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Abstract—We propose a multistage multiscale linear stochastic
model to optimize electricity generation, storage, and transmis-
sion investments over a long planning horizon. The multiscale
structure captures ‘large-scale’ uncertainties, such as investment
and fuel-cost changes and long-run demand-growth rates, and
‘small-scale’ uncertainties, such as hour-to-hour demand and
renewable-availability uncertainty. The model also includes a
detailed treatment of operating periods so that the effect of
dispatch decisions on long-term investments are captured.

The proposed model can be large in size. The progressive
hedging algorithm is applied to decompose the model by scenario,
greatly reducing computation times. We also derive bounds on
the optimal objective-function value, to assess solution quality.
We use a case study based on the state of Texas to demonstrate
the model and show the benefits of its detailed representation of
the operating periods in making investment decisions.

Index Terms—Power system planning, stochastic optimization,
decomposition, progressive hedging algorithm

I. INTRODUCTION

ELECTRICITY demand growth, generator retirements,

and technology advances make it necessary to expand

generation and transmission capacity. These investments are

capital-intensive, time-consuming, and long-lasting. Moreover,

generation and transmission investment is subject to consid-

erable short- and long-run uncertainty. Changes in fuel or

investment costs can make a seemingly prudent generation

technology uneconomic. Uncertain demand-growth rates can

affect how much capacity a given system needs. Short-run

variability in demand, wind, and solar production can also

affect an optimal generation mix.

This paper proposes a centralized planning model to assist a

central planner, utility, policy maker, or regulator in optimizing

these types of investments. The model is multistage, multi-

scale, and stochastic, making investment decisions at different

points in time with consideration of future uncertainties and

investments. The model also includes a detailed representation

of operating periods between investments. This allows the

effects of short-run uncertainties (e.g., real-time wind, solar,

and demand variability) on investments to be captured. The

model is multiscale in two senses, which are described further
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in Section III, where the model structure and formulation

are given. First, we capture different scales of uncertainties

that affect planning decisions in different ways. Secondly, we

capture decisions that occur on different scales (i.e., relatively

coarse time scales for planning decisions, as opposed to fine

temporal scales for operating decisions).

With all of these factors being represented, the model can

be large in scale and take excessive computation time to

be solved. To address the tractability issue, the progressive

hedging algorithm (PHA) is implemented to decompose the

model per scenario. We demonstrate the use of the model

with a case study based on the state of Texas. We compare

the solutions obtained from the model using the PHA to those

obtained from solving the undecomposed problem (in terms

of the objective-function value and investments made). We

find that the two sets of investments and their costs are very

similar, showing the accuracy of using the PHA to decompose

and solve the model. We explore the impact of the penalty

coefficient used in the PHA on model performance. We show

that using higher coefficient values decreases computation

time, with some tradeoff in solution quality. We also show how

the detailed representation of the operating periods affects the

optimal generation mix.

The remainder of this paper is organized as follows. Sec-

tion II reviews the existing literature on investment planning

and further highlights the contribution of our proposed model.

Section III details the structure and mathematical formulation

of our model. Section IV discusses the PHA algorithm and

how we assess the quality of solutions given by the algorithm.

Sections V and VI introduce our case study data and results,

respectively. Section VII concludes.

II. LITERATURE REVIEW

Two different approaches are typically applied to power

system investment problems: centralized and market-based

frameworks [1]. The former considers capacity investment

from the perspective of the whole system, typically mini-

mizing cost or maximizing social welfare [2]–[5]. The latter

tackles the problem of a market participant, such as a profit-

maximizing generating firm [6].

Short et al. [3] develop a deterministic cost-minimization

model for the deployment of generation technologies and

transmission infrastructure throughout the United States, look-

ing forty years into the future. Their work includes a de-

tailed treatment of conventional and renewable generation
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technologies, transmission lines, energy storage, and policy

parameters, and has high spatial resolution. On the other

hand, their work uses a small set of time slices to represent

system-operation costs. Mills and Wiser [4] consider the effect

of renewable penetration on investments by using a long-

run optimization model that considers both investment and

dispatch decisions. Domı́nguez et al. [5] develop a stochastic

optimization model to explore how current electric power

systems can be transformed into renewable-dominated designs

at minimal cost. López et al. [2] propose a mixed-integer

nonlinear model for generation and transmission expansion

that captures risk preferences.

Bilevel approaches are commonly used for modeling in-

vestments from the perspective of market participants [6]–

[8]. Such approaches allow the representation of a sequential

decision-making process in which investments are made before

operational decisions. Thus, they are useful when market

competition is modeled. This can be contrasted to single-level

models, in which all decisions are made simultaneously. Two

popular types of bilevel models are mathematical programs

with equilibrium constraints and equilibrium problem with

equilibrium constraints. The former is suited to modeling

capacity expansion decisions made by a single investor, while

the latter is suited to modeling multiple firms simultaneously.

Wogrin [8] develops bilevel models of generation companies

making investment decisions in a highly competitive market.

She concludes that models with bilevel structures can provide

better results than single-level ones. Chuang et al. [9] formu-

late a generation-expansion problem as a single-level Cournot

model. Roh et al. [10] propose a stochastic generation and

transmission expansion model that considers uncertainties.

Investment planning is usually affected by many factors that

are uncertain, such as demand increases, policy changes, and

technology advances. Stochastic optimization, as a framework

for modeling optimization problems that involve uncertainty,

constitutes a useful tool for capturing the impacts of such

uncertainties [2], [5]–[8], [10]. A number of works model

capacity investment as two-stage or multistage stochastic opti-

mization problems [10]–[17]. However, none of these include

the detailed multiscale representation of uncertainties that we

propose in our model. Munoz and Watson [18] apply the

PHA to a multistage investment model. However, their work

does not capture the same level of detail in representing

operating decisions that our model does. Instead, they assume

that the hourly economic dispatch models are independent

and do not capture intertemporal ramping or energy storage-

related constraints. Zou et al. [19] develop a nested decompo-

sition algorithm, which is similar to the concept of stochastic

dual dynamic programming [20], which may prove to be a

promising technique to solve multistage stochastic investment

models.

Our work makes several contributions to this existing lit-

erature on investment planning. Our model optimizes both

generation and transmission investment from the perspective

of a central planner. The multiscale framework that we adopt

allows us to capture both large- and small-scale uncertainties.

Moreover, our detailed representation of the operating periods

between investment periods allows the effects of intertemporal

constraints, such as generator ramping and energy storage

state-of-charge, to be captured in investment decisions. Many

existing models use simplified representations of operating

periods that are not serially coupled. Our work also proposes

the use of PHA as an algorithm to efficiently obtain solutions

to the resulting model with bounds on solution quality.

III. CAPACITY-EXPANSION MODEL

Fig. 1 summarizes the overall structure of our proposed

capacity-expansion model. The model structure consists of

multiple investment periods (denoted by circles in the figure),

each of which is followed by a series of operating periods

(denoted by squares in the figure). Thus, our model considers

an investment stage as consisting of an initial investment

decision, followed by operating decisions for the intervening

operating periods before the next investment decision is made.

The investment and operating decisions are structured in a tree,

where the branches correspond to different scenarios of the

underlying scenario tree representing uncertainties.
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Fig. 1. Structure of capacity-expansion model

Our model is multistage in the sense that investments can be

made at multiple points in time (i.e., the circles in Fig. 1). The

model is multiscale in terms of how decisions and uncertainties

are modeled. Investment decisions are modeled at a relatively

coarse time scale (e.g., annually or decennially). Conversely,

operating decisions are modeled at a relatively fine time scale

(e.g., hourly or subhourly).

Uncertainties are similarly modeled at different scales. The

branches of the scenario tree in Fig. 1 capture large-scale

uncertainties that occur on similar temporal scales to the

investment decisions. Examples of these can include major

policy changes (e.g., a carbon tax or renewable portfolio stan-

dard), fuel-cost changes, technology development, or long-run

demand-growth rates. Finer-scale uncertainties (e.g., seasonal,

diurnal, and hourly demand, wind, and solar patterns) are

captured through the different deterministic operating periods

between investment decisions.

The reason for this disparate representation of large- and

small-scale uncertainties is because they affect investment

decisions differently. Large-scale uncertainties have a direct

and explicit impact on investment decisions. For instance, if

prices of some generating fuels may rise or the investment

costs of some generation technologies may fall in the future,
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such uncertainties should be directly taken into account when

making investment decisions. As such, large-scale uncertain-

ties are explicitly represented in the scenario tree. Conversely

diurnal or seasonal uncertainty and variability in the real-time

availability of renewable generators has a more muted effect

on investment decisions. The effect of these uncertainties is

primarily on the extent to which flexibility is needed in the

power system. Such impacts can be captured in a more implicit

manner via different operating periods (which in our work are

taken to be representative days modeled at hourly intervals),

that represent a wide variety of weather conditions.

In practice, these operating periods may be a weighted

subset of hours, days, or weeks chosen by Monte Carlo simu-

lation, importance sampling, clustering, or other techniques.

Our model structure is agnostic to the temporal resolution

of the operating periods. We assume in our mathematical

formulation, however, that the operating periods are represen-

tative days of the intervening time between investment periods

that are modeled at an hourly time resolution. The use of

representative days in modeling the operating periods allows

for intertemporal constraints, such as state-of-charge balance

for energy storage and generator ramping, to be captured in

the model.

A. Model Notation

We begin by defining the following model notation.

1) Sets and Set-Related Parameters:

N set of generation technologies.

R set of regions.

TD set of operating days between investment peri-

ods.

TH number of operating hours in each representa-

tive day.

T I set of investment periods.

ΥI number of years between investment periods.

Ω set of scenarios.

ω̄i set of scenarios that are indistinguishable from

scenario ω when making investment decisions

in investment period i.
2) Parameters:

An lifetime of technology n [investment periods].

B̄n,r,i maximum capacity of technology n that can be

built in region r in investment period i [MW].

CE
ω,n,r,i cost of retiring technology n in region r in

investment period i of scenario ω [$/MW].

CG
ω,n,r,i generation cost of technology n in region r in

investment period i of scenario ω [$/MWh].

CL
ω,r,r′ investment cost of building transmission be-

tween regions r and r′ in investment period i
of scenario ω [$/MW].

CM
ω,n,r,i,a maintenance cost of technology n in region r

that is a investment periods old in investment

period i of scenario ω [$/MW].

CS
ω,r,i investment cost of energy storage in region r in

investment period i of scenario ω [$/MW].

CU cost of unserved load [$/MWh].

CV
ω,n,r,i investment cost of building technology n in

region r in investment period i of scenario ω
[$/MW].

Lω,r,i,d,h region r’s load in hour h of day d of investment

period i of scenario ω [MW].

γ discount rate.

δn ramping factor of technology n [p.u.].

η energy capacity of energy storage [hours of

storage].

ζ roundtrip efficiency of energy storage [p.u.].

πω probability of scenario ω.

φω,n,r,i,d,h capacity factor of technology n in region r
in hour h of day d of investment period i of

scenario ω [p.u.].

Υi,d weight on representative day d of investment

period i [days].

3) Decision Variables:

kEω,n,r,i,a capacity of technology n in region r with age a
that is economically retired in investment pe-

riod i of scenario ω [MW].

kGω,n,r,i,a total capacity of technology n in region r with

age a at the end of investment period i of

scenario ω [MW].

kLω,r,r′,i capacity added to transmission link between

regions r and r′ in investment period i of

scenario ω [MW].

kSω,r,i capacity of energy storage installed in region r
in investment period i of scenario ω [MW].

Kω,i vector denoting all scenario-ω investment vari-

ables (i.e., k’s) of investment period i.
qCω,r,i,d,h hour-h power charged into energy storage in

region r on day d of investment period i of

scenario ω [MW].

qDω,r,i,d,h hour-h power discharged from energy storage

in region r on day d of investment period i of

scenario ω [MW].

qGω,n,r,i,d,h hour-h production from technology n in re-

gion r on day d of investment period i of

scenario ω [MW].

qLω,r,r′,i,d,h net power flow on link from region r to r′

in hour h of day d of investment period i of

scenario ω [MW].

qSω,r,i,d,h hour-h ending state of charge of energy storage

in region r on day d of investment period i of

scenario ω [MW].

qUω,r,i,d,h hour-h unserved load in region r on day d of

investment period i of scenario ω [MW].

B. Model Formulation

Our model is formulated as:

min
∑

ω∈Ω

πω
∑

i∈T I

γiΥI







∑

n∈N,r∈R

[

CV
ω,n,r,ik

G
ω,n,r,i,1 (1)

+ CE
ω,n,r,i ·

(

kGω,n,r,i,An
+

An−1
∑

a=1

kEω,n,r,i,a

)
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+
∑

r∈R

CS
ω,r,ik

S
ω,r,i +

∑

d∈TD

Υi,d

TH

∑

h=1

CG
ω,n,r,iq

G
ω,n,r,i,d,h

+

An
∑

a=1

CM
ω,n,r,i,ak

G
ω,n,r,i,a

]

+
∑

r,r′∈R

r 6=r′

CL
ω,r,r′k

L
ω,r,r′,i

+
∑

r∈R,d∈TD

Υi,d

TH

∑

h=1

CUqUω,r,i,d,h







s.t. kGω,n,r,i,1 ≤ B̄n,r,i, ∀ω, n, r, i (2)

kGω,n,r,i,a = kGω,n,r,i−1,a−1 − k
E
ω,n,r,i−1,a−1, (3)

∀ω, n, r, i ≥ 2, a ≥ 2

Kω,i ≥ 0, ∀ω, i (4)

Kω,i = Kω′,i, ∀ω, i, ω′ ∈ ω̄i (5)
∑

n∈N

qGω,n,r,i,d,h + qDω,r,i,d,h − q
C
ω,r,i,d,h + qUω,r,i,d,h (6)

+
∑

r′∈R
r′ 6=r

(

qLω,r′,r,i,d,h − q
L
ω,r,r′,i,d,h

)

= Lω,r,i,d,h,

∀ω, n, r, i, d, h

0 ≤ qGω,n,r,i,d,h ≤ φω,n,r,i,d,h

An
∑

a=1

kGω,n,r,i,a, (7)

∀ω, n, r, i, d, h

− δn

An
∑

a=1

kGω,n,r,i,a ≤ q
G
ω,n,r,i,d,h − q

G
ω,n,r,i,d,h−1 (8)

≤ δn

An
∑

a=1

kGω,n,r,i,a, ∀ω, n, r, i, d, h

−
∑

i′≤i

kLω,r,r′,i′ ≤ q
L
ω,r,r′,i,d,h ≤

∑

i′≤i

kLω,r,r′,i′ , (9)

∀ω, r, r′ 6= r, i, d, h

qSω,r,i,d,h = qSω,r,i,d,h−1 − q
D
ω,r,i,d,h + ζqCω,r,i,d,h, (10)

∀ω, r, i, d, h ≥ 2

qSω,r,i,d,0 =
1

2
η
∑

i′≤i

kSω,r,i, ∀ω, r, i, d (11)

qSω,r,i,d,TH =
1

2
η
∑

i′≤i

kSω,r,i, ∀ω, r, i, d (12)

0 ≤ qSω,r,i,d,h ≤ η
∑

i′≤i

kSω,r,i, ∀ω, r, i, d, h (13)

0 ≤ qCω,r,i,d,h, q
D
ω,r,i,d,h ≤

∑

i′≤i

kSω,r,i, (14)

∀ω, r, i, d, h

0 ≤ qUω,r,i,d,h ≤ Lω,r,i,d,h, ∀ω, n, r, i, d, h. (15)

Objective function (1) minimizes expected discounted cost

over the planning horizon. The objective function includes

seven cost components. The first, CV
ω,n,r,ik

G
ω,n,r,i,1, is the

cost of investing in new generating capacity. New generating

capacity that is added in investment period i is, by definition,

a = 1 investment periods old at the end of investment period i,
which is why new capacity is given by kGω,n,r,i,1.

The second is the cost of retiring generating capacity (e.g.,

cleanup and reactor dismantling for a nuclear unit). The

model allows for two types of retirements. The first is due

to age, once a technology has reached its fixed operating

life. Technology n is assumed to have an operating life of

An investment periods. The other is economic retirement,

meaning that the model chooses to retire a technology before

its operating life, for instance due to changes in operating and

maintenance costs of one technology relative to another.

The third is the cost of adding energy storage to the

system. The fourth is generator operating costs. Operating

costs for each hour of each representative day are added

together and multiplied by Υi,d, which is the weight placed

on each operating day. The fifth cost is generator maintenance

costs, which are allowed to vary with age. This can represent

technologies becoming more costly to maintain as they age.

The sixth is the cost of adding capacity to transmission links

between the regions of the power system modeled. We use

a pipeline model of the transmission system, as opposed to

a load-flow model. The seventh is the cost of unserved load,

which may occur if available generating capacity is insufficient

(or insufficiently flexible) to meet load in a particular operating

period.

We use a pipeline model of the transmission system because

a load-flow model would require the use of binary variables to

represent transmission investments. Transmission investments

with a load-flow model must be represented as being ‘lumpy,’

because adding new transmission lines impacts transmission

flows on other elements in the network. Using a pipeline

model does not provide a perfect representation of load flows.

However, Ahlhaus and Stursberg [21] suggest a method of

modeling transmission investments using a pipeline model that

provides precision that is comparable to a load-flow model.

Thus, our model can be easily extended using their method,

which would yield improved accuracy at a reduced computa-

tional cost (compared to employing a load-flow model).

Objective function (1) could also include other costs that we

do not model. As an example, energy storage and transmis-

sion could have retirement, maintenance, and operating costs.

Storage operating costs could be a means of more accurately

capturing hybrid technologies, such as diabatic compressed air

energy storage, which require an input fuel [22]. Our analysis

focuses on bulk energy storage technologies, such as pumped

hydroelectric storage, which is not a hybrid technology.

The model has two types of constraints. Constraints (2)–

(5) pertain to the investment whereas constraints (6)–(15)

pertain to the operating periods. Constraints (2) imposes limits

on generation technology investments, for instance due to

land restrictions, resource availability, or policy restrictions.

Constraints (3) define the amount of generating capacity of dif-

ferent ages in each investment period as the previous amount

of capacity less retirements. Constraints (4) impose non-

negativity on the investment variables. Constraints (5) are the

non-anticipativity constraints, which impose the structure of

the scenario tree on the decisions. This is done by ensuring that

decisions made in each investment period are not dependent on

future scenario realizations. For instance, in the scenario-tree

depicted in Fig. 1, the period-1 investment decisions would
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have to be the same across all of the scenarios. However, the

period-2 investments of the scenarios emanating from the left-

hand side of the scenario tree could be different from those of

the scenarios emanating from the right-hand side of the tree.

Constraints (6) impose load-balance in each operating pe-

riod. Constraints (7) and (8) impose capacity and ramping lim-

its on generators. The capacity limits are defined based on total

installed capacity available multiplied by a capacity factor. The

capacity factor can capture hour-to-hour variability in wind,

solar, and other renewable availability. The ramping limit is

assumed to be a multiple of the installed capacity, with higher

values of δn denoting a more flexible generating technology.

Constraints (9) impose transmission-capacity limits.

Constraints (10)–(14) pertain to the operation of energy

storage. Constraints (10) define the ending state of charge of

storage in each hour. Constraints (11) and (12) force each

storage device to begin and end each day with a 50% state of

charge. This is a heuristic technique to attach carryover value

to stored energy from one day to the next [23]. Constraints (13)

and (14) impose energy and power limits on storage. The

energy capacity of storage is measured by the number of hours

of full power output [24].

Constraints (10)–(14) do not account for cycle-life degra-

dation of energy storage, which may be an important consid-

eration for some technologies. One could modify the energy

or power capacities of the storage device to include a linear

degradation term that depends on total aggregate MWh of

energy that has been ‘cycled’ through the storage technology

in previous operating periods [25].

Constraints (15) limit the amount of unserved energy in

each operating period to be no greater than demand. Explicit

non-anticipativity constraints on the operating decisions are

not needed, as non-anticipativity constraints on the investment

decisions will enforce non-anticipativity of the operating de-

cisions.

IV. PROGRESSIVE HEDGING ALGORITHM

Depending on the number of investment and operating

periods and scenarios included in it, our proposed capacity-

expansion model can be large in scale and computationally

intractable. We apply the PHA [26], which is an augmented

Lagrangian method, to decompose the problem per scenario

by relaxing non-anticipativity constraints (5) and penalizing

constraint violations in the objective function.

PHA can be used to obtain a feasible solution to the original

problem, which also provides an upper bound on the optimal

objective-function value. Gade et al. [27] derive a lower bound

on the optimal objective-function value for a two-stage mixed-

integer stochastic optimization problem. We extend their proof

to a multistage stochastic problem, allowing us to assess the

quality of solutions generated by the PHA.

We first outline the PHA for a general multistage stochastic

optimization problem in Section IV-A. We then give the lower-

bound result in Section IV-B.

A. Progressive Hedging Algorithm for Multistage Stochastic

Optimization Problems

We begin by giving the following generic scenario-based

formulation of a multistage stochastic optimization problem.

To do so we first define the following additional notation (sets,

parameters, and variables that are not defined have the same

definitions as in Section III-A):
I number of stages.

xω,i stage-i decision of scenario ω.
A generic multistage stochastic optimization problem can

then be formulated as:

min
x

∑

ω∈Ω

πω

I
∑

i=1

ψ⊤
ω,ixω,i (16)

s.t. Mω,1xω,1 = κω,1, ∀ω ∈ Ω (17)

Mω,ixω,i = κω,i − µω,ixω,i−1, (18)

∀ω ∈ Ω, i = 2, . . . , I

xω,i ≥ 0, ∀ω ∈ Ω, i = 1, . . . , I (19)

xω,i = xω′,i, ∀ω ∈ Ω, i = 1, . . . , I, ω′ ∈ ω̄i. (20)

Objective function (16) minimizes expected cost, with ψω,i

denoting stage-i cost coefficients under scenario ω. Con-

straints (17) and (18) impose structural constraints on the

decisions with Mω,i, κω,i, and µω,i being matrices of coef-

ficients and vectors of constants of appropriate dimensions.

Constraints (19) and (20), respectively, impose non-negativity

and non-anticipativity.

To outline the PHA, we next define for each scenario, ω ∈
Ω:

Xω = {xi, i = 1, . . . , I|Mω,1xω,1 = κω,1,

Mω,ixω,i = κω,i − µω,ixω,i−1, xω,i ≥ 0}, (21)

as the scenario-ω feasible set. PHA decomposes problem (16)–

(20) by dualizing non-anticipativity constraints (20).

To give the relaxed problem, we first define λυω,i as

the Lagrange-multiplier vector associated with the non-

anticipativity constraint on xω,i. The superscript, υ, on the

multiplier vector corresponds to the iteration counter of the

PHA. We also define:

x̂υω,i =

∑

ω′∈ω̄i

πω′xυω′,i

∑

ω′∈ω̄i

πω′

, (22)

where xυω′,i is the value of xω′,i in the υth iteration of the

PHA, as the probability-weighted average of the xω′,i’s that

should be equal to xω,i per non-anticipativity constraints (20).

The υ superscript on x̂υω,i denotes that this is the value of the

average in the υth iteration of the PHA. The relaxed problem

is given by:

min
x

∑

ω∈Ω

πω

I
∑

i=1

(

ψ⊤
ω,ixω,i + λυω,i

⊤xω,i (23)

+
ρ

2
||xω,i − x̂

υ
ω,i||

2

)

s.t. xω,i ∈ Xω, ∀ω ∈ Ω, i = 1, . . . , I. (24)
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Objective function (23) includes two penalty terms. The first,

λυω,i
⊤xω,i, is a standard Lagrange-multiplier term. The other

penalizes the value of xω,i deviating from x̂υω,i. The coefficient

ρ > 0 determines how much to penalize the deviation of the

scenario solution from this average.

Algorithm 1 outlines the steps of the PHA. The penalty

coefficient and convergence tolerance are input in step 1.

Step 2 initializes the iteration counter and Lagrange-multiplier

vectors. In Steps 3–5 each scenario subproblem is solved with-

out the penalty terms (i.e., minimizing objective function (16)

of the original problem). These starting values of xω,i are used

to initialize the Lagrange-multiplier vectors in Steps 7 and 8

by first updating x̂i and then the multiplier vectors themselves.

Algorithm 1 Progressive Hedging Algorithm

1: input: ρ, ǫ
2: initialization: υ ← 0, λυω,i ← 0 ∀ω ∈ Ω, i = 1, . . . , I
3: for ω ∈ Ω do

4: xυω,i ← argmin
x

(16) s.t. (24)

5: end for

6: repeat

7: x̂υi ←
∑

ω′∈ω̄i
πω′xυω′,i/

∑

ω′∈ω̄i
πω′ ∀i = 1, . . . , I

8: λυ+1
ω,i ← λυω,i + ρ · (xυω,i− x̂

υ
ω,i) ∀ω ∈ Ω, i = 1, . . . , I

9: υ ← υ + 1
10: xυω,i ← argmin

x
(23) s.t. (24)

11: until ||xυω,i − x̂
υ
ω,i|| < ǫ ∀ω ∈ Ω, i = 1, . . . , I

Steps 6–11 are the main iterative loop. Steps 7 and 8 update

the Lagrange multipliers based on the most recent values of

xω,i. Step 9 updates the iteration counter, and Step 10 re-

solves the relaxed problem with the updated multipliers. This

loop repeats until each non-anticipativity constraint is satisfied

within the specified convergence tolerance.

B. Lower Bound for Progressive Hedging Algorithm

We can derive a lower bound on the optimal objective-

function value of a multistage stochastic optimization problem

solved using PHA from the Lagrange multipliers on the non-

anticipativity constraints. To do so, we let z∗ denote the opti-

mal objective-function value of problem (16)–(20) and let x∗ω,i

denote a corresponding set of optimal decision policies. We

assume that problem (16)–(20) is bounded and feasible. Thus,

we have that −∞ < z∗ < +∞ and x∗ω,i ∈ Xω 6= ∅, ∀ω ∈ Ω.

We first prove the following lemma.

Lemma 1: In each iteration of Algorithm 1, the following

condition holds:

∑

ω∈Ω

πω

I
∑

i=1

λυω,i
⊤x∗ω,i = 0. (25)

Proof: We can show this by induction. For υ = 0 we

have λ1ω,i = ρ · (x0ω,i − x̂
0
ω,i). Thus, ∀ω ∈ Ω, i = 1, . . . , I , we

have that:
∑

ω∈Ω

πωλ
1
ω,i = ρ

∑

ω∈Ω

πω · (x
0
ω,i − x̂

0
ω,i) (26)

= ρ
∑

ω∈Ω

πω

∑

ω′∈ω̄i

πω′ · (x0ω,i − x
0
ω′,i)

∑

ω′∈ω̄i

πω′

(27)

= 0. (28)

By induction on the Lagrange-multiplier update in Step 8 of

Algorithm 1 we can show that (25) holds for all remaining

iterations of the PHA. This is because the best possible lower

bound obtained using dual prices is as tight as the lower bound

obtained using the dual decomposition method [27].

We next define:

ξω(λ
υ
ω) = min

x∈Xω,∀ω∈Ω

{

I
∑

i=1

(

ψ⊤
ω,ixω,i + λυω,i

⊤xω,i

)

}

, (29)

and:

Ξ(λυ) =
∑

ω∈Ω

πωξω(λ
υ
ω), (30)

and prove the following theorem establishing the bound.

Theorem 1: Ξ(λυ) ≤ z∗, ∀υ.

Proof: From the definition of ξω(λ
υ
ω) and x∗ω,i we have:

ξω(λ
υ
ω) ≤

I
∑

i=1

(

ψ⊤
ω,ix

∗
ω,i + λυω,i

⊤x∗ω,i

)

. (31)

Combining this with the definition of Ξ(λ) and Lemma 1 we

then have:

Ξ(λυ) =
∑

ω∈Ω

πωξω(λ
υ
ω) (32)

≤
∑

ω∈Ω

πω

I
∑

i=1

(

ψ⊤
ω,ix

∗
ω,i + λυω,i

⊤x∗ω,i

)

(33)

=
∑

ω∈Ω

πω

I
∑

i=1

ψ⊤
ω,ix

∗
ω,i (34)

+
∑

ω∈Ω

πω

I
∑

i=1

λ⊤ω,ix
∗
ω,i

=
∑

ω∈Ω

πω

I
∑

i=1

ψ⊤
ω,ix

∗
ω,i (35)

= z∗, (36)

proving the result.

V. CASE STUDY DATA

We apply our proposed capacity-expansion model to a

numerical case study based on the state of Texas [28]. The state

is modeled as consisting of three regions (west, east, and south

Texas) that are connected by three transmission corridors. The

case study begins in the year 2010 and the model has between

four and six investment periods that occur at ten-year intervals

(i.e., we conduct a sensitivity analysis in which the number of

investment periods is changed).
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We model five generic generation technologies: wind, so-

lar, nuclear-powered, and natural gas- and coal-fired units.

A generic energy storage technology is also modeled. The

‘large-scale’ uncertainties, which are explicitly modeled in the

scenario tree, are changes in investment costs and generating-

fuel prices. Scenarios around these parameters are generated

from values reported in the United States Energy Information

Administration’s 2014 Annual Energy Outlook [29] and other

sources [30].

Table I summarizes the ranges of percentage decreases

(relative to the 2010 levels) in wind and solar investment

costs represented in the scenarios. These cost decreases mostly

represent the effects of technology improvement. Table II

summarizes the ranges of percentage increases (relative to

the 2010 levels) in operating costs of coal- and natural

gas-fired generators. These scenarios reflect the impacts of

changing fuel supply and demand and can also capture policy

impacts (e.g., carbon policies on operating costs of fossil

fuels).

TABLE I
RANGE OF INVESTMENT-COST DECREASES [% RELATIVE TO 2010

LEVELS] IN DIFFERENT SCENARIOS

Year
Technology 2020 2030 2040

Wind 5–10 10–20 15–30
Solar 5–10 10–20 15–30

TABLE II
RANGE OF OPERATING-COST INCREASES [% RELATIVE TO 2010

LEVELS] IN DIFFERENT SCENARIOS

Year
Technology 2020 2030 2040

Coal 0–3 1–7 3–28
Natural Gas 0–5 1–18 3–54

The base case, in which there are four investment periods,

has a scenario tree with 27 = 128 scenarios. Retirement

and maintenance costs, ramping capabilities, and technology

lifetimes are obtained from the same sources as the other cost

data. Renewable resource limits, for instance associated with

land use, are obtained from Lopez et al. [31]. We assume no

resource limits on other technologies.

The operating periods between successive investment peri-

ods consist of 30 representative days that are selected from the

10 intervening years using a hierarchical clustering technique

[28]. The clustering technique also provides the weights for

each modeled day. Our numerical testing indicates that 30 rep-

resentative days provides a sufficiently rich set of operating

conditions to represent demand, wind, and solar conditions

well and provide investment decisions that are very similar

to using the full set of operating days [28]. Conversely, using

fewer representative operating days may result in solutions that

give a similar objective-function value to using the full set of

operating days, but vastly different investment levels.

Weather conditions, which drive solar and wind availabil-

ity and demand patterns, are simulated using a time series

approach [32]. Electricity-demand patterns are modeled using

Monte Carlo simulation [33] and time series techniques [34].

We assume a 7% discount rate and a load-curtailment cost of

$5000/MWh. The model is implemented in Java and solved

using cplex version 12.6 on a system with a 3.10 GHz Intel

Core i7-3770S processor and 8 GB of memory.

VI. CASE STUDY RESULTS

We conduct four analyses with our case study. First we com-

pare the solutions obtained from and the computation times

of solving the full undecomposed capacity-expansion model

and the model decomposed using PHA. Next we examine the

convergence of the PHA and the role of the penalty parameter

(i.e., the value of ρ) in computation time and solution quality.

Third we examine how model size affects solution times.

Finally, we examine how the inclusion of generator ramping

constraints in the operating periods affects optimal investment

decisions.

A. Solution Time and Quality of Progressive Hedging Algo-

rithm

Table III summarizes the performance of the PHA in

solving instances of the capacity-expansion model with four

investment periods and with either one or three representative

operating days between successive investment periods. A

termination criterion of ǫ = 10000 is used in the PHA. This

performance is compared to solving the full undecomposed

model. We solve instances with one or three operating days

because larger instances of the undecomposed problem cannot

be solved directly using cplex.

TABLE III
PERFORMANCE OF PROGRESSIVE HEDGING ALGORITHM WITH

DIFFERENT NUMBER OF DAYS IN OPERATING STAGE

Number of Operating Days
1 3

Number of Variables 511 488 1 396 224

Number of Constraints 809 002 2 301 994

Undecomposed Problem
CPU Time [s] 370 17 503

Objective [$ billion] 554.34 761.77

Decomposed Problem
CPU Time [s] 271 3 026

Upper Bound [$ billion] 557.39 762.56

Lower Bound [$ billion] 551.99 760.27

Optimality Gap [%] 0.97 0.30

The numbers of variables and constraints nearly triple if

there are three operating days (relative to one day). With one

day, the model is relatively small and the undecomposed model

can be easily solved. Thus, decomposing this model using

PHA does not afford much benefit in terms of computation

time. However, with three operating days, applying PHA

reduces the computation time by close to 96% while obtaining

a 0.3% optimality gap on the objective-function value.

Figs. 2 and 3 summarize the optimal investments determined

by the full and decomposed model in the most likely scenario

of the scenario tree. The investment decisions given by the

solutions are very similar. The maximum absolute differences

in total investment capacities of the different technologies

between the two sets of solutions is 12% and 6% with one and
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three operating days being modeled, respectively. Moreover,

there is a less than 1% difference in total capacity (of all

technologies) added between the two sets of solutions. More

capacity is built when three operating days are modeled,

because the operating days capture more load, wind, and solar

variability than one day does.
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Fig. 2. Optimal investments from solving the full and decomposed model in
most likely scenario with one representative operating day between successive
investment periods. The left-hand bar (from each pair) shows investments from
solving the full model.
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Fig. 3. Optimal investments from solving the full and decomposed model
in most likely scenario with three representative operating days between
successive investment periods. The left-hand bar (from each pair) shows
investments from solving the full model.

Figs. 2 and 3 contrast investment levels obtained from using

the PHA to those given by solving the full undecomposed

model. These figures do not compare investment levels when

using a subset of representative operating days to the invest-

ment levels obtained when modeling the full set of days. Our

numerical testing [28] suggests that about 30 representative

operating days is needed to obtain investment levels that are

similar to those given by a model that uses all 365 days of

the year. Using three representative operating days can result

in investment levels that are, on average, 65% different from

the investment levels given by the full set of operating days.

B. Sensitivity of Progressive Hedging Algorithm to ρ

Large values of ρ accelerate the convergence of PHA while

smaller values tend to improve the quality of the solution found

[35]. To investigate the impact of ρ on PHA solutions, a four-

stage model with three operating days between successive in-

vestment periods is solved. Four different values of ρ are tested

with the same termination criteria of ǫ = 10000. Table IV

summarizes the corresponding computation times and solution

quality. As the value of ρ increases, fewer iterations and less

time are required to achieve the termination criteria. However,

these time savings come with a larger final optimality gap.

The number of iterations and computation time nearly double

when a value of ρ = 2000 is compared to ρ = 100. In all four

cases, the average time per iteration is roughly the same.

TABLE IV
COMPUTATION TIME AND SOLUTION QUALITY OF PROGRESSIVE

HEDGING ALGORITHM WITH DIFFERENT VALUES OF ρ

Objective-Function
CPU Number of Bound [$ billion] Optimality

ρ Time [s] Iterations Upper Lower Gap [%]
100 3 262 38 761.83 761.68 0.02

500 2 167 26 762.07 761.33 0.10

1 000 1 798 23 762.56 760.20 0.31

2 000 1 564 19 763.30 755.63 1.02

Fig. 4 shows the convergence of the upper and lower

bounds throughout the iterations of the PHA with different

values of ρ. This figure shows the progress beginning from

iteration 10, because the bounds make the scales of the vertical

axis extremely large if the figure begins from the first iteration.

The figure shows that larger values of ρ results in the PHA

converging faster (i.e., the algorithm terminates after fewer

iterations). However, the lower bounds and optimality gaps

tend to be worse with higher values of ρ.

C. Model Size

We next examine the effect of changing the size of the

capacity-expansion model, by increasing the number of in-

vestment periods, on the performance of the PHA. Table V

summarizes the size of models (i.e., number of scenarios,

variables, and constraints) with four, five, and six investment

periods and 30 representative operating days giving the op-

erating periods between successive investment periods. The

table also summarizes the computation time and quality of

the solution found by the PHA.

All three cases involve solving massive models with mil-

lions of variables and constraints. The solution times in the

three cases are around six hours, three days, and more than

one week, respectively. Although these solution times are quite

long, they are reasonable for an investment model, which

may only need to be solved a handful of times to determine

investments on an annual basis.



LIU ET AL.: MULTISTAGE STOCHASTIC INVESTMENT PLANNING WITH MULTISCALE REPRESENTATION OF UNCERTAINTIES AND DECISIONS 9

10 15 20 25 30 35 40

Iteration Number

740

745

750

755

760

765
O

bj
ec

tiv
e-

F
un

ct
io

n 
U

pp
er

an
d 

Lo
w

er
 B

ou
nd

s 
[$

 b
ill

io
n]

ρ = 100
ρ = 500
ρ = 1000
ρ = 2000

Fig. 4. Objective-function upper and lower bounds throughout iterations of
the progressive hedging algorithm with different values of ρ.

TABLE V
COMPUTATION TIME AND SOLUTION QUALITY OF PROGRESSIVE

HEDGING ALGORITHM WITH DIFFERENT NUMBER OF INVESTMENT

PERIODS

Number of Investment Periods
4 5 6

Number of Scenarios 128 512 2 048

Number of Variables [million] 13.34 66.70 320.16

Number of Constraints [million] 22.45 112.28 538.97

CPU Time [s] 21 901 291 139 1 236 442

Number of PHA Iterations 15 26 19

Upper Bound [$ billion] 758.45 883.76 1 004.89

Lower Bound [$ billion] 757.60 878.02 992.44

Optimality Gap [%] 0.1 0.6 1.2

Fig. 5 summarizes the optimal investments in the most likely

scenario of the scenario tree with four investment periods.

Wind and solar are added to the system in later periods when

their investment costs become low relative to conventional

technologies. The model also opts to economically retire about

3.8 GW of natural gas-fired generation (representing about

10% of installed capacity) in the final investment period before

the lifetime of the plants is reached. This is done because

lower-cost wind and solar are able to replace the natural gas-

fired generation.

D. Effect of Generator Ramping Constraints

Our final analysis examines the effect of having generator

ramping constraints in the operating periods on investment

decisions. The inclusion of ramping constraints is allowed by

us using representative days (as opposed to hours or time

slices) in the operating periods of the capacity-expansion

model. Fig. 6 summarizes the optimal investments in the

most likely scenario of the scenario tree with four investment

periods and the generator ramping constraints relaxed in the

operating periods of 30 representative days. Contrasting this

with Fig. 5 shows that the model builds considerably more

nuclear-powered and less natural gas-fired, wind, and solar

generation if ramping constraints are ignored. This is because

nuclear has a relatively low operating cost and if ramping
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Fig. 5. Optimal investments in most likely scenario with four investment
periods and 30 representative operating days between successive investment
periods.

constraints are neglected its operational inflexibility does not

limit its use to handle ramps in the net load profile. Indeed,

without ramping constraints the model economically retires

about 20 GW of natural gas-fired capacity in investment

periods 2–4, as more nuclear capacity is built. The model

also builds less energy storage without ramping constraints.

Finally, we note that total installed capacity is lower if ramping

constraints are neglected. This means that about 30% of the

capacity that the model builds is needed to provide sufficient

ramping capability to the system.
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Fig. 6. Optimal investments in most likely scenario with four investment
periods, 30 representative operating days between successive investment
periods, and ramping constraints relaxed in operating periods.

VII. CONCLUSIONS

This paper presents a multistage, multiscale stochastic

investment planning model to assist generators, regulators,
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policy makers, and others to plan and study power system

investments over the long run. Large-scale uncertainties, such

as cost changes and demand-growth rates, are captured ex-

plicitly through a scenario tree. Fine-scale demand, wind,

and solar variability are represented via different deterministic

representative days in the operating periods between succes-

sive investment periods. The use of operating days allows

important intertemporal constraints, such as energy storage

state-of-charge-balance and generator ramping, to be modeled.

Our multiscale approach to representing decisions and un-

certainties allows us to capture many operating and investment

periods. For instance, the model developed by Short et al. [3]

represents operations between successive investment epochs

using 17 timeslices. Our model, conversely, represents oper-

ations using 30 × 24 = 720 representative operating hours

between investment periods. Indeed, our model and the PHA

are capable of tractably including more than 30 representative

operating days between investment periods. However, our

numerical testing suggests that 30 days provides sufficient

granularity around small-scale uncertainties for the purposes

of investment planning [28].

The other benefit of our multiscale representation is that it

allows us to capture both large- and small-scale uncertainties.

Most other works use a relatively coarse representation of

all uncertainties, meaning that they do not achieve the same

fidelity that our model does. On the other hand, a model that

fully represents all uncertainties on the same fine scale would

be computationally intractable. Thus, our approach provides a

good balance between model fidelity and tractability.

The resulting model is large and can be effectively solved

using the PHA. The PHA decomposes the problem by sce-

nario and solves each scenario problem, making the problem

tractable. The existence of a lower bound for the PHA is

shown, allowing solution quality to be assessed.

The performances of the model and PHA are demonstrated

through a numerical case study. We find that the decomposed

model chooses investments that very closely match those given

by the full model. We also investigate the importance of the

ρ parameter in the performance of the PHA. Larger values

considerably reduce solution times, but at the cost of larger

optimality gaps. We explore the effects of increasing the size

of the investment model and scenario tree. Problems with hun-

dreds of millions of variables and constraints can be effectively

solved using the PHA. We also conduct other numerical testing

(beyond that presented in this paper) to examine the effects of

other parameters on the performance of the model and PHA

[28]. This includes analyses of different load, wind, and solar

profiles (corresponding to other geographic regions outside

Texas) and different operating and investment costs. The model

and PHA show the same performance in these cases as those

summarized in Section VI for the case study presented in this

paper. We do not include the results of these cases, for reasons

of brevity, and instead refer interested readers to the work of

Liu [28] for further details.

Our multiscale modeling approach and use of the PHA

allow us to solve models that are substantively different in

their level of detail in representing decisions and uncertainties

compared to other works in the literature [2], [5], [12]–[18].

Thus, our model cannot be directly compared to these works

because of the different focus in model detail.
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