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Abstract

This work investigates approaches to simplify capacity planning for

electricity systems with hydroelectric and renewable generators with

three specific foci. First, we examine approaches to represent the effi-

ciency of hydroelectric units. Next, we explore the effects of water-travel

times and the representation of run-of-river units within cascaded

hydroelectric systems. Third, we analyze the use of representative oper-

ating periods to capture electricity-system operations. We conduct

these analyses using an archetypal planning models that is applied

to the Columbia River system in the northwestern United States of

America. We demonstrate that planning models can be simplified

significantly, which improves model tractability with little loss of fidelity.
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1 Introduction

Capacity planning for electricity systems is vitally important to ensure that
electricity can be supplied to consumers at a socially desirable cost and reliabil-
ity level. It is common for such planning exercises to have long model horizons,
because capacity investments can require significant time. As such, capacity-
planning decisions may have to be taken long in advance of when the capacity
is needed to meet electricity needs. A key consideration in such modeling exer-
cises is how capacity decisions impact electricity-system operations. Capturing
such impacts can yield models that are extremely large-scale. Absent weather-
dependent renewable energy, electricity-demand levels are the key factor that
distinguish different operating periods. As such, the literature proposes com-
putationally efficient approaches to capacity planning that rely upon analysis
of an electricity system’s load-duration curve (Stoft, 2002; Sioshansi, 2016).

Another approach to capturing electricity-system operations, which is
suited to the proliferation of weather-dependent renewable energy, is to model
a small set of representative operating periods. Cohen et al (2019) develop
a model that uses 17 time slices—four for each season of the year and one
for the overall peak-demand period—to represent electricity-system opera-
tions over a full year. The goal of such a modeling approach is to ensure that
capacity levels can serve customer demands reliably and economically, even
with variable and uncertain real-time availability of weather-dependent renew-
able energy. Capacity-planning models with insufficient operational resolution
may be inadequate in capturing such impacts of weather-dependent renewable
energy.

Thus, capacity-planning models that use a prescribed small set of rep-
resentative operating periods are an improvement in capturing the effect of
weather-dependent renewable energy on electricity-system operations (Cohen
et al, 2019). These approaches are limited, however, in their ability to represent
the chronology of electricity-system operations. Weather-dependent renew-
able energy can increase supply variability and uncertainty, which calls for
more operational flexibility. Using a subset of days to represent electricity-
system operations can result in different capacity mixes depending on whether
generator-ramping constraints are modeled or not, which requires captur-
ing the chronology of operating decisions (Liu et al, 2018b; Maluenda et al,
2018). The effect of ramping constraints on capacity decisions is pronounced
particularly in the presence of weather-dependent renewable energy. Captur-
ing intertemporal operations can be important in assessing electricity-system
flexibility, e.g., from energy or natural-gas storage (Zhao et al, 2018). Com-
mon approaches to selecting representative operating periods include k-means
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(Boffino et al, 2019) or hierarchical (Nahmmacher et al, 2016; Liu et al, 2018a)
clustering and optimization-based approaches (Poncelet et al, 2017).

There are many works that propose simplifications for capacity planning
of electricity systems with thermal and renewable resources. The literature
that examines capacity planning with hydroelectric, thermal, and renewable
resources is more limited, however. Hydroelectric resources raise challenges
that complicate electricity-system modeling.

For one, the efficiency of hydroelectric plants can have a non-linear
and non-convex relationship with water flow and net head (Hidalgo et al,
2014; Hunter-Rinderle and Sioshansi, 2021). These relationships raise trade-
offs between representing plant operations accurately and model tractability.
Non-linear models of hydroelectric-generator efficiency can be replaced with bi-
linear or linear models that involve water flow and reservoir elevation (Conejo
et al, 2002; Borghetti et al, 2008). Many electricity-system-planning models
use linearizations, wherein reservoir elevation is fixed (Maluenda et al, 2018;
Ramı́rez-Sagner and Muñoz, 2019).

A second complication is that many hydroelectric generators are coupled
by virtue of their being in a cascaded river system. As the penetration of
weather-dependent renewable generation increases, it is important to assess the
flexibility and limits of cascaded hydroelectric plants (Huertas-Hernando et al,
2017). Ibanez et al (2014) find that modeling the details of cascaded hydroelec-
tric plants yields better performance (e.g., less renewable-energy curtailment
and operational cost) compared to not modeling such details.

A third complication is the capability of large hydroelectric reservoirs
to provide seasonal or interannual water storage. Capacity-planning models
that use a subset of days to represent electricity-system operations can cap-
ture short-duration energy storage (Liu et al, 2018b; Maluenda et al, 2018;
Zhao et al, 2018). Methods to capture longer-duration seasonal or interannual
energy storage are limited in the literature (Sioshansi et al, 2022). Indeed,
using clustering techniques to select representative operating periods (Nahm-
macher et al, 2016; Liu et al, 2018a; Boffino et al, 2019) may be inappropriate,
because spring and autumn periods may have similar load and weather pat-
terns (resulting in their being clustered), but very different reservoir water
levels.

Given these limitations of the extant literature, we investigate three key
aspects of capacity planning for electricity systems with hydroelectric, thermal,
and renewable resources. We do this using an archetypal capacity-planning
model and economic regret (Ramı́rez-Sagner and Muñoz, 2019) as a perfor-
mance metric. We apply our model to a case study that is based on the
Columbia River system in the northwestern United States of America. The
three aspects of capacity planning on which we focus yield three key contri-
butions of our work. First, we examine different approaches to representing
hydroelectric-generator efficiency and propose a regression-based linearization
method, which gives good model performance compared to a non-linear effi-
ciency function. Second, we analyze the impact of considering water-travel
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times and run-of-river storage capacities, demonstrating that these can be
neglected with little impact on model results. Third, we use several variations
of hierarchical clustering to select representative operating days and demon-
strate that they can capture intraday, seasonal, and interannual time dynamics
(including reservoir water levels). As a final contribution of our work, we
demonstrate the limitations of relying upon objective-function value as a met-
ric to assess the performance of a model reduction. Our results demonstrate
that a key limitation of using objective-function value is its inability to capture
extreme events (e.g., high-load or low-renewable-energy operating periods).
Economic regret is a measure of model fidelity that is significantly more robust
to such extremes.

The remainder of this paper is structured as follows. Section 2 provides
the formulation of our archetypal capacity-planning model and Sect. 3 details
the model reductions that we examine and the metric that is used to assess
reduction quality. Section 4 summarizes case-study data and implementation.
Section 5 provides our results. Section 6 concludes.

2 Model

This section provides the formulation of our archetypal capacity-expansion
model. This model is not intended to capture every nuance of electricity-system
planning. Rather, the goal is to explore a model that captures the key features
of capacity planning with hydroelectric, renewable, and thermal resources.

2.1 Model Notation

We begin by defining the following sets.
H set of hydroelectric dams
H̄c set of dams that are upstream of dam c

HL
n set of dams that are located at transmission node n

G set of non-hydroelectric-generation technologies
L set of transmission lines
Lin
n set of transmission lines that flow into node n in the nominal

direction
Lout
n set of transmission lines that flow out from node n in the nominal

direction
N set of transmission nodes
T H ordered set of hours during a year
Y ordered set of years
Z set of pieces of approximation of transmission losses

Next, we define the following indices.
c index for hydroelectric dams
g index for non-hydroelectric-generation technologies
h index for hours
l index for transmission lines
n index for transmission nodes
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y index for years
z index of pieces of approximation of transmission losses

Next, we define the following parameters and functions.
CG,i

y,g,n annualized year-y capital cost of non-hydroelectric-generation tech-
nology g that is located at node n ($/MW)

C
G,V
y,g,n,h operating cost during hour h of year y of a generator that uses

non-hydroelectric-generation technology g and is located at node n

($/MWh)
CL annualized capital cost of transmission line ($/MW)
CU value of lost load ($/MWh)
Dz coefficient for zth piece of flow-related transmission losses (p.u.)
Ez coefficient for zth piece of capacity-related transmission losses (p.u.)

k
G,i
0,g,n initial capacity that is installed at node n of non-hydroelectric-

generation technology g (MW)
kL0,l initial installed capacity of transmission line l (MW)

Ly,n,h node-n electric load during hour h of year y (MW)

qG1,g,n,0 initial production level of non-hydroelectric-generation technology g

that is located at node n (MW)
QH,+

c maximum output of generator that is located at dam c (MW)
qH1,c,0 initial production level of generator that is located at dam c (MW)
Rc ramp rate of generator that is located at dam c (p.u.)
Rg ramp rate of non-hydroelectric-generation technology g (p.u.)
W̄H

c maximum water level of dam c (acre-feet)
WH,−

c minimum water flow from dam c (acre-feet/h)
WH,+

c maximum water flow from dam c (acre-feet/h)

W
H,f
y,c,h natural water inflow during hour h of year y into dam c (acre-feet)

w
H,str
1,c,0 initial water level of dam c (acre-feet)

Γ discount rate (p.u.)
ι+ maximum interannual increase in capacity (p.u.)
ι−g maximum interannual decrease in capacity of non-hydroelectric-

generation technology g (p.u.)
κE
g CO2-equivalent-emission rate of non-hydroelectric-generation tech-

nology g (t/MWh)
κT carbon-tax rate ($/t)
πc(·, ·) output of generator that is located at dam c as a function of the

water flow through the generator and the water level of its reservoir
(MW)

ρ cost of retiring non-hydroelectric-generating capacity (p.u.)
σy,g energy-supply requirement during year y for non-hydroelectric-

generation technology g (p.u.)
τc,c′ water-travel time from dam c to dam c′

Υy,h weight on hour h of year y (h)
Φy,g,n,h availability factor during hour h of year y of non-hydroelectric-

generation technology g that is located at node n (p.u.)
Finally, we define the following set of decision variables.
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fL
y,l,h net power flow during hour h of year y through transmission line l

(MW)
kG,iy,g,n total capacity of non-hydroelectric-generation technology g that is

available at node n during year y (MW)
kG,ρy,g,n capacity of non-hydroelectric-generation technology g at node n that

is retired during year y (MW)
kLy,l total capacity of transmission line l that is available during year y

(MW)

qGy,g,n,h power output during hour h of year y of non-hydroelectric-generation
technology g that is located at node n (MW)

qHy,c,h power output during hour h of year y of generator that is located at
dam c (MW)

qUy,n,h unserved node-n load during hour h of year y (MW)

w
H,g
y,c,h water flow during hour h of year y through generator that is located

at dam c (acre-feet)

w
H,spl
y,c,h water spilled during hour h of year y from dam c (acre-feet)

w
H,str
y,c,h water level as of the end of hour h of year y of dam c (acre-feet)

µL
y,l,h power losses during hour h of year y on transmission line l (MW)

2.2 Model Formulation

The capacity-planning model is formulated as:

min
∑

y∈Y

Γy−1







∑

l∈L

CLkLy,l +
∑

n∈N







∑

g∈G

[

CG,i
y,g,n ·

(

kG,iy,g,n + ρkG,ρy,g,n

)

+
∑

h∈T H

Υy,h ·
(

C
G,V
y,g,n,h + κTκE

g

)

qGy,g,n,h

]

+
∑

h∈T H

Υy,hC
UqUy,n,h













(1)

s.t. kG,ρy,g,n ≥ k
G,i
y−1,g,n − kG,iy,g,n; ∀y ∈ Y , g ∈ G, n ∈ N (2)

k
G,i
y−1,g,n − ι−g k

G,i
0,g,n ≤ kG,iy,g,n ≤ (1 + ι+)kG,iy−1,g,n;

∀y ∈ Y , g ∈ G, n ∈ N (3)

kLy−1,l ≤ kLy,l ≤ (1 + ι+)kLy−1,l; ∀y ∈ Y , l ∈ L (4)
∑

n∈N ,h∈T H

Υy,hq
G
y,g,n,h ≥ σy,g

∑

n∈N ,h∈T H

Υy,hLy,n,h; ∀y ∈ Y , g ∈ G (5)

∑

g∈G

qGy,g,n,h +
∑

c∈HL
n

qHy,c,h +
∑

l∈Lin
n

(

fL
y,l,h −

1

2
µL
y,l,h

)

+ qUy,n,h
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−
∑

l∈Lout
n

(

fL
y,l,h +

1

2
µL
y,l,h

)

= Ly,n,h; ∀y ∈ Y , n ∈ N , h ∈ T H (6)

0 ≤ qGy,g,n,h ≤ Φy,g,n,hk
G,i
y,g,n; ∀y ∈ Y , g ∈ G, n ∈ N , h ∈ T H (7)

−Rgk
G,i
y,g,n ≤ qGy,g,n,h − qGy,g,n,h−1 ≤ Rgk

G,i
y,g,n;

∀y ∈ Y , g ∈ G, n ∈ N , h ∈ T H (8)

qGy,g,n,0 = qG
y−1,g,n,|T H|; ∀y ∈ Y , y > 1, g ∈ G, n ∈ N (9)

0 ≤ qUy,n,h ≤ Ly,n,h; ∀y ∈ Y ; n ∈ N , h ∈ T H (10)

qHy,c,h = πc

(

w
H,g
y,c,h, w

H,str
y,c,h

)

; ∀y ∈ Y , c ∈ H, h ∈ T H (11)

−RcQ
H,+
c ≤ qHy,c,h − qHy,c,h−1 ≤ RcQ

H,+
c ;

∀y ∈ Y , c ∈ H, h ∈ T H (12)

qHy,c,0 = qHy−1,c,|T H|; ∀y ∈ Y , y > 1, c ∈ H (13)

w
H,str
y,c,h = w

H,str
y,c,h−1 + Υy,h ·

(

W
H,f
y,c,h − w

H,g
y,c,h − w

H,spl
y,c,h

)

+
∑

ζ∈H̄c

Υy,h−τζ,c ·
(

w
H,g
y,ζ,h−τζ,c

+ w
H,spl
y,ζ,h−τζ,c

)

;

∀y ∈ Y , c ∈ H, h ∈ T H (14)

w
H,str
y,c,0 = w

H,str
y−1,c,|T H|; ∀y ∈ Y , y > 1, c ∈ H (15)

0 ≤ w
H,str
y,c,h ≤ W̄H

c ; ∀y ∈ Y , c ∈ H, h ∈ T H (16)

WH,−
c ≤ w

H,g
y,c,h + w

H,spl
y,c,h ≤ WH,+

c ; ∀y ∈ Y , c ∈ H, h ∈ T H (17)

w
H,str
|Y|,c,|T H| ≥ w

H,str
1,c,0 ; ∀c ∈ H (18)

− kLy,l ≤ fL
y,l,h ≤ kLy,l; ∀y ∈ Y , l ∈ L, h ∈ T H (19)

µL
y,l,h ≥ Ezk

L
y,l +Dzf

L
y,l,h; ∀y ∈ Y , l ∈ L, h ∈ T H, z ∈ Z (20)

µL
y,l,h ≥ Ezk

L
y,l −Dzf

L
y,l,h; ∀y ∈ Y , l ∈ L, h ∈ T H, z ∈ Z (21)

kG,ρy,g,n ≥ 0; ∀y ∈ Y , g ∈ G, n ∈ N (22)

w
H,g
y,c,h, w

H,spl
y,c,h ≥ 0; ∀y ∈ Y , c ∈ H, h ∈ T H. (23)

Objective function (1) minimizes the discounted sum of capacity and
operational cost over the ordered set, Y , of years. Electricity-system opera-
tions during each year are captured by an ordered set, T H, of representative
operating hours. Objective function (1) contains four cost terms. The first rep-
resents the cost of adding transmission capacity—our model does not allow
for transmission-capacity retirements. The second term represents the cost of
adding or retiring generation capacity. Hydroelectric capacity is fixed but the
capacity of other generation technologies can be adjusted. The third term is
the cost of operating the generation fleet, which can include a carbon-emission
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cost. Operating hydroelectric generation is assumed to be costless. The final
term is the cost of load curtailment.

Constraint sets (2)–(4) pertain to capacity decisions, which are made annu-
ally. The remaining constraints pertain to electricity-system operations, which
are made during each representative hour of each year. Constraint set (2)
defines generation-capacity retirements in terms of interannual decreases in
generation capacity. Constraint sets (3) and (4) impose limits on interannual
capacity changes.

Constraint set (5) imposes energy-based renewable-portfolio standards,
which can be met only if sufficient capacity renewable-generation capacity
is built. Constraint set (6) imposes hourly balance between energy that is
supplied and consumed at each electricity-system node. Constraint sets (7)
and (8) impose minimum and maximum bounds and ramping limits, respec-
tively, on power output from non-hydroelectric generators. The parameter,
Φy,g,n,h, which appears in the right-hand side of (7) is an hourly p.u. capacity
factor, e.g., to capture the variability of weather-dependent renewable gener-
ators. Constraint set (9) sets the production level of each non-hydroelectric
generator as of the beginning of each year equal to its production as of the end
of the previous year. Constraint set (10) limits curtailed load to be no greater
than demand.

Constraint set (11) gives hydroelectric generation as a function of water
flow and head level, which is related to the water level of the dam. Constraint
set (12) imposes ramping limits on the hydroelectric generators. Constraint
set (13) sets the production level of each hydroelectric generator as of the
beginning of each year equal to its production as of the end of the previous
year. Constraint set (14) enforces hourly water balance for each dam. The
ending hour-h water level of a dam is defined as the sum of the hour-(h− 1)
water level, natural inflows, and inflows from upstream dams, less the total
of water that is released through the generator and for spillage. Constraint
set (15) sets the water level of each dam as of the beginning of each year
equal to its water level as of the end of the previous year. Constraint set (16)
imposes minimum and maximum water-level limits on each dam. Constraint
set (17) imposes minimum and maximum limits on water flows through each
dam. Constraint set (18) forces the ending water level of each dam to be no
less than its initial level.

Constraint set (19) imposes flow limits on transmission lines. Constraint
sets (20) and (21) define transmission losses on each line as a piecewise-linear
function of line capacity and flow. We use a pipeline model of the transmission
network. However, our approach to modeling transmission losses can approxi-
mate a linearized power-flow model (Ahlhaus and Stursberg, 2013). Constraint
sets (22) and (23) impose non-negativity on generation-capacity retirements
and water flows.
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3 Model Reductions and Evaluation Metric

We examine three types of model reductions that relate to representing the
efficiency of hydroelectric generators through the choice of the form of πc(·, ·),
simplifying the cascaded river system, and the selection of representative
operating hours.

3.1 Functional Form of πc(·, ·)

The function, πc(·, ·), can be complex and non-linear, especially if the plant has
a large reservoir, e.g., due to head effects (Diniz et al, 2007; Hidalgo et al, 2014;
Kong et al, 2019; Hunter-Rinderle and Sioshansi, 2021). A common simplifi-
cation to maintain tractability of capacity-planning models is to use a linear
approximation of πc(·, ·). We examine different approximations of πc(·, ·) and
propose a data-driven method that captures head effects.

We consider the following three functional forms of πc(·, ·), ∀c ∈ H:

πc

(

w
H,g
y,c,h, w

H,str
y,c,h

)

= β0,c + β1,cw
H,g
y,c,h + β2,cw

H,str
y,c,h

+ β3,c ·
(

w
H,g
y,c,h

)2

+ β4,c ·
(

w
H,str
y,c,h

)2

+ β5,cw
H,g
y,c,hw

H,str
y,c,h ; (24)

πc

(

w
H,g
y,c,h, w

H,str
y,c,h

)

= β0,c + β1,cw
H,g
y,c,h + β2,cw

H,str
y,c,h ; (25)

and:
πc

(

w
H,g
y,c,h, w

H,str
y,c,h

)

= β1,cw
H,g
y,c,h. (26)

Functional form (24) is the most complex, in that it captures non-linearities
through quadratic and bi-linear terms. Form (25) is linear but captures head
effects, through its dependence on the water level of the reservoir. Form (26)
is linear and simpler than (25) because head effects are neglected completely
by the former.

3.2 Cascaded River System

Our base case assumes non-zero times for water to flow from a dam to the
one that is immediately downstream. Assuming zero water-travel times decou-
ples (14) between different dams and hours. Model (1)–(23) can be simplified
further if we assume that small dams have no water-storage capacity. Such an
assumption simplifies the model because the w

H,str
y,c,h variables for dams with

no water-storage capacity can be eliminated and (14) and (16) for those dams
can be replaced by:

Υy,h ·
(

w
H,g
y,c,h + w

H,spl
y,c,h

)

= Υy,h ·
(

W
H,f
y,c,h

)

+
∑

ζ∈H̄c

Υy,h ·
(

w
H,g
y,ζ,h + w

H,spl
y,ζ,h

)

;

∀y ∈ Y ; h ∈ T H. (27)
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In addition to it being more tractable, a model that replaces (14) and (16)
with (27) is more amenable to the application of relaxation and decomposition
techniques than a model with (14) and (16) is.

3.3 Selection of Periods to Represent System Operations

The third model reduction that we explore is using hierarchical clustering to
select a subset of days to represent power- and hydroelectric-system opera-
tions over each case-study year. Other clustering techniques (e.g., distribution-,
density-, or centroid-based) can and are used in practice (Nahmmacher et al,
2016; Poncelet et al, 2017; Liu et al, 2018a; Boffino et al, 2019). Hierarchical
clustering is used fairly commonly, though, meaning that our work exam-
ines the properties of a popular approach to selecting representative operating
periods. Hierarchical clustering requires a metric between days and between
clusters. To define such a metric, we represent each day as a vector, each of
which consists of hourly load, solar-availability, and wind-availability features
for each transmission node and hourly natural-water-inflow features for each
dam.

We use Euclidean distance and minimax linkage as the metrics between
days and clusters, respectively (Bien and Tibshirani, 2011). Minimax linkage
provides each cluster’s prototype, which is the day (from the unclustered data)
that is closest to the cluster center. We use each cluster prototype in (1)–(23)
to represent the days that are in the cluster and set the cluster weight equal to
the number of days in the cluster. Using cluster prototypes in capacity plan-
ning tends to outperform using cluster centroids (Nahmmacher et al, 2016).
Maintaining chronology of the prototypes captures some seasonal variability
in natural water inflows.

We investigate eight clustering methods, which differ by the features that
are used and how they are scaled. We examine two sets of features. The first
consists of the aforementioned features (loads, solar and wind availabilities,
and natural water inflows). The second consists of the aforementioned features
except for natural water inflows, which are replaced by the day of the year.

We examine four approaches to scaling features. The first scales each fea-
ture linearly to the unit interval (i.e., minimum and maximum values for each
feature are scaled to 0 and 1, respectively). The second selects the summer and
winter days with the highest WECC-wide load as two representative days. The
remaining representative days are selected by clustering the remaining days of
the underlying data, using linear scaling. This technique is premised on the
notion that peak-load days are important for capacity planning (Merrick, 2016;
Cohen et al, 2019). The third approach is the same as the first with ex post

linear scaling of the electricity demands and natural water inflows of the proto-
types so that total annual electricity demand and water inflows of the clustered
and unclustered data are equal (Nahmmacher et al, 2016). The fourth tech-
nique uses capacity-based importance scaling and involves a two-step process
(Nahmmacher et al, 2016; Sun et al, 2019; Limpens et al, 2019). We begin by
applying the first scaling technique to select 30 representative operating days
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and solve (1)–(23) to determine the resultant optimal investments. Wind- and
solar-availability features for each transmission node are scaled based on the
proportion of total wind and solar capacity that is installed at each node with
the 30 representative operating days. Natural water inflows and the day of the
year (depending upon the set of features that is used) are scaled based on the
capacity of each hydroelectric unit. Loads are scaled to the unit interval based
on minimum and maximum values corresponding to each transmission node.
These scaled values are multiplied by the maximum load that is observed at
each node.

3.4 Reduction-Evaluation Metric

A common approach to assessing the quality of a solution that is obtained
from a reduced model is to compare objective-function values of the full and
reduced models (Merrick, 2016). We use economic regret, which is computed
using a three-step process, as a performance metric instead (Ramı́rez-Sagner
and Muñoz, 2019). First, a variant of (1)–(23) that has a model reduction
is solved. Next, the investment decisions that are obtained from the reduced
model are fixed and (1)–(23) is re-solved with the model reduction removed.
Finally, the difference between the resultant objective-function value and the
optimized objective-function value that is obtained from solving (1)–(23) with-
out the model reduction is computed. This difference measures the economic
cost (regret) of using the reduced model for investment planning.

4 Case-Study Data and Implementation

Our case study optimizes, over a 20-year horizon that begins as of 2015,
capacity expansion for Western Electricity Coordinating Council (WECC).
WECC gets about a quarter of its electric energy and generating capacity
from hydroelectric resources. The Columbia River system provides about half
of WECC’s hydroelectric capacity.1 Most of the case-study data are gathered
from WECC’s 2024 and 2026 Production Cost Model Common Cases (PCM-
CCs).2 Hourly load profiles are derived from 2026 PCMCC, which provides
actual and simulated load profiles for 2009 and 2026, respectively. We use
linear load-growth factors to interpolate and extrapolate these data to gener-
ate hourly load profiles for each case-study year. We assume a $5 000/MWh
penalty for load curtailment, a 7% annual discount rate, and 30% and 5% (on
an energy basis) renewable-portfolio standards for wind and solar, respectively,
during the final year of the optimization horizon (GE Energy, 2010; Liu et al,
2018b).

1cf. https://www.wecc.org/Reliability/2015%20SOTI%20Final.pdf for data about the WECC
capacity mix.

2cf. https://www.wecc.org/SystemAdequacyPlanning/Pages/Datasets.aspx for PCMCC data.

https://www.wecc.org/Reliability/2015%20SOTI%20Final.pdf
https://www.wecc.org/SystemAdequacyPlanning/Pages/Datasets.aspx
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4.1 Non-Hydroelectric-Generator Data

Six generation technologies can have capacity added: coal-fired; natural-gas-
fired steam (NGS), open-cycle (NGOC), and combined-cycle (NGCC); solar
photovoltaic (PV); and wind units. We allow retirement of fossil-fueled but
not renewable generation. We model hydroelectric, nuclear, geothermal, and
biomass units, but do not allow capacity additions or retirements of these
technologies. We use 2024 PCMCC to set starting capacity levels for all of
the generation technologies. We assume an 80% availability factor for nuclear,
geothermal, and biomass units. We limit ramp rates to 0.3 for all technolo-
gies, except for NGOC, PV, wind, and hydroelectric units that are not in the
Columbia River system, which are assumed to have a ramp rate of 1.0 (Ibanez
et al, 2014). We allow up to 30% interannual increase in generation-technology
and transmission-line capacities and at most 20% interannual generation-
capacity retirements. No energy storage, other than hydroelectric reservoirs,
is considered.

Baseline generator-cost data, to which we apply learning rates and regional
multipliers, are summarized in Table 1. Generator cost data are obtained from
the works of Black and Veatch (2012); E3 (2012), to which interested readers
are directed for complete details. Baseline PV and wind capital costs decrease
to $2 226/kW and $1 804/kW, respectively, by the end of the optimization
horizon. Capital and fixed operation and maintenance (O&M) costs at individ-
ual electricity-system nodes are up to 20% higher or 15% lower than baseline
costs. Generator-retirement costs are 5% of capital cost. Generator-operating
costs are computed using monthly estimates of coal and natural-gas prices for
different WECC regions, which are taken from 2024 PCMCC, and the heat
rates and variable O&M costs that are reported in Table 1. We assume a $58/t
carbon tax, which is levied on carbon emissions from combusting fossil fuels
to generate electricity. Hourly available wind and solar generation, which is
assumed to be costless, is obtained from 2026 PCMCC. These data are for a
single year only. Thus, we apply the same availability profiles for all case-study
years.

Table 1 Baseline generator-cost data for case study

Cost

Generation Capital Fixed O&M Variable O&M
Technology ($/kW) ($/kW-year) ($/MWh) Heat Rate (Btu/kWh)

Coal 3 600 30.0 3.71 9 000
NGS 1 200 12.0 2.99 9 000
NGOC 1150 12.0 2.99 9 200
NGCC 1200 10.0 3.67 6 700
PV 3 325 50.0 0.00 n/a
Wind 2 000 60.0 0.00 n/a
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4.2 Transmission Data

Figure 1 shows the assumed 15-node topology of the WECC transmission net-
work. Transmission-network data are obtained from WECC’s 2034 Reference
Case. The states of Washington and Oregon are aggregated into the Pacific
Northwest node. 2034 Reference Case includes different transmission limits
that depend upon season and the direction of flow. For simplicity, we use the
maximum capacity that is reported in the dataset for each line. We assume
that adding transmission capacity incurs a cost of $614 000/MW (Mason and
Curry, 2012). In addition to modeling the 15-node network that is shown in
Fig. 1, some of our cases model a three-zone simplification of the transmission
system. The boundaries of the three zones are shown in Fig. 1.

Northwest

South

East

Northern
Nevada

Utah ColoradoNorthern
California

Wyoming

Montana

IdahoPacific
Northwest

British
Columbia

Alberta

Southern
Nevada

Arizona New
Mexico

Southern
California

Mexico

Fig. 1 15-node and three-zone transmission-network models for the case study.

4.3 Hydroelectric Data

Figure 2 shows the topology of the 35-dam Columbia River system, which is
aggregated minimally (a dam name that is followed by ‘+x’ indicates that the
dam aggregates x additional dams). System-topology data are obtained from
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Northwest Power and Conservation Council3 and Bonneville Power Adminis-
tration. All water flows to Bonneville, from which it flows into Pacific Ocean.
Circles in the figure indicate hydroelectric generators, squares indicate signif-
icant reservoirs whereas dams without squares are run-of-river reservoirs that
have at most 3.5 hours of storage, and crosses indicate dams with non-trivial
natural water inflows. The red dashed rounded rectangles indicate the bound-
aries of six-dam aggregations that are used in some of our analysis. Dashed
blue lines indicate state and provincial boundaries. We assume a one-hour
water-flow time between upstream and downstream dams.

Montana

British Columbia

Washington

Oregon

Idaho

Noxon

Thompson

Kerr

Cabinet Gorge

Albeni Falls

BoundaryWaneta

Seven Mile

Grand Coulee

Chief Joseph
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Mcnary
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The Dalles

John Day

Ice Harbor

Lower GraniteDworshak

Lower Monumental

Little Goose
Hells CanyonBrownlee+3

Oxbow

Hungry Horse

Fig. 2 Topology of Columbia River. Circles indicate hydroelectric generators, squares indi-
cate significant reservoirs, crosses indicate dams with natural water inflows, and all water
flows towards Bonneville. Red dashed rounded rectangles indicate boundaries of six-dam
aggregations of the system. Dashed blue lines indicate state and provincial boundaries.

Historical water-inflow, -outflow, and -storage and power-output data are
obtained from United States Army Corps of Engineers4 and Government of
Canada.5 Lower and upper bounds on water flows and reservoir levels are
set to the minimum and maximum values that are observed in the historical
data between 1999 and 2018. Historical water-inflow data for the same years,
which exhibit seasonal and inter-annual variability, are applied to the 20-year
case-study horizon.

3cf. https://www.nwcouncil.org/energy/energy-topics/power-supply/ for these data.
4cf. http://www.nwd-wc.usace.army.mil/dd/common/dataquery/www/ for these data.
5cf. https://wateroffice.ec.gc.ca/mainmenu/historical data index e.html for these data.

https://www.nwcouncil.org/energy/energy-topics/power-supply/
http://www.nwd-wc.usace.army.mil/dd/common/dataquery/www/
https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html
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Hydroelectric units at a transmission node that are not in the Columbia
River system are aggregated into a single generic hydroelectric plant. We
assume that such plants have fixed generation profiles, which are based on
the historical generation profile of Lower Granite and scaled based on the
aggregated nameplate capacity of the units. Lower Granite does not have a
large upstream reservoir, meaning that its output reflects seasonal and annual
variations of natural water inflows.

Natural-water-inflow features of dams are treated differently when apply-
ing hierarchical clustering to produce representative operating periods (cf.
Sect. 3.3). Each dam that is part of the Columbia River system is represented
by its natural water inflow that is in the historical data. Aggregated dams that
are not part of the Columbia River system are represented by their generation
profiles.

4.4 Case-Study Implementation

Depending upon which of (24), (25), or (26) is used for πc(·, ·), (1)–(23) can
be linear or non-linear. Our case studies are implemented on a system with
270 GB of memory and two Intel Xeon E5-2697 v4 processors, each of which
has 18 2.30-GHz cores.

The linear variants are programmed with Python 2.7 and solved using the
barrier-method algorithm in Gurobi 7.5.1 with crossover disabled. Gurobi’s
presolver is disabled or set to conservative and the homogeneous-barrier-
method algorithm is used and presolver aggregation is disabled in some cases
to improve algorithm performance. The default optimality tolerance of 10−8

is used. However, in some cases Gurobi stops barrier iterations close to but
before reaching this tolerance.

The non-linear variants are programmed with Pyomo and solved using the
interior/direct algorithm in Knitro 12.0.0 with HSL MA57. Knitro is given a
solution of a corresponding linear variant as an initial point.

5 Case-Study Results

5.1 Functional Form of πc(·, ·)

Figure 3 shows historical hourly power-output and water-flow data from 1999–
2018 for Grand Coulee, which is the largest dam and reservoir on Columbia
River. The observations are categorized by the reservoir’s water level. Overlaid
on the scatterplot are ordinary-least-square (OLS) estimates of (24)–(26) to
the underlying data. Two fits of (24) and (25), which correspond to different
reservoir levels, are shown.

The adjusted R2 of the OLS estimates of (24) and (25) are 0.9894 and
0.9862, respectively. Thus, (25) provides a relatively good linear approxima-
tion of (24) and can capture head effects. However, Fig. 3 shows deviations
between (25) and the underlying observations with low head levels or water
flows. Functional form (26) has the worst fit to the data, does not capture head
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Fig. 3 Scatterplot of historical hourly power-output and water-flow data for the Grand
Coulee reservoir and fits of (24)–(26) to the data.

effects, and is akin to the common linearization method that is used, wherein
the water level is assumed fixed over the full optimization horizon (Maluenda
et al, 2018; Ramı́rez-Sagner and Muñoz, 2019).

We examine the effects of using (25) and (26) as linear approximations
of (24) by computing economic regret, assuming that (24) is the true functional
form of πc(·, ·) and (25) and (26) are reductions. We conduct this compari-
son using the three-zone transmission network, six-dam river system, and all
8760 hours of each year of the optimization horizon. The objective-function
value with using (24) is $622.317 million. The objective-function values with
using (25) and (26) to fix investments and re-solving the model with (24)
are $622.441 million and $622.502 million, respectively. These yield economic
regrets of 0.02% and 0.03%, respectively, with using each of (25) and (26) in
place of (24). Thus, the choice of linear approximation has minuscule effects
on capacity planning.

Figure 4 shows natural water inflows into and the optimized storage level
of the Grand Coulee reservoir with the three different forms of πc(·, ·). The
figure shows a significant difference in reservoir operations between (26) and
the other two forms. Each of (24) and (25) capture head effects whereas (26)
does not. Thus, the model keeps a higher reservoir level with (24) and (25) to
increase hydroelectric-plant efficiency whereas it operates over a much wider
range with (26). Given these results, we find (25) to be a good approximation
of (24) that yields a linear variant of (1)–(23), low economic regret, and a
reservoir-operation profile that is close to that which is obtained with (24). As
such, we use (25) as the functional form of πc(·, ·) throughout our subsequent
analysis.
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Fig. 4 Natural water inflows into and optimized storage level of the Grand Coulee reservoir
with different functional forms of πc(·, ·).

5.2 Water-Travel Times and Water-Storage Capacities of
Hydroelectric Plants

Our base case assumes that water takes one hour to flow from a dam to the
one that is immediately downstream, meaning that it can take nearly a day for
water to flow from some dams to Pacific Ocean. Using the three-zone trans-
mission network, 35-dam river system, and all 8760 hours of each year of the
optimization horizon, we examine the effects of assuming zero water-travel
time and that run-of-river dams have no water-storage capacity. Assuming zero
water-travel times between adjacent dams yields zero economic regret, indi-
cating that for the Columbia River system, water-flow times have no bearing
on WECC capacity-planning decisions. Next, we simplify (1)–(23) further by
assuming that run-of-river dams, of which there are 27 (cf. Fig. 2) have no
water-storage capacity. This model reduction yields economic regret of 0.12%.
Hereafter, we assume zero water-travel times but model water-storage capacity
for all dams.

5.3 Selection of Periods to Represent System Operations

To define a metric between days and clusters we represent each day as a vector.
Each vector consists of 24 · |N | load, solar-availability, and wind-availability
features, up to 24 · |H| natural-water-inflow features for each dam with non-
trivial natural water inflows that is part of the Columbia River system, and
24 generation features for the hydroelectric plants that are not part of the
Columbia River system. Thus, the vector that describes each day is in up to
24 · (1 + 3 · |N |+ |H|)-dimensional space.
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5.3.1 Cluster Properties

Figures 5–8 contrast the clustering techniques by showing thirty clusters that
are selected for the year 2024 with three transmission nodes, a six-dam repre-
sentation of the Columbia River system, and different combinations of features
and scaling methods. The principal difference between the cluster choices is
that having natural water inflows as a feature yields clusters that combine
the beginning and end of the year and clusters that span seasons (cf. Figs. 5
and 6). Nevertheless, seasonal differences in natural water inflows yield some
chronology in the resultant clusters. Having day of the year as a feature yields
clusters that are chronologically closer (cf. Figs. 7 and 8).

Fig. 5 Thirty clusters selected for 2024 with three transmission nodes and six-dam
representation of the Columbia River system using all features and linear scaling.

5.3.2 Evaluating Clusters

One approach to evaluating clustering techniques is to examine features, e.g.,
load- or renewable-availability-duration curves (Liu, 2016; Merrick, 2016; Nah-
mmacher et al, 2016; Limpens et al, 2019). This approach is premised on the
notion that clustering performance is governed by matching the features of the
clustered and unclustered data. However, matching features does not ensure
that the clustered data yield desirable investment decisions (Teichgraeber and
Brandt, 2019). Thus, we focus our evaluation on comparing the performance
of (1)–(23) with clustered and unclustered data.

Figure 9 shows differences in the values of (1) that are obtained from solv-
ing (1)–(23) with different numbers of clusters, compared to if it is solved
using unclustered data. Figure 9 assumes three transmission nodes and a six-
dam Columbia River system and the clustering methods are applied to each
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Fig. 6 Thirty clusters selected for 2024 with three transmission nodes and six-dam
representation of the Columbia River system using all features and capacity-based scaling.

Fig. 7 Thirty clusters selected for 2024 with three transmission nodes and six-dam
representation of the Columbia River system using day-of-year feature and linear scaling.

of the 20 case-study years separately. Increasing the number of clusters tends
to reduce the difference in the optimized value of (1) between using clustered
and unclustered data. Capacity-based scaling performs the best vis-à-vis the
value of (1).

Figure 9 suggests that the clustered data introduce relatively small errors
no greater than 6% even if each year is represented using only 10 days. This
is a misleading interpretation of Fig. 9, because the clustered data are limited
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Fig. 8 Thirty clusters selected for 2024 with three transmission nodes and six-dam rep-
resentation of the Columbia River system using day-of-year feature and capacity-based
scaling.

Fig. 9 Difference in optimized value of (1) from solving (1)–(23) with clustered data as
opposed to solving it with unclustered data assuming three transmission nodes and six-dam
representation of the Columbia River system.

in capturing system operations under extreme conditions. As such, (1) does
not provide an accurate representation of actual operation costs, especially
if load must be curtailed. Figure 9 shows that using clustered data tends to
underestimate the true value of (1) with unclustered data. This underestima-
tion arises from capacity underinvestment if the clustered data provide a poor
representation of the unclustered data.
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Figure 10 summarizes economic regrets from using clustered data in (1)–
(23). Figures 9 and 10 show very different magnitudes of the two performance
metrics. Selecting 10 days to represent each year with natural water inflows as
a feature and simple linear scaling yields the largest objective-function-value
difference of 6% in Fig. 9. Yet, this cluster choice yields the highest economic
regret of over 45% in Fig. 10. This economic regret arises due to less investment
with the clustered data—a total of 66.8 GW and 34.8 GW of natural-gas-fired-
generation and transmission capacity, respectively, as opposed to 101.7 GW
and 41.1 GW with the unclustered data. As such, nearly 121.4 TWh of load
is curtailed at a discounted cost of $315.8 billion if the optimized investments
that are determined with the clustered data are undertaken. Conversely, if the
unclustered data are used to determine investments, only 1.5 TWh of load is
curtailed at a discounted cost of $3.9 billion.

Fig. 10 Economic regret from solving (1)–(23) with clustered data as opposed to solving
it with unclustered data assuming three transmission nodes and six-dam representation of
the Columbia River system.

Figures 11 and 12 reinforce the limitation and benefit of using (1) and
economic regret, respectively, as metrics for cluster-performance evaluation.
Figure 11 summarizes the breakdown of the optimized value of (1) if (1)–(23)
is solved with different numbers of clusters. The clusters are obtained using
natural water inflows as a data feature and linear scaling and the case assumes
three transmission nodes and a six-dam representation of the Columbia River
system. The figure shows that the optimized objective-function value and its
constituent components are very similar with different numbers of clusters.
This finding is keeping with the results that are shown in Fig. 9.

Figure 12 summarizes the components of economic regret for the same set
of clusters that are summarized in Fig. 11. Thus, Fig. 12 can be interpreted as
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Fig. 11 Breakdown of optimized value of (1) from solving (1)–(23) with different numbers
of clusters that are obtained using natural water inflows as a data feature and linear scal-
ing, assuming three transmission nodes and six-dam representation of the Columbia River
system.

giving the actual costs that are incurred if investment decisions are undertaken
using each set of clusters to solve (1)–(23) and the resultant system is operated
during each full year. With the exception of load-curtailment cost, the actual
costs that are summarized in Fig. 12 are similar with different numbers of
clusters and are similar to the values that are summarized in Fig. 11. The
key difference between the costs that are summarized in Figs. 11 and 12 is
that load-curtailment cost is much higher with fewer clusters. Moreover, load
curtailment is not revealed if too few clusters are included in (1)–(23). Load
curtailment is not revealed with a limited number of clusters because the
clusters do not capture extreme events (e.g., days with high demand or low
wind, solar, or hydroelectricity availability).

Figure 12 shows that underinvestment and resultant load curtailment per-
sists. Simple linear scaling with 60 or fewer days results in underinvestment
and significant load curtailment compared to unclustered data. Conversely,
if capacity-based scaling is employed, 30 representative days are sufficient to
yield investment and load-curtailment levels that are comparable to using
unclustered data (Fig. 13 summarizes the breakdown of the components of
economic regret for these sets of clusters). Specific generation and transmis-
sion investments have some variations between selecting 30, 60, and 120 days
using capacity-based scaling. Nevertheless, economic regrets are very close to
zero among all of these cases, which suggests that (1)–(23) with unclustered
data has many near-optimal solutions with different capacity mixes.

A second finding from comparing Figs. 9 and 10 is different relative per-
formance of the clustering techniques. For instance, Fig. 9 suggests that if
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Fig. 12 Breakdown of components of economic regret from solving (1)–(23) with different
numbers of clusters that are obtained using natural water inflows as a data feature and linear
scaling, assuming three transmission nodes and six-dam representation of the Columbia
River system.

selecting 60 days, linear scaling with ex post load and water-inflow adjust-
ments provides the worst-performing clusters. However, Fig. 10 shows that
with respect to economic regret this clustering technique is second only to
capacity-based scaling. These comparisons between Figs. 9 and 10 demon-
strate the limitations of relying upon the value of (1) alone in evaluating the
performance of clustering techniques.

With respect to economic regret, the first three scaling methods per-
form similarly (cf. Fig. 10). Capacity-based scaling has a clear performance
advantage, especially if fewer than 120 representative days are being selected.
Capacity-based scaling shows no significant difference between using natural
water inflows and day of the year as data features. The two features perform
similarly because both help to maintain chronology of the clusters (cf. Figs. 6
and 8). If capacity-based scaling is used, economic regret is near-zero with
60 or more days and only 0.5% with 30 days. Economic regret increases to up
to 6% with fewer than 30 days.

A final comparison that we conduct, but exclude for sake of brevity, is the
water-level profiles of reservoirs. Although clustered data yield some differ-
ences in water levels compared to unclustered data, the overall seasonal and
interannual trends are captured. This is due to the clusters capturing seasonal
chronology (cf. Figs. 5–8). Increasing the number of clusters reduces the differ-
ences in the resultant water-level profiles from using clustered and unclustered
data.
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Fig. 13 Breakdown of components of economic regret from solving (1)–(23) with different
numbers of clusters that are obtained using natural water inflows as a data feature and
capacity-based scaling, assuming three transmission nodes and six-dam representation of the
Columbia River system.

5.4 Scaling Performance of (1)–(23)

Figure 14 summarizes economic regrets from using our clustering methods with
the full transmission and river-system topologies. Because the first three scaling
methods perform similarly with the reduced networks, we consider only linear
and capacity-based scaling. Figure 14 shows that our clustering methods scale
well to a larger system, despite each day having significantly more features. As
is the case with the smaller networks, selecting 60 operating days with capacity-
based scaling yields economic-regret values of 0.47% or 0.58%, depending upon
the features that are used. These economic-regret values increase to 1.15% and
1.45% if selecting 30 operating days.

Table 2 summarizes how (1)–(23) scales with different numbers of trans-
mission nodes, dams, and operating days. The reported solution times include
reading input data and outputing model results. There are order-of-magnitude
computation-time savings from reducing the number of operating days or nodes
and dams that are modeled.

6 Conclusions and Discussion

We examine capacity planning for power systems with hydroelectric, thermal,
and renewable generators. Such modeling is difficult, because of the need to
capture reservoir water levels and seasonal and interannual variability of nat-
ural water inflows. We explore the use of three model reductions—simplifying
the representation of (i) hydroelectric-plant efficiency, (ii) reservoirs and water-
travel times, and (iii) system operations—to improve model tractability. Using
economic regret as a metric, we demonstrate that these reductions can yield
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Fig. 14 Economic regret from solving (1)–(23) with clustered data as opposed to solving
it with unclustered data assuming the full transmission and river-system topologies.

Table 2 Size of (1)–(23) and solution times with different
model reductions, using natural water inflows as a data feature
and linear scaling.

Number Solution
|N | |H| of Days Variables Constraints Time (min)

3 6 10 245 460 548 286 3
3 6 30 735 060 1 642 686 13
3 6 60 1 469 460 3 284 286 32
3 6 365 8 935 860 19 973 886 240
15 35 10 1 448 380 3 518 847 11
15 35 30 4 337 980 10 546 047 52
15 35 60 8 672 380 21 086 847 129
15 35 365 52 738 780 128 251 647 1 800

significant computation-time savings with little loss of model fidelity. The
model reductions provide investments that are not unduly expensive and
do not sacrifice system security, i.e., unserved energy is similar between the
reduced and full models. Reservoir water levels of the hydroelectric plants are
similar between the reduced and full models (Yagi, 2020).

Although it is used commonly in the literature, we demonstrate the short-
comings of assessing the performance of a capacity-planning model solely based
on comparing objective-function value. Specifically, objective-function value
may not reveal the ‘brittleness’ of the system under extreme conditions. For
instance, if only 10 days are used to represent system operations, those 10 days
may not capture extremes or significant load curtailment that occur due to
underinvestment. Economic regret is a performance metric that is robust to
this type of effect.
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The performance of the reductions may be specific to our case study and
should be studied before being applied to other systems. For instance, we
consider simple water-level constraints on reservoirs. More complex constraints
(e.g., due to wildlife preservation, flood control, or irrigation) may interact
with the reductions that we study. Our work demonstrates reductions that
should be the foci of modelers who are undertaking these types of capacity-
planning exercises. Among the model reductions that we examine, we surmise
that the simplification of hydroelectric-plant efficiency and the selection of
representative operating days is more generalizable to other system topologies
and designs. Conversely, the detail with which a cascaded hydroelectric system
should be represented may be more sensitive to its underlying topology.

Our work examines a deterministic planning model with continuous vari-
ables. Explicit uncertainty representation or discrete decisions (e.g., lumpy
investments) may be important in some settings. To the extent that our
proposed reductions improve tractability, they should ease including such
uncertainties or discrete decisions in planning models.
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