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Optimized Offers for Cascaded Hydroelectric
Generators in a Market with Centralized Dispatch

Ramteen Sioshansi,Senior Member, IEEE

Abstract—We examine the problem of a generator offering gen-
eration and ancillary services from a set of cascaded hydroelectric
units to a centrally dispatched market that does not account
for watershed constraints. By modeling the least-cost dispatch
problem and computing the resulting schedules and market
prices, we formulate a stochastic bilevel optimization problem
that maximizes the generator’s expected profits under different
demand and supply realizations. To account for potential in-
feasibilities in the resulting hydroelectric dispatch, we include
penalties in the generator’s objective function. We propose a
simple technique that replaces the lower-level dispatch problem
with its linearized Karush-Kuhn-Tucker optimality condit ions to
convert the problem to a single-level mixed-integer program. We
use two numerical case studies, based on actual river systems, to
demonstrate the benefits of the proposed model.

Index Terms—Hydroelectric generation, offer optimization,
economic dispatch, power system economics

NOMENCLATURE

A. Index Sets

T time index set
Ω set of scenarios
H hydroelectric powerhouse index set
S hydroelectric reservoir index set
B set of steps allowed in offer curves
A set of ancillary service (AS) products
Au set of upward AS products

B. Market Bids

ξω probability of scenarioω
Kω

b,t price in stepb of rival generators’ hour-t scenario-ω
energy offer

P̄ω
b,t quantity in stepb of rival generators’ hour-t scenario-

ω energy offer
Wω

b,t price in stepb of hour-t scenario-ω market energy
demand function

D̄ω
b,t quantity in stepb of hour-t scenario-ω market energy

demand function
κω

a,b,t price in stepb of rival generators’ hour-t scenario-ω
type-a AS offer

ᾱω
a,b,t quantity in stepb of rival generators’ hour-t scenario-

ω type-a AS offer
βω

a,t hour-t scenario-ω type-a AS market demand
m deviation penalty, as a fraction of day-ahead price
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C. Hydroelectric Generator’s Offer Parameters
ĉh,b,t price in stepb of powerhouseh’s hour-t energy offer
Q̂h,b,t quantity in stepb of powerhouseh’s hour-t energy

offer
Qh powerhouseh’s daily energy limit
π̂h,a,t powerhouseh’s hour-t type-a AS offer price
R̂h,a,t powerhouseh’s hour-t type-a AS offer quantity

D. System Operator’s Dispatch Variables
Pω

b,t quantity purchased from stepb of rival generators’
hour-t energy offer in scenarioω

Dω
b,t quantity sold to stepb of hour-t energy demand

function in scenarioω
qω
h,b,t quantity purchased from stepb of powerhouseh’s

hour-t energy offer in scenarioω
αω

a,b,t quantity purchased from stepb of rival generators’
hour-t type-a AS offer in scenarioω

rω
h,a,t type-a AS purchased from powerhouseh during hour

t of scenarioω

E. Hydroelectric Generators’ Cost and Constraint Parameters
Qh powerhouseh’s maximum rated capacity
eh powerhouseh’s generation efficiency
vs value of water in reservoirs
Rh,a powerhouseh’s actual type-a AS capacity
ns,t natural water inflows to reservoirs
L−

s reservoirs’s minimum water level
L+

s reservoirs’s maximum water level
L0

s reservoirs’s starting water level
LT

s reservoirs’s ending target water level
χ allowable tolerance on target water level
ρ(s) set of powerhouses that draw water from reservoirs

ν(s) set of powerhouses that deliver water to reservoirs

ιh travel time between powerhouseh and its immediate
downstream reservoir

F. Hydroelectric Generator Operations Variables
lωs,t reservoirs’s ending hour-t scenario-ω water level
zω

h,t powerhouseh’s hour-t scenario-ω water use
gω

h,t powerhouseh’s hour-t scenario-ω actual generation
δ

ω,+
h,t powerhouseh’s hour-t scenario-ω positive energy

deviation
δ

ω,−
h,t powerhouseh’s hour-t scenario-ω negative energy

deviation
θω

h,a,t powerhouseh’s hour-t scenario-ω actual type-a AS
provision

ζω
h,a,t powerhouseh’s hour-t scenario-ω type-a AS devia-

tion

sioshansi.1@osu.edu


2

g̃
ω,−
h,t powerhouseh’s hour-t scenario-ω generation if

downward AS is provided in real-time
g̃

ω,+
h,t powerhouseh’s hour-t scenario-ω generation if up-

ward AS is provided in real-time

I. I NTRODUCTION

M ANY restructured electricity markets endow a system
operator (SO) with operational control of the power

system. The SO solicits offers and bids from generators and
loads. These are input to a welfare-maximization problem,
which determines day-ahead generator schedules, loads that
are served, and settlement prices. Generators or loads that
deviate from these schedules must typically remunerate the
SO for replacement energy or ancillary services (AS), based
on real-time prices.

This centralized market paradigm can be problematic for
some generating resources. This is because the structure of
the cost and operating constraint data that the SO accepts
in an offer may not fully capture the capabilities of a plant.
This is especially true of cascaded hydroelectric generators,
e.g., plants that are on a river catchment. In addition to
generation limits on powerhouses, hydroelectric generators are
also constrained by water availability. Consider, as an example,
the simple watershed illustrated in Fig. 1, which consists of
four reservoirs on a river connected by four powerhouses. How
each powerhouse can be operated depends on the operation of
the others, since the reservoirs have minimum- and maximum-
water-levels.
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Fig. 1. Simple river system.

Thus, feasible operation of cascaded hydroelectric genera-
tors requires their dispatch to be optimized in an integrated
fashion with constraints coupling their operation. Moreover,
these constraints are dynamic in that the time-t availability of
a powerhouse depends on how it and the other powerhouses
are scheduled at other times. There are numerous models in
the literature that explicitly capture such interdependencies in
optimizing hydroelectric systems. These approach the problem
from the perspective of a hydroelectric generator that mini-
mizes the cost of supplying its load or maximizes profit against
exogenous market prices [1]–[5]. Pousinhoet al. [6] relax the
exogenous price assumption by modeling a stepped inverse
demand function, giving generation-sensitive prices.

Operating a cascaded hydroelectric system in a centralized
market can be more difficult, since many markets do not
consider the constraints that couple its operation. For instance,
the California ISO (CAISO) market only allows hydroelectric

generators to submit offers with constraints on each pow-
erhouse individually, but without any constraints coupling
their operations. If the powerhouses are offered into such a
market with true cost and constraint parameters,1 the resulting
dispatch may be infeasible. This exposes the hydroelectric
generator to the added financial risk of deviation penalties.
Moreover, since the SO dispatches the overall system with
incorrect hydroelectric operating constraints, resulting real-
time operations may be inefficient compared to the true welfare
maximum that accounts for watershed constraints.

One solution, which completely eliminates dispatch infea-
sibilities, is for the generator to forecast the optimal dis-
patch of its units and self-schedule its generation.2 Gfrerer
[7] models an energy self-scheduling problem using optimal
control techniques and transforms it into an equivalent non-
linear optimization. Baueret al. [8] expand upon this by
using dynamic and nonlinear optimization techniques to solve
numerical case studies. Fleten and Kristoffersen [9] introduce
a stochastic model, in which real-time prices are uncertain, to
optimize hydroelectric energy self-schedules. Faria and Fleten
[10] expand this by allowing the hydroelectric generator to
adjust its day-ahead schedule in the real-time market to correct
infeasibilities or suboptimality caused by incorrect day-ahead
forecasts. Kazempouret al. [11], [12], Ahmadiet al. [13] and
Abgottspon and Andersson [14] expand upon these works by
modeling self scheduling of energy and ancillary services.

Almeida and Conejo [15] study equilibrium medium-term
generation decisions of competing hydroelectric firms. They
model the interaction as an equilibrium problem subject to
equilibrium constraints. The upper-level problems in their
model represent the generation decisions made by the hy-
droelectric firms and the lower-level problems the resulting
dispatch of thermal generators. This problem is akin to a
self-scheduling problem, since the strategic variable that they
focus on is generation quantity. Molinaet al. [16] similarly
model Nash-Cournot equilibria between competing firms in
a hydrothermal system. As with the work of Almedia and
Conejo [15], this analysis also focuses on generation quantity
as the strategic variable of interest. Moreover, Molinaet al.
[16] do not explicitly model a centralized dispatch, which is
the focus of our work.

A downside to relying on self-schedules is that it can intro-
duce coordination losses that the SO’s welfare maximization
is designed to address [17]. Moreover, self-scheduling can
foreclose on economic and efficiency gains if the generator
incorrectly forecasts market conditions. Thus, an alternative is
for the hydroelectric generator to submit more flexible offers
to the SO. In doing so, it should ‘tailor’ the offer in such a way
that balances gains from profitable dispatch against possible
dispatch infeasibilities.

This paper proposes a stochastic bilevel modeling approach
to optimize such hydroelectric offers. The lower level is the

1By ‘constraint parameters,’ we mean the types of constraints that the
market accepts, such as an hourly generation capacity, but no coupling
constraints.

2Many centralized markets allow explicit self-scheduling.If not, a generator
can replicate a self-schedule by offering its desired dispatch at the price floor,
guaranteeing that it is accepted by the market.



3

SO’s welfare maximization, which determines the dispatch and
market prices based on demand and offers from the hydroelec-
tric and rival units. The SO’s problem only includes individual
unit constraints, and does not consider the watershed con-
straints coupling the powerhouses. The upper level maximizes
the hydroelectric generator’s expected profit, which consists
of energy and AS payments less deviation penalties. The
hydroelectric generator behaves as a price-maker, insomuch as
it accounts for the effect of its offers on energy and AS prices.
Bids and offers submitted by other market participants are
assumed uncertain. Hydroelectric deviations are defined asthe
difference between the SO’s dispatch and how the watershed
can be feasibly operated.

Because the SO’s problem is a convex linear program,
we can replace it with its necessary and sufficient Karush-
Kuhn-Tucker (KKT) conditions. We use standard techniques to
linearize the KKT complementary slackness conditions [18]–
[20], allowing us to convert the bilevel offer-optimization prob-
lem into a single-level mixed-integer linear program (MILP).
We also use two numerical case studies, based on actual river
systems in the CAISO control area, to demonstrate the efficacy
of our model in improving hydroelectric profit and system
efficiency relative to the hydroelectric generator submitting
true cost and constraint parameters.

Our work builds off of the model developed by Bakirtzis
et al. [19], which optimizes stepped energy offers for thermal
generators in a centrally dispatched market. Our work differs
in a number of ways, however, making several important
contributions to the literature. First, we study the more com-
plex problem of structuring hydroelectric generation offers,
which have complex dynamic constraints coupling their oper-
ation. Secondly, given the importance of using hydroelectric
resources for AS in some systems, we model both energy and
AS. The inclusion of AS adds more complicating relationships
between the offer parameters in the SO’s dispatch and in
operating the powerhouses on the watershed. Third, we ex-
plicitly focus on the issue of the SO dispatching the watershed
infeasibly, and how offers should be structured to tradeoff
between higher profits in some scenarios against deviation
penalties in others.

The remainder of this paper is organized as follows. Sec-
tion II gives the formulation of the SO’s welfare-maximization
and the hydroelectric generator’s offer-optimization models.
Section III details the steps to convert the bilevel offer op-
timization into a MILP. Section IV describes our numerical
case studies and results. Section V concludes.

II. M ODELS

We restrict attention to a day-ahead market, which is mod-
eled at hourly timesteps. The hydroelectric generator similarly
optimizes its offers using a one-day planning horizon and
operates its units at hourly timesteps. The hydroelectric gener-
ator’s offer optimization is modeled as a two-stage stochastic
program. In the first stage, the hydroelectric generator submits
offers into the day-ahead market, without knowing the demand
and supply bids of other market participants. In the second
stage the rivals’ bids are realized and the SO provides the

hydroelectric generator with a provisional dispatch schedule
and day-ahead prices. Using this schedule and constraints on
how the watershed can be feasibly operated, the hydroelectric
generator determines how to operate its plants and how much
to deviate from the SO’s schedule. We assume that the
hydroelectric generator must purchase replacement energyand
AS for any schedule deviations from the real-time market, and
that this incurs a cost that is proportional to the day-ahead
price.

A. System Operator’s Welfare Maximization

Centralized electricity markets rely on generator-supplied
cost and constraint data to determine the day-ahead dispatch.
Although individual markets differ in terms of the offers
that generators may submit, we assume a generic archetypal
structure. Specifically, the hydroelectric generator may offer
for each of its powerhouses a: (i) non-decreasing stepped
marginal generation cost curve, (ii) a price/quantity pairfor
each traded AS product, and (iii) a daily generation limit. We
assume that the marginal generation cost curves and AS offers
can differ for each of the 24 hours. The daily generation limit
is assumed to only apply to scheduled generation, without
consideration of possible real-time AS deployments.

These assumptions closely match the structure of the
CAISO market [21]. The CAISO requires most resources to
submit offers covering their entire operating ranges in all
hours. Hydroelectric generators are exempt from this require-
ment and may offer only the quantity determined to be fea-
sible for delivery, exactly because of their complex operating
constraints [22]. There are other possible extensions to the
SO’s model that could be included in our offer optimization.
These are discussed in Section II-C. We exclude these from
our analysis to simplify model notation.

For a given scenario,ω, which encompasses a realization
of non-hydroelectric generation offers and energy and AS
demand bids, the SO’s dispatch model is formulated as:

max
∑

t∈T





∑

b∈B

(Wω
b,tD

ω
b,t −K

ω
b,tP

ω
b,t)−

∑

h∈H,b∈B

ĉh,b,tq
ω
h,b,t

−
∑

a∈A

(

∑

b∈B

κω
a,b,tα

ω
a,b,t +

∑

h∈H

π̂h,a,tr
ω
h,a,t

)]

; (1)

s.t.
∑

b∈B

Pω
b,t +

∑

h∈H,b∈B

qω
h,b,t =

∑

b∈B

Dω
b,t; (2)

∀ t (λω
t )

∑

b∈B

αω
a,b,t +

∑

h∈H

rω
h,a,t ≥ β

ω
a,t; ∀ a, t (λω

a,t) (3)

qω
h,b,t ≤ Q̂h,b,t; ∀ h, b, t (ηω

h,b,t) (4)
∑

t∈T,b∈B

qω
h,b,t ≤ Qh; ∀ h (ηω

h ) (5)

rω
h,a,t ≤ R̂h,a,t; ∀ h, a, t (ηω

h,a,t) (6)
∑

a∈A\Au

rω
h,a,t ≤

∑

b∈B

qω
h,b,t; ∀ h, t (µω

h,d,t) (7)

∑

b∈B

qω
h,b,t +

∑

a∈Au

rω
h,a,t ≤

∑

b∈B

Q̂h,b,t; (8)
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∀ h, t (µω
h,u,t)

Pω
b,t ≤ P̄

ω
b,t; ∀ b, t (σP,ω

b,t ) (9)

Dω
b,t ≤ D̄

ω
b,t; ∀ b, t (σD,ω

b,t ) (10)

αω
a,b,t ≤ ᾱ

ω
a,b,t; ∀ a, b, t (σα,ω

a,b,t) (11)

qω
h,b,t, P

ω
b,t, D

ω
b,t, r

ω
h,a,t, α

ω
a,b,t ≥ 0; (12)

∀ h, b, a, t (γq,ω
h,b,t, γ

P,ω
b,t , γ

D,ω
b,t , γ

r,ω
h,a,t, γ

α,ω
a,b,t)

where the Lagrange multiplier associated with each constraint
is given in the parentheses.

Objective (1) maximizes social welfare. This is defined as
the energy sold to the market multiplied by the willingness to
pay that is expressed through the demand bids, less the cost
of energy and AS procurements. Load-balance constraints (2)
require energy that is sold to exactly equal total supply
from hydroelectric and non-hydroelectric generators. Although
this constraint can be satisfied by setting the generation and
demand variables all equal to zero, this is generally suboptimal
since the willingness to pay for energy is typically higher
than generation costs are. AS-balance constraints (3) similarly
ensure that AS demand is satisfied by either hydroelectric or
non-hydroelectric generators.

Constraints (4) limit hydroelectric generation dispatched
from each block based on the generator’s offer and con-
straints (5) enforce the daily energy limits. Constraints (6)
similarly limit hydroelectric AS dispatch by the quantity
offered. Constraints (7) ensure that the amount of downward
AS reserved from each hydroelectric generator is less than
its energy dispatch. Constraints (8) ensure that the sum of
energy and upward AS procurements are less than the total
quantity offered into the market. Constraints (9) through (11)
limit market energy and AS sales and purchases based on the
quantities bid. Constraints (12) enforce non-negativity.

We let Pω(ĉ, Q̂, Q, π̂, R̂) denote the scenario-ω dispatch
problem, which depends on the hydroelectric generator’s offer
parameters. More specifically, because we focus on hydro-
electric generator dispatch and deviation penalties, we use
the notation(qω, rω , λω, λω

a ) ∈ arg maxPω(ĉ, Q̂, Q, π̂, R̂) to
indicate that(qω, rω) are optimal inPω(ĉ, Q̂, Q, π̂, R̂) and
(λω , λω

a ) are corresponding Lagrange multiplier values on
constraints (2) and (3) that satisfy the KKT conditions.

B. Hydroelectric Generator’s Offer Optimization

Our analysis assumes a general river catchment topology,
consisting of connected powerhouses and reservoirs. Figs.1
and 2 show simple and more complex river systems, respec-
tively. In addition to inflows from upstream powerhouses,
reservoirs can also have natural water inflows, for instance
from tributaries. Each reservoir has a fixed starting water
level and constraints on the minimum and maximum amount
of water that it can hold. There is also a target ending
water level for each reservoir. This target water level can
represent a physical constraint or could be a target given bya
medium- or long-term hydroelectric planning model [15]. Each
powerhouse is assumed to have a fixed generating capacity
and efficiency. The efficiency is measured by the volume
of water drawn from the forebay per MWh generated. This

efficiency is combined with a fixed water value to compute
the cost of generation. Again, this water value may represent
a direct cost associated with water use. More often, however,
this is an implicit opportunity cost, estimated by a medium-
or long-term hydroelectric planning model. We include both
reservoir targets and water values to allow greater flexibility in
how medium- and long-term hydroelectric planning data are
captured in the hydroelectric generator’s offer optimization. In
practice, a generator may opt to only use one of these in its
short-term planning.
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Fig. 2. Complex river system.

Given these assumptions, the generator’s offer optimization
is formulated as:

max
∑

ω∈Ω

ξω
∑

t∈T,h∈H

[

λω
t m · (δ

ω,+
h,t + δ

ω,−
h,t )−

∑

b∈B

λω
t q

ω
h,b,t

+
∑

a∈A

λω
a,t · [r

ω
h,a,t − ζ

ω
h,a,tm] (13)

−
∑

s∈S:h∈ρ(s)

vsz
ω
h,t



 ;

s.t. δω,+
h,t − δ

ω,−
h,t + gω

h,t =
∑

b∈B

qω
h,b,t; ∀ h, t, ω (14)

ζω
h,a,t + θω

h,a,t ≥ r
ω
h,a,t; ∀ h, a, t, ω (15)

zω
h,t ≥ ehg

ω
h,t; ∀h, t, ω (16)

lωs,t = lωs,t−1 + ns,t −
∑

h∈ρ(s)

zω
h,t +

∑

h∈ν(s)

zω
h,t−ιh

; (17)

∀ s, t, ω

L−
s ≤ l

ω
s,t ≤ L

+
s ; ∀ s, t, ω (18)

(1− χ)LT
s ≤ l

ω
s,T ≤ (1 + χ)LT

s ; ∀ s, ω (19)

0 ≤ gω
h,t ≤ Qh; ∀ h, t, ω (20)

0 ≤ θω
h,a,t ≤ Rh,a; ∀ h, a, t, ω (21)

g̃
ω,−
h,t = gω

h,t −
∑

a∈A\Au

θω
h,a,t; ∀ h, t, ω (22)
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g̃
ω,+
h,t = gω

h,t +
∑

a∈Au

θω
h,a,t; ∀ h, t, ω (23)

g̃
ω,−
h,t ≥ 0; ∀ h, t, ω (24)

g̃
ω,+
h,t ≤ Qh; ∀ h, t, ω (25)

lωs,t−1 −
∑

h∈ρ(s)

ehg̃
ω,−
h,t +

∑

h∈ν(s)

ehg̃
ω,+
h,t−ιh

≤ L+
s ; (26)

∀ s, t, ω

L−
s ≤ l

ω
s,t−1 −

∑

h∈ρ(s)

ehg̃
ω,+
h,t +

∑

h∈ν(s)

ehg̃
ω,−
h,t−ιh

; (27)

∀ s, t, ω

(qω, rω , λω , λω
a ) ∈ argmaxPω(ĉ, Q̂, Q, π̂, R̂); (28)

∀ ω

ĉh,b,t ≥ ĉh,b−1,t; ∀ h, b, t (29)

Q̂h,b,t, Qh, R̂h,a,t, δ
ω,+
h,t , δ

ω,−
h,t , ζ

ω
h,a,t ≥ 0. (30)

∀ h, b, a, t, ω

This model treats the hydroelectric operation variables
(l, g, δ, θ, ζ, g̃) and offers(ĉ, Q̂, Q, π̂, R̂) and the SO’s hydro-
electric dispatch(q, r) and energy and AS prices(λ, λa) as
decision variables.

Objective function (13) maximizes expected profit. The
−λω

t q
ω
h,b,t andλω

a,tr
ω
h,a,t terms are revenues earned from day-

ahead energy and AS dispatch. Due to the sign conventions
used in the SO’s dispatch problem, energy is priced at−λω

t

whereas AS atλω
a,t. Theλω

t m·(δ
ω,+
i,t +δω,−

i,t ) and−λω
a,tζ

ω
i,a,tm

terms represent penalties on deviations from the day-ahead
schedule. The penalties are assumed to be proportional to the
day-ahead price. We assume that these penalties apply to both
over- and under-generated energy but only to AS shortfalls.
The−vsz

ω
h,t term represents the opportunity cost of water used

to generate energy.
Constraints (14) and (15) define energy and AS deviations,

respectively, as the difference between the actual amounts
supplied by the hydroelectric generator and the SO’s dispatch.
Constraints (16) define powerhouse water use in terms of
their generation and efficiency. We enforce these constraints
as inequalities (as opposed to equalities) to allow for water
spillage. While typically undesirable (due to the associated
opportunity cost) water spillage may be necessary to meet
reservoir water level targets and constraints. If some of the
reservoirs in the system are not designed to allow for spillage,
the associated constraints could be enforced as equalities.
Similarly, if there is an upper-bound on spillage, this could
be enforced by placing explicit upper-bounds on thezω

h,t

variables. We allow for spillages in the model to ensure that
the watershed can be feasibly dispatched without violating
upper reservoir constraints. This may run contrary to actual
hydroelectric operations, however, since spillages may not be
decided upon on an hourly basis.

Water-balance constraints (17) define each reservoir’s hour-
t water level as its hour-(t−1) water level less what is used to
generate electricity plus inflows from tributaries and upstream
powerhouses. The inflows from the upstream powerhouses are
indexed byt− ιh to account for the travel time between each
powerhouse and the downstream reservoir. Constraints (18)

enforce the reservoir water limits and constraints (19) force
the ending water level to be within a band around the target.

Constraints (20) and (21) enforce generation and AS
limits on each powerhouse, respectively. Constraints (22)
through (27) further ensure that each powerhouse can feasibly
supply energy in real-time if the AS provided is called. These
constraints assume that the generator must be able to sustain
AS production for a minimum of one hour. Constraints (22)
define each generator’s resulting generation level if all of
the downward AS provided are called in real-time. Con-
straints (23) define the generation levels if upward AS are
called. Constraints (24) and (25) ensure that these resulting
generation levels satisfy each powerhouse’s capacity limits.
Constraints (26) and (27) further ensure that the water level
of each reservoir remains within its bounds if AS are called.

Constraint (28) requires the dispatch and energy and AS
prices to be an optimal solution/Lagrange multiplier pair in the
SO’s welfare maximization problem, given the hydroelectric
generator’s offers. Constraints (29) force the variable energy
cost offers to be monotone. Constraints (30) enforce non-
negativity. Since this model allows the hydroelectric generator
full flexibility to deviate from the SO’s prescribed dispatch,
this problem is guaranteed to be feasible (so long as the water
levels in the river system do not violate any minimum reservoir
constraints).

C. Extensions of SO and Offer-Optimization Models

Our model assumes a relatively simple SO model and
hydroelectric system. Some of these simplifications are made
to ease notation. Others are made for technical reasons related
to our solution methodology. The method used to solve the
hydroelectric offer-optimization model is reliant on the SO’s
dispatch problem being a convex program that satisfies some
constraint qualification conditions [23]. This assumptionas-
sures that the KKT conditions are both necessary and sufficient
for a global optimum to the SO’s problem.

We can, however, relax some of the simplifications assumed.
We now discuss some possible extensions of our model.

1) Self-Schedules:As noted before, many SOs allow gen-
erators to self-schedule energy and AS. We do not explicitly
model self-schedules, but could by adding additional self-
schedule offer parameters that the hydroelectric generator can
determine. These self-schedules would be included in the SO’s
load-balance constraint. Market rules typically allow SOsto
curtail self-schedules for non-economic reasons (e.g., if the
self-schedule causes a load imbalance, infeasible power flows,
or other threats to system security). We could model self-
schedule curtailment by adding such variables to the SO’s
dispatch problem, with a high penalty cost in the objective
function. Indeed, modeling self-schedule curtailment is necess-
ary to ensure that the SO’s dispatch problem is always feasible
for any set of hydroelectric offers.

Alternatively, a generator can replicate a self-schedule by
submitting a piece of the stepped generation cost curve at
the price floor, which our model does allow. We could model
AS self-schedules similarly, although we assume that each
powerhouse offers a single block of AS capacity at a single
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price. This assumption is made to simplify notation, but the
model can be easily generalized to include stepped AS offers.

2) Load Flow: We do not model power flows or transmis-
sion constraints in the SO’s dispatch problem. A linearized
DC load flow model could be easily incorporated into the
SO’s dispatch problem, since the problem would retain a linear
structure. In this case, hydroelectric profit function (13)would
be changed to reflect the fact that energy prices and devia-
tion penalties are location-specific. Depending on the specific
power system and market being evaluated the inclusion of
transmission constraints may be important as they may be a
major source of infeasible hydroelectric dispatches from the
SO.

3) Head-Dependent Powerhouse Efficiencies:A complica-
tion of modeling hydroelectric generation is that powerhouse
efficiency is a nonlinear function of turbine efficiency, net
head, and plant discharge [24]. At the same time, net head is
a nonlinear function of the reservoir’s water level and released
flow. Following a number of other works [9], [15], [16], we
ignore these effects and assume that each reservoir’s net head
remains relatively constant over the course of the one-day
planning horizon. Other works capture these nonlinearities us-
ing piecewise-linear approximations of powerhouse efficiency
[1]–[4], [6], [10], [25]–[27] or by using a nonlinear model [5],
[7], [8], [24], [28].

Either of these modeling methods could be used to repre-
sent actual hydroelectric operations in the offer-optimization
problem. As discussed in Section III, we are able to simplify
the bilevel optimization given by (13)–(30) into a MILP. If
the water-use terms in constraint sets (16), (26), and (27)
are replaced with piecewise-linear approximations, the bilevel
model can still be converted to a MILP, which can be solved
using commercial software packages. Including piecewise-
linear approximations will result in a larger MILP, however,
which may introduce computational complexity problems,
especially since the model we propose is a daily offer opti-
mization. Otherwise, if a nonlinear model is used, the bilevel
optimization is instead converted to a mixed-integer nonlinear
program, which may be significantly more difficult to solve.

4) Powerhouse Non-Convexities:Powerhouse operations
may entail other non-convexities, including turbine startup
and shutdown costs and forbidden operating zones [4], [6].
Such non-convexities can be easily included in the offer-
optimization model, since they can be captured by adding
binary decision variables to the constraints representingac-
tual powerhouse operations. Doing so results in the bilevel
offer-optimization problem being converted to a MILP. As
with modeling powerhouse efficiencies using piecewise-linear
approximations, including such non-convexities will result in a
larger MILP, which may introduce computational complexity
issues.

5) Multiple Ownership:Our model assumes that all of the
reservoirs and powerhouses in the river system are owned
by a single profit-driven entity. In some river systems the
resources are owned by competing firms [26]. Incorporating
a multi-firm structure into our offer-optimization model could
be done if the aim is to optimize the offers of a single firm.
For instance, suppose that the firm of interest operates the

two lower reservoirs and powerhouses in Fig. 1. The behavior
of the other firm that operates the two upper reservoirs and
powerhouses could be modeled based on exogenous water
inflows to reservoir ‘C’ from the rival firm. Indeed, these
inflows could be modeled randomly to account for uncertainty
in the rival’s behavior.

This approach assumes that the rival firm(s) make dispatch
decisions that result in a feasible reservoir dispatch problem
for the firm of interest. If, for instance, the firm of instance
operates the two lower reservoirs and powerhouses in Fig. 1
and the other firm does not release sufficient water to satisfy
the minimum water level constraint of reservoir ‘C,’ then the
firm of interest would have an infeasible offer optimization
problem. Such a situation could not be meaningfully analyzed
using our model.

III. L INEARIZATION OF HYDROELECTRIC

OFFER-OPTIMIZATION PROBLEM

The hydroelectric offer-optimization is a bilevel problem.
We use standard techniques, which are outlined below, to
convert this problem into a single-level MILP [18]–[20].

A. Bilevel Optimization

Inclusion of constraints (28) makes the offer optimization
a bilevel problem. Since the SO problem is a linear program,
we know that any global maximum must satisfy the KKT con-
ditions [23]. Moreover, since the SO problem is convex, these
conditions are also sufficient for a global maximum. Thus, we
can replace constraints (28) in the offer optimization withthe
following KKT conditions for each possible realization of the
SO’s problem:

ĉh,b,t + λω
t + ηω

h,b,t + ηω
h − µ

ω
h,d,t + µω

h,u,t − γ
q,ω
h,b,t = 0 (31)

∀ h, b, t, ω

Kω
b,t + λω

t + σ
P,ω
b,t − γ

P,ω
b,t = 0; ∀ b, t, ω (32)

−Wω
b,t − λ

ω
t + σ

D,ω
b,t − γ

D,ω
b,t = 0; ∀ b, t, ω (33)

π̂h,a,t − λ
ω
a,t + ηω

h,a,t + µω
h,d,t − γ

r,ω
h,a,t = 0; (34)

∀ h, a ∈ A\Au, t, ω

π̂h,a,t − λ
ω
a,t + ηω

h,a,t + µω
h,u,t − γ

r,ω
h,a,t = 0; (35)

∀ h, a ∈ Au, t, ω

κω
a,b,t − λ

ω
a,t + σ

α,ω
a,b,t − γ

α,ω
a,b,t = 0; ∀ a, b, t, ω (36)

∑

b∈B

Pω
b,t +

∑

h∈H,b∈B

qω
h,b,t =

∑

b∈B

Dω
b,t; ∀ t, ω (37)

∑

b∈B

αω
a,b,t +

∑

h∈H

rω
h,a,t ≥ β

ω
a,t ⊥ λω

a,t ≥ 0; (38)

∀ a, t, ω

qω
h,b,t ≤ Q̂h,b,t ⊥ ηω

h,b,t ≥ 0; ∀ h, b, t, ω (39)
∑

t∈T,b∈B

qω
h,b,t ≤ Qh ⊥ ηω

h ≥ 0; ∀ h, ω (40)

rω
h,a,t ≤ R̂h,a,t ⊥ ηω

h,a,t ≥ 0; ∀ h, a, t, ω (41)
∑

a∈A\Au

rω
h,a,t ≤

∑

b∈B

qω
h,b,t ⊥ µω

h,d,t ≥ 0; (42)
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∀ h, t, ω
∑

b∈B

qω
h,b,t +

∑

a∈Au

rω
h,a,t ≤

∑

b∈B

Q̂h,b,t ⊥ µω
h,u,t ≥ 0; (43)

∀ h, t, ω

Pω
b,t ≤ P̄

ω
b,t ⊥ σ

P,ω
b,t ≥ 0; ∀ b, t, ω (44)

Dω
b,t ≤ D̄

ω
b,t ⊥ σ

D,ω
b,t ≥ 0; ∀ b, t, ω (45)

αω
a,b,t ≤ ᾱ

ω
a,b,t ⊥ σ

α,ω
a,b,t ≥ 0; ∀ a, b, t, ω (46)

qω
h,b,t, P

ω
b,t, D

ω
b,t, r

ω
h,a,t, α

ω
a,b,t ≥ 0 ⊥ (47)

γ
q,ω
h,b,t, γ

P,ω
b,t , γ

D,ω
b,t , γ

r,ω
h,a,t, γ

α,ω
a,b,t ≥ 0. ∀ h, b, a, t, ω

The⊥ symbol in conditions (38) through (47) denote comple-
mentary slackness between each constraint of the SO problem
and its associated Lagrange multiplier.

B. KKT Complementary Slackness Conditions

Adding complementary slackness conditions (38)
through (47) to the offer-optimization problem introduces
nonlinearities. This is because a complementary slackness
condition of the form:

f(x) ≤ 0 ⊥ φ ≥ 0, (48)

is equivalent to:

f(x) ≤ 0; (49)

φ ≥ 0; (50)

f(x)φ = 0. (51)

One can linearize this condition by introducing a binary
auxiliary variable,ψ, which is equal to1 if f(x) < 0 and 0
otherwise. We then replace conditions (49) through (51) with:

−M · ψ ≤ f(x) ≤ 0; (52)

0 ≤ φ ≤M · (1− ψ); (53)

ψ ∈ {0, 1}; (54)

whereM is a sufficiently large constant [18].
We linearize complementary slackness conditions (38)

through (47) by introducing one auxiliary binary variable for
each. We can also use problem data to determine the highest
value that each constraint and associated Lagrange multiplier
can feasibly take, allowing us to determine reasonable values
for M ’s used to linearize each condition. This gives a tighter
MILP, reducing computational complexity.

C. Energy and Ancillary Service Revenues

Objective (13) has−λω
t q

ω
h,b,t andλω

a,tr
ω
h,a,t terms, which are

bilinear in the decision variables. Following the work of Ruiz
and Conejo [20], we linearize them using strong duality and
complementary slackness conditions. Since the SO problem is

a convex linear program, strong duality implies that:

∑

t∈T

{

∑

b∈B

(Kω
b,tP

ω
b,t −W

ω
b,tD

ω
b,t + P̄ω

b,tσ
P,ω
b,t + D̄ω

b,tσ
D,ω
b,t )

+
∑

a∈A

[

∑

b∈B

(κω
a,b,tα

ω
a,b,t + ᾱω

a,b,tσ
α,ω
a,b,t)− β

ω
a,tλ

ω
a,t

]}

= −
∑

h∈H,b∈B,t∈T

(ĉh,b,tq
ω
h,b,t + Q̂h,b,tη

ω
h,b,t)−

∑

h∈H

Q̄hη
ω
h

−
∑

h∈H,a∈A,t∈T

(π̂h,a,tr
ω
h,a,t + R̂h,a,tη

ω
h,a,t) (55)

−
∑

h∈H,t∈T

µω
h,u,t

∑

b∈B

Q̂h,b,t.

We next note that by summing conditions (31) overh, b,
and t we have that for eachω:

∑

h∈H,b∈B,t∈T

λω
t q

ω
h,b,t =

∑

h∈H,b∈B,t∈T

(−ĉh,b,tq
ω
h,b,t

− ηω
h,b,tq

ω
h,b,t − η

ω
h q

ω
h,b,t + µω

h,d,tq
ω
h,b,t − µ

ω
h,u,tq

ω
h,b,t (56)

+ γ
q,ω
h,b,tq

ω
h,b,t).

We next note that conditions (39), (43), (40), (42), and (47)
imply, respectively, that:

ηω
h,b,tq

ω
h,b,t = Q̂h,b,tη

ω
h,b,t; (57)

∑

t∈T,b∈B

ηω
h q

ω
h,b,t = Qhη

ω
h ; (58)

∑

b∈B

µω
h,d,tq

ω
h,b,t = µω

h,d,t

∑

a∈A\Au

rω
h,a,t; (59)

∑

b∈B

µω
h,u,tq

ω
h,b,t =

(

∑

b∈B

Q̂h,b,t −
∑

a∈Au

rω
h,a,t

)

µω
h,u,t; (60)

and:
γ

q,ω
h,b,tq

ω
h,b,t = 0. (61)

Substituting these equalities into (56) gives:
∑

h∈H,b∈B,t∈T

λω
t q

ω
h,b,t = −

∑

h∈H,b∈B,t∈T

(ĉh,b,tq
ω
h,b,t

+ Q̂h,b,tη
ω
h,b,t)−

∑

h∈H

Qhη
ω
h (62)

−
∑

h∈H,t∈T

µω
h,u,t

∑

b∈B

Q̂h,b,t +
∑

h∈H,t∈T

µω
h,d,t

∑

a∈A\Au

rω
h,a,t

+
∑

h∈H,t∈T

µω
h,u,t

∑

a∈Au

rω
h,a,t.

We next note that conditions (34), (41), and (47) imply that
for all a ∈ A\Au andω:

µω
h,d,tr

ω
h,a,t = −π̂h,a,tr

ω
h,a,t + λω

a,tr
ω
h,a,t − η

ω
h,a,tr

ω
h,a,t (63)

+ γ
r,ω
h,a,tr

ω
h,a,t;

ηω
h,a,tr

ω
h,a,t = R̂h,a,tη

ω
h,a,t; (64)

and:
γ

r,ω
h,a,tr

ω
h,a,t = 0. (65)
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We can use conditions (35), (41), and (47) to arrive at analo-
gous equalities involving the upward AS products. Substituting
all of these equalities into (55) and (62) gives:

∑

h∈H,b∈B,t∈T

λω
t q

ω
h,b,t −

∑

h∈H,a∈A,t∈T

λω
a,tr

ω
h,a,t (66)

=
∑

t∈T

{

∑

b∈B

(Kω
b,tP

ω
b,t −W

ω
b,tD

ω
b,t + P̄ω

b,tσ
P,ω
b,t + D̄ω

b,tσ
D,ω
b,t )

+
∑

a∈A

[

∑

b∈B

(κω
a,b,tα

ω
a,b,t + ᾱω

a,b,tσ
α,ω
a,b,t)− β

ω
a,tλ

ω
a,t

]}

.

Thus, we can linearize the bilinear revenue terms in objec-
tive (13) by replacing them with (66).

D. Deviation Penalties

Objective (13) also hasλω
t m · (δω,+

h,t + δ
ω,−
h,t ) and

−λω
a,tζ

ω
h,a,tm terms, which are bilinear and cannot be lin-

earized. We instead replace these terms in the objective
with τω

t m · (δ
ω,+
h,t + δ

ω,−
h,t ) and−τω

a,tζ
ω
h,a,tm, whereτω

t and
τω
a,t are fixed parameters. We use the technique, outlined

in Algorithm 1, to iteratively update the values ofτω
t and

τω
a,t until arriving at an optimal set of offers. We use the

notational convention,N (τ, τa), to represent the hydroelectric
offer-optimization problem (including all of the linearizations
described thus far), which depends on the values of theτ

and τa parameters in the objective. We also use the notation
x ∈ arg maxN (τ, τa) to denote thatx is an optimal vector
of hydroelectric operation and offer, SO dispatch, and energy
and AS price variables in the offer-optimization problem.

Algorithm 1 Equilibrium Computation
1: k ← 0 ⊲ Initialize iteration count
2: τω

t ← τ̄ω
t andτω

a,t ← τ̄ω
a,t for all a, t, ω ⊲ Initialize

penalty coefficients
3: repeat
4: k ← k + 1
5: xk ← arg maxN (τ, τa)
6: τω

t ← λ
ω,k
t andτω

a,t ← λ
ω,k
a,t for all a, t, ω

7: until ||xk − xk−1|| ≤ ǫ or k ≥ k̄

Algorithm 1 begins by initializing the iteration counter and
the deviation penalty terms (Steps 1–2). It then solves the
offer-optimization problem with the incumbent penalty terms
and updates the penalty terms based on the new solution
(Steps 5–6). The superscriptk indicates the solution found
in the kth iteration of the algorithm. It continues resolving
the problem with updated penalty terms until the same so-
lution is found in two successive iterations, meaning that
the hydroelectric offers and operations are optimal against
the correct deviation penalties, or the iteration limit,k̄, is
exhausted (Step 7). The iteration limit is included because
we cannot guarantee that Algorithm 1 converges to such an
equilibrium in a finite number of iterations. In our numerical
case studies (discussed in Section IV) the algorithm converges
within four iterations.

IV. CASE STUDY

We use two numerical case studies to examine the benefits
of the proposed offer-optimization model. We first discuss
the case study assumptions and data, then describe the two
hydroelectric offer strategies considered, and finally summa-
rize the resulting hydroelectric dispatch and profits and system
operation costs.

A. Case Study Data

We examine the two hydroelectric watersheds shown in
Figs. 1 and 2, which are based on actual rivers in the CAISO
system, over a one-day period. Tables I and II summarize the
characteristics of the reservoirs and powerhouses, respectively,
for the river system in Fig. 1 and Tables III and IV summarize
the characteristics for the other river. We assume that the
natural water inflows to each reservoir are the same in each
hour and thatχ = 0.1 in determining the ending target
reservoir levels.

TABLE I
RESERVOIRCHARACTERISTICS OFRIVER SYSTEM IN FIGURE 1

Reservoir Levels [acre-feet] vs

s L
−

s L
+
s L0

s LT
s ns,t [$/acre-ft]

A 6000 117000 47000 47000 40 340
B 700 1300 900 900 50 0
C 33000 129000 46700 46700 170 250
D 180 300 300 300 5 0

TABLE II
POWERHOUSECHARACTERISTICS OFRIVER SYSTEM IN FIGURE 1

Rh,a [MW]
Qh eh [acre-ft/ ιh Reg. Reg. Non

h [MW] MWh] [hr] Down Up Spin Spin
1 2000 0.7 0 1000 1000 1000 1000
2 150 0.5 0 0 0 50 50
3 150 0.5 0 0 0 144 144
4 50 1.7 0 0 0 50 50

TABLE III
RESERVOIRCHARACTERISTICS OFRIVER SYSTEM IN FIGURE 2

Reservoir Levels [acre-feet] vs

s L
−

s L
+
s L0

s LT
s ns,t [$/acre-ft]

A 750000 1020000 820000 820000 0 85
B 25000 49500 40000 40000 90 70
C 2000 2500 2000 2000 30 0
D 3500 4000 4000 4000 500 0
E 3600 5500 4500 4500 3 0
F 700 1000 1000 1000 30 0
G 3200 4000 3700 3700 80 0
H 700 1000 800 800 400 0

The hydroelectric generator forecasts three equally-likely
scenarios with different demand bids and offers from the rival
generators. Fig. 3 shows the fixed price-inelastic demand in
each scenario.3 There is an additional 7–13% price-elastic
demand in each hour, with willingness to pay of $33–68/MWh.
The bottom half of Fig. 3 shows the resulting hourly en-
ergy prices when the price-inelastic and -elastic demands are

3This demand is bid into a market with a willingness to pay of $9999/MWh,
implying that the SO only curtails it in exigent circumstances.
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TABLE IV
POWERHOUSECHARACTERISTICS OFRIVER SYSTEM IN FIGURE 1

Rh,a [MW]
Qh eh [acre-ft/ ιh Reg. Reg. Non

h [MW] MWh] [hr] Down Up Spin Spin
1 40 3.7 1 0 0 0 0
2 170 1.1 0 120 120 120 120
3 115 1.7 0 114 114 114 114
4 110 2.4 1 112 112 112 112
5 20 1.6 1 0 0 0 0
6 40 0.7 2 40 40 40 40
7 60 0.5 2 60 60 60 60
8 35 5 0 35 35 35 35
9 120 2.6 0 120 120 120 120

cleared against the non-hydroelectric resources offered into
the market under the three scenarios (i.e., we assume that
the hydroelectric generator offers no energy or AS and solve
the dispatch problem considering non-hydroelectric generation
offers only).
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Fig. 3. Fixed price-inelastic loads and energy prices without any hydroelectric
supply in three scenarios.

We assume thatm = 1.15, meaning that the penalty
on hydroelectric deviations is 115% of the energy or AS
price. The models are formulated using version 12.1.0 of the
AMPL mathematical programming language and solved using
the branch and cut algorithm inCPLEX version 12.2.1. The
models are solved on a quad-core 2.7 GHz Linux workstation
with 4 GB of RAM.

B. Hydroelectric Offer Strategies

We contrast hydroelectric dispatch, actual operations, and
profits in two cases. The first assumes that the hydroelectric
generator provides the SO with ‘true’ cost and constraint data.
In this case each powerhouse’s generating and AS capacities
and a generation cost, based on generating efficiency and
water value, are submitted to the SO. The SO uses these
costs and constraints in its dispatch, given by (1)–(12), to
determine the hydroelectric generator’s dispatch and energy
and AS prices in each of the three scenarios modeled. Based
on the dispatch given by the SO and the resulting market

prices, the hydroelectric generator then determines the actual
feasible operation of its units, considering the true watershed
constraints. This is done using the following operation model,
which is defined for each scenario,ω, as:

min
∑

t∈T,h∈H

[

− λω
t m · (δ

ω,+
h,t + δ

ω,−
h,t ) (67)

+
∑

a∈A

λω
a,tζ

ω
h,a,tm+

∑

s∈S:h∈ρ(s)

vsz
ω
h,t

]

;

s.t. (14)–(27); (68)

δ
ω,+
i,t , δ

ω,−
i,t , ζω

i,a,t ≥ 0; ∀ i, a, t, ω (69)

where the SO’s hydroelectric dispatch(q, r) is held equal to
the solution from the SO’s problem. Objective (67) minimizes
the sum of energy and AS deviation costs, given by the
−λω

t m · (δ
ω,+
h,t + δ

ω,−
h,t ) and λω

a,tζ
ω
h,a,tm terms, respectively,

and hydroelectric generation costs, given by thevsz
ω
h,t terms.

Constraints (14)–(27) from the offer-optimization problem
represent the watershed’s true capabilities and constraints (69)
impose non-negativity.

The second offer strategy that we consider uses the offer
optimization model outlined in Section II-B with the lineariza-
tions discussed in Section III.

C. Hydroelectric Dispatch, Deviations, and Profits

Table V summarizes the expected financial performance of
the two watersheds using the two offer strategies. The financial
performance is broken down between revenues earned and
water costs and deviation penalties borne. The optimized offers
perform considerably better than making offers according to
the true capabilities of the powerhouses, increasing expected
profits of the watershed in Fig. 1 by close to a factor of
three. The table shows that the offer-optimization model signif-
icantly increases hydroelectric generator revenues and reduces
deviation penalties. With the simple river system deviation
penalties are completely eliminated whereas with the other
some dispatch deviations are allowed by the optimal offers.
In the latter case the offers are structured in such a way to
capture higher profits in one of the three scenarios, that result
in an infeasible dispatch in another scenario.

TABLE V
EXPECTEDHYDROELECTRICGENERATORPROFITS [$ THOUSAND]

River 1 River 2
‘True’ Optimized ‘True’ Optimized

Revenues 252 400 818 1209
Water Costs 130 175 80 269
Deviation Penalties 45 0 18 11
Net Profits 77 225 721 929

Our offer-optimization model is also solved very efficiently
usingCPLEX. Optimizing the offers for the river system shown
in Fig. 1 requires three iterations of Algorithm 1 and 20.3 s
of wall clock time. The more complex river system requires
four iterations of Algorithm 1 and 443.7 s of wall clock time.

Another benefit of the hydroelectric generator optimizing
its offers is that it reduces infeasibilities in the SO’s dispatch.
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This means that the SO is better optimizing the use of the
hydroelectric and other generating resources, giving a more
efficient dispatch. We can measure this efficiency gain by
comparing the optimal value of objective function (1), after
the system is redispatched around the hydroelectric generators’
actual operations. To do this, we first determine the true
operations of the hydroelectric generators by solving (67)–
(69). Actual hydroelectric energy and AS supply, as given
by this model, are then fixed in the SO’s dispatch problem,
given by (1)–(12), which is solved to determine how the non-
hydroelectric assets are operated. Table VI summarizes the
increase in the one-day system surplus with the use of the
proposed offer-optimization model, as opposed to submitting
‘true’ offers based on actual powerhouse capabilities only.

TABLE VI
INCREASE INSOCIAL SURPLUSWITH USE OFOFFER-OPTIMIZATION

MODEL AS OPPOSED TO‘T RUE’ OFFERS

Watershed Surplus Increase [$ Thousand]
1 392
2 620

V. CONCLUSIONS

This paper proposes a stochastic bilevel modeling approach
to optimize the offers of a cascaded hydroelectric system into
a centrally dispatched market. The lower level represents the
SO’s economic dispatch model, which gives the hydroelectric
dispatch schedule and market prices for a set of hydroelectric
offers. The upper level includes actual constraints on the
watershed, which the SO does not account for in its dispatch.
These constraints are included to model how the hydroelectric
plants are actually operated to maximize profits less penalties
for deviating from the SO’s dispatch. The combined model
is used to determine how hydroelectric offers should be
structured. The hydroelectric generator faces a fundamental
tradeoff in structuring these offers, which our model captures.
Less flexible offers (e.g., a self-schedule only) foreclose on
potential gains if the generator incorrectly forecasts market
conditions. More flexible offers allow for such gains, but may
result in the SO dispatching the powerhouses infeasibly.

We show how the bilevel problem can be converted into an
equivalent single-level MILP and propose a simple iterative
algorithm to efficiently solve for an optimum. We use two nu-
merical case studies, based on actual watersheds in the CAISO
control area, to demonstrate the efficacy of our model. Our
numerical case study shows that the optimized offers increase
hydroelectric profits and reduce SO dispatch infeasibilities
compared to submitting ‘true’ offers based on actual pow-
erhouse capabilities. We also show that the optimized offers
improve overall system efficiency. This is because the SO
dispatches the other non-hydroelectric resources ‘correctly,’
since it does not expect hydroelectric output that is infeasible.

We model a simplified system without power flows in the
SO dispatch, head-dependent powerhouse efficiencies, or other
powerhouse non-convexities. We discuss how these complexi-
ties can be incorporated into our proposed model. We restrict
our attention to this simplified model structure to ease the
notation, derivations, and exposition.
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