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Abstract

We use longitudinal dynamics and simulation models to study the feasibility of deploying electric buses
in place of conventional ones. The longitudinal dynamics model estimates energy use by an electric bus
operating on different lines consisting of a mixture of urban and suburban driving. The simulation model
is used to study the effect of the type and number of chargers deployed and the queuing policy used on
queuing and charging times when buses must recharge their batteries. We use a case study based on the
bus service operated on The Ohio State University campus and focus on six of the seven lines which operate
around the center of campus. We demonstrate that all 22 of the buses on these lines can be made electric
and that one 500 kW or two 250 kW chargers are sufficient to maintain reasonable service frequencies.
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1. Introduction

Concerns about gasoline prices, dependence on foreign energy sources, and environmental issues asso-
ciated with using fossil fuels have increased interest in hybrid- and pure-electric vehicles. This includes
a recent focus on heavy-duty vehicles, such as municipal buses. For instance, Wirasingha et al. [1] ex-
amine the economic viability and cost savings of the Chicago Transit Authority deploying plug-in hybrid
electric buses in their fleet. Although electric buses have lower driving costs than conventional gasoline
or diesel buses, they have considerably higher upfront capital costs. Informal conversations with two bus
manufacturers—Proterra, Inc., which produces pure-electric buses, and Gillig LLC, which produces conven-
tional and hybrid-electric diesel buses—reveal large price differences. Proterra markets its electric bus for
about $900,000, as opposed to $400,000 and $600,000 for Gillig’s conventional and hybrid buses, respectively.
Much of this cost difference is due to the large capacity of the battery. Due to vehicle mass and the need for
a long driving range, an electric bus may have a 55 kWh or larger battery. The feasibility of electric vehicle
deployment depends largely on proper vehicle design [2].

Furthermore, an electric bus fleet requires a charging infrastructure [3]. Unlike a conventional bus, which
can often complete a shift without refueling, an electric bus may need to recharge multiple times in a day. To
maintain reasonable bus service frequencies, this charging must typically be done within a relatively short
time frame. One option is to install chargers that the buses directly use. Proterra, for example, markets
a 250 kW bus charger for about $250,000. This could charge a fully-depleted 55 kWh battery in about
15 minutes (assuming 90%-efficient charging). An alternative is to use battery-swapping stations, which
keep an inventory of charged batteries that can be swapped into buses between trips. Because batteries in
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the station are charged continuously (as opposed to only between trips, as with a dedicated bus charger),
lower charging rates can be used. Battery swapping can be costly, however, since an inventory of additional
batteries is needed. The battery is one of the most expensive components in an electric bus. Nevertheless,
this model has been used, for instance by the electric bus fleet used to transport athletes to and from the
Olympic Village at the 2008 Beijing games.

Thus, charging infrastructure design and layout is an important consideration in deploying an electric bus
fleet. This is due to the tradeoff between minimizing infrastructure cost and maintaining reasonable service
levels. Charging-infrastructure problems belong to the broader class of refueling-infrastructure problems,
which is studied in a number of previous works. Langford and Cherry [4] examine the deployment of
hydrogen buses by the transit authority in the Knoxville, Tennessee area. They use geographic information
system data to find the best sites at which to install hydrogen refueling stations for use by the transit
authority and individuals with hydrogen-powered vehicles. They assume staggered refueling before or after
each bus enters or exits service. Other works examine the deployment of electric vehicle chargers, but focus
on light-duty vehicles. Ip et al. [5] determine the location of charging stations using a hierarchical clustering
method. Their approach is to convert road information into demand clusters and assign each cluster one
charging station. Frade et al. [6] propose a maximal covering model, which determines the location of
charging stations by maximizing the demand covered within an acceptable distance of the stations. The
demands are determined based on the number of vehicles at each city block.

The aim of this paper is to expand upon these works and examine the use of an electric bus fleet for
passenger service. We do this using a case study based on the Campus Area Bus Service (CABS) operated
on The Ohio State University’s main campus. Specifically, we develop an electric bus energy model, which
determines the energy used by buses on the different lines operated by the CABS, based on the associated
duty cycles. We also develop a simulation model to examine how electric bus charging patterns and queuing
times are affected by the number of chargers deployed in the system and the charging policy employed. We
demonstrate that a standard first-in/first-out policy results in the highest queuing times, implying that the
CABS could not maintain its current bus schedule if such a policy is used. Rather, a highest attribute value
policy, which prioritizes buses with the highest state of charge (SoC) first, achieves the shortest queuing
times. Overall, we demonstrate that with proper investments, the CABS fleet can be electrified with minimal
disruption to service levels. The remainder of this paper is organized as follows: Section 2 discusses our bus
model and provides some validation results. Section 3 details the simulation model used to study charging
patterns and the different charging policies examined. Section 4 details the CABS and our case study and
assumptions. Section 5 summarizes our results and Section 6 concludes.

2. Bus Model

We model electric bus energy consumption using a backward approach [7, 8, 9]. This technique starts
with a specific driving cycle, which is used to calculate vehicle longitudinal dynamics as a function of
velocity. From these dynamics we compute torque and rotational speed at the wheels. Then, by accounting
for transmission losses, we use motor maps to determine electric energy use.

We model the longitudinal dynamics of the bus as:

d
(M + Mequ)

%V(t) = FMW(t) - Ftotal(t)a (1)

where M is the vehicle mass, Mg, accounts for the rotational inertia of the vehicle components, V (¢) is the
velocity, Firw (t) is the motor force at the wheels, and Fioq(t) is the vehicle road load. Fw (t) represents
the force that the powertrain must supply to the wheels to overcome Fjiq;(t). We assume that:

Megu = 0.1- M, (2)

meaning that the rotational inertia of the vehicle components is approximated as being 10% of the linear
inertia of the vehicle. The literature [10, 11, 12] suggests different ways to estimate this parameter, showing
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that it could vary between 7% and 13%. For the purposes of our model, we believe 10% is a reasonable
approximation of this range, since it allows us to evaluate overall vehicle energy expenditure.
We assume the vehicle road load is defined as the sum of the resistance forces acting on the vehicle, and
is given by:
Frotar(t) = Fa(t) + Fr(t) + Fy(t) + Face(t), (3)

where Fy,(t) and F,.(t) are the aerodynamic and rolling resistance forces, respectively, Fy(t) is the grade force
for non-horizontal roads, and F,..(t) is the accessory force. The aerodynamic resistance force is caused by
the friction of the air that surrounds the vehicle surface and the pressure difference that exists between the
front and back of the vehicle. Thus we compute it as:

1
Fa(t)zipa'Af'Od'Veff(t)?a (4)

where p, is the air density, Ay is the frontal area of the vehicle, Cy is the drag coefficient, and Vs (t) =
V(t) — Vipina(t) is the relative velocity between the vehicle and the air. At low velocities the rolling resistance
force is the primary force opposing the motion of the vehicle. We assume it is given by:

Fo(t) = Co(V(t) - M - g - cosa, (5)

where ¢ is standard gravity and « is angle of the road with the horizontal. C,(-) represents the rolling
resistance coefficient, which can be determined as a function of vehicle speed and tire pressure. The grade
force is defined as the gravitational force that acts on the vehicle, and is given by:

Fy(t)=M - g-sina. (6)

The motor force at the wheels can be defined as the motive force at the wheels that the powertrain must
supply to overcome the road load. Thus it can be defined as:

1
Fyw (t) = R—TW(t)a (7)
w
where Ry is the wheel radius and Ty (¢) is the motor torque at the wheels. We can further define the power
at the wheels as:

Pw(t)=Tw (@) ww(t) =n - Tu(t) - wm(t), (8)

where Ty (t) is the motor torque, wy (t) and wys(t) are the rotational speeds at the wheels and motor,
respectively, and 7, is overall transmission efficiency. We assume a fixed ratio between the rotational speeds

at the wheels and motor:
wnm (t)

— A A = A, 9
o (D) M (9)
where Ay is the final transmission efficiency and A, the gear ratio. Substituting (9) into (8) gives:
wr ()
Tir () = e - Taa ()22 — o\ - Tag 1), (10)
ww (1)

Combining (1), (7), and (10) allows us to compute the motor torque. We use a motor efficiency map,
which is specific to the electric machine in the bus, to interpolate the associated rotational speed at the
motor. We finally use an assumed motor efficiency to determine instantaneous energy use (or regeneration,
when braking) at the battery. We also add the accessory load, Fy..(t). These power terms are integrated
over the entire driving cycle to determine total energy consumption.

We do not aim to model the storage system of the electric bus in detail. Rather, we analyze energy
consumption given vehicle parameters and driving cycles. We assume the bus uses a nano-lithium-titanate
battery, which has extremely fast charging and discharging rates without incurring damage [13]. We assume
a battery with a 55 kWh storage capacity, which represents about 6.5% of the gross vehicle weight, and that
the battery can operate between 20% and 95% SoC.
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The model is implemented using the MATLAB/Simulink software platform. We validate the model against
two driving tests conducted by Proterra at the Altoona Bus Testing and Research Center. Proterra [14]
provides detailed vehicle characteristics of its FCBE 35 bus, which was tested, and we use these characteristics
in our model. It also reports the tested fuel efficiency of the bus on the standard Central Business District
(CBD) driving cycle. Proterra reports average energy consumption of 1.70 kWh/mile on the CBD driving
cycle. Our simulations estimate 1.60 kWh/mile, meaning that our model estimates energy consumption that
is within 6% of their reported test results. Figure 1 shows the results of our model applied to the Proterra
bus on the CBD driving cycle. Specifically, it shows simulated bus displacement, velocity, and battery SoC.
Proterra also conducted another, proprietary driving test. Although we cannot publicly disclose the details
of this driving test, the bus had average and maximum velocities of 26 and 69 km/h, respectively. Our
simulated energy usage, based on this driving cycle, is within 5% of the tested energy consumption.
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Figure 1: Simulated displacement, velocity, and SoC of Proterra bus on the CBD driving cycle.

While our modeling approach is widely used in the literature, it is a simplification of actual vehicle energy
use. For instance, Trovao et al. [15] propose more sophisticated energy management strategies than what
our model assumes. Since the focus of our analysis is on bus charging and queuing and queue management,
this model provides relatively good inputs to our simulation model. Moreover, comparing modeled energy
consumption to test data provided and reported by Proterra gives us confidence in these inputs.

3. Simulation Model

Our bus simulation model is divided into two parts—one that models bus trips along the lines in the
system and another which models charging decisions by each bus and the resulting charging queues. Although
we examine a mixed fleet, consisting of pure-electric and conventional buses, our model focuses exclusively
on the former, since conventional buses do not use the chargers. The model first determines the time at
which each bus enters the system. This entry time corresponds to when each bus begins it first trip during
the period modeled. We assume that each bus begins this first trip with a fully-charged battery. Each bus
route is divided into segments between each charging station along the line. We allow the travel time along
each segment to be random, capturing variability of traffic and passenger loading and alighting patterns.
We assume time-invariant travel-time distributions.

Figure 2 is a schematic diagram, summarizing the assumed logic when a bus arrives at a charging station.
The model first updates the battery SoC, based on the SoC upon departing the previous charging station
and the energy consumed in the segment just driven. Energy use is computed using the model detailed in
Section 2. If a bus finds an unoccupied charger, it immediately occupies one and begins charging. Otherwise,
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if all chargers are occupied but there is a charger without a queue, it randomly chooses an empty queue
to enter. If a bus finds that all of the chargers are occupied and have non-empty queues, it determines if
its SoC is sufficient to arrive at the next station along its route. If so, it exits the charging station and
continues on its route. Otherwise, it enters the shortest queue available. Once a bus occupies a charger
(either immediately upon arrival at a charging station or after queuing), it only charges sufficient energy
to reach the next charging station. The queuing and charging logic assumptions are intended to minimize
travel time disruptions to customers on the bus. Upon exiting the charging station, the battery SoC is
updated to reflect any energy recharging, less inverter and other efficiency losses. The simulation continues
in a loop in this fashion, as buses arrive and depart charging stations upon their routes. We implement this
simulation model using Arena version 13.0, by Rockwell Automation.

4. Case Study: Campus Area Bus Service

The Ohio State University’s main campus is located in Columbus, Ohio and is one of the largest in the
United States with more than a 7 km? area, 457 buildings, and 55,000 students. The university also has
five regional campuses throughout the state of Ohio in the cities of Lima, Mansfield, Marion, Newark, and
Wooster. These regional campuses are excluded from this analysis. To ease on- and off-campus transport,
the university operates the CABS. As shown in Figure 3, this consists of seven lines—North Express, Campus
Loop North, Campus Loop South, Central Connector, East Residential, Buckeye Village, and Med Center
Express. Buses run on these lines at different frequencies, depending on the time of day, day of week, and
time of year. The peak operating period, during which buses run with the greatest frequency is 7:00 am to
7:00 pm on weekdays, during the autumn, winter, and spring quarters (when classes are in session).

CABS currently operates a mix of conventional and hybrid-electric diesel buses on these lines. Our case
study assumes that these buses are replaced with all-electric models. Moreover, we exclude the Med Center
Express line from this analysis, as it operates primarily outside of the center of campus. Whereas the other
lines can share chargers due to overlap in their routes in the center of the campus, this would not be possible
with the Med Center Express line.

Since actual velocity profile data for the six lines modeled are not available, we simulate these as a mixture
of two bus velocity profiles that are standard in the literature [14, 16]. The Manhattan Bus Cycle (MBC) is
intended to replicate an urban setting while the City Suburban Cycle (CSC) represents suburban driving.
We use a mixture of these two due to the environment within and around the Ohio State University campus.
Central campus can be compared to a small city, whereas the peripheral area is a mixture of residential
and light-commercial buildings. Thus, each line is modeled assuming an MBC velocity profile in the center
of campus and a CSC profile off campus. Figure 3 shows the boundary of the area that we consider to be
central campus. To accurately estimate the mass of the bus in (1) we must account for passenger loads.
Transportation and Parking (T&P) Services, which operates the CABS, periodically collects time-resolved
passenger load data on its lines. Using a dataset for one of the lines, and by classifying the different stops
on the lines as being in the ‘urban’ or ‘suburban’ zone, we generate passenger load profiles for the lines. We
further assume each passenger and the bus driver to have a 70 kg mass, which is standard [14, 16]. Since
the city of Columbus is nearly flat, we assume a 0% road grade on the entirety of each bus line. Table 1
provides summary data for the six lines modeled, including total length of each line, the percentage of those
miles driven in the central campus area (corresponding to the MBC profile), the average per-cycle driving
time, and the corresponding per-cycle energy use of the modeled electric bus. As expected, the table shows
that the lines that spend more time in central campus have slower average velocities. These lines are also
slightly less energy-efficient, since they require more kWh of energy per km driven. Figure 4 shows the
simulated displacement, velocity, and SoC profile of a bus on the Campus Loop South line, starting from
central campus. As expected, the portion of the route in central campus has frequent stops and a lower
average and more variable velocity profile, due to planned stops and vehicle and pedestrian traffic. The bus
is able to achieve higher velocities in the later part of the route, which is to the west of central campus.
Similar velocity and energy use profiles are observed with the other lines.

Because it is the peak service period, during which all of the lines are operating with maximum frequency,
our analysis focuses on the midday period from 7:00 am to 7:00 pm on weekdays. We assume that the buses
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Table 1: Length, average driving time, and energy use of CABS lines modeled

Line Length MBC Avg. Per-Cycle Avg. Per-Cycle Efficiency
[km] (%) Time [min] Energy Use kWh] [kWh/km]
North Express 6.28 38 23.2 8.41 1.34
Campus Loop North | 8.66 34 30.5 10.91 1.26
Campus Loop South | 8.66 34 31.2 11.08 1.28
Central Connector 9.17 52 324 12.11 1.32
East Residential 9.07 22 32.5 11.62 1.28
Buckeye Village 9.93 22 29.7 12.71 1.28

aim to maintain the same service frequency established by T&P—the North Express, Central Connector, and
Buckeye Village lines run with five-, 12-, and 15-minute frequencies, respectively, while the remaining lines
operate at 9-minute intervals. Based on the service frequencies and the mean cycle times listed in Table 1,
T&P needs two, three, and five buses on the Buckeye Village, Central Connector, and North Express lines,
respectively, and four buses on each of the remaining lines. We assume these numbers of electric buses are
used on each line.

We assume that all chargers are placed at the same location, indicated on Figure 3, as all six bus lines
modeled intersect at this point. This maximizes the use of each charger, and also minimizes ancillary costs,
such as upgrades to distribution-level transformers. We model cases with up to four chargers, with either a
250 kW or 500 kW charging rate and 5% efficiency losses. Each bus is assumed to have a 55 kWh battery,
the SoC of which can range between 20% and 95%. We assume that one bus begins service on each line
at 7:00 am with a fully charged (i.e., 95% SoC) battery. Subsequent buses begin service with fully-charged
batteries at appropriate intervals after that. The time it takes each bus to complete a loop is assumed to
have a triangular distribution, with the minimum, maximum, and mean travel time set based on historical
travel time data provided by T&P. Energy usage during each trip is modeled as described in Section 2.
However, we multiply this modeled energy use by a random scaling factor, which is uniformly distributed
between 0.8 and 1.2 and randomly sampled for each trip. This scaling factor captures the inherent variability
in energy use due to factors such as accessory force and passenger mass.

We consider three different bus queuing policies in our simulations: first in/first out (FIFO), lowest
attribute value (LAV), and highest attribute value (HAV). The FIFO policy assumes that queued buses
charge based on the order in which they join the queue. The other two policies prioritize charging based on
the SoC of each battery. The LAV policy prioritizes buses with the lowest SoC, whereas the HAV policy
charges buses with the highest SoC first. We simulate 1000 replications of each case (with different numbers
of chargers and queuing policies) and use summary statistics to compare the effect of the different cases on
queuing times and service levels.

5. Simulation Results

Tables 2 and 3 show average queuing and charging times for each bus in the course of a single loop along
its designated line. As expected, they show that installing more chargers decreases queuing times, with a
significant reduction when installing a second charger. They also show that installing more chargers tends
to increase charging times. This is because with one or two 250 kW chargers, an average of about 16%
and 8% of buses trips end with the bus skipping a charge, due to the charging queues being full. When a
third charger is installed, virtually all buses recharge after each loop, as there are rarely full queues. Thus,
the average time spent charging per trip increases when the third charger is installed. Similar results are
observed with 500 kW chargers. The tables also show that a FIFO queuing policy performs the worst overall
in terms of times whereas the HAV policy performs best. This is because the HAV policy prioritizes buses
with the highest SoC, which also have the shortest charging times, first. Thus, the HAV policy results in
faster turnover when there are buses in the queue.

In sum, it appears as though T&P would need to invest in at least one 500 kW or two 250 kW chargers
to maintain a reasonable service level for an electrified CABS service. However, this depends on the extent
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Table 2: Average per-bus cycle queuing and charging time with 250 kW chargers

Number Queuing Time [min] | Charging Time [min]
of Chargers || FIFO LAV HAV | FIFO LAV HAV
1 19.0 8.7 8.0 2.7 2.8 2.6
2 1.0 1.0 1.0 2.7 2.7 2.7
3 0.5 0.5 0.5 3.1 3.1 3.1
4 0.1 0.1 0.1 3.1 3.1 3.1

Table 3: Average per-bus cycle queuing and charging time with 500 kW chargers

Number Queuing Time [min| | Charging Time |min]
of Chargers || FIFO LAV HAV | FIFO LAV HAV
1 1.6 1.8 1.5 1.4 1.4 1.3
2 0.5 0.5 0.5 1.5 1.5 1.5
3 0.0 0.0 0.0 1.6 1.6 1.6
4 0.0 0.0 0.0 1.6 1.6 1.6

to which the service frequencies could be decreased. Two 250 kW chargers would result in an average of
3.7 minutes of additional time to each bus trip along a line, whereas one 500 kW adds at least 2.8 minutes.
In addition to decreasing service frequency, electrification also results in passengers having to wait on the bus
while it is queuing and charging. This additional delay and the associated inconvenience must be considered
in a complete feasibility study.

6. Conclusions

Electric transportation offers many advantages over conventional technologies. This includes lower driv-
ing costs, higher energy efficiency, and the possibility of lower emissions [17, 18, 19, 20, 21, 22, 23, 24, 25].
There are, however, numerous challenges, including the higher upfront cost of electric vehicles and the need
for charging infrastructure. A commercial vehicle fleet, such as a bus service, has the advantage that driving
patterns are well known a priori, making it easier to site charging stations. The downside to an electric bus
fleet, however, is that it can add queuing and charging times to each trip, decreasing service frequencies and
increasing passenger wait times.

Using a longitudinal dynamics model we are able to estimate the energy use of an electric bus operating
on different lines consisting of a mixture of urban and suburban driving. We combine this with a simulation
model to study the effect of the type and number of chargers deployed and the queuing policy on service
times. Using a case study based on the CABS at The Ohio State University, we estimate bus queuing
and charging times. Importantly, we show that 22 buses can share one or two chargers, with minimal
disruptions to the service frequencies. Should such service frequencies not be acceptable, other strategies
could be employed. This includes adding more buses to each line, chargers with higher power rates, buses
with larger batteries, or advanced technologies, such as inductive charging while in transit [26]. While more
buses tend to increase queuing times, CABS could maintain more frequent service as more buses would be
circulating on each line. Other models, such as battery swapping, may prove to be effective as well. The
model we develop could further be used to study the feasibility of deploying electric vehicle fleets in other
settings. Although we use a relatively simple vehicle energy model, more sophisticated models could be
coupled with the simulation model we propose here. Moreover, the simulation model proposed here can also
be used to study other alternative-fuel vehicle fleets, such as hydrogen-fueled vehicles. This analysis also
neglects any life-cycle cost or emissions impacts of the charging station [27], which may affect our results.
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Figure 2: Simulation model schematic.
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Figure 3: Map of Campus Area Bus Service lines operating on the Ohio State University campus.
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Figure 4: Simulated displacement, velocity, and SoC of CABS bus on the Campus Loop South line.
11



	Introduction
	Bus Model
	Simulation Model
	Case Study: Campus Area Bus Service
	Simulation Results
	Conclusions

