.

Both the required hardware and software tools exist to
make a fully featured computational steering environment
successful. Given steering’s proven value, it is disappointing
that it is not widely used. This lack of adoption is due to four
shortcomings of existing steering packages [12]: development
difficulty, portability issues, maintainability of code, and third-
party hardware and software support. Existing steering tools
are complicated to use, often requiring re-implementation of
existing simulations [2], [13]. Such overhead is unacceptable
to most researchers. Additionally, once a simulation is built or
instrumented with a steering tool, it becomes linked to that
steering technology. Many steering tools have considerable
dependencies, which tie to the simulations that use them,
creating maintainability and portability difficulties [13]–[15].
A lack of third-party support, in the realms of free tools and
commercial options, leaves the steering developer to solve
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complex technical issues unrelated to his or her primary field
of research.

LAPIS is specifically designed to address these and other
problems with steering. While developing the ICS-EPP sim-
ulation, we make use of some key methodologies discussed
in detail below. These methodologies, in parallel with com-
putational steering, results in a highly successful approach to
simulation development and execution.

II. ICS-EPP SUB-MODELS

The models constituting the ICS-EPP multi-model simu-
lation are developed independently, using a different set of
languages, computational tools, and techniques.

A. Residential Energy Demand

Implemented in MATLAB, this model simulates the elec-
tricity consumption of a residential sector using a bottom-
up approach [16]–[19]. Such energy demand is variable and
depends on physical factors (e.g., weather, temperature, and
dwelling characteristics) and the household members’ behav-
ior. The total electric power demand of each dwelling is
modeled as the sum of energy used by: (i) cold appliances
(e.g., refrigerators and freezers); (ii) heating, ventilation, and
air conditioning (HVAC); (iii) the household members’ ac-
tivities; (iv) lighting; and (v) ubiquitous electric consumption
(i.e., lights that are always on and appliance stand-by power)
[19]–[21]. The first three components are modeled using engi-
neering physically-based models, while individuals’ behaviors
are modeled using a heterogeneous Markov chain. The model
is calibrated and validated against metered electric load data
provided by American Electric Power and behavioral data
collected by the U.S. Bureau of Labor Statistics.

The model uses LAPIS to get weather data for HVAC
simulation. Users can vary model parameters to explore the
effects of different technologies. For instance, varying activity-
related energy use represents different appliance efficiencies.
These changes are communicated to the model during run-
time using LAPIS. The technology investment model (under
development) endogenously optimizes technology decisions,
which are communicated to the residential energy demand
model using LAPIS. The residential demand model outputs
10-minute resolved electric energy demand.

B. Commercial and Industrial Energy Demand

Implemented in MATLAB, this model is a two-part sim-
ulation that simulates electricity demand in the short-run on
an hour-to-hour basis using an autoregressive regression with
calendar (i.e., hour of day, day of week, etc.) and temperature
variables [22]. This captures diurnal and seasonal demand
patterns. As the ICS-EPP moves forward in time, these fore-
casts are updated by a second long-run model of interannual
demand growth that captures macroeconomic variables, such
as electricity and natural gas prices, population, and gross
state product. Regression-based methods are popular for cap-
turing diurnal and interannual electricity demand patterns [23],
[24]; however, integrating these predictions with long-term

growth factors is novel. The regression models are fit using
geographically-diverse data sets and comparisons of forecasts
to out-of-sample actual consumption data show accurate pre-
dictive power [22]. Users can modify the number of number of
commercial and industrial customers, the retail price structure,
and macroeconomic growth rates, which are communicated
to the model through LAPIS. The population input to the
long-run model matches that of the residential energy demand
model, as do the short-run weather variables. The output is
a 10-minute resolved vector of aggregate commercial and
industrial electricity demand.

C. Transportation Energy Demand

Implemented in MATLAB/Simulink, this model simulates
energy use when household members leave the home (as
determined by the residential model) [25]. This includes all
leisure and work-related travel. This model does not consider
commercial and industrial transport, as any associated electric-
ity use is captured in the commercial and industrial demand
model. The model uses a three-stage process. First, each trip’s
total travel time is determined based on the duration the
individual is away. This is then translated into a velocity profile
using a Markov-chain model. A backward vehicle dynamic
simulator is finally used to compute energy use. This model
architecture can simulate multiple vehicle types, including
conventional vehicles and PEVs. The model is calibrated to
empirical driving data and validated by comparing aggregate
transportation energy consumption to national averages [25].

LAPIS is used to couple the transportation model with the
residential and unit commitment models. The transportation
model uses LAPIS to read simulated activity patterns, which
determine when vehicle trips occur. Vehicle technology adop-
tion will eventually be modeled endogenously, making further
use of LAPIS.

D. Unit Commitment and Dispatch

Electricity generation is simulated using an industry-
standard unit commitment and dispatch model [26]. The model
is implemented as a mixed-integer program in Java using
the CPLEX 12.3 optimization API. Inputs include energy
demand data, which are given by the residential, commercial
and industrial, and transportation models. ICS-EPP currently
has the user specify the generation mix, which is input via
LAPIS. A technology investment model (under development)
will eventually model these decisions endogenously, based on
a cost-minimization objective and pertinent constraints (e.g.,
renewable portfolio standards or CO2 restrictions). The model
outputs, which are published to the visualization model using
LAPIS, include the electric output of each generator, and
associated costs and emissions.

E. Visualization

The visualization model is responsible for reporting and
controlling the overall simulation. The model provides a user
interface and control mechanism for the user to start, stop,
monitor, and modify simulations during runtime. It is designed
to be agnostic to the underlying simulation.
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One issue that traditionally plagues the use of steering
is the lack of an intuitive interface. Thus, the use of these
systems is often limited to computer scientists with domain-
specific knowledge of steering. The visualization model aims
to allow novice and non-technical users to gain insights from
application-specific simulations without needing advanced
training in communication systems and parallel computing. In
our case, business analysts and policymakers can control and
monitor how different system inputs (e.g., generation mix and
technology uptake) affect simulation outputs (e.g., electricity
supply and energy use).

The visualization model has three software components
(see Fig. 3), the front-end, back-end processing, and storage
components.

Fig. 3. LAPIS visualization system architecture.

1) Front-end Component: This component is entirely web-
based, providing steering system users a complete abstraction
from the details of the inner-workings of the simulation.
The front-end, written in multiple web framework scripting
languages, presents both novice and expert users the ability to
dynamically change and monitor simulation inputs and outputs
in real-time using a dynamic AJAX/HTML browser-based user
interface.

2) Back-end Component: This component uses the LAPIS
API to communicate with the other steered models. The back-
end is written in Java and implements the native Java LAPIS
API to appear on the LAPIS steering network as another
model with its own defined inputs and outputs. By taking
advantage of the user-defined inputs and outputs of the back-
end component, other model authors can implement certain
controllable inputs to (and outputs of) their models, providing
on-line controllability of their specific model simulations from
the web-based front-end.

The back-end component also ensures synchronization be-
tween the models. The need for this is simple—different
models operate at different rates. For example, the commercial
and industrial energy demand model takes less than one
hundredth of the time taken by the residential model. Without
a synchronization mechanism, the faster models generate more
data than is needed by the other models to progress. This raises
the need for complicated data and memory management. The
back-end component simplifies this by requiring all models
connected to the LAPIS network to publish a timestep vari-
able, indicating the timestep of data being simulated by the
particular model. These published variables are used to ensure
that all of the models are time-synchronized as the simulation

progresses, since a model only proceeds to the next timestep
once all timestep dependencies are met (see Section III-B2 for
further details).

3) Storage Component: Implemented with a relational
database system (MySQL), this component is a go-between for
the back- and front-end components and stores all simulation
data and settings specified by the manifests for each individual
simulation (see Section III-B1 for further details of the model
manifest system). In addition to handling all simulation data,
the storage component also manages user account information
and user interactions on the system.

4) Demonstration Implementation: There currently exists
a multi-layer demonstration implementation of the visual-
ization model that includes a complete set of web layers
that communicate, store, and display simulation states using
LAPIS. A MySQL database stores the manifests, as well as the
simulation data that can be displayed on the front end. On top
of the database, there exists a Representational State Transfer
(REST) web service that is implemented in PHP. As with many
RESTful webservices, JSON is utilized to pass information
back and forth via HTTP. The front-end is implemented
using standard HTML/CSS and javascript (AJAX, jQuery) that
utilizes the RESTful webservice. MATLAB and Java APIs also
exist to facilitate the upload of initial and manifest data.

Fig. 4 shows the web-based interface of the ICS-EPP
visualization model at runtime. The top of the page (1)
provides a drop-down menu, allowing the user to select from
a set of steered computations available on the back end.
Based on this selection, the middle of the page (2) provides
a list of the constituent sub-models. Selecting a sub-model
presents a list of variables (3) that are published on the LAPIS
network that can be viewed or changed. The sub-model and
published variable lists are generated dynamically, based on
the model manifest files. Finally, the interface dynamically
generates figures displaying published variable information (4)
and allows the user to change the values of variables that are
specified as writable (5).

1

2

3

4

5

Fig. 4. Demonstration implementation of the ICS-EPP visualization model.
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III. INTEGRATION OF INDEPENDENT MODELS: FORMING
THE MULTI-MODEL SIMULATION

The ICS-EPP is a multi-model simulation built out of inde-
pendently developed models, each covering a specific domain
of interest, and a front-end interface. These components are
interconnected via LAPIS and rely upon each other for input
parameters and data. We developed early versions of this
system, during the course of which we established some key
design strategies. Whereas model and front-end integration
was initially time consuming and difficult, these strategies
make the process nearly seamless and provide automation
benefits.

A. The LAPIS System

The primary design goal of LAPIS is to provide a steering
system that is sufficiently easy to use that non-specialist
researchers could learn the basics of its use in an afternoon.
At the same time, LAPIS is designed to be as platform-,
operating system-, and language-independent as possible. This
ensures that simulations using LAPIS are not compromised in
terms of portability, maintainability, or structure. LAPIS also
provides a simple mechanism for implementation of multi-
model simulations. Much like MPI and OpenMP do for paral-
lel computing, LAPIS provides an exampl standard for steering
systems. Today, LAPIS provides a cross-platform middleware,
a modular communication mechanism that currently supports
TCP-IP based communication, and APIs for both Java and
MATLAB. Future plans include additional communication
modules supporting File I/O, Infiniband, and SSH tunnels.
Additional plans involve the creation of APIs for C/C++,
Python, and other languages.

The LAPIS system models complex steered applications
as a collection of peer-to-peer connected nodes, each using
a three-layer software stack (see Fig. 5). The peer-to-peer
network is built and maintained automatically without the
need for end-user intervention. The API layer helps ensure
that a variety of languages can be used with LAPIS. The
COM layer ensures that the communication mechanism used
to connect components of the steered application can be easily
changed without requiring any user implementation changes.
Finally, the Daemon layer, written in Java, ensures that reim-
plementation of the core functionality of the LAPIS system
is never required. The three-layer stack additionally ensures
that LAPIS minimally impacts simulation performance. The
stack also ensures that using LAPIS does not negatively
affect maintainability or portability of the simulation. The
stack provides a set of standard interfaces used to expand the
functionality of the LAPIS system.

Use of the API itself is quite simple as usage is based on a
small number of easy to understand methods. The function
of the LAPIS system is based on a published-data model.
Within this model, any given node on the steering network
can publish internal state through an API call. Once published,
a node’s internal state can be accessed via ‘get’ and ‘set’
API calls by any other node on the network. Critical to the
success and functionality of this model is the handling of
requests for published data. Specifically, when a remote node
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Fig. 5. The structure of the LAPIS system. LAPIS is as general purpose
a steering system as possible. As such, the system makes no distinctions
between nodes on the steering network.

requests either a ‘get’ or ‘set,’ LAPIS handles the request
automatically without interruption of the user code in any
way. As such, ‘get’ and ‘set’ commands can be issued and
responded to without a priori knowledge on the part of the
developer of either code body. For a simulation to be made
steerable, code is added to initialize the LAPIS system and
publish the internal states. No other modifications need be
made to the simulation code. These modifications alone are
sufficient to give a front-end interface, also using LAPIS, the
ability to connect to, read, and modify the internal state of the
simulation as it runs.

B. Development and Design Strategies

Our experience in integrating the ICS-EPP reveals two
useful model development strategies. Early on in the first-
generation multi-model, individual models were connected via
LAPIS manually. One developer was given responsibility for
implementation of a model manager, inspecting the code of
each model to extract the model name and the names of
published values. These names were then used in the imple-
mentation of the manager. It was quickly determined that such
a system would not only be a potential runtime bottleneck,
but also a development bottleneck as a greater number of
more complex models become involved in the simulation.
With this in mind, the second-generation system was built
with each model directly interfacing with other dependent
models. Each model is responsible for monitoring the state
of other dependent models. Dependent data are accessed only
after the generating model passes a certain timestep within
the simulation, and this time-synchronization is facilitated by
the back-end controller of the visualization model. While this
successfully eliminates the runtime bottleneck, full system
integration was still complicated and time consuming.

After the second generation, the idea of model manifests
was developed and implemented for each model. The addition
of manifests to the situation-aware models of the second-
generation system resulted in our third-generation model and
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the approaches discussed below. Using this system, model
integration is greatly simplified and modularized. Interfacing
models to each other and to other components (such as front-
end interfaces) is done procedurally, and computational and
network loads can be distributed more evenly.

1) The Model Manifest System: Each model developer is
required to provide what is termed a ‘Model Manifest.’ This
manifest is a plain-text file that describes the full steering
interface of the model. These manifests are written in JSON
format, ensuring that they are human- and machine-readable.
The steering interface of the model includes a number of key
factors. These include the minimal timestep that is externally
viewable from the model (which may differ from the internal
timestep), the name of the model, and the published states
within the model.

In our usage, the published states come in two categories:
input parameters and simulation output. Input parameters are
any scalar values and flags that affect the internal operation
of the simulation (e.g., pause flags, flags that control execu-
tion of certain model subsections, and coefficients used for
convergence and scaling). The name, type, size, and default
values for these parameters, and a human-readable explanation
of they are used for within the simulation, are given in the
manifest. Simulation output values are characterized by their
continued growth as simulation time progresses. The manifest
specifies the names, type, unit, and rate of growth of these
output values, and a human-readable description of what the
values represent.

These manifests allow other developers to make use of
the simulations’ outputs within their own simulations. Using
LAPIS and the variable names and description within the
manifests, each model developer can leverage the other models
in the system without significant coordination effort. LAPIS
provides the ‘get’ and ‘set’ commands which provide
access to the published data by name. No further coordination
is required so long as each published internal state matches the
model manifest. Additionally, our front-end interface makes
use of all the model manifests in order to dynamically generate
the user interface. By reading each manifest, each model can
be presented to the end user with all of its inputs and outputs
available and clearly labeled.

2) Situation-Aware Models: The model manifests, paired
with a scheme we call ‘situation-aware models’ and outline
below, allows construction of large scale multi-models with
almost no integration effort.

a) Simulation Timestep: Every model uses an outermost
loop that iterates over timesteps. Models use LAPIS to pub-
lish their timestep variables and output data are indexed by
timestep.

b) Dynamically Growing Output: Models use LAPIS to
publish one-timestep sized instances of output data. As the
simulation runs, all output data for the entire simulation run
are kept available.

c) Time Dependencies: Developers are responsible for
knowing their models’ data dependencies and the associated
time shift. Each developer is responsible for maintaining a
small section of code that monitors model dependencies, and
only having the model progress when such dependencies

are met. Time-synchronization is managed by the back-end
component of the visualization model.

d) Steering Inputs: Every model publishes all inputs that
could conceivably be used to steer the simulation.

By having all developers follow these four principals, model
integration simply involves reading manifests and making
timestep comparisons. Models pause when data dependencies
are not met, and resume when model data become avail-
able. Different developers need only exchange manifests, thus
avoiding any developers having to analyze someone else’s
code. Finally, the manifests combined with timestep publishing
allows a front-end interface to be dynamically generated in a
highly logical way.

IV. RESULTS OF STRATEGIES USED

LAPIS provides numerous benefits to multi-model devel-
opers and users. The additional code needed to implement
the system is very limited and easy to write. The tools and
functionalities provided by LAPIS are user-friendly, intuitive,
compact, and can be written as a wrapper around the model
itself. The coordination needed between models is minimal and
developers need not know a priori about a future integration
via LAPIS. Any change within a sub-model does not require
changes in dependent models nor in the communication struc-
ture. Updated manifests reflect any differences in published
variables (the only ones seen by other models) between
updates, thus other models can easily be updated to match
these changes, if needed.

A. Benefits of Situation-Aware, Manifest Integration

The manifests themselves are beneficial in several ways.
JSON-format files are easily human-readable. Furthermore,
the manifest includes all the relevant information about the
published variables—e.g., the meaning of the data, units, time
interval in the simulation, frequency of publishing, size of the
variable, plotting details.

B. Benefits Derived from LAPIS System for Multi-Model

Written as a wrapper around the model, LAPIS maintains
history of all the internal states of the simulation at every run
and saves them to an external database. This allows executions
to be stopped, restarted, and replayed. A stopped execution can
be examined and redirected if the simulation is moving in an
undesirable direction. The entire system can also be loaded
from a single checkpoint saved in the SQL database, then
modified and rerun to see the effects of one or several variables
in isolation.

In isolating the core LAPIS architecture away from the
multi-model simulation, developers derive the benefits of a
language- and platform-independent tool. The interface the
user interacts with is standard and universal, and the code is
written in the same language as the developer’s model. Each
model can be written in the most appropriate environment and
models can operate together regardless of platform. Thus, if
some models require specific tools or technologies to function,
this does not limit the development options of the other
researchers.
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V. LAPIS DEMONSTRATION

To demonstrate the use of LAPIS in steering multi-model
simulations and as a general-purpose computational steering
tool, we present some illustrative results of its capabilities.

A. ICS-EPP Demonstration

We first demonstrate the use of the ICS-EPP multi-model in
exploring the ramifications of energy policy decisions, through
a case study using the residential energy demand, commercial
and industrial energy demand, and unit commitment and dis-
patch models. The study compares generation costs, patterns,
and CO2 emissions in three cases: a base scenario, using only
the available conventional and wind generation (≈1.9 GW) in
Texas in 2005 (Madaeni and Sioshansi [27] detail the case
study); a high wind-penetration scenario, in which 10 GW
of added wind capacity; and a third scenario with the base
scenario generation mix and a $30/ton CO2 tax.

Table I summarizes modeled annual generation costs, fuel
mix, and CO2 emissions in the three cases modeled. As
expected, both added wind and a carbon tax reduce CO2 emis-
sions, with the latter giving greater reductions. Table I reports
fuel costs, which amount to about $16.30/MWh, $15.49/MWh,
and $17.86/MWh in the three cases, respectively. The case
with the carbon tax imposes an additional cost of $1.6 billion,
which is collected by the government and could be redis-
tributed or otherwise used.

TABLE I
SUMMARY OF ANNUAL GENERATION COST, BREAKDOWN, AND CO2

EMISSIONS

Base High-Wind Carbon Tax
Generation Cost [$ billion] 2.15 2.04 2.35
Generation Breakdown [%]

Coal 21 10 19
Natural Gas 40 32 41
Wind 5 25 5

CO2 Emissions 65.9 45.6 52.1
[million short tons]

B. LAPIS Demonstration

We also perform two scalability tests to demonstrate the
capabilities of LAPIS as a general steering and multi-model
simulation tool. The first test consists of passing arrays of
varying lengths between nodes connected on a two-node
LAPIS network. The first node publishes an array of double-
precision floating point numbers while the second reads the
values using the LAPIS ‘get’ command. The second test is
done by passing arrays of 100 double-precision floating point
numbers between nodes of different-sized LAPIS networks.
In these tests, the LAPIS network consists of a single ‘main’
node, which provides address information for the other N
nodes. These N nodes each publish a single array. The test
is conducted by having node n read the values published by
node n − 1 (node 1 reads the values published by node N )
using the LAPIS ‘get’ command. The ‘get’ commands are
issued repeatedly and simultaneously by the N nodes. All
of the nodes used in these tests are implemented in Java
and the nanoTime function from the Java system class is

used to measure the time taken for the ‘get’ commands to
finish. The tests are conducted using the OSC Oakley system.
Fig. 6 summarizes the results of the testing, showing the
average times taken for the ‘get’ command to finish under the
different scenarios. The figure shows that the time taken for a
‘get’ increases quadratically with array size. Conversely, the
time taken for a get’ is insensitive to LAPIS network size.
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Fig. 6. Performance of the LAPIS system as a function of array and steering
network size.

VI. CONCLUSION

Our group is using LAPIS to create a complex multi-model
energy system simulation. This simulation is not being created
monolithically, but rather from an assemblage of smaller,
easier to develop and test models. These models are being
developed by an interdisciplinary team of researchers working
independently and targeting previously established interfaces
and standards.

This model of simulation development carries some key
advantages. First, LAPIS allows parallel development of model
components without need for tight coordination between de-
velopers. Second, the manifest system and situation-aware
models allow for easy integration of component models into a
larger complex system. These benefits speed up development
and give a more useful simulation. These techniques are
widely applicable and can be used in any scenario where a
variety of models interact.

We demonstrate the use of our multi-model simulation in
examining the impacts of energy policy alternatives. The ICS-
EPP will be further developed to allow simulation of more
complex policy and technology alternatives. We also demon-
strate the ability of LAPIS to efficiently steer simulations,
involving different data array sizes and numbers of simulation
nodes.
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