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Abstract

Nested Benders’s decomposition is an efficient means to solve large-scale opti-

mization problems with a natural time sequence of decisions. This paper examines

the use of the technique to decompose and solve efficiently capacity-expansion

problems for electricity systems with hydroelectric and renewable generators. To

this end we develop an archetypal planning model that captures key features

of hydroelectric and renewable generators and apply it to a case study that

is based on the Columbia River system in the northwestern United States of
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America. We apply standard network and within-year temporal simplifications

to reduce the problem’s size. Nevertheless, the remaining problem is large-scale

and we demonstrate the use of nested Benders’s decomposition to solve it. We

explore refinements of the decomposition method which yield further performance

improvements. Overall, we show that nested Benders’s decomposition yields good

computational performance with minimal loss of model fidelity.

Keywords: Electricity-system planning, decomposition, hydroelectric generation,
renewable generation

1 Introduction

Capacity-planning problems for electricity systems can be large-scale and compu-
tationally challenging. As such, the literature explores approaches to make these
problems more tractable. One standard approach is to simplify the representation
of system operations, for instance by reducing the number of operating periods that
are modeled. A classic reduction approach uses the electricity system’s load-duration
curve to approximate its operations (Stoft, 2002; Sioshansi, 2016). Another reduction
approach uses representative time periods.

Representative time periods raise questions regarding how to select them and their
durations. One approach to selecting representative time periods is with an heuristic.
For instance, one can select representative time periods based on season and peak-
load conditions (Cohen et al, 2019). Another selection approach uses data features,
e.g., clustering (Nahmmacher et al, 2016; Liu et al, 2018a; Boffino et al, 2019). A third
approach is to treat the selection problem as its own optimization (Poncelet et al,
2017).

The duration of the representative operating periods can be especially impor-
tant if the flexibility needs of an electricity system increases, e.g., due to variable
renewable-energy sources. In such a case, it can be important to capture intertemporal
constraints, e.g., ramping limits. This modeling need may call for using representa-
tive operating periods, e.g., days or weeks, that can capture such constraints. Liu
et al (2018b) use 30 days to represent electricity-system operations over the course
of each year in a capacity-planning model that they apply to a case study that is
based on Texas. They demonstrate that including as opposed to relaxing intraday
ramping constraints in their model yields different generation-capacity mixes. Malu-
enda et al (2018) use four representative days for modeling the Chilean electricity
system. They show that this approach represents electricity-system operations better
than a load-block model does, because the latter does not capture inter-hour operating
constraints.

Many works examine simplifications of capacity-planning problems for electricity
systems with thermal and renewable-energy resources. There is a much more limited
literature that examines such simplifications for electricity systems with hydroelec-
tric resources, which yield additional complexities in capacity planning. Hydroelectric
generators that are on a cascaded river system have interdependencies and coupling
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constraints that complicate their operations. As the flexibility needs of an electricity
system increases, it becomes more important to capture accurately the flexibility of
hydroelectric resources and the impacts of cascaded river systems thereupon (Huertas-
Hernando et al, 2017). As such, investment decisions for electricity systems that have
heavy dependence upon hydroelectric resources can be influenced by the fidelity with
which hourly operations of hydroelectric resources are modeled. Ibanez et al (2014)
find that modeling the details of the operations of a cascaded river yields better
operational performance, e.g., less renewable-energy curtailment and operational cost.

A second complication that hydroelectric generators raise is that some have large
reservoirs with seasonal or inter-annual water-storage capacities. Natural water inflows
into such reservoirs (or into cascaded river systems) can have seasonal and inter-annual
variability and uncertainty. As such, capacity planning of an electricity system with
hydroelectric resources may require capturing conditions over many years. In addition,
the water-storage capabilities of hydroelectric reservoirs means that the chronology of
hydroelectric operations should be captured over long periods of time, e.g., a year or
longer.

Given these complexities of capacity planning of electricity systems with high pen-
etrations of hydroelectric generation, this and a companion paper (Yagi and Sioshansi,
2023) explore different aspects of simplifying such problems. Yagi and Sioshansi (2023)
focus on model-reduction approaches, including the selection of representative operat-
ing periods, which yield problems that are smaller than an unreduced model. Such a
reduced model can remain computationally taxing, which motivates the current paper,
which examines the use of nested Benders’s decomposition (Benders, 1962; Birge,
1985) to make the resultant problem more computationally tractable.

Our use of Benders’s decomposition is not novel, as is evidenced by the literature
survey of Rahmaniani et al (2017). Benders’s decomposition has a rich history of appli-
cation to the electricity sector, especially in the presence of hydroelectric resources,
which can involve temporally coupled decisions. The seminal work of Pereira and Pinto
(1985) employs a stochastic variant of Benders’s decomposition for operational and
water-use optimization of a cascaded hydroelectric system. Hjelmeland et al (2019)
model optimal medium-term operation of hydroelectric generation. Contrasting these
two works shows the benefits of improved hardware and optimization software during
the intervening years. Pereira and Pinto (1985) optimize water use over a five-month
optimization horizon with monthly temporal resolution, whereas Hjelmeland et al
(2019) examine weekly water use over a two-year planning horizon. Maceiral et al
(2018) provide a comprehensive survey of the successful use of Benders’s decomposition
for optimizing hydroelectric-resource operation. The value of Benders’s decomposi-
tion is evidenced further by Chile’s energy law, which requires its use to optimize the
operation of the nation’s hydroelectric resources (Raineri, 2006).

To date, Benders’s decomposition sees limited application to capacity-planning
problems for electricity systems that include hydroelectric resources. Falugi et al (2016)
apply nested Benders’s decomposition to optimize transmission-infrastructure plan-
ning for an electricity system. Lara (2019) employs nested Benders’s decomposition to
simplify capacity-expansion models for electricity systems. However, neither of these
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works has considerable focus on the complexities that are inherent with the inclusion
of hydroelectric generation in an electricity system.

Thus, the novelty and primary contribution of our work is to demonstrate that
nested Benders’s decomposition can yield a computationally tractable and high-fidelity
capacity-planning model for an electricity system with high penetrations of renewable
and hydroelectric generation. We find that the standard ‘textbook’ implementation of
Benders’s decomposition can yield computational challenges and demonstrate simple
techniques to overcome these. Furthermore, we demonstrate that the benefit of Ben-
ders’s decomposition can be exploited and strengthened if the reduction methods that
are explored by Yagi and Sioshansi (2023) are employed. In particular, we show that
the representative operating periods that are studied by Yagi and Sioshansi (2023)
can be combined effectively with nested Benders’s decomposition. We use economic
regret as our primary solution-quality metric (Ramı́rez-Sagner and Muñoz, 2019).
Many works (Merrick, 2016; Liu et al, 2018b,a; Boffino et al, 2019; Barrera-Santana
and Sioshansi, 2023) compare the optimized objective-function value to assess solution
quality. We find that economic regret provides a more robust solution-quality mea-
sure (Yagi and Sioshansi, 2023). Taken together, this paper and the work of Yagi and
Sioshansi (2023) provide complementary approaches to simplify capacity planning for
electricity systems with high penetrations of renewable and hydroelectric resources.

We proceed through the remainder of the paper as follows. Section 2 provides the
archetypal capacity-planning model, which is the basis of our analysis. We apply the
techniques from our companion paper (Yagi and Sioshansi, 2023) to reduce the model.
Section 3 outlines the decomposition technique, as well as some refinements to ease
its implementation. Section 4 provides data for a comprehensive case study to which
we apply our model and decomposition technique. The case study is based on the
electricity system within Western Electricity Coordination Council (WECC), which
is in western North America. WECC includes the Columbia River system, which is a
major cascaded hydroelectric system. Section 5 provides case-study results and Sect. 6
concludes.

2 Model

This section provides the formulation of our archetypal capacity-expansionmodel. This
model does not capture every nuance of electricity-system planning. Rather, the model
captures key features of capacity planning with hydroelectric, renewable, and thermal
resources. Moreover, this model employs some of the reductions that are examined
in our companion paper (Yagi and Sioshansi, 2023). The companion paper provides
a more generic capacity-expansion model and detailed evaluations of the reductions
that we employ here.

2.1 Model Notation

We begin by defining the following sets and indices.
c index for hydroelectric dams
g index for non-hydroelectric-generation technologies
G set of non-hydroelectric-generation technologies
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h index for hours during a year
H set of hydroelectric dams
H̄c set of dams that are upstream of dam c
HL

n set of dams that are at transmission node n
l index for transmission lines
L set of transmission lines
Linn set of transmission lines that flow into node n in the nominal direction
Loutn set of transmission lines that flow out from node n in the nominal direction
n index for transmission nodes
N set of transmission nodes
T H ordered set of hours during a year
y index for years
Y ordered set of years
z index of pieces of approximation of transmission losses
Z set of pieces of approximation of transmission losses

Next, we define the following parameters and functions.
CG,i

y,g,n annualized year-y capital cost of non-hydroelectric-generation technology g
that is located at node n ($/MW)

CG,V
y,g,n,h operation cost during hour h of year y of non-hydroelectric-generation

technology g that is located at node n ($/MWh)
CL annualized capital cost of transmission-line capacity ($/MW)
CU value of lost load ($/MWh)
Dz coefficient for zth piece of flow-related transmission losses (p.u.)
Ez coefficient for zth piece of capacity-related transmission losses (p.u.)

kG,i0,g,n initial capacity that is present at node n of non-hydroelectric-generation
technology g (MW)

kL0,l initial capacity that is present of transmission line l (MW)

Ly,n,h node-n electric load during hour h of year y (MW)
QH,+

c maximum output of generator at dam c (MW)
Rc ramp rate of generator at dam c (p.u.)
Rg ramp rate of non-hydroelectric-generation technology g (p.u.)
W̄H

c maximum water level of dam c (acre-feet)
WH,−

c minimum water flow from dam c (acre-feet)
WH,+

c maximum water flow from dam c (acre-feet)

WH,f
y,c,h natural water inflow to dam c during hour h of year y (acre-feet)

wH,str
1,c,0 initial water level of dam c as of the beginning of the planning horizon

(acre-feet)
βc,0 constant in the function that models power output of the generator that is

located at dam c (MW)
βc,1 coefficient that multiplies the water flow through the generator in the func-

tion that models power output of the generator that is located at dam c
(MW/acre-feet)

βc,2 coefficient that multiplies the water level of its reservoir in the function that
models power output of the generator that is located at dam c (MW/acre-
feet)
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Γ discount rate (p.u.)
ι+ maximum capacity that can be added from one year to the next (p.u.)
ι−g maximum capacity of non-hydroelectric-generation technology g that can

be retired from one year to the next (p.u.)
κE
g output-based CO2-equivalent-emission rate of non-hydroelectric-generation

technology g (t/MWh)
κT tax rate for CO2-equivalent emissions ($/t)
ρ cost of retiring non-hydroelectric-generating capacity (p.u.)
σy,g minimum total energy supply from non-hydroelectric-generation technol-

ogy g during year y (p.u.)
Υy,h weight on hour h of year y (h)
Φy,g,n,h availability factor during hour h of year y for non-hydroelectric-generation

technology g that is located at node n (p.u.)
Finally, we define the following set of decision variables.

fL
y,l,h net power flow during hour h of year y through transmission line l (MW)

kG,iy,g,n total capacity during year y of non-hydroelectric-generation technology g
that is present at node n (MW)

kG,ρy,g,n capacity of non-hydroelectric-generation technology g that is retired during
year y from node n (MW)

kLy,l total capacity during year y of transmission line l (MW)

qGy,g,n,h power output during hour h of year y of non-hydroelectric-generation
technology g that is located at node n (MW)

qHy,c,h power output during hour h of year y of generator that is located at dam c
(MW)

qUy,n,h unserved node-n load during hour h of year y (MW)

wH,g
y,c,h water flow during hour h of year y through generator that is located at

dam c (acre-feet)

wH,spl
y,c,h water spilled during hour h of year y from dam c (acre-feet)

wH,str
y,c,h water level as of the end of hour h of year y of dam c (acre-feet)

µL
y,l,h power losses during hour h of year y on transmission line l (MW)

2.2 Model Formulation

The capacity-planning model is formulated as:

min
∑

y∈Y

Γy−1 ·







∑

l∈L

CLkLy,l +
∑

n∈N







∑

g∈G

[

CG,i
y,g,n ·

(

kG,iy,g,n + ρkG,ρy,g,n

)

+
∑

h∈T H

Υy,h ·
(

CG,V
y,g,n,h + κTκE

g

)

qGy,g,n,h

]

+
∑

h∈T H

Υy,hC
UqUy,n,h













(1)

s.t. kG,ρy,g,n ≥ kG,iy−1,g,n − kG,iy,g,n; ∀y ∈ Y, g ∈ G, n ∈ N (2)
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kG,iy−1,g,n − ι−g k
G,i
0,g,n ≤ kG,iy,g,n ≤ (1 + ι+)kG,iy−1,g,n;

∀y ∈ Y, g ∈ G, n ∈ N (3)

kLy−1,l ≤ kLy,l ≤ (1 + ι+)kLy−1,l; ∀y ∈ Y, l ∈ L (4)
∑

n∈N ,h∈T H

Υy,hq
G
y,g,n,h ≥ σy,g

∑

n∈N ,h∈T H

Υy,hLy,n,h; ∀y ∈ Y, g ∈ G (5)

∑

g∈G

qGy,g,n,h +
∑

c∈HL
n

qHy,c,h +
∑

l∈Lin
n

(

fL
y,l,h −

1

2
µL
y,l,h

)

+ qUy,n,h

−
∑

l∈Lout
n

(

fL
y,l,h +

1

2
µL
y,l,h

)

= Ly,n,h; ∀y ∈ Y, n ∈ N , h ∈ T H (6)

0 ≤ qGy,g,n,h ≤ Φy,g,n,hk
G,i
y,g,n; ∀y ∈ Y, g ∈ G, n ∈ N , h ∈ T H (7)

−Rgk
G,i
y,g,n ≤ qGy,g,n,h − qGy,g,n,h−1 ≤ Rgk

G,i
y,g,n;

∀y ∈ Y, g ∈ G, n ∈ N , h ∈ T H (8)

qGy,g,n,0 = qG
y−1,g,n,|T H|; ∀y ∈ Y, y 6= 1, g ∈ G, n ∈ N (9)

0 ≤ qUy,n,h ≤ Ly,n,h; ∀y ∈ Y;n ∈ N , h ∈ T H (10)

qHy,c,h = βc,0 + βc,1w
H,g
y,c,h + βc,2w

H,str
y,c,h ; ∀y ∈ Y, c ∈ H, h ∈ T

H (11)

−RcQ
H,+
c ≤ qHy,c,h − qHy,c,h−1 ≤ RcQ

H,+
c ;

∀y ∈ Y, c ∈ H, h ∈ T H (12)

qHy,c,0 = qHy−1,c,|T H|; ∀y ∈ Y, y 6= 1, c ∈ H (13)

wH,str
y,c,h = wH,str

y,c,h−1 +Υy,h ·
(

WH,f
y,c,h − wH,g

y,c,h − wH,spl
y,c,h

)

+
∑

c′∈H̄c

Υy,h ·
(

wH,g
y,c′,h + wH,spl

y,c′,h

)

; ∀y ∈ Y, c ∈ H, h ∈ T H (14)

wH,str
y,c,0 = wH,str

y−1,c,|T H|
; ∀y ∈ Y, y 6= 1, c ∈ H (15)

0 ≤ wH,str
y,c,h ≤ W̄H

c ; ∀y ∈ Y, c ∈ H, h ∈ T H (16)

WH,−
c ≤ wH,g

y,c,h + wH,spl
y,c,h ≤WH,+

c ; ∀y ∈ Y, c ∈ H, h ∈ T H (17)

wH,str
|Y|,c,|T H|

≥ wH,str
1,c,0 ; ∀c ∈ H (18)

− kLy,l ≤ fL
y,l,h ≤ kLy,l; ∀y ∈ Y, l ∈ L, h ∈ T

H (19)

µL
y,l,h ≥ Ezk

L
y,l +Dzf

L
y,l,h; ∀y ∈ Y, l ∈ L, h ∈ T

H, z ∈ Z (20)

µL
y,l,h ≥ Ezk

L
y,l −Dzf

L
y,l,h; ∀y ∈ Y, l ∈ L, h ∈ T

H, z ∈ Z (21)

kG,ρy,g,n ≥ 0; ∀y ∈ Y, g ∈ G, n ∈ N (22)

wH,g
y,c,h, w

H,spl
y,c,h ≥ 0; ∀y ∈ Y, c ∈ H, h ∈ T H. (23)

We represent time in the model using two different scales. Capacity-addition and -
retirement decisions are made annually, over the ordered set, Y, of years. Between these
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annual investment and retirement epochs, electricity-system operations are captured
during an ordered set, T H, of representative operating hours. These operating hours
are ordered to capture the chronology of decisions and parameters, which affect water
levels in the hydroelectric system. The temporal granularity of the decisions is selected
arbitrarily without loss of model generality.

Objective function (1) minimizes the discounted sum of capacity and operational
costs over this time horizon and contains four cost terms. The first represents the
cost of adding transmission capacity. For simplicity, our model does not allow for
transmission retirements. The second term represents the cost of adding or retiring
generation capacity. The capacity of the hydroelectric system is fixed. However, the
capacities of other generation technologies can be adjusted. The third term is the cost
of operating the generating fleet. Our model accommodates a price on CO2-equivalent
emissions, e.g., as a carbon-policy mechanism (Liu et al, 2021; Yagi and Sioshansi,
2021). Operating the hydroelectric system is assumed to have no direct cost. The final
term in (1) gives the load-curtailment cost.

Constraints (2)–(4) restrict capacity-related decisions. Constraint set (2) defines
the amount of generation capacity that is retired during each year by the decrease
in generation capacity between that year and the preceding one. Constraint sets (3)
and (4) impose limits on capacity changes from one year to the next (e.g., resource or
budget limits).

The remaining constraints pertain to electricity-system operations. Constraint
set (5) can be used to model a renewable-portfolio standard, which is one approach
to drive renewable-energy adoption (Sioshansi, 2016). Constraint set (5) imposes a
minimum-energy requirement, whereas some renewable-portfolio standards are based
on installed capacity. The two types of standards are similar, insomuch as one may
account for the capacity factor of the renewable-energy technology in setting the
standard. Constraint set (6) imposes hourly load balance between energy that is
supplied and consumed at each electricity-system node. Constraint sets (7) and (8)
impose minimum and maximum capacities and interhourly ramping limits, respec-
tively, on power output from non-hydroelectric generators. The parameter, Φy,g,n,h,
which appears in the right-hand side of (7) can capture the variability of weather-
dependent renewable generators. Constraint set (9) defines the starting output level of
each non-hydroelectric generator as of the beginning of each year in terms of its end-
ing output level as of the end of the previous year. Constraint set (10) limits curtailed
load to be no greater than demand.

Constraint set (11) relates the power output of each hydroelectric generator to
water flow through the generator and the water level of the dam. This linear relation-
ship yields a reasonable trade-off between model fidelity and tractability (Yagi and
Sioshansi, 2023). More complex non-linear or non-convex relationships appear in the
literature (Hidalgo et al, 2014; Hunter-Rinderle and Sioshansi, 2021). Although such
relationships could be substituted in-place of (11), a linear model structure is needed
for application of nested Benders’s decomposition. Constraint set (12) imposes ramp-
ing limits on the hydroelectric generators. Constraint set (13) defines the starting
output level of each hydroelectric generator as of the beginning of each year in terms of
its ending output level as of the end of the previous year. Constraint set (14) enforces
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hourly water balance for each dam. The ending hour-h water level of a dam is defined
as the sum of its ending hour-(h − 1) water level and inflows from upstream dams
and natural inflows, less the sum of water that is released through the generator and
for spillage. We assume zero water-travel times between upstream and downstream
dams. Our companion paper (Yagi and Sioshansi, 2023) shows that this assumption
has negligible model-fidelity effects. Constraint set (15) defines the starting water level
of each dam as of the beginning of each year in terms of its ending water level from
the previous year. Constraint set (16) imposes minimum and maximum water-level
limits on each dam. Constraint set (17) imposes minimum and maximum limits on
water flows through each dam. These constraints could represent physical limits on a
dam or environmental considerations, e.g., needed water levels for wildlife preserva-
tion. Constraint set (18) forces the ending water level of each dam to be no less than
its initial level. Such a constraint is an heuristic approach to ascribe value to carrying
water as of the end of the model horizon (Sioshansi et al, 2022).

Constraint set (19) imposes power-flow limits on transmission lines. Constraint
sets (20) and (21) define transmission losses on each line as a piecewise-linear function
of line capacity and flow. We model the transmission system assuming that flows
can be directed within the network. Our approach to modeling transmission losses
can provide a reasonable approximation of a linearization of Kirchhoff’s circuit laws
(Ahlhaus and Stursberg, 2013).

Constraints (22) and (23) impose non-negativity on generation-capacity retire-
ments and water flows.

3 Nested Benders’s Decomposition

Our implementation of Nested Benders’s decomposition exploits the sequential time
structure of (1)–(23) and of the decisions that are optimized therein. We decom-
pose (1)–(23) by dividing it into |Y| subproblems, each of which corresponds to a
y ∈ Y.

To detail our decomposition approach, we begin by defining, ∀y ∈ Y, ay as a
vector of all of the year-y decision variables. Thus, ∀y ∈ Y, ay consists of fL

y,l,h

(transmission-line power flows) and µL
y,l,h (transmission-lines losses), ∀l ∈ L, h ∈ T H;

kG,iy,g,n (non-hydroelectric-generation capacities) and kG,ρy,g,n (retired non-hydroelectric-

generation capacities), ∀g ∈ G, n ∈ N ; kLy,l (transmission-line capacities), ∀l ∈ L;

qGy,g,n,h (non-hydroelectric-generator outputs), ∀g ∈ G, n ∈ N , h ∈ T H; qHy,c,h
(hydroelectric-generator outputs), wH,g

y,c,h (hydroelectric-generator water flows), wH,spl
y,c,h

(hydroelectric-dam water spillages), and wH,str
y,c,h (hydroelectric-dam water levels), ∀c ∈

H, h ∈ T H; and qUy,n,h (curtailed electricity demands), ∀n ∈ N , h ∈ T H.
Next, ∀y ∈ Y we define sy as a vector of year-y state variables. For y = 1, s1

consists of kG,i0,g,n (ending year-0 non-hydroelectric-generation capacities), ∀g ∈ G, n ∈

N ; kL0,l (ending year-0 transmission-line capacities), ∀l ∈ L; and wH,str
1,c,0 (starting year-

1 hydroelectric-dam water levels), ∀c ∈ H. For all y ∈ Y such that y > 1, sy consists of

kG,iy−1,g,n (ending year-(y−1) non-hydroelectric-generation capacities) and qG
y−1,g,n,|T H|
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(ending year-(y − 1) non-hydroelectric outputs), ∀g ∈ G, n ∈ N ; kLy−1,l (ending year-

(y − 1) transmission-line capacities), ∀l ∈ L; and qH
y−1,c,|T H| (ending year-(y − 1)

hydroelectric-generator outputs) and wH,str
y−1,c,|T H| (ending year-(y − 1) hydroelectric-

dam water levels), ∀c ∈ H. For all y ∈ Y, sy is a state variable in the sense that the
value of sy is needed to set starting conditions and specify constraints that restrict the
choice of ay. For all y ∈ Y, sy+1 can be determined directly from ay, e.g., using (9),
(13), and (15). Thus, for notational ease we denote the state variable as:

sy+1 = η(ay); (24)

for all y ∈ Y, where η(·) is defined appropriately.
Next, ∀y ∈ Y, we define Ay(sy) as the set of year-y variants of (2)–(8), (10)–

(12), (14), (16), (17) and (19)–(23). In addition, we include (18) in the definition of
A|Y|(s|Y|). Thus, ∀y ∈ Y, the choice of ay is constrained directly by Ay(sy). Constraint
sets (9), (13), and (15) do not need to be included explicitly in defining Ay(sy), because
the state variable, sy, conveys the starting water level of each dam as of the beginning
of year y. Next, ∀y ∈ Y, we define:

Ψy(ay) = Γy−1 ·







∑

l∈L

CLkLy,l +
∑

n∈N







∑

g∈G

[

CG,i
y,g,n ·

(

kG,iy,g,n + ρkG,ρy,g,n

)

+
∑

h∈T H

Υy,h ·
(

CG,V
y,g,n,h + κTκE

g

)

qGy,g,n,h

]

+
∑

h∈T H

Υy,hC
UqUy,n,h

}}

;

as the year-y objective function.
With these definitions, ∀y ∈ Y, we can give the formulation of the following year-y

subproblem:
min

ay∈Ay(sy),θy≥0
Ψy(ay) + θy. (25)

For all y ∈ Y, the year-y subproblem takes as an input the year-y state variable, sy,
and determines an ay that minimizes Ψy(ay). The auxiliary variable, θy, represents
the resultant objective-function values of the decisions that are made subsequent to
year y. More specifically, θy is meant to represent the optimized value of:

∑

y′∈Y:y′>y

Ψy′(ay′).

In other words, solving (25) for some y ∈ Y determines year-y decisions without
direct consideration of previous or subsequent years. If there is a y ∈ Y such that θ∗y
solves (25) for y and:

θ∗y <
∑

y′∈Y:y′>y

Ψy′(ay′); (26)

then θ∗y underestimates the true objective-function values of subsequent decisions and
an optimality cut must be added to (25) for y. The optimality cut allows θy to provide
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a better estimate of:
∑

y′∈Y:y′>y

Ψy′(ay′).

Otherwise, if (26) does not hold for any y ∈ Y, then the solutions that are obtained
from solving (25) ∀y ∈ Y are optimal in (1)–(23).

To separate these optimality cuts, we begin by defining ∀y ∈ Y such that y > 1,
the linear dual of (25) as:

max
λy∈Λy(sy)

Πy(λy, sy);

which, by (24), can be re-written as:

max
λy∈Λy(η(ay−1))

Πy(λy , η(ay−1)). (27)

If for some y ∈ Y, solving (25) yields θ∗y that satisfies (26), then an optimality cut of
the form:

θy ≥ Πy+1(λ
∗
y+1, η(ay)); (28)

where λ∗
y+1 is optimal in year-(y + 1) linear dual (27), is added to (25). Benders

(1962) provides the theoretical basis of the optimality cut, which arises from the
strong-duality property of linear optimization problems.

A technical issue can arise in adding (28) to (25), because large-scale instances
of (25) cannot be solved efficiently using Simplex method. Simplex method yields an
optimal solution which is a basic feasible solution (Luenberger and Ye, 2008; Sioshansi
and Conejo, 2017). A basic feasible solution has the property that non-basic variables
are equal to zero. Large-scale instances of (25) must be solved using an interior-point
or barrier method without crossover (Bertsekas, 1995). Such algorithms can yield
solutions with near-zero dual-variable values, which would be zero if Simplex method
is used instead. Optimality cuts with such near-zero coefficients can make (25) difficult
to solve, due to numerical-scaling issues (e.g., values of λ∗

y+1 of that are near-zero
but non-zero). As such, we employ a cutoff and fix equal to zero coefficients that are
sufficiently small in magnitude.

Another issue that can arise in solving (25) is that for some y ∈ Y, the state
variable, sy, could yield an infeasible problem. In our case, this can arise if the starting

water level of a reservoir, wH,str
y−1,c,|T H|

, is too low to satisfy some combination of (16)–

(18) for some c ∈ H, h ∈ T H. One way to address this issue is by separating and
adding feasibility cuts to (25), which we find yields poor computational performance
(Yagi, 2020). An alternative approach is to add artificial slack variables, which ensure

that (16)–(18) are feasible for all possible values of wH,str
y−1,c,|T H|

, ∀c ∈ H, h ∈ T H. This

approach makes (25) difficult to solve, because the objective-function penalties that
must be placed on the slack variables create numerical-scaling problems (Yagi, 2020).
As such, we add the constraints:

wH,g
y,c,|T H|

+ min
h∈T H







∑

h′∈T H:h′≤h



Υy+1,h′ ·
(

WH,f
y+1,c,h′ −WH,−

c

)
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+
∑

c′∈H̄c

Υy+1,h′WH,f
y+1,c′,h′











≥ 0; ∀c ∈ H; (29)

to (25), ∀y ∈ Y, y 6= |Y|. Constraint set (29) is an engineering estimate of the minimum
water level that must be in each dam as of the end of each year (Conejo et al, 2006).
The estimate that is in (29) is based on natural water inflows to each dam and its
upstream dams and minimum water outflows from the dam. Our results show that (29)
yields good computational performance and model fidelity, insomuch as our imple-
mentation of nested Benders’s decomposition yields high-quality solutions compared
to solving (1)–(23) directly.

To detail the algorithm that we use to implement our decomposition, ∀y ∈ Y we
define Ωy as the ordered set of optimality cuts that have been separated for the year-y
variant of (25). Then, ∀y ∈ Y, we can define the year-y subproblem with feasibility
constraints and optimality cuts as:

min
ay,θy

Ψy(ay) + θy

s.t. ay ∈ Ay(sy)

θy ≥ 0

(29)

θy ≥ Πy+1(λ
ω
y+1, η(ay)); ∀ω ∈ Ωy;

where λω
y+1 denotes the optimal dual-variable vector that is used to separate the ωth

optimality cut in Ωy. Hereafter, we denote this problem as Py.
Algorithm 1 provides pseudocode of our decomposition method. Figure 1 provides

an accompanying visual depiction and shows (1)–(23) being decomposed into the
sequence of year-1 through year-|Y| subproblems. The algorithm takes the following
three inputs in Line 1: ᾱ is the limit on the number of Benders’s iterations to con-
duct, ǫ is the minimum desired optimality gap, and ζ is the threshold for dual-variable
values that are used in separating optimality cuts. Line 2 initializes the algorithm. α,
which is the iteration counter, is set equal to one. ΨLB and ΨUB are lower and upper
bounds, respectively, on the optimal value of (1), and are initialized to −∞ and +∞,
respectively. Finally, the optimality-cut sets, Ωy, are initialized to be empty, ∀y ∈ Y.

The main Benders’s iterations are in Lines 3–18. Each iteration consists of two
recursions. First, Lines 4–7 are the so-called forward simulation, which iterate through
each y ∈ Y in time sequence, solve the year-y subproblem (cf. Line 5), and compute
the associated year-y objective-function value (cf. Line 6). The forward recursion is
depicted in Figure 1 by the ‘forward’ arrows that convey, ∀y ∈ Y, y 6= 1, the starting
state variable, sy, of the year-y subproblem based on the solution that is obtained
from solving the year-(y − 1) subproblem. Following the forward simulation, Line 8
updates the upper bound on the optimal value of (1). The value:

∑

y∈Y

Ψα
y ;
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Algorithm 1 Nested Benders’s Decomposition

1: input: ᾱ, ǫ, ζ
2: initialize: α← 1, ΨLB ← −∞, ΨUB ← +∞, Ωy ← ∅, ∀y ∈ Y
3: repeat

4: for y ← 1 to |Y| do
5: (aαy , θ

α
y )← argminPy

6: Ψα
y ← Ψy(a

α
y )

7: end for

8: ΨUB ←
∑

y∈Y Ψα
y

9: for y ← |Y| to 2 do

10: if θαy−1 < Ψα
y + θαy then

11: λ̃α
y ← argmax (27)

12: Ωy−1 ← Ωy−1 ∪ (|Ωy−1|+ 1)

13: λ
|Ωy−1|
y ← I(λ̃α

y , ζ)
14: end if

15: end for

16: ΨLB ← Ψα
1 + θα1

17: α← α+ 1
18: until α > ᾱ or (ΨUB −ΨLB)/ΨLB ≤ ǫ

gives a valid upper bound on (1) because the values of aαy , ∀y ∈ Y that are determined
in Line 5 are feasible but not optimal in (1)–(23). A ‘tighter’ and monotonically non-
increasing upper bound is given by:

ΨUB ← min







ΨUB,
∑

y∈Y

Ψα
y







.

We use the upper bound that is given in Line 8 to examine more closely the impact
of each optimality cut that is added as the algorithm progresses.

Lines 9–15 are the backward recursion. For each y ∈ Y such that θαy−1 underesti-
mates Ψα

y + θαy (cf. Line 10) year-y linear dual (27) is solved in Line 11 to obtain a

dual-optimal vector, λ̃α
y . Next, the cut set, Ωy−1 is expanded by one in Line 12 and

the cut coefficients are set in Line 13. The function, I(·, ·), which appears in Line 13
imposes the threshold, ζ, on the cut coefficients. I(·, ·) fixes equal to zero any ele-
ment of λ̃α

y that is smaller than ζ in magnitude. The backward recursion is depicted
in Figure 1 by the ‘backward’ arrows, which, ∀y ∈ Y, y 6= |Y|, provide newly sep-
arated optimality cuts from the year-(y + 1) subproblem to the year-y subproblem.
Line 16 updates the lower bound on the optimal value of (1). Ψα

1 + θα1 is valid lower
bound on (1) because this value is obtained by solving the year-1 subproblem, which
can underestimate but cannot overestimate the optimal value of (1).1 By principle of

1In theory, it is possible for Ψα
1
+ θα

1
to overestimate the optimal value of (1), because we use I(·, ·) to

fix equal to zero any dual-variable value that has a magnitude below a certain threshold. We do not observe
such behavior in our case study, however, because we select a sufficiently small value of ζ.
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min
a1,θ1

θ1 ≥ Π2(λ
ω
2
, η(a1)); ∀ω ∈ Ω1

Ψ1(a1) + θ1

s.t. a1 ∈ A1(s1)

θ1 ≥ 0

(29)

min
a2,θ2

θ2 ≥ Π3(λ
ω
3
, η(a2)); ∀ω ∈ Ω2

s.t. a2 ∈ A2(s2)

θ2 ≥ 0

(29)

Ψ2(a2) + θ2

s2 = η(a1)λ
|Ω1|
2

s3 = η(a2)λ
|Ω2|
3

min
a3,θ3

θ3 ≥ Π4(λ
ω
4
, η(a3)); ∀ω ∈ Ω3

s.t. a3 ∈ A3(s3)

θ3 ≥ 0

(29)

Ψ3(a3) + θ3

s4 = η(a3)λ
|Ω3|
4

.

.

.

s|Y| = η(a|Y|−1)λ

∣

∣

∣
Ω|Y|−1

∣

∣

∣

|Y|

a|Y| ∈ A|Y|(s|Y|)

min
a|Y|
s.t.

θ|Y| ≥ 0

Ψ|Y|(a|Y|)

Fig. 1 Graphical illustration of decomposition technique and Algorithm 1.

optimality, the lower-bound that is computed in Line 16 is guaranteed to be mono-
tonically non-decreasing. Line 17 updates the iteration counter. Line 18 terminates
the algorithm once the iteration limit is exhausted or the optimality gap is below the
threshold, ǫ.

We can guarantee finite convergence of Algorithm 1 to a global optimum by appeal-
ing to the work of Benders (1962). Specifically, ∀y ∈ Y, the feasible region of (27)
has a finite number of extreme points and extreme rays. Thus, there is a finite num-
ber of optimality cuts that can be added to Py, ∀y ∈ Y. Once all of these cuts are
added, solving Py, ∀y ∈ Y gives a global optimum of (1)–(23). In practice, Benders’s
decomposition finds a solution that is near a global optimum of (1)–(23) well before
separating every possible optimality cut. Thus, if the termination criterion in Line 18
is used with ᾱ < +∞ or ǫ > 0, Algorithm 1 is likely to yield such a near-optimal
solution.
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4 Case-Study Data and Implementation

Our case study optimizes capacity expansion for Western Electricity Coordinating
Council (WECC). Hydroelectric resources provide approximately a quarter of WECC’s
electric energy and generating capacity. The Columbia River system provides about
half of WECC’s hydroelectric capacity.2 Our case study considers a 20-year optimiza-
tion horizon that begins as of 2015. Most of the case-study data are gathered from
WECC’s 2024 and 2026 Production Cost Model Common Cases (PCMCCs).3 Hourly
load profiles are obtained from 2026 PCMCC, which provides actual and simulated
load profiles for 2009 and 2026, respectively. We estimate a constant interannual load-
growth factor from these data and apply the factor to interpolate and extrapolate the
hourly load data to generate load profiles for each year of the case study. We assume a
$5 000/MWh penalty for load curtailment and a 7% annual discount rate (GE Energy,
2010). We apply 30% and 5% (on an energy basis) renewable-portfolio standards for
wind and solar, respectively, to the final year of the optimization horizon.

4.1 Non-Hydroelectric-Generator Data

Our case study allows for investment in six generation technologies: coal-fired; natural-
gas-fired steam (NGS), open-cycle (NGOC), and combined-cycle (NGCC); solar
photovoltaic (PV); and wind units. We allow for retirement of these fossil-fueled tech-
nologies, but not of the renewable generation. In addition to these six technologies,
we include hydroelectric, nuclear, geothermal, and biomass units, but assume that the
capacities of these technologies are fixed. We use data from 2024 PCMCC to set start-
ing capacity levels for the six generation technologies that allow for capacity additions
and for the fixed capacities of the other technologies. We assume an 80% availabil-
ity factor for nuclear, geothermal, and biomass units. We limit ramp rates to 0.3 p.u.
for all technologies, except for hydroelectric units that are not in the Columbia River
system, NGOC, PV, and wind, which are assumed to have ramp rates of 1.0 p.u.
(Ibanez et al, 2014). We allow up to a 30% increase between two consecutive years in
the installed capacity of any generation technology that allows for investment and the
same maximum increase in the capacity of any transmission line. At most, 20% of the
existing installed capacity of any technology that allows for retirement can be retired
between two consecutive years. No energy storage, other than reservoirs that are in
the Columbia River system, is considered.

Table 1 summarizes baseline generator-cost data (Black & Veatch Holding Com-
pany, 2012; Energy and Environmental Economics, Inc., 2012). We apply learning
rates and regional multipliers to the values that are listed in the table, which allow for
costs to vary by location and over time. Baseline capital costs of PV and wind decrease
to $2 226/kW and $1 804/kW, respectively, by the end of the optimization horizon.
Capital and fixed operation and maintenance costs of a given generation technology
at individual electricity-system nodes are up to 20% higher or 15% lower than baseline
costs. Generator-retirement costs are 5% of capital cost. Fuel costs of generators are
computed using monthly estimates of coal and natural-gas prices for different WECC

2cf. https://www.wecc.org/Reliability/2015%20SOTI%20Final.pdf.
3cf. https://www.wecc.org/SystemAdequacyPlanning/Pages/Datasets.aspx.
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regions, which are taken from 2024 PCMCC, and the heat rates that are reported in
Table 1. We assume that a $58/t carbon tax is levied on carbon emissions from com-
busting fossil fuels to generate electricity. Hourly available wind and solar generation
is obtained from 2026 PCMCC. These wind- and solar-availability data are for a sin-
gle year only. Thus, we apply the same availability profiles for all case-study years.
Wind and solar are assumed to have zero marginal operating costs.

Table 1 Baseline generator-cost data for case study

Fixed Operation Variable Operation
Generation Capital Cost and Maintenance and Maintenance Heat Rate
Technology ($/kW) Costs ($/kW-year) Costs ($/MWh) (Btu/kWh)

Coal 3 600 30.0 3.71 9 000
NGS 1 200 12.0 2.99 9 000
NGOC 1150 12.0 2.99 9 200
NGCC 1200 10.0 3.67 6 700
PV 3 325 50.0 0.00 n/a
Wind 2 000 60.0 0.00 n/a

4.2 Transmission Data

Transmission-network data are obtained from WECC’s 2034 Reference Case. Figure 2
shows the topology of the 15-node transmission network. The states of Washington and
Oregon are aggregated into the node that is labeled ‘Pacific Northwest’. 2034 Reference
Case includes different transmission limits that depend upon season and the direction
of flow. We use the maximum capacity that is reported in the dataset for each line.
We assume that adding transmission capacity incurs a cost of $614 000/MW (Mason
and Curry, 2012).

4.3 Hydroelectric Data

Figure 3 shows the topology of a 35-dam model of the Columbia River system. The
35-dam model is aggregated minimally (a dam name that is followed by ‘+x’ indicates
that the dam aggregates x additional dams). System-topology data are obtained from
Northwest Power and Conservation Council4 and Bonneville Power Administration.
All of the water in the river system flows to Bonneville, from which it flows into
Pacific Ocean. Circles in the figure indicate hydroelectric generators, squares indicate
significant reservoirs. Dams without squares are run-of-river reservoirs that we assume
have at most 3.5 hours of storage. Crosses indicate dams with non-trivial natural water
inflows (i.e., in addition to possible water inflows from an upstream dam). The green
dotted rounded rectangles indicate the boundaries of a 19-dam aggregation that is
used in most of our analysis. Results using the 19- and 35-dam models are qualitatively
similar (Yagi, 2020; Yagi and Sioshansi, 2023). Dashed blue lines indicate state and

4cf. https://www.nwcouncil.org/energy/energy-topics/power-supply/.
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Fig. 2 15-node transmission-network topology for the case study.

provincial boundaries, and give a mapping between dams in the hydroelectric system
to transmission-network nodes (cf. Figure 2).

Historical water-inflow, -outflow, and -storage and power-output data for each
dam in the Columbia River system are obtained from United States Army Corps of
Engineers5 and Government of Canada.6 Lower and upper bounds on water flows and
reservoir levels are set to the minimum and maximum values that are observed in the
historical data between 1999 and 2018. Historical water-inflow data for the same years
are applied to the 20 years within the optimization horizon of the case study. The
water-inflow data exhibit seasonal and interannual variability, which is expected.

All of the hydroelectric units that are located at a transmission node that are not
part of the Columbia River system are aggregated into a single generic hydroelectric
plant. Such plants are assumed to have fixed generation profiles, which are based on
the historical generation profile of Lower Granite and scaled based on the aggregated
nameplate capacity of the units. Lower Granite does not have a large upstream reser-
voir, meaning that its output reflects seasonal and annual variations of natural water
inflows.

5cf. http://www.nwd-wc.usace.army.mil/dd/common/dataquery/www/.
6cf. https://wateroffice.ec.gc.ca/mainmenu/historical data index e.html.
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Fig. 3 Topology of Columbia River. Circles indicate hydroelectric generators, squares indicate sig-
nificant reservoirs, crosses indicate dams with natural water inflows, and all water flows towards
Bonneville. Green dotted rounded rectangles indicate boundaries of 19-dam aggregation of the sys-
tem. Dashed blue lines indicate state and provincial boundaries.

4.4 Selection of Representative Operating Days

We populate the set, T H, of hours that are used to represent system operations during
each year by applying hierarchical clustering to the full data set for each year (Yagi
and Sioshansi, 2023). To apply hierarchical clustering, we must define metrics between
days and between clusters. To define such metrics, we represent each day as a vector,
each of which consists of 24 · |N | load, solar-availability, and wind-availability features,
up to 24 · |H| natural-water-inflow features for each dam with non-trivial natural water
inflows that is part of the Columbia River system, and 24 generation features for
the hydroelectric plants that are not part of Columbia River. Thus, the vector that
describes each day has up to 24 · (1 + 3 · |N |+ |H|) dimensions.

With this representation of each day, we use Euclidean distance and minimax
linkage as the metrics between days and clusters, respectively (Bien and Tibshirani,
2011). Before clustering the data, all of the features are scaled linearly to the unit
interval (i.e., minimum and maximum values for each feature are re-scaled to 0 and 1,
respectively). Minimax linkage provides each cluster’s prototype, which is the day
(from the unclustered data) that is closest to the cluster center. All of the days of
the year that are within a single cluster are represented in (1)–(23) using the data
that correspond to that cluster’s prototype. We set the weight for each cluster equal
to the number of days in the cluster. Using cluster prototypes (as opposed to cluster
centroids) tends to provide better performance in decision making (Nahmmacher et al,
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2016). Maintaining chronology of the cluster prototypes allows capturing seasonal
variability in natural water inflows, load, and solar and wind availability.

4.5 Case-Study Implementation

Our case study is implemented on a system with 270 GB of memory and two Intel
Xeon E5-2697 v4 processors, each of which has 18 2.30-GHz cores. All of the opti-
mization models and Algorithm 1 are programmed with Python 2.7. The optimization
models are solved using the barrier-method algorithm in Gurobi 7.5.1 with crossover
disabled. The optimization models are too large to solve using Simplex method.
Gurobi’s presolver is disabled or set to conservative and the homogeneous-barrier-
method algorithm is used and presolver aggregation is disabled in some cases to
improve algorithm performance. The default optimality tolerance of 10−8 is used.
However, in some cases Gurobi stops barrier iterations close to but before reaching
this tolerance.

4.6 Assessing Solution and Algorithm Quality

We use three primary metrics to assess the quality of solutions that are obtained from
our implementation of nested Benders’s decomposition. The first is to examine the
upper and lower bounds that are obtained in Lines 8 and 16 of Algorithm 1. These
bounds, along with times that are required to apply Algorithm 1, measure the efficiency
of the algorithm and the rate at which it obtains a near-optimal solution to (1)–(23).

Second, we use economic regret as a measure of the quality of the solutions that
are found by Algorithm 1. Economic regret is computed using a three-step pro-
cess (Ramı́rez-Sagner and Muñoz, 2019). First, (1)–(23) is solved using Algorithm 1.
Next, the investment decisions that are obtained from applying Algorithm 1 are fixed
and (1)–(23) is re-solved without applying Algorithm 1. This step gives us the total
cost of making planning and operational decisions, if planning decisions are fixed based
on Algorithm 1. Finally, this cost from solving (1)–(23) with the fixed investments is
compared to the objective-function value from solving (1)–(23) with neither applying
Algorithm 1 nor fixed investments. The difference between the objective-function val-
ues that are obtained in the second and third steps measures the cost (regret) of using
Algorithm 1 to determine investment decisions as opposed to solving the undecom-
posed problem. Computing economic regret requires solving (1)–(23) without using
Algorithm 1, which may be computationally intractable. In such cases, the objective-
function value that is obtained from the second step of the process can be compared
to the objective-function estimates that are obtained from applying Algorithm 1. In
doing so, one can assess the extent to which Algorithm 1 provides a reasonable estimate
of the ‘true’ objective-function value.

The final metric that we use is a direct comparison of the capacity levels that are
determined from solving (1)–(23) with or without the application of Algorithm 1.
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5 Case-Study Results

We begin by applying Algorithm 1 to an instance of (1)–(23) wherein hierarchical
clustering is used to select ten representative operating days for each year. This prob-
lem instance can be solved directly without the use of Algorithm 1, which allows us to
benchmark our proposed solution methodology to solving the undecomposed model
directly. We use the crossover feature in the barrier algorithm that is used to solve the
subproblems in Algorithm 1. Crossover applies Simplex method to the final solution
that is obtained from the barrier algorithm to attempt to obtain a basic feasible solu-
tion to the problem. In doing so, crossover should provide better estimates of ‘true’
(primal- and) dual-variable values.

Figure 4 summarizes the convergence rate of Algorithm 1, by showing the upper
and lower bounds that are obtained during each iteration and the corresponding
optimality gap, as defined by Line 18 of the algorithm. The figure shows that the opti-
mality gap closes quickly to about 1% within the first approximately 30 iterations.
Thereafter, it takes considerable time to close the gap further. Algorithm 1 terminates
after 200 iterations, which is the limit that we impose. Each iteration of Algorithm 1
requires an average of 10.8 minutes of wall-clock time. This can be contrasted with
about 16 minutes of wall-clock time to solve the undecomposed problem. Algorithm 1
requires considerably more time to solve (1)–(23), compared to solving it directly. This
is expected, given the relatively small problem instance.

Fig. 4 Upper and lower bounds on optimal objective-function value and optimality gap of solutions
that are obtained from applying Algorithm 1 with crossover to an instance of (1)–(23) with ten
clusters to represent system operations.

Figure 5 summarizes the installed capacities of natural-gas-fired generation as of
the final case-study year for solutions with different optimality gaps and for the solu-
tion that is obtained from solving (1)–(23) without decomposition. Figure 6 provides
the same information regarding the installed capacities of transmission connectors.
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Because there are many technologies and electricity-system nodes, we do not provide
legends in the two figures. The purpose of the figures is to give a visual sense of how
capacity decisions vary among different near-optimal solutions. Comparing the two
figures shows that generator capacities are more varied than transmission capacities
among the near-optimal solutions. These differences are particularly large for solutions
with larger optimality gaps.

Fig. 5 Installed capacity of natural-gas-fired generation at different electricity-system nodes as of
final case-study year of solutions that are obtained from applying Algorithm 1 with crossover to an
instance of (1)–(23) with ten clusters to represent system operations.

Figure 7 summarizes economic regrets for the solutions that are summarized in
Figs. 4–6. Economic regrets tend to be smaller than the optimality gaps that are
reported in Fig. 4. For instance, the solution that is obtained from applying six
iterations of Algorithm 1 has an optimality gap of 3.9% but an economic regret of
appropriately 1%. These differences between the optimality gaps and economic regrets
stem from two properties of the metrics. First, the upper and lower bounds that are
shown in Fig. 4 represent the worst-case bounds on the optimal objective-function
value. Thus, a solution with a particular optimality gap may be closer to optimal than
the bounds suggest. Second, by its nature, (1)–(23) likely has many near-optimal solu-
tions which may be very different in terms of capacity levels but quite similar in terms
of cost. Indeed, Fig. 5 shows that applying six iterations of Algorithm 1 yields capacity
decisions that are noticeably different from the solution that is obtained from solv-
ing the undecomposed problem. However, Fig. 7 shows that the six-iteration solution
yields very small cost differences compared to a true optimum.

Using ten clusters likely provides a poor representation of system operations over
the course of a full year (Yagi and Sioshansi, 2023). An issue with increasing the
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Fig. 6 Installed capacity of different transmission connectors as of final case-study year of solutions
that are obtained from applying Algorithm 1 with crossover to an instance of (1)–(23) with ten
clusters to represent system operations.

number of representative days is that the subproblems in Algorithm 1 grow in size and
become more difficult to solve. In particular, crossover becomes more time-consuming.
Figure 8 summarizes the convergence properties of applying Algorithm 1 without
crossover to the same instance of (1)–(23) that is examined in Figs. 4–7.

Without crossover, the barrier method does not apply Simplex method to find a
basic feasible solution to each subproblem. As such, each iteration of Algorithm 1 with-
out crossover requires an average of 7.5 minutes of wall-clock time. Comparing Figs. 4
and 8 shows mixed relative algorithmic performance with and without crossover. More
iterations (over 40 as opposed to 30) are required without crossover to achieve an
optimality gap of 1% or less. However, Algorithm 1 without crossover finds a solution
with an optimality gap of 0.1% or less (which is the termination criterion that we
set) within 88 iterations. Using crossover provides more accurate dual-variable values,
which yields more accurate optimality cuts. The less accurate optimality cuts that are
obtained without crossover provide faster algorithmic convergence, because they tend
to overestimate the values of θy, ∀y ∈ Y.

Although Algorithm 1 converges more quickly without crossover as opposed to
with, the less accurate optimality cuts may yield a lower-quality solution. Figure 9
summarizes the economic regrets of solutions that are obtained from applying Algo-
rithm 1 without crossover to the same 10-day instance of (1)–(23). Contrasting Figs. 7
and 9 shows that the economic regrets of the solutions that are obtained without
crossover are slightly higher than those that are obtained with crossover.

We conclude analysis of our case study by applying Algorithm 1 without crossover
to an instance of (1)–(23) that includes all hours of every year. Figure 10 summarizes
the convergence properties of applying Algorithm 1 without crossover to this problem
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Fig. 7 Economic regrets of solutions that are obtained from applying Algorithm 1 with crossover to
an instance of (1)–(23) with ten clusters to represent system operations.

instance. Each iteration of Algorithm 1 requires an average of 499.0 minutes and the
algorithm obtains a solution with an optimality gap of 0.1% or less within 30 iterations.
The undecomposed version of an instance (1)–(23) that includes all hours of every
year cannot be solved, which demonstrates benefit of applying Algorithm 1 to a large
problem instance.

Figures 11 and 12 summarize generation and transmission capacity levels as of
the final case-study year for solutions that are obtained from applying Algorithm 1.
As with Figs. 5 and 6, Figs. 11 and 12 show that the capacity levels converge and
become more stable as more iterations of Algorithm 1 are performed to find solutions
that are closer to optimal. Because the instance of (1)–(23) that includes every hour
of each year cannot be solved without the application of Algorithm 1, we are unable
to compute economic regrets.

6 Conclusions and discussions

This paper examines the challenging problem of capacity planning in electricity sys-
tems with significant penetrations of renewable and hydroelectric resources. Such
modeling is difficult, because of the need to ensure that the electricity system has
sufficient flexibility to maintain real-time balance between supply and demand. Hydro-
electricity can provide such flexibility, because of its technical characteristics and
the storage potential of reservoirs. However, modeling reservoirs requires capturing
the chronology of decisions and seasonal and interannual variability of natural water
inflows.

Our companion paper explores the use of three model reductions—simplifying
hydroelectric-plant, hydroelectric-system, and operating-period representation—to
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Fig. 8 Upper and lower bounds on optimal objective-function value and optimality gap of solutions
that are obtained from applying Algorithm 1 without crossover to an instance of (1)–(23) with ten
clusters to represent system operations.

Fig. 9 Economic regrets of solutions that are obtained from applying Algorithm 1 without crossover
to an instance of (1)–(23) with ten clusters to represent system operations.

improve model tractability (Yagi and Sioshansi, 2023). This paper explores the use
of nested Benders’s decomposition. The two works are complementary, insomuch as
real-world capacity-planning problems likely will require the use of both types of tech-
niques. Using economic regret, convergence rates, and capacity decisions as metrics,
we assess the quality of investment decisions that are made using our implementa-
tion of the decomposition method. Our case study, which is based on WECC and
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Fig. 10 Upper and lower bounds on optimal objective-function value and optimality gap of solutions
that are obtained from applying Algorithm 1 without crossover to an instance of (1)–(23) with all
hours of every year to represent system operations.

the Columbia River system, shows that the algorithm performs quite well. Indeed, we
are able to solve to within less than a 0.1% optimality gap an instance of (1)–(23)
with a 20-year planning horizon and representing every hour of every year. Without
decomposition, such a problem instance exhausts the memory of the 270-GB system
on which our computations are conducted.

Our investment model is deterministic and assumes that all decisions are con-
tinuous. Nested Benders’s decomposition can be extended naturally to include
stochasticity, using what is known as stochastic dual dynamic programming (SDDP)
(Pereira and Pinto, 1991). Important sources of stochasticity in our model can include
uncertain hydrological conditions (e.g., dry versus wet years) and policy or technology
changes or developments. The key distinction between Algorithm 1 and SDDP is that
the random variables are sampled within the SDDP algorithm and used in the for-
ward simulation and backward recursion. Including discrete variables in our model is
a greater challenge as opposed to stochasticity. The challenge arises from the fact that
discrete variables eliminate the strong-duality property on which optimality cuts are
based and raise challenges with finding dual variables. Extending Benders’s decom-
position to problems with discrete variables is an area of active research (Zou et al,
2019).
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Fig. 11 Installed capacity of natural-gas-fired generation at different electricity-system nodes as of
final case-study year of solutions that are obtained from applying Algorithm 1 without crossover to
an instance of (1)–(23) with all hours of every year to represent system operations.
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