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Abstract

A long-standing issue with centrally committed electricity markets is the design of non-confiscatory and
equilibrium-supporting prices. This is because the social planner’s problem in such a market is a non-convex
unit commitment. O’Neill et al. (2005) propose a pricing scheme that overcomes these issues for any market
that can be formulated as a mixed-integer linear program. Moreover, claims appear in the literature implying
that such a payment mechanism is currently in use in a number of organized electricity markets. Using an
illustrative example, we demonstrate that this is not the case. We further demonstrate that the pricing
scheme proposed by O’Neill et al. (2005) has some important implications for long-run capacity investment.
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1. Introduction

Centrally committed electricity markets rely on a system operator (SO) to make binding generator
operation decisions. Interested readers are referred to the work of Baldick et al. (2005), which provides
an excellent overview of such markets. The SO does this by soliciting multi-part offers from generators,
specifying their cost structure and operating constraints, and bids for energy and reserves from consumers.
These offers and bids are input to a unit commitment problem, which the SO solves to determine the socially
optimal commitment and dispatch of generators and the allocation of energy and reserves to consumers.
Sheble and Fahd (1994) provide a detailed survey of the unit commitment literature. The SO also uses the
unit commitment solution to generate a set of prices for the commodities (e.g., energy and reserves) traded
in the market. A difficulty in generating such prices is that linear commodity payments can be confiscatory
in a market with indivisibilities or other non-convexities. In the context of unit commitment, non-convexities
arise due to binary generator commitment decisions (i.e., a generator either has to be in an offline or online
state in each time interval). Moreover, as Hobbs et al. (2001); Johnson et al. (1997) note, non-convexities
in unit commitment problems imply that there are no linear commodity prices that ‘support’ the socially
optimal solution. This means that if generators and consumers are left to make production and consumption
decisions on their own, based on a set of linear prices, they typically have incentives to deviate from the
SO’s optimal solution.

O’Neill et al. (2005) propose an alternate pricing scheme, which we hereafter refer to as T. They show
that T supports the central planner’s solution for any market that can be formulated as a mixed-integer
linear program (MILP), by finding a set of prices that yield zero profits for all activities in the optimal
solution. In the context of electricity markets, T works by first solving the MILP of the unit commitment
problem to determine a socially optimal solution. They then solve an augmented linear program (LP), in
which the integrality restrictions are relaxed and equality constraints fixing the integer variables to their
optimal values are added. Since this LP has a well-defined dual, the corresponding optimal dual variable
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values can be used as prices. Specifically, they propose making linear payments for each of the commodities
traded, and a supplemental payment associated with each ‘integer’ activity. In an electricity market, the first
part of their proposal is to make payments for energy and reserves based on the dual variables associated
with the system energy- and reserve-balance constraints. The second part makes discriminatory payments
to each generator based on the dual variable associated with the constraints fixing the commitment decisions
to their optimal values. O’Neill et al. (2005) note that the prices on these commitment activities may be
negative, for instance to incent a generator to remain offline if it is suboptimal to commit it. In such a case,
the generator receives this negative payment only if it commits itself.

In practice, most centrally committed electricity markets overcome the confiscation issue using linear
payments for energy and reserves and supplemental ‘make-whole’ payments. These make-whole payments
compensate each generator for incurred cost, which is calculated using the bids submitted to the SO, that is
not recovered through energy and reserve payments. Thus, the make-whole scheme ensures that no generator
has a net profit loss (on the basis of its bids) at the end of the unit commitment period. One might be
tempted to conjecture that these make-whole payments are equivalent to T. Indeed, claims either explicitly
stating or implicitly suggesting this can be found in the literature. For instance, Araoz-Castillo and Jörnsten
(2010) state:

Reference [7] [the work of O’Neill et al. (2005)] proposes an augmented pricing problem, where
the MILP is solved with integrality constraints (6) set to their optimal value, that is zi = Z∗

i .
The dual prices obtained from constraints (3), (4), and (6) will represent the price for three
commodities, namely the price for electricity, for capacity price and for start-up or construction
respectively.

Under this approach, the generators will receive a price for the commodity amount produced and
an additional amount to compensate them for any loss incurred using these commodity prices.
However, there are some instances where these prices are negative.

Baldick et al. (2005); O’Neill (2010) make similar statements that could be interpreted as suggesting that
T is equivalent to the make-whole mechanism. However, we provide an example below showing that T can
exhibit properties that are quite different from make-whole payments. We further show that T has some
potentially important implications for long-run generation capacity investment in an electricity system.

2. Example

We begin with a simple numerical example consisting of a single-hour with 1010 MW of load, no reserves,
and two generators. The operating costs and capacities of the generators are summarized in Table 1. We
verify that linear commodity payments for energy only is confiscatory and that T overcomes this issue.
We also demonstrate that the prices generated by T are different from the make-whole mechanism used
in most centrally committed electricity markets. Indeed, while make-whole payments allow generator 1 to
earn inframarginal rents, generator 1’s discriminatory payment under T is negative, eliminating all of these
rents.

Table 1: Generator characteristics

Generator Startup Cost [$] Variable Cost [$/MWh] Capacity [MW]

1 0 10 1000
2 1000 15 100

In this example, the SO must determine whether to startup the two generators, which are binary decisions,
which we denote u1 and u2. It must also decide how much energy, q1 and q2, each should produce. Using
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the generator characteristics in Table 1, we have the following MILP:

min
q,u

1000 · u2 + 10 · q1 + 15 · q2

s.t. q1 + q2 = 1010

0 ≤ q1 ≤ 1000 · u1

0 ≤ q2 ≤ 100 · u2

u1, u2 ∈ {0, 1},

the unique optimal solution of which is (q∗
1
, q∗

2
, u∗

1
, u∗

2
) = (1000, 10, 1, 1). The standard energy-pricing scheme

used in electricity markets is to replace the integer variables with their optimal values, giving the following
LP:

min
q

10 · q1 + 15 · q2

s.t. q1 + q2 = 1010 (η)

0 ≤ q1 ≤ 1000

0 ≤ q2 ≤ 100,

where η is the dual variable associated with the load-balance constraint. This dual variable value is used to
remunerate generators for energy provided. Thus, generator i’s net profit under this scheme is:

(η∗ − ci) · q
∗

i − si · u
∗

i ,

where ci and si are its variable and startup costs, respectively. In our example, the value of this dual variable
is $15/MWh, giving the two generators net profits of $5000 and −$1000, respectively. This pricing scheme is
confiscatory, because generator 2 sets the marginal price of energy and cannot recover its fixed startup cost.
With the standard make-whole payment scheme, generator 2 receives a supplemental payment of $1000 to
recover this lost profit while generator 1 receives no supplemental payment and keeps $5000 of inframarginal
rent.

Under T, the SO solves the following augmented LP:

min
q,u

1000 · u2 + 10 · q1 + 15 · q2

s.t. q1 + q2 = 1010 (η)

q1 ≤ 1000 · u1

q2 ≤ 100 · u2

u1 = 1 (µ1)

u2 = 1 (µ2)

q1, q2 ≥ 0,

where the variables in the parentheses indicate the dual variable associated with each primal constraint.
Since the ui’s are fixed at their MILP-optimal values, this LP yields the same solution as the original MILP.
Moreover, we now have prices, µ1 and µ2, which are used for supplemental payments to each generator
associated with its integer startup activity. Thus, generator i’s net profit under T is:

(η∗ − ci) · q
∗

i + (µ∗

i − si) · u
∗

i .

The unique dual-optimal solution gives µ∗

2
= 1000, indicating that generator 2 receives the same supplemental

payment as with the make-whole mechanism. On the other hand, we have µ∗

1
= −5000, meaning that under

T generator 1 foregoes all inframarginal rents and makes zero profit in net.
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Indeed, it is straightforward to show that in a more general single-period electricity market with N

generators, every generator receives exactly zero net profit under T. To see this, we define the more general
version of the augmented LP as:

min
q,u

N∑

i=1

si · ui + ci · qi

s.t.

N∑

i=1

qi = D (η)

qi ≤ Ki · ui ∀ i = 1, . . . , N (λi)

ui = u∗

i ∀ i = 1, . . . , N (µi)

qi ≥ 0 ∀ i = 1, . . . , N,

where Ki is generator i’s capacity and D is the demand. The dual of this LP is:

max
η,λ,µ

D · η +
∑

i

u∗

i · µi

s.t. η + λi ≤ ci ∀ i = 1, . . . , N (1)

− Ki · λi + µi = si ∀ i = 1, . . . , N (2)

λi ≤ 0 ∀ i = 1, . . . , N.

We know that any inframarginal generator, i, will have (q∗i , u∗

i ) = (Ki, 1). Thus, the complementary slackness
conditions and constraint (1i) imply that:

λ∗

i = ci − η∗.

Substituting this into (2i) gives:

(η∗ − ci) · Ki + µ∗

i − si = 0

(η∗ − ci) · q
∗

i + (µ∗

i − si) · u
∗

i = 0,

implying zero net profit. In the case of the marginal generator, j, we have that 0 ≤ q∗j ≤ Kj and u∗

i = 1.
Constraint (2j) implies that:

−Kj · λ
∗

j + µ∗

j − sj = 0,

and combining this with the non-positivity of λj gives:

−q∗j · λ∗

j + µ∗

j − sj ≤ 0. (3)

The complementary slackness conditions and constraint (1j) further imply that:

−λ∗

j ≥ η∗ − cj . (4)

Combining (3) and (4) gives:
(η∗ − cj) · q

∗

j + (µ∗

j − sj) · u
∗

j ≤ 0.

Since these prices support the SO’s solution and generator j could always choose to remain offline (earning
zero profit in net), we know the prices must yield exactly zero profit. Finally, any generator, l, that is not
committed receives zero profit, since (q∗l , u∗

l ) = (0, 0).

3. Conclusion

This counterexample demonstrates that the pricing scheme used by most SOs that operate centrally
committed markets can, under certain circumstances, provide generators and consumers with incentives
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to deviate from the SO’s socially optimal solution. This is important to stress, since claims appear in the
literature that can be construed as implying that the make-whole payments used by SOs are equivalent to T.
More specifically, there are four possible cases for the optimal values of u∗

i and µ∗

i to consider. If u∗

i = 1 and
µ∗

i > 0, then T and the make-whole mechanism provide the same incentives, since it is efficient for generator
i to operate and a positive supplemental payment must be provided to guarantee this. If u∗

i = 0 and µ∗

i > 0,
T and the make-whole mechanism similarly provide the same incentives for generator i to remain offline. If
u∗

i = 0 and µ∗

i < 0, it is suboptimal for generator i to operate. T provides a negative supplemental payment
to guarantee this, whereas the make-whole provision does not—implying that generator i may have different
incentives under such a scheme. Finally, if u∗

i = 1 and µ∗

i < 0, T imposes a ‘penalty’ on generator i for
operating, which eliminates its inframarginal rents, whereas the make-whole provision does not.

This final case and our example suggests that T may have important implications for long-term capacity
expansion. This is because restructured electricity markets may rely on spot market prices and associated
inframarginal rents to signal the need for capacity to be added to the system. Indeed, one can explicitly model
load curtailment as a ‘generation technology’ with zero startup cost and variable cost equal to a high value
of lost load (as an example, Kariuki and Allan (1996) estimate a value of lost load of between $4600/MWh
and $18500/MWh). The resulting high price of energy when generation capacity is exhausted and load
is curtailed is intended to provide a strong signal for capacity investment. Our example demonstrates,
however, that in such a case T would result in zero net profit for each generator, assuming no internal
constraints other than simple capacity constraints. This is consistent with a goal of Scarf (1994) (noted by
O’Neill et al. (2005)), which is to find a set of prices that yield zero profits for all activities in an optimal
solution in the presence of non-convexities. It should be stressed, however, that our example is highly
stylized. More complex settings with binding internal constraints (e.g., ramp limits or stepped marginal
generation costs) on the activities can result in positive generator profits. These examples, nevertheless,
point to the need for further research on commodity pricing in markets with non-convexities and centrally
committed electricity markets in particular. Herrero et al. (2014) provide a formative attempt to address
these long-term investment issues.
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