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Abstract—Power system capacity-expansion models are typi-
cally intractable if every operating period is represented. This
issue is normally overcome by using a subset of representative
operating periods. For instance, representative operating hours
can be selected by discretizing the load-duration curve, which
captures the effect of load levels on system-operation costs. This
approach is inappropriate if system-operating costs depend on
parameters other than load (e.g., renewable-resource availability)
or if there are important intertemporal operating constraints
(e.g., generator-ramping limits).

This paper proposes the use of representative operating days,
which are selected using clustering, to surmount these issues.
We propose two hierarchical clustering techniques, which are
designed to capture the important statistical features of the
parameters (e.g., load and renewable-resource availability), in
selecting representative days. This includes temporal autocorre-
lations and correlations between different locations. A case study,
which is based on the Texan power system, is used to demonstrate
the techniques. We show that our proposed clustering techniques
result in investment decisions that closely match those made using
the full unclustered data set.

Index Terms—Power system planning, representative days, hi-
erarchical clustering, k-means clustering, dynamic time warping

NOMENCLATURE

A. Clustering Variables and Functions

| · | number of points in a cluster or set.

C number of clusters.

Ck
i cluster i in iteration k of clustering algorithm.

C̄ centroid of the cluster, C.

d(x,x′) distance between the points, x and x
′.

dmax
x,C maximal distance between the point, x, and clus-

ter, C.

L(C,C′) minmax linkage between the clusters, C and C′.

n dimension of points.

r(C) minmax radius of the cluster, C.

S a time series.

Ui,j accumulated distance between element i of the

time series, S, and element j of the time series,

S′.

x a point.

X a set of points.

∆(Si, S
′
j) distance between element i of the time series, S,

and element j of the time series, S′.
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B. Operating-Period Data

ωy day-y operating-condition data.

ωD
y day-y demand data.

ωS
y day-y solar-insolation data.

ωW
y day-y wind-speed data.

ωD
e,y,h hour-h load in region e on day y [MW].

C. Capacity-Expansion Model Sets

G set of generation technologies.

H set of hours in each day.

E set of regions.

Y set of representative operating days.

D. Capacity-Expansion Model Parameters

B̄g,e maximum capacity of generation technology g
that can be built in region e [MW].

KG
g,e operating cost of generation technology g in re-

gion e [$/MWh].

KL
e,e′ investment cost of transmission between regions e

and e′ [$/MW].

KS
e investment cost of storage in region e [$/MW].

KU cost of unserved load [$/MWh].

KV
g,e investment cost of generation technology g in

region e [$/MW].

Le,y,h region e’s hour-h load on day y [MW].

δg ramping factor of generation technology g [p.u.].

η energy capacity of storage [hours of storage].

ζ roundtrip efficiency of storage [p.u.].

φg,e,y,h hour-h capacity factor of generation technology g
in region e on day y [p.u.].

Υy weight on day y [days].

E. Capacity-Expansion Model Variables

qCe,y,h hour-h power charged into storage in region e on

day y [MW].

qDe,y,h hour-h power discharged from storage in region e
on day y [MW].

qGg,e,y,h hour-h production from generation technology g
in region e on day y [MW].

qLe,e′,y,h hour-h net power flow on link between regions e
and e′ on day y [MW].

qSe,y,h hour-h ending state of charge of storage in re-

gion e on day y [MW].

qUe,y,h hour-h unserved load in region e on day y [MW].

zGg,e capacity of generation technology g built in re-

gion e [MW].
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zLe,e′ transmission capacity built between regions e
and e′ [MW].

zSe storage capacity built in region e [MW].

F. Clustered and Unclustered Data

zCτ,γ investment in technology τ using clustered data

when wind-investment costs are γ% below base-

line.

zUτ,γ investment in technology τ using unclustered

data when wind-investment costs are γ% below

baseline.

Γ set of cases with different wind-investment costs.

ρC,W
e,i ith element of wind-duration curve in region e in

clustered data [p.u.].

ρU,W
e,i ith element of wind-duration curve in region e in

unclustered data [p.u.].

I. INTRODUCTION

HOUR-to-hour solar and wind availabilities and demand

are important uncertain and variable factors in power

system operations and capacity expansion. These factors ex-

hibit multiple important correlations. First, wind, solar, and

demand may generally be correlated. In many systems demand

is low during the night when wind speeds are high and solar

insolation is zero. Second, each variable is autocorrelated.

Considering autocorrelation helps with modeling intertemporal

operating constraints, such as generator-ramping limits. Third,

there are spatial correlations when multiple locations are

considered. For example, the wind speed may be low at one

location but simultaneously high elsewhere. Not capturing

spatial correlation may result in misrepresenting the impacts

of renewable generation.
Capacity-expansion models capture investment and oper-

ating decisions. Investment decisions are typically made at

coarse time intervals (e.g., yearly or decennially). Conversely,

operating decisions are made at finer time scales (e.g., hourly

or sub-hourly). Therefore, the operating period must be repre-

sented many more times than the investment period, resulting

in a computationally challenging problem. Several works sur-

mount this issue by using a reduced set of operating periods.

The pioneering work of Caramanis et al. [1] accounts for

the impact of non-dispatchable resources on the system load

profile. They employ a stochastic approach to modify the

yearly load prior to selecting a number operating conditions

from the modified load. Short et al. [2] develop a deterministic

capacity-expansion model that captures seasonal and diurnal

variability in demand and resource profiles using 17 time-

slices. Each season is represented by one day, each of which

is represented by four time-slices. There is also one summer

super-peak time slice. This representation is mainly based

on demand patterns and its effectiveness in representing the

complete hourly data is not studied. Pina et al. [3] divide

a year into four seasons, each of which is represented by

three days that are modeled at hourly resolution. Baringo

and Conejo [4] propose two methods to find representative

hours. The first uses load- and wind-duration curves. This

technique cannot model spatial correlations, however, which

is overcome by their second method, which employs k-means

clustering. However, their use of representative hours breaks

the chronological sequence of the operating stages and cannot

represent intertemporal operating constraints. Wogrin et al. [5]

take a markedly different approach, wherein they use system

states as opposed to load levels to characterize operating

conditions in a capacity-expansion model. They claim that

the system states that they define embody more operational

information than loads alone do. Poncelet et al. [6] develop

a metric to select representative days in expansion planning

exercises in systems with storage and illustrate the use of

their proposed metric. Alvarez et al. [7] provide a technique

to select representative operating conditions for transmission-

expansion planning. Their method focuses on critical network

conditions, as opposed to modeling ‘more common’ nominal

conditions. Ploussard et al. [8] use a snapshot selection tech-

nique to capture a suitable number of operating conditions for

transmission-expansion planning.

Using representative operating periods to reduce the com-

plexity of capacity-expansion models is desirable. However,

many techniques in the literature do not provide a sound basis

on which to select operating periods, as our results illustrate.

Instead, most select them in an ad hoc manner, such as select-

ing a fixed number of periods from each season. Moreover, the

techniques historically employed have difficulty in capturing

all of the relevant correlations in the data. Finally, most of

the techniques used break the chronological sequence of the

data, complicating the modeling of intertemporal operating

constraints.

In this paper, we propose using representative days (as

opposed to hours or time-slices) to represent operating deci-

sions in capacity-expansion models. Doing so allows modeling

intertemporal operating constraints. We study two clustering

techniques, which capture the relevant correlations, to select

representative days. The first employs hierarchical clustering

while the second consists of k-means clustering followed

by hierarchical clustering within each k-means cluster. We

demonstrate the effectiveness of our proposed techniques in

two ways using a case study based on the Texas power system.

First, we compare the properties of the clustered and unclus-

tered data sets in terms of capturing the range of different

renewable-resource and load conditions. Second, we show that

the optimized investments made using the representative days

very closely match investments made using a full year’s hourly

data in the operating stage.

The clustering techniques that we employ are not, in and

of themselves, novel. Rather, the novelty of our work is in

developing a mixture of clustering methods, linkage criteria,

and distance metrics (cf. Section II-B for definitions of these

latter two terms) that provide good performance in efficiently

determining a set of representative operating periods for

capacity-expansion modeling. Our work focuses on selecting

representative days. This focus is motivated by the desire to

represent generator-ramping constraints and intraday energy

storage in capacity-expansion modeling. These features cannot

be represented properly without having a temporal sequence of

operating periods, as given by representative operating days.

Liu et al. [9] demonstrate the importance of representing

generator-ramping constraints in ensuring that a system’s



LIU ET AL.: HIERARCHICAL CLUSTERING TO FIND REPRESENTATIVE OPERATING PERIODS FOR CAPACITY-EXPANSION MODELING 3

generation mix has sufficient flexibility to deal with variability

in load and renewable production. Nevertheless, representative

operating weeks or longer-duration operating periods may be

more appropriate if, for instance, interday or seasonal energy

storage is an important feature of a capacity-expansion model.

The methods that we propose could be employed to select such

operating periods.
The remainder of this paper is organized as follows. Sec-

tion II discusses commonly used clustering methods and

details our two proposed methods. Section III gives the formu-

lation of the capacity-expansion model that is used in testing

our clustering methods. Sections IV and V summarize the

case study conducted and its results, respectively. Section VI

concludes.

II. CLUSTERING TECHNIQUES

The basic objective in cluster analysis is to discover natural

groupings of items based on either their similarities or dis-

similarities. k-means and hierarchical clustering are both very

popular clustering methods with strengths and weaknesses.

We begin in this section by first introducing some basic con-

cepts of k-means and hierarchical clustering in Sections II-A

and II-B, respectively. We assume throughout this discussion

that the different ‘items’ being clustered are represented as

vectors, which can specify the features of the items on mul-

tiple dimensions. We then detail our two proposed clustering

techniques in Section II-C.

A. k-Means Clustering

k-means clustering assigns each item within a data set to a

cluster that has its centroid closer to the item than the centroid

of any other cluster [10]. The primary benefit of k-means

clustering is that it performs relatively quickly compared

to other clustering methods. On the other hand, k-means

clustering requires some restrictive assumptions on the data

being clustered. Importantly, to be effective k-means clustering

requires that the data be in similarly sized hyperspherical

clusters [11]. Algorithm 1 summarizes the most commonly

used variant of the k-means clustering algorithm [12], which

takes two inputs—a set of points (or vectors) to be clustered

and the number of clusters to assign the points to. Step 2

initializes the algorithm by setting the iteration counter to 0
and then assigning each point to one of C starting clusters.

The final set of clusters obtained is generally dependent on

this initial assignment of points to clusters.
Steps 3–13 are the main iterative loop. Step 5 recomputes

the centroid of each cluster and Step 6 initializes each cluster

in the next iteration to be empty. Next, in Step 9, a cluster with

the nearest centroid to each point is determined and each point

is assigned to a cluster with the nearest centroid in Step 10.

Although any distance metric can be used, Euclidean distance:

d(x,x′) =

√

√

√

√

n
∑

j=1

(xj − x
′
j)

2, (1)

is quite common. This iterative process repeats until no

reassignments are done between two successive iterations (cf.

Step 13).

Algorithm 1 k-Means Clustering

1: inputs: X, C
2: initialize: k ← 0; assign each point to starting clusters,

C0
1 , . . . , C

0
C

3: repeat

4: for i← 1, . . . , C do

5: C̄i ←
(

∑

x∈Ck

i

x

)

/|Ck
i |

6: Ck+1

i ← ∅
7: end for

8: for x ∈ X do

9: i← arg min
i′∈{1,...,C}

d(x, C̄i′ )

10: Ck+1

i ← Ck+1

i ∪ x

11: end for

12: k ← k + 1
13: until Ck

i = Ck−1

i , ∀i = 1, . . . , C

B. Hierarchical Clustering

Hierarchical clustering builds a hierarchy of clusters using

either a ‘bottom-up’ or ‘top-down’ approach [13]. The former,

agglomerative, approach begins with each single point as its

own cluster. The algorithm proceeds by successively merging

clusters until attaining the desired number. The latter, divisive,

approach begins with all points in a single cluster, which are

successively divided. The result of both approaches can be

displayed as a dendrogram, which illustrates the successive

mergers or divisions.

Unlike k-means clustering, hierarchical clustering has the

benefit that it can be applied to data with clusters that are

not hyperspherical [11]. Moreover, the final set of clusters

obtained are not dependent on the initial allocation of points

to clusters. These benefits come at computational and data-

storage costs, because hierarchical clustering requires com-

puting and storing a matrix of distances between all sets

of clusters. As a result, k-means clustering can typically be

applied to much larger data sets compared to hierarchical

clustering [12].

Hierarchical clustering requires a measure of dissimilarity

between sets of observations, which are stored as a matrix of

distances, to determine mergers or divisions of clusters. Thus,

a linkage criterion and a distance metric must be specified.

We now discuss the linkage criterion and distance metric that

are used in our proposed clustering methods.

1) Linkage Criterion: The linkage criterion measures the

distance between two clusters. Commonly used linkage criteria

include single, complete, and average linkage. Single linkage

determines the distance between two clusters based on the

distance between the two elements (one in each cluster)

that are closest to one another. Complete linkage is based,

conversely, on the maximum distance between two elements of

the clusters. Average linkage is based on the average distance

between pairs of elements of two clusters.

Our proposed clustering techniques employ minmax linkage

[14], [15]. This linkage criterion determines a point, which is

referred to as the cluster prototype, which can be thought of

as a point within the cluster that is most representative of
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it. Having cluster prototypes is beneficial, because they allow

each cluster to be represented by its prototype in modeling

system operations in the capacity-expansion model.

To compute the minmax linkage between two clusters, we

first define the maximal distance between any point, x, and

the cluster, C, as:

dmax
x,C = max

x
′∈C

d(x,x′). (2)

In words, dmax
x,C is defined as the distance between x and the

point in C that is furthest from x. We then define the minmax

radius of the cluster, C, as:

r(C) = min
x∈C

dmax
x,C . (3)

The point, xC , that minimizes (3) is defined at the prototype

of the cluster, C. The prototype has the property that it has

the minimal maximal distance to C. From these definitions,

we also know that a closed ball of radius, r(C), centered at

the prototype covers all of the points in C. We finally define

the minmax linkage between the clusters C and C′ as:

L(C,C′) = r(C ∪ C′). (4)

Minmax linkage defines the distance between two clusters

by the minmax radius of the union of the clusters. A larger

minmax radius means that a larger ball is needed to cover all

of the points in the union of the clusters.

2) Distance Metric: Both k-means and hierarchical clus-

tering require a measure of similarity (i.e., a distance metric).

Choosing a distance metric when clustering time-series data

adds a complication. This is because standard distance metrics

align the jth element in one time series with the jth element

of another. This is seen, for instance, in (1), which defines

Euclidean distance between x and x
′. Thus, standard distance

metrics assume that the time-series data are aligned on the

time axis.

In practice, time series may not be perfectly aligned or

may have other shape properties, which could result in a poor

similarity measure. For instance, there is a one-hour offset in

load and other data between days during daylight-savings and

standard times. As another example, utilities and other entities

may use different practices in recording load and other data at

the beginning, middle, or end of the corresponding timestamp

[16]. As a final example, two days may have similar patterns

in terms of the magnitude of the peaks and troughs in load or

other data. However, the time at which the peaks and troughs

occur may differ. In these and other cases, a distance metric

that assumes that the time-series data are aligned on the time

scale, such as Euclidean distance, may give poor fits between

days that are actually similar.

Dynamic time warping (DTW) is a distance metric that

addresses this issue in measuring the similarity of time series

[17]. DTW measures the similarity between two time series by

computing the optimal (least cumulative distance) alignment

between their elements. In doing so, DTW allows time series

with similar shapes to match even if they are out of phase in

the time axis. Thus, DTW produces a more suitable measure

of similarity for time series.

To illustrate how DTW measures the distance between

two generic time series, let S = {S1, . . . , SI} and S′ =
{S′

1, . . . , S
′
J} be two time series, which can have different

lengths. We also let ∆(Si, S
′
J) denote a measure of distance

between element i of S and element j of S′. One can use

∆(Si, S
′
j) = |Si − S′

j |, or a different distance measure.
Algorithm 2 summarizes the steps of a commonly used vari-

ant of the DTW algorithm [17], which takes two time series

as inputs. The ultimate output of the algorithm is a matrix,

U , with cumulative distances between different elements of

the two time series, taking into account the amount that the

time axes of the two series are warped. Steps 2–7 initialize

the U matrix by setting the cumulative distance equal to +∞
if either time series index equals zero. The actual cumulative

distances are calculated in Step 10. The first term, ∆(Si, S
′
j),

measures the distance between the ith and jth elements of the

two time series. The second term takes into account the added

cumulative distance (up to elements i and j of the two time

series), depending on which (if either) of the two time axes are

warped [17]. The ‘warping’ of the time axes in represented by

the Ui−1,j and Ui,j−1, which allow a ‘mismatch’ in the time

axes of the two time series. The distance between the two time

series is given by the final value of UI,J , which measures total

distance between the two time series (taking into account any

warping of the time axes), after the algorithm terminates.

Algorithm 2 Dynamic Time Warping Algorithm

1: inputs: S, S′

2: for i← 1, . . . , I do

3: Ui,0 ← +∞
4: end for

5: for j ← 1, . . . , J do

6: U0,j ← +∞
7: end for

8: for i← 1, . . . , I do

9: for j ← 1, . . . , J do

10: Ui,j ← ∆(Si, S
′
j)+min{Ui−1,j, Ui,j−1, Ui−1,j−1}

11: end for

12: end for

C. Proposed Clustering Methods

Our proposed clustering methods are rooted in two re-

quirements. First, the method should generate representative

days that respect all of the important correlations in the data.

Second, the clustering method should be able to group large

data sets quickly. To meet the first requirement, we cluster

electricity demand and renewable-availability data for each

region or node that is represented in the capacity-expansion

model.
To illustrate our proposed clustering techniques, we first

define:

ωD
y =

(

ωD
1,y,1, . . . , ω

D
1,y,24, ω

D
2,y,1, . . . , ω

D
|E|,y,24

)

, (5)

∀y = 1, . . . , 365 as a vector of day-y demand data for all of

the hours and regions. We similarly define:

ωS
y =

(

ωS
1,y,1, . . . , ω

S
1,y,24, ω

S
2,y,1, . . . , ω

S
|E|,y,24

)

, (6)
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∀y = 1, . . . , 365 and:

ωW
y =

(

ωW
1,y,1, . . . , ω

W
1,y,24, ω

W
2,y,1, . . . , ω

W
|E|,y,24

)

, (7)

∀y = 1, . . . , 365 as vectors of day-y solar- and wind-

availability data, respectively. The load, solar, and wind ob-

servations in these three vectors are ordered first by hour of

day and then by location modeled. This is to ensure that the

temporal sequence of observations is not lost. We also define:

ωy =
(

ωD
y , ωS

y , ω
W
y

)

(8)

∀y = 1, . . . , 365 as a vector of day-y operating-condition data.

By definition, ωy contains all of the pertinent data on which

to cluster (which in our case study are wind and solar condi-

tions and load) for each region represented in the capacity-

expansion model. As such, clustering on the collection of

points, ω1, . . . , ω365, yields a set of days that capture a wide

variety of operating (i.e., wind, solar, and load) conditions

at the different regions modeled. These operating days fully

respect the intraday serial correlation in operating conditions,

because the time sequence of operating data are maintained

in the final set of operating conditions. Interregional cor-

relations are also captured, because each representative day

contains contemperaneous operating-condition data for all of

the regions that are modeled. Although interday correlations

are not captured by the representative days, interday and

seasonal variability in operating conditions are. This is because

clustering on ω1, . . . , ω365 will yield a set of representative

days that ‘differ’ from one another in terms of their operating

conditions.

Our two proposed clustering methods differ in terms of

achieving the second design requirement. The first proposed

clustering method applies agglomerative hierarchical cluster-

ing with a minmax linkage criterion and DTW distance metric

to the full set of operating-condition data, ω1, . . . , ω365. This

method, which we hereafter refer to as HC, has all of the

benefits of hierachical clustering in not requiring similarly

sized hyperspherical clusters. Moreover, the use DTW as a

distance metric helps to provide more robust clusters. For

instance, two days may have similar load and renewable-

availability conditions, but the exact patterns may be out of

time phase (e.g., due to daylight-savings time). DTW helps

with controlling for such time-phase issues. On the other hand,

the HC method may scale poorly (i.e., as more regions or

underlying operating-condition data are considered).

The second method first applies k-means clustering to the

full set of operating-condition data, ω1, . . . , ω365, to obtain a

starting set of clusters, C1, . . . , CC . We then apply the same

agglomerative hierarchical clustering technique that is used

in HC to the days within each k-means cluster, C1, . . . , CC .

The benefit of this second method, which we hereafter refer

to as kMHC, is that it first uses the relatively fast k-means

clustering algorithm to obtain an initial set of clusters. Slower

hierarchical clustering is then applied within each k-means

cluster to obtain the final set of clusters, retaining some of the

benefits of the HC method.

In both methods, after the final set of clusters is obtained, the

days in each cluster are represented in the capacity-expansion

model by the cluster prototype. The weight placed on each

cluster prototype is equal to the number of days within the

corresponding cluster.

III. CAPACITY-EXPANSION MODEL

We use a capacity-expansion model to analyze how the

representative days that are selected by the proposed clustering

techniques affect investment decisions. The model that we

use is a simplification of the multistage, multiscale stochastic

capacity-expansion model that is proposed by Liu et al. [9].

Whereas the model of Liu et al. is stochastic and has multiple

investment periods, the model that we employ is static, linear,

and deterministic. This is to simplify the model structure

and allow us to solve it with the full unclustered data for

purposes of comparing model results to using clustered data.

Nevertheless, the clustering methods that we propose could be

used to select representative operating days within a stochastic

capacity-expansion model [18].

The model that we use assumes that a single set of in-

vestment decisions is first made. These are then followed by

hourly operating decisions over twenty years. To simplify the

capacity-expansion model, all of the investments are assumed

to be continuous and unit commitment decisions are not

considered at the operating stage. The transmission network

is represented using a pipeline model. Moreover, we do not

include planning-reserve or other types of reliability-related

constraints.

The capacity-expansion model is formulated as:

min
∑

e∈E





∑

g∈G

KV
g,ez

G
g,e +

∑

e′∈E,e′ 6=e

KL
e,e′z

L
e,e′ +KS

e z
S
e (9)

+
∑

y∈Y,h∈H

Υy ·





∑

g∈G

KG
g,eq

G
g,e,y,h +KUqUe,y,h









s.t. 0 ≤ zGg,e ≤ B̄g,e, ∀g, e (10)

0 ≤ zLe,e′ , ∀e, e′ 6= e (11)

0 ≤ zSe , ∀e (12)
∑

g∈G

qGg,e,y,h +
∑

e′∈E,e′ 6=e

(

qLe′,e,y,h − qLe,e′,y,h
)

(13)

+ qDe,y,h − qCe,y,h + qUe,y,h = Le,y,h, ∀e, y, h

0 ≤ qGg,e,y,h ≤ φg,e,y,hz
G
g,e, ∀g, e, y, h (14)

− δgz
G
g,e ≤ qGg,e,y,h − qGg,e,y,h−1 ≤ δgz

G
g,e, (15)

∀g, e, y, h

− zLe,e′ ≤ qLe,e′,y,h ≤ zLe,e′ , ∀e, e′ 6= e, y, h (16)

qSe,y,h = qSe,y,h−1 − qDe,y,h + ζqCe,y,h, (17)

∀e, y, h ≥ 2

qSe,y,0, q
S
e,y,|H| =

1

2
ηzSe , ∀e, y (18)

0 ≤ qSe,y,h ≤ ηzSe , ∀e, y, h (19)

0 ≤ qCe,y,h, q
D
e,y,h ≤ zSe , ∀e, y, h (20)

0 ≤ qUe,y,h ≤ Le,y,h, ∀e, y, h. (21)
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Objective function (9) minimizes total cost, which consists

of generation-, transmission-, and storage-investment costs,

generator-operating cost, and the cost of unserved load. Invest-

ment costs can include the costs of constructing, maintaining,

and eventually retiring assets. Generator-operating costs can

include the costs of fuel and maintaining plants.

The model has two types of constraints. Constraints (10)–

(12) pertain to investments whereas constraints (13)–(21) con-

cern operations. Constraints (10) imposes limits on generation

technology investments, for instance due to land restrictions,

resource availability, or policy restrictions. Constraints (11)

and (12) impose non-negativity on transmission and storage

investments.

Constraints (13) impose load-balance in each hour. Con-

straints (14) and (15) impose capacity and ramping limits

on generators. The capacity limits are defined based on total

installed capacity available multiplied by a capacity factor. The

capacity factor captures hour-to-hour variability in wind, solar,

and other renewable availability, which is embedded in the

representative days selected by clustering. The ramping limit is

assumed to be a multiple of the installed capacity, with higher

values of δg denoting a more flexible generating technology.

Constraints (16) impose transmission-capacity limits.

Constraints (17)–(20) concern storage operations. Con-

straints (17) define the ending state of charge of storage in

each hour. Constraints (18) force each storage device to begin

and end each day with a 50% state of charge. This is a heuristic

approach to attaching carryover value to stored energy from

one day to the next [19]. Constraints (19) and (20) impose

energy and power limits on storage. The energy capacity of

storage is measured by the number of hours of full power

output [20]. We assume that the storage technology modeled

has no effective ramping limit. This is because many storage

technologies in use today have no effective ramping limit.

Constraints (21) limit the amount of unserved energy in each

operating period to be no greater than demand.

IV. CASE STUDY DATA

Our case study is based on the state of Texas, which is

represented as consisting of three regions in the capacity-

expansion model. Hourly solar-insolation, wind-speed, and

temperature data are generated for each region using a vector

autoregression model, which is calibrated to 16 years of hourly

weather observations [21]. Solar-insolation and wind-speed

data are input to models that estimate photovoltaic and wind-

turbine outputs. The temperature data are used to simulate

hourly residential, commercial, and industrial electricity de-

mand data [22], [23]. Historical weather data can also be used

in place of a regression model.

Total simulated demand for the state, assuming 2010 popu-

lation levels, peaks in July at about 69 GW. The historical peak

between 2006 and 2015 ranges between 62 GW and 70 GW

and occurs in July or August, showing that our models capture

load patterns well. The East region has higher demand than

the other two regions, which is in keeping with actual system

loads. Wind capacity factors are highest in the West region,

which is also consistent with actual weather patterns. Finally,

solar insolation peaks in the summer. However, solar capacity

factors are not significantly higher in the summer compared to

the winter, because cell temperatures are higher in the summer,

reducing cell efficiency. Table I summarizes the mean values

of the three operating-condition parameters, which we use in

our cluster analysis, for the three regions.

TABLE I
AVERAGE SIMULATED DEMAND AND WIND AND SOLAR CAPACITY

FACTORS IN THREE REGIONS IN 2010

Region Demand [MWh] Wind [p.u.] Solar [p.u.]
East 20408 0.40 0.19

West 8102 0.50 0.23

South 12226 0.46 0.20

Load and renewable capacity factors are reported in dif-

ferent units. As such, they must be normalized so that the

calculated distance that is used in the clustering methods

places the same weight on the three data sets. We normalize

each of the load and renewable capacity-factor data for each

location to have mean zero and standard deviation 1. Although

we normalize load data for purposes of clustering, we report

load data throughout this paper in absolute terms (cf., for

instance, Table I). This is because while wind and solar

available are more naturally reported in p.u., load is not.

Our capacity-expansion model assumes a ‘greenfield’ sys-

tem, with no starting generation, storage, or transmission

capacity. This is because a brownfield system would see

relatively small incremental investments, which would make

it difficult to draw conclusions as to whether the clustering

techniques yield representative operating days that result in

good investment decisions. We consider five generic genera-

tion technologies: wind, solar, coal, natural gas, and nuclear.

The model can also build a generic storage technology, which

has η = 20 hours of storage capacity and a roundtrip efficiency

of ζ = 0.8. Table II summarizes the baseline technology-

related parameters used in the model, which are obtained

from the United States Energy Information Administration’s

2014 Annual Energy Outlook [24] and other sources [25], [26].

Although these data sources are a few years old, they represent

credible data sources that have been used in numerous United

States Department of Energy technical studies. Moreover, we

do not expect that the performance of the different clustering

methods would be unduly affected by using different costs.

The cost of load curtailment is assumed to be $5000/MWh.

TABLE II
BASELINE PARAMETER VALUES OF CAPACITY-EXPANSION MODEL

Investment Operating Ramp Rate
Technology Cost [$/kW] Cost [$/MWh] [p.u.]
Wind 3737–3864 0 n/a
Solar 3164–3345 0 n/a
Coal 3037–3164 25–26 0.29

Natural Gas 837–964 44–45 0.43

Nuclear 6533–6562 9–10 0.16

Storage 2333-2362 n/a n/a
Transmission 503-806 n/a n/a
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V. CASE STUDY RESULTS

We compare the performance of our two proposed clustering

techniques in terms of selecting representative operating days

and the resulting investments made by the capacity-expansion

model. Our numerical testing suggests that a minimum of

30 representative days is needed to capture the range of

load, wind, and solar conditions in capacity-expansion mod-

eling [18]. For brevity we only present results for cases

using 30 representative days here. Using more days results

in higher-fidelity capacity-expansion modeling, but at higher

computational cost. We generate 30 representative days with

the kMHC technique by first applying k-means clustering to

obtain 10 initial clusters. We then apply HC within each of

those 10 clusters to find three subclusters. We also compare

our proposed clustering techniques to using k-means clustering

only to find 30 clusters.

A. Representative Days Selected

Fig. 1 summarizes the 30 days that are selected and the

weights that are placed on them by the HC and kMHC

techniques. The days selected are the prototypes of the clusters

and the associated weights are the number of days within the

clusters. The figure shows that both techniques select days in

a non-uniform manner. For instance, the HC method selects

eight days in the month of July but only two days in the first

three months of the year. Moreover, the first three months

of the year are only given 49 days of weight, which is less

than 14% of the total. These results suggest that capacity-

expansion models that apply uniform weights to each season

of the year [2], [3] are somewhat arbitrary in nature, as we

note in Section I.
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Fig. 1. Weights placed on 30 representative days by HC and kMHC methods.

Overall, the HC method selects days that are more non-

uniform across the year relative to kMHC. This is in part

because of the two-step clustering process underlying kMHC.

Among the 30 days that they select, nine are common to

both methods: days 134, 155, 171, 189, 209, 124, 126, 218,

and 267. Moreover, HC and kMHC assign total weights of 96
and 94, respectively, to these nine days (which is about 26%

of the total weight), showing further similarities between the

two methods.

The nine commonly chosen days are mostly during the

summer season, demonstrating the importance of the sum-

mer in capturing greater variability in different load and

renewable-availability conditions. Table III summarizes the

per-season standard deviation of load and wind and solar

capacity factors in the unclustered data. The table reveals two

interesting findings. First, it shows that there is considerably

more variability in load as opposed to in renewable availability,

when comparing across seasons. Secondly, the table shows

that the summer season tends to see greater variability in

operating conditions (compared to the other three seasons).

Taken together, these two observations explain more weight

being placed on the summer, as is shown in Fig. 1, and that

load variability has an outsize impact on the weighting toward

the summer.

TABLE III
PER-SEASON STANDARD DEVIATIONS OF LOAD AND WIND AND SOLAR

CAPACITY FACTORS IN UNCLUSTERED DATA

Winter Spring Summer Fall
Load [GW] 5.46 8.02 10.50 7.90

Solar [p.u.] 0.74 0.74 0.76 0.76

Wind [p.u.] 0.74 0.74 0.72 0.73

Table IV shows the peak loads in the unclustered and

clustered data. The table shows that both the HC and kMHC

methods outperform k-means clustering in capturing the load

peaks. While HC and kMHC come within 97% of the overall

peak system load in the unclustered data, k-means clustering

comes within 94% of this peak. Moreover, both the HC and

kMHC methods outperform k-means clustering in capturing

zonal peak loads. The HC method also captures the peak in

two of the load zones.

TABLE IV
PEAK LOADS IN UNCLUSTERED AND CLUSTERED DATA [GW]

Zone Unclustered Data HC kMHC k-Means Clustering
East 35.24 35.11 35.11 33.64

South 21.09 21.09 19.60 19.43

West 13.85 13.85 12.84 12.54

Total 69.29 66.77 66.77 65.52

We cannot show which days are selected if only k-means

clustering is used. This is because k-means clustering does

not provide a representative day (i.e., prototype) for each

cluster. Instead, we represent each cluster found by the k-

means algorithm by its centroid (cf. Step 5 of Algorithm 1).

Fig. 2 shows the wind-duration curve for the East region

using the unclustered and clustered data. The figure shows

mismatches, however the HC and kMHC methods outper-

form k-means clustering in representing the unclustered wind-

duration curve. k-means clustering gives a worse match to the

unclustered data because it ‘over-averages’ wind conditions.

This is seen in the tails of the wind-duration curve. The

representative days given by k-means clustering underestimate
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wind production during high-wind days and overestimate wind

production during low-wind days. This finding that k-means

clustering over-averages renewable availability carries over to

other resource/region combinations. We do not show other

wind- and solar-duration curves for sake of brevity. This issue

with k-means clustering can be overcome if more representa-

tive days are generated. However, this results in a larger and

more computationally challenging capacity-expansion model.
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Fig. 2. East-region wind-duration curve using unclustered and clustered data.

We can quantify the match between the wind profiles given

by the clustered and unclustered data using a normalized

root mean square deviation (RMSD). We define the RMSD

between the clustered and unclustered wind-duration curves

as:
√

1

8760

8760
∑

i=1

(

ρC,W
e,i − ρU,W

e,i

)2

1

8760

8760
∑

i=1

ρU,W
e,i

, (22)

where the RMSD is normalized by the average wind capacity

factor. The same metric can also be applied to the clustered

and unclustered load- and solar-duration curves. In the case

of the wind-duration curves for the East region, the HC and

kMHC methods have RMSDs of 0.02 and 0.04, respectively,

whereas k-means clustering has an RMSD of 0.16.

Table V summarizes the average (over the three locations

modeled) RMSDs for the load-, solar-, and wind-duration

curves given by the HC, kMHC, and k-means clustering tech-

niques. HC and kMHC tend to outperform k-means clustering,

which overly averages extreme conditions. This is especially

true for renewable-resource data, because the three techniques

perform the same in representing the load-duration curves. The

RMSDs for the load-duration curves that are obtained from

the three clustering techniques are nearly identical for two

reasons. First, loads display less variability as compared to

wind and solar availabilities. As such, the load-duration curves

from the three clustering techniques are very similar. Secondly,

load values are relatively large in magnitude. As such, what

differences there are in the load-duration curves are negligible

when normalized by the average load. HC slightly outperforms

kMHC in terms of goodness-of-fit of wind-duration curves,

whereas kMHC outperforms HC in terms of solar-duration

curves. This suggests that the two methods are comparable in

terms of selecting reasonable operating days.

TABLE V
AVERAGE (AMONG THE THREE REGIONS) NORMALIZED RMSD FOR

LOAD, SOLAR, AND WIND-DURATION CURVES GIVEN BY HC, kMHC,
AND k-MEANS CLUSTERING

Demand Solar Wind
HC 1.02 0.11 0.06

kMHC 1.02 0.08 0.07

k-Means Clustering 1.02 0.14 0.13

The clustering methods are implemented in R on a system

with a 3.10 GHz Intel Core i7-3770S processor and 8 GB

of memory. The HC and kMHC methods take approximately

15 and two minutes of CPU time, respectively, to provide

30 clusters, while k-means clustering takes several seconds.

This shows a further benefit of kMHC. The time difference

between the HC and kMHC is expected to increase if the data

sets being clustered grow in size. This could occur because

more locations are modeled, more operating-condition data are

used to select representative days, or the operating-condition

data are recorded at subhourly intervals.

B. Investment Decisions

We test the effectiveness of the representative days in

capacity-expansion modeling by examining cases in which

wind-investment costs are reduced relative to the baseline val-

ues that are given in Table II. The rationale behind this analysis

is that changes in the investment cost of wind will result in

differences in the generation mix installed. For instance, lower

wind-investment costs tends to increase wind investments. At

the same time, greater wind investments may also call for

changes in the mix of other generation resources, such as more

flexible generation with greater ramping capabilities.
Figs. 3–5 summarize the investments in coal- and natural

gas-fired generation and wind (aggregated across the three

regions) by the capacity-expansion model with different wind-

investment costs and representative operating days. There are

no investments in nuclear or solar technologies in any of the

cases that are examined. This is because of the high costs

of nuclear and solar and the relatively low capacity factor of

solar.
The figures show some trends in the investments, which

are observed when using unclustered and clustered data sets.

Reductions in wind-investment costs generally result in more

wind generation being built in place of coal- and natural gas-

fired capacity. This is because lower wind-investment costs

means that wind is a lower-cost source of energy.
The one exception to this is for relatively modest reduc-

tions in wind-investment costs (i.e., the case with a 30%

reduction relative to baseline). In this case, wind and natural

gas-fired capacities both increase, while coal-fired capacity

decreases. The reason for this is that the greater wind capacity

built requires more dispatchable and flexible natural gas-

fired capacity (natural gas-fired generation has a relatively
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Fig. 3. Coal-fired capacity that is built as a function of the reduction in wind-
investment cost relative to baseline using unclustered and clustered data.
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Fig. 4. Natural gas-fired capacity that is built as a function of the reduction
in wind-investment cost relative to baseline using unclustered and clustered
data.

high ramping capability). This observation is consistent with

other analyses of the potential impacts of high penetrations of

renewable energy [27]. Further reductions in wind-investment

costs beyond the 30% case allow the system to ‘overbuild’

wind, which reduces the need for flexible capacity. In essence,

the model builds sufficient wind capacity that even during

hours with low capacity factors, the wind can serve much of

the load. Some natural gas-fired generation and energy storage

are used to supplement wind production in these cases.

Overall, the representative days that are selected by the

three clustering techniques result in investment levels that

follow those given by the unclustered data. We can quantify

the extent to which the investments that are determined by

using clustered data match those that are determined by using

unclustered data, through the use of a normalized RMSD

metric. We define the normalized RMSD in investments in

0 0.3 0.5 0.7 0.9

Wind Cost Reduction [%]

0

20

40

60

80

100

120

140

160

180

W
in

d 
C

ap
ac

ity
 B

ui
lt 

[G
W

]

Fig. 5. Wind capacity that is built as a function of the reduction in wind-
investment cost relative to baseline using unclustered and clustered data.

technology τ as:
√

1

|Γ|

∑

γ∈Γ

(

zCτ,γ − zUτ,γ
)2

1

|Γ|

∑

γ∈Γ

zUτ,γ
. (23)

Table VI reports the RMSDs for the five different technologies

that are built (note that solar and nuclear are not built, because

of their relatively high investment costs). The table shows that

the HC technique results in investments that are closest to

those that are given by the unclustered data. However, the

HC and kMHC techniques both perform better than k-means

clustering overall.

TABLE VI
NORMALIZED RMSD FOR INVESTMENTS GIVEN BY HC, kMHC, AND

k-MEANS CLUSTERING

HC kMHC k-Means Clustering
Coal 0.07 0.48 0.18

Natural Gas 0.12 0.18 0.20

Wind 0.19 0.14 0.20

Storage 0.19 0.22 0.32

Transmission 0.11 0.15 0.25

VI. CONCLUSIONS

This paper proposes two hierarchical clustering methods to

select representative operating days for long-term capacity-

expansion models. The use of representative operating periods

reduces the computational cost of such models. Our methodol-

ogy allows intertemporal operating constraints, such as storage

state-of-charge-balance and generator ramping, to be captured

in the investment model. At the same time, the clustering

methods produce representative days that capture the important

statistical features of operating-condition data. This includes

temporal autocorrelations in the data and correlations between

the locations that are modeled. This is primarly demonstrated

by comparing the investment decisions that are made using the
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clustered data to those made using the full unclustered dataset.

We show that the HC and kMHC methods yield investment

decisions that are comparable to those that are obtained using

the full unclustered data.

Using a case study that is based on the Texan power

system, we test our proposed methodologies and compare

their performance to applying k-means clustering alone. We

show that the representative days that are selected by our

proposed methods capture the time dynamics in the load,

solar, and wind data. We also demonstrate that they result

in better overall investment decisions than applying k-means

clustering alone does. We do this by examining investment

levels with different wind-investment costs. Our own testing

[18] also examines the impacts of changing other investment-

model parameters (e.g., solar-investment costs and operating

costs of different technologies). This testing, which we do

not present here for sake of brevity, demonstrate the same

finding that the HC and kMHC methods yield investment

decisions that are comparable to those that are obtained from

using the full unclustered data. The kMHC technique reduces

the computational burden of selecting representative days

compared to HC, but this comes at some cost in terms of

quality of the investment decisions.

The relatively good performance of the kMHC technique

compared to HC method may seem surprising in light of the

differences in the days that the two methods select (cf. Fig. 1).

This finding highlights an important nuance in the selection of

representative days. The goal is to find an ensemble of days

that represent the different feature of load, wind, and solar

patterns. Although there are some differences in the days that

are selected by the HC and kMHC methods, they ultimately

come up with ensembles with relatively similar patterns.

An important question underlying the use of our proposed

clustering techniques is how many representative days should

be selected. There is a clear tradeoff here. More representative

days allows for higher fidelity in modeling operating condi-

tions. Conversely, more days yields a larger and less tractable

capacity-expansion model. The capacity-expansion model that

we use in this paper is based on a more complex multistage,

multiscale stochastic investment model [9]. Even with the use

of the progressive hedging decomposition algorithm [28], that

more complex model can take over a week to solve with

30 representative days if a sufficient number of scenarios and

investment stages are included. Thus, judiciously selecting the

minimum number of representative days possible is important

from the perspective of maintaining a tractable capacity-

expansion model. Indeed, one may argue that the shortcomings

of applying k-means clustering alone can be overcome by

use of more representative days (with less computational time

involved than employing the HC or kMHC methods). This is a

naı̈ve view, however, because it neglects the cost of solving the

resulting capacity-expansion model. This further demonstrates

a contribution of our work, as the HC or kMHC methods do

a better job than k-means clustering in judiciously selecting a

small number of representative operating days for investment

modeling.

Our analysis focuses on using clustering to obtain represen-

tative operating days. One could naturally use our proposed

methods to select operating hours, for instance if it is not

necessary to model intertemporal operating constraints. Con-

versely, the methods could also be used to select operating

weeks if, for instance, interday energy storage is an important

modeling feature. A benefit of our proposed clustering meth-

ods relative to others that are proposed in the literature (even

if selecting representative operating hours) is that they do not

arbitrarily assign equal weights to different seasons of periods

of the year, as illustrated by Fig. 1.
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