
Current Sustainable/Renewable Energy Reports manuscript No.
(will be inserted by the editor)

Data-Driven Modeling of Operating Characteristics of

Hydroelectric Generating Units

Rachel Hunter-Rinderle · Ramteen Sioshansi

Received: 6 July, 2021 / Accepted: 19 August, 2021

Abstract

Purpose of Review Hydroelectric generation is a potential flexible electricity source

that can ease the transition to a decarbonized energy economy. As such, using scarce

hydroelectric generating resources efficiently is important. We examine approaches

to represent the operating characteristics of hydroelectric resources.

Recent Findings Many hydroelectric-plant owners use water tables or generic unit

characteristics for operational planning. Such practice may be inefficient, as it does

not account for unit-specific operating-characteristic changes or time-related impacts,

e.g., plant degradation. We demonstrate a data-driven approach to modeling plant

operations that is unit-specific and depends solely on observable and controllable

variables.

Summary Numerical results using historical data for four hydroelectric units illus-

trate the proposed methodology.

Keywords Hydroelectric generators · dispatching · head level · wicket gate

1 Introduction

Given its operational flexibility, hydroelectric generation may have an outsize role to

play in decarbonizing electricity systems. Thus, there is increased onus to use scarce

water resources as efficiently as possible, which depends on a number of important

factors. First, is having forecasts of water-availability conditions. Second, is having
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optimization or market models that can trade-off between current and future water

use. A third important factor is having an accurate representation of the relationship

between water flow through and power output from a hydroelectric unit.

This paper surveys approaches to operational modeling of hydroelectric genera-

tors, focusing on the aforementioned challenges in efficient water-resource use. We

demonstrate, using historical data from four hydroelectric generators, a data-driven

approach to capturing the relationship between observable and controllable variables

and plant operations. Such an approach to modeling plant operations can yield more

efficient use of hydroelectric plants.

The remainder of this paper is organized as follows. First, we provide our litera-

ture survey. Next, we outline our proposed approach to modeling hydroelectric-unit

operations, data that are used to calibrate and validate the model, and model results.

This is followed by concluding remarks.

2 Literature Survey

Using hydroelectric generation efficiently is of particular importance given the com-

peting (e.g., agricultural, habitat-maintenance, or direct-consumption) uses of water,

which is scarce in many regions [1, 2]. One factor to efficient use of hydroelectricity

is having forecasts of water-availability conditions, which can help to avoid undesir-

able water spillage. Garcı́a-Morales and Dubus [3] propose the use of ensemble fore-

casts to develop more skillful seasonal precipitation forecasts. Boucher and Ramos

[4] survey the application of ensemble techniques to forecasting streamflows for hy-

droelectric generators.

A second important factor in using hydroelectricity efficiently is having optimiza-

tion models that can trade-off between current and future uses. Such models can be

used directly by the owner of a hydroelectric plant, e.g., if its manages the electricity

supply chain as a vertically integrated firm, or by a third party, e.g., a market operator.

There are numerous works developing such optimization techniques, with much of

the focus being on reservoir as opposed to run-of-river hydroelectric plants [5]. Gfr-

erer [6] models hydroelectric-energy production using optimal-control models, which

are transformed into equivalent nonlinear optimization problems. Bauer et al. [7] ex-

pand this work by using dynamic and nonlinear optimization to solve numerical case

studies. Catalão et al. [8] develop a deterministic optimization model that focuses on

non-linearities that are caused by head-sensitive output. Pousinho et al. [9] employ

a stepped market-price function to model a hydroelectric unit that accounts for the

impacts of its production decisions on market prices. Philpott et al. [10] develop a

cost-minimization model that accounts for unit-commitment decisions and random

demand. They linearize the non-linearities that are caused by head-dependent gen-

eration, which yields a mixed-integer linear optimization that they solve efficiently

using a rounding heuristic. Pérez-Dı́az et al. [11] survey operational and optimiza-

tion challenges that are raised by pumped hydroelectric energy storage plants. Seguin

et al. [12] focus on representing uncertainty in optimizing hydroelectric operations.

They employ two-stage stochastic optimization, with scenarios representing uncer-

tainty (water inflows in their case). Marchand et al. [13] develop a two-stage stochas-
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tic approach to optimizing hydroelectric operations that employs tabu search as an

efficient solution algorithm. Taktak and D’Ambrosio [14] focus on capturing hydro-

electric units in unit-commitment models, which could be used to co-optimize the

operation of hydroelectric units with other power-system resources.

An added complication that arises in optimizing some hydroelectric resources is

having multiple units in a single catchment area, which can couple the operation of

the individual units. Piekutowski et al. [15] develop a model, which includes cou-

pling constraints across the catchment, to optimize the use of water resources across

a catchment area. Blom et al. [16] propose the use a linearized equivalent model

for different parts of a coupled hydroelectric system. They demonstrate that this ap-

proach reduces computation time significantly (e.g., from nine hours to less than a

minute in their examples) with some loss of model fidelity (9%–15% average relative

errors in modeled power production). Other works expand upon these by developing

efficient modeling of connections between elements in a catchment area [17], which

may be owned by independent agents [18], and non-linearities that are created by

water-spillage conditions [19].

A third important factor in the use of hydroelectricity is having an accurate rep-

resentation of the relationship between water flow and power output. Oftentimes,

hydroelectric operators model this relationship using specifications that are provided

by the equipment manufacturer. Diniz et al. [20] employ a function, which is fit to

the performance hill chart that is provided by an equipment manufacturer, that relates

the efficiency factor for a hydroelectric unit to its head level and water flow. Thus,

their methodology interpolates performance data that the manufacturer provides. An

issue with relying on manufacturer specifications it that it does not account for degra-

dation, which occurs naturally over time, component replacements or upgrades, or

other time-related changes in the operational characteristics of a unit. Hidalgo et al.

[21] address this shortcoming by using measured historical power-output, head-level,

and water-flow data to estimate unit efficiency. Kong et al. [22] propose the use of

piecewise-linear approximations of the power-consumption function of a variable-

speed pump. They demonstrate the use of this technique to capture head variations

that stem from reservoir water levels and head loss due to penstock friction.

3 Proposed Data-Driven Approach to Operational Modeling

The literature on power-output modeling of hydroelectric units has a gap, in that it

does not relate control variables (e.g., wicket-gate position) to water flow and power

output. Rather, existing techniques assume that water flow is known in estimating

unit efficiency and power output [20, 21]. Thus, these models may rely on generic

relationships between wicket-gate position, water flow, and power output that are not

unit-specific and do not capture time effects on generator efficiency.

We demonstrate, using historical hydroelectric-operations data, a two-step data-

driven approach to modeling unit efficiency. First, we fit a model that relates water

flow to head level and wicket-gate position. Then, we fit a second model that relates

power output to water flow and head level. The latter model uses a standard pro-

duction function [23]. We know of no such standard function in the literature for the
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former relationship. Thus, we develop a model structure that is based on known phys-

ical relationships, which allows us to employ parametric regression. Combining the

two proposed models, one can relate power output directly to wicket-gate position

and head level, which are controllable and observable variables, respectively.

3.1 Water-Flow Model

Flow-rate equations define water flow, q, which is given in m3
· s−1, as the following

product of water velocity, v, which is given in m ·s−1, and the effective cross-sectional

area of the pipe through which the water flows, Ae, which is given in m2:

q = vAe. (1)

From Bernoulli’s principle [24], water velocity is the following function of head level,

h, which is given in m, and the gravitational constant, g, which is given in m · s−2:

v =
√

2gh. (2)

Ae is defined as the following product of the actual cross-sectional area of the pipe,

Aa, which is given in m2, and the per-unit wicket-gate position, w:

Ae = wAa. (3)

Combining (1)–(3), and assuming a per-unit water-flow-efficiency factor, σ , gives:

q = wAaσ
√

2gh, (4)

as a model that relates water flow to head level and wicket-gate position.

One limitation in (4) is that it does not capture degradation or other time-related

impacts. Thus, we use the following model:

qt = b0 + b1wt

√

2ght + b2t + ε
q
t , (5)

to represent the relationship between water flow, head level, and wicket-gate position,

where b0, b1, and b2 are parameters. Water flow, wicket-gate position, and head level

are indexed by time in (5). That is, qt , wt , and ht are the time-t water flow, wicket-

gate position, and net-head level, respectively, and retain the same units as q, w, and

h, respectively. The time index, t, reflects our goal of estimating b0, b1, and b2 by

fitting (5) to historical time-series data using ordinary-least-squares (OLS) estimation

[25]. ε
q
t is the error term.
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3.2 Power-Output Model

Breton et al. [23] propose the physical model:

p = ηghq,

to relate power output, p, which is given in MW, to head level, water flow, and a

per-unit generator-efficiency factor, η . As with (4), this relationship does not capture

time-related impacts. Thus, we use the following model:

pt = c0 + c1ghtqt + c2t + ε
p
t , (6)

to represent the relationship between power output, head level, and water flow, where

c0, c1, and c2 are parameters and ε
p
t is the time-t error term. pt is time-t power output

(given in MW) in the historical data that are used for OLS estimation of c0, c1, and

c2.

We use historical water-flow data for fitting (5) and (6). However, once the values

of b0, b1, b2, c0, c1, and c2 are estimated, power output can be modeled in decision-

support and market models by using the fitted form of (5) to estimate water flow

based on head level and wicket-gate position and inputting those estimates into (6) to

estimate power output. In doing so, power output can modeled using observable and

controllable variables only.

4 Case Study

4.1 Case-Study Data

We apply our proposed model to historical data for four hydroelectric units, concen-

trating this discussion on one unit, as the results and model performance are similar

for the other units. All data processing, model fitting, and out-of-sample validation

are conducted using R version 3.5.1.

Our case study uses hourly historical measurements of head level, power output,

wicket-gate position, and water flow for the 15-year period spanning 2004–2019.

Some portion of the measurements for the period spanning 2004–2006 are inaccu-

rate, due to known instrument failures. These observations are removed from our

case-study data. Measurements when a unit is non-operational and has zero power

output are removed as well. These observations are removed because the aim of our

modeling approach is to estimate water flow and power output when a unit is oper-

ational (water flow and power output can be estimated trivially as zero when a plant

is non-operational). Finally, we remove observations with two other types of obvious

measurement errors. The first are measurements with negative power output. The sec-

ond are measurements for which the head level is negative or greater than 45.72 m in

magnitude, which are outliers based on our analysis of the data. Figure 1 summarizes

the time series of the head level, without observations that are removed due to known

instrument failure or negative power output having been recorded. Figure 1 shows

that there are five outliers that reflect measurement errors.
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Fig. 1 Time series of head level

In total, we retain roughly 40000 hourly observations for each unit once these

outliers and erroneous observations are removed. To allow for out-of-sample valida-

tion, 80% of the retained observations are selected randomly for fitting models (5)

and (6). The other 20% of the retained observations are used for model validation.

4.2 Case-Study Results

4.2.1 Water-Flow Model

Table 1 summarizes the OLS estimates of the coefficients, b0, b1, and b2, in (5). As

indicated in the table, all of estimates are statistically significantly non-zero at the

1% confidence level. b2 having a negative value indicates that there is slight (but

statistically significant) degradation in water flow over time (e.g., due to sedimenta-

tion in the penstock). The model R2 is 0.9138, meaning that 91.38% of variation in

water flow can be described by the model. Figure 2 shows the residuals (errors) of

the OLS estimate of (5), which have relatively constant variance and no noticeable

autocorrelation. Thus, OLS estimates should be unbiased and efficient [25].

Figure 3 provides a scatter plot that demonstrates model performance. Specif-

ically, it shows modeled water flow using the OLS estimate of (5) and head-level

and wicket-gate-position observations for the 20% of observations that are retained

for out-of-sample validation. These modeled water flows are plotted against mea-
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Table 1 OLS estimates of coefficients in (5)†

Coefficient Value

b0 19.513∗∗

b1 2.440×10−2∗∗

b2 −8.379×10−9∗∗

†: Values with a single asterisk are statistically significantly non-zero at a 5% confidence level. Values with

a double asterisk are statistically significantly non-zero at a 1% confidence level.

Fig. 2 Time series of residuals in OLS estimate of (5)

sured water flows for those 20% of observations. The figure shows that the model has

significant predictive power, being able to model water flows well. The root-mean-

square error (RMSE) for the 20% of observations that are retained for out-of-sample

validation is 144.9 m3
· s−1 as opposed to an RMSE of 142.9 m3

· s−1 for the OLS

estimate of the model. Moreover, the R2 for the observations that are retained for

out-of-sample validation is 0.9124. These results show that (5) has similar predic-

tive capability when applied to the observations that are retained for out-of-sample

validation as it does for the 80% of observations that are used for model fitting.

4.2.2 Power-Output Model

Table 2 summarizes the OLS estimates of the coefficients, c0, c1, and c2, in (6). The

coefficients, c0 and c1, are statistically significantly non-zero, whereas c2 is not. This
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Fig. 3 Scatter plot of modeled water flow using (5) and actual water flow using 20% of historical data

Table 2 OLS estimates of coefficients in (6)†

Coefficient Value

c0 −5.695×10−1∗∗

c1 7.904×10−6∗∗

c2 1.018×10−10

†: Values with a single asterisk are statistically significantly non-zero at a 5% confidence level. Values with

a double asterisk are statistically significantly non-zero at a 1% confidence level.

indicates that there is a slight but statistically insignificant improvement in the effi-

ciency of the turbine over time. The model R2 is 0.8901. Figure 4 shows the residuals

of the OLS estimate of (6), which have relatively constant variance and no noticeable

autocorrelation. Thus, OLS estimates should be unbiased and efficient.

Figure 5 provides a scatter plot that demonstrates the performance of our pro-

posed two-step power-output-modeling technique. Modeled power output is com-

puted by using (5) to estimate water flow (based on wicket-gate position and head

level), which is input to (6) with head level to estimate power output. The scatter plot

considers the 20% of observations that are retained for out-of-sample validation. Fig-

ure 5 shows that the two-step modeling technique has good predictive power, being

able to model power output. The RMSE for the 20% of observations that are retained

for out-of-sample validation is 1.543 MW as opposed to an RMSE of 1.435 MW
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Fig. 4 Time series of residuals in OLS estimate of (6)

Table 3 Out-of-sample R2 of OLS estimates of (5) and (6) for other units

Unit Model (5) Model(6)

1 0.9375 0.9327

2 0.9305 0.9258

3 0.9874 0.7704

for the OLS estimate of (6). The R2 for the observations that are retained for out-of-

sample validation is 0.8754. These results show that our model has similar predictive

power when applied to the observations that are retained for out-of-sample valida-

tion as it does for the observation that are used for model fitting. This is despite our

two-step-modeling approach introducing error in both water-flow and power-output

estimation.

4.2.3 Results for Other Generating Units

Table 3 summarizes the goodness of fit of the proposed models for the other three

units. Specifically, the table reports R2 of the estimated models when they are applied

to the 20% of observations that are retained for out-of-sample validation. The table

shows that water-flow model (5) has very similar goodness of fit across all four units.

Power-output model (6) has performance that is more mixed for these three units

relative to the one on which we focus above.
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Fig. 5 Scatter plot of modeled power output using (6), with (5) used to model water flow, and actual power

output using 20% of historical data

5 Discussion and Conclusions

Efficient use of hydroelectric resources is becoming more important as the pressure

to decarbonize electricity systems increases. We survey the literature related to water-

resource forecasting, optimizing the operation of hydroelectric plants, and estimating

the physical operating characteristics of hydroelectric units. With respect to the third

focus area, we observe a gap in models capturing changes in the operating charac-

teristics of plants vis-à-vis performance hill charts and related characteristics that a

plant manufacturer may provide.

We demonstrate a potential two-step data-driven methodology to model power

output and efficiency of a hydroelectric unit with three key characteristics. First, the

model uses directly observable and controllable variables (e.g., head level and wicket-

gate position) as inputs only. Second, the model can capture time-related changes in

operating characteristics. Third, unit-specific models can be estimated, which would

capture unit-specific time-related changes in operational characteristics.

Performance of our proposed methodology could be improved by considering

other dynamics. For instance, we do not allow for unit efficiency to vary with oper-

ating characteristics [20]. Adding such considerations to the model may give more

predictive power, at the cost of making the model more complex or nonlinear. The

benefit of our assumed model structures is that when (5) is substituted into (6), we
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obtain the power-output relationship:

pt = c0 + c1ght ·

(

b0 + b1wt

√

2ght + b2t
)

+ c2t,

which is linear in the control variable, wt . Having a linear relationship is beneficial in

operational and market modeling of a hydroelectric unit [10].
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