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Abstract

We explore the ability of a concentrating solar power (CSP) plant with thermal energy storage (TES) to
provide peaking capacity. We focus on future power systems, wherein net load patterns may be significantly
different than they are today (e.g., due to higher renewable-energy penetrations). We examine 28 locations
in the southwestern United States over an 18-year period. The hourly operation of the CSP plants are
simulated to determine their potential to provide energy during an eight-hour peak-load window for each
day up to 365 days per year. Our result shows that for the large majority of locations and years, CSP plants
with certain configurations (i.e., in terms of solar field and TES sizes) can provide nearly 100% peak-load
capacity. We examine also the amount of supplemental energy (e.g., by using natural gas as a supplemental
thermal-energy source) that would be required to ensure that a CSP plant could serve the eight highest-load
hours of every day of the year. We find that in most cases, a CSP plant supplemented with natural gas
would require less than 5% of the fuel that is used by a natural-gas fired power plant providing the same
level of reliable capacity. A series of sensitivity analyses show that these results are robust to the number
of peak-load hours and days that are considered and the configuration of the CSP plant.
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1. Introduction

Concentrating solar power (CSP) plants can incorporate high-efficiency thermal energy storage (TES).
In doing so, a CSP plant with TES can become a partially dispatchable source of renewable energy. Previ-
ous works, including those of Madaeni et al. (2012b, 2013); Usaola (2013), demonstrate that a CSP plant
with TES has the potential to have a high capacity value, meaning that it can contribute to the power
system serving load reliably. Many of these works use a limited number of years of data and focus on the
availability of CSP generation during historical peak-load periods, which occur on hot summer afternoons in
the southwestern United States. However, shifting demand patterns and contributions from other variable
generation resources, such as solar photovoltaics (PV), may require examination of the contribution of CSP
during other periods of the year.

In this work, we analyze 18 years of data from the southwestern United States to explore the ability of
CSP to provide peaking capacity during extended periods of time. We deviate from the standard definition
of capacity value, which uses historical data typically, thus focusing on only a few hours of the year. Instead,
we explore the ability of CSP to provide firm capacity for eight hours per day, up to 365 days of the year.
We calculate also the solar deficit, which is the amount of thermal energy that would need to be derived
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from other resources to provide firm capacity. This solar deficit could be met by supplementing solar energy
with other fuels or stored grid energy (e.g., using resistive or inductive heaters to store energy in the CSP
plant’s TES system).

The remainder of this paper is structured as follows. Section 2 describes CSP technology briefly, including
key sizing parameters, such as solar multiple and TES capacity. Section 3 describes our methods, including
the performance metrics that we use to assess the ability of CSP to provide peaking capacity and the
formulation of the model that is used in our analysis. Sections 4 and 5 summarize our case study data and
results, respectively. Section 6 concludes.

2. CSP Technology

We consider the performance of power tower-type CSP plants, the technical characteristics of which are
detailed by Mehos et al. (2016). Such plants consist of an array of heliostats, which typically is referred to
as a solar field. The heliostats reflect the direct normal (beam) component of solar irradiance towards a
central receiver. The concentrated solar energy heats a working fluid, which is typically molten salt, high-
temperature oil, or water, that is within the receiver. In the case of a molten-salt working fluid, the heated
salt is stored in a high-temperature insulated tank, which forms the storage medium for the TES system.
The molten salt in such systems can be directed subsequently towards a salt-to-water heat exchanger, which
produces steam to drive a conventional turbine or powerblock when energy is being discharged from the
TES system.

Typically, the size of the powerblock is expressed by its rated capacity. This rated capacity can be
given either as the maximum thermal power that can supplied to the powerblock (measured in MW-t) or
its maximum electric output (measured in MW-e). If the capacity is measured by electric output, normally
this is given as gross output. This is because typically CSP plants have parastic loads (e.g., the tracking
systems on the heliostats and the pumps that circulate the working fluid) that reduce the electric output
of the plant. The size of a solar field is expressed often in terms of its solar multiple (SM). A solar field
with an SM of 1.0 is sized to produce enough energy to drive the turbine at its rated output under design
conditions, which are an instantaneous direct normal irradiance (DNI) of 950 W/m2, a 5 m/s wind speed,
and an ambient temperature of 25 C. Because these design conditions occur rarely (e.g., one of the locations
that we model achieves or exceeds these design conditions only in 6% of the hours of the year), an SM greater
than 1.0 is typical, even for CSP plants without TES. For instance, the Ivanpah Solar Electric Generating
System, which uses a direct steam receiver with no TES, has an SM of 1.4.1 This is analogous to the dc/ac
(or inverter loading) ratio of PV systems. Denholm et al. (2017) note that often PV systems have modules
with a greater rating than the inverter, with the same underlying rationale as oversizing the solar field of a
CSP plant relative to its powerblock.

As the SM increases, the thermal energy that is output from the solar field exceeds the turbine rating
with increasing frequency. For a CSP plant with TES, this excess energy can be stored and used later.
Doing so acts to increase the capacity factor of the CSP plant, while also reducing the plant’s levelized cost
of energy. As discussed by Sioshansi and Denholm (2010), the reason for this latter effect is that TES is
typically a relatively small portion of the overall cost of a CSP plant (e.g., estimated to be about 10% of
the total direct capital cost of a CSP plant with an SM of 2.4 and a TES system with 10 hours of charging
capacity). With an increased SM and sufficient TES, a CSP plant can be operated in a manner to ensure
that it can provide energy when needed from a system-reliability perspective. In doing so, a system operator
may depend on a CSP plant with TES to provide a ‘firm’ source of energy.

The energy storage capacity of a TES system may be measured in MWh-t. However, it is common to
measure its capacity by the number of consecutive hours that the plant can operate at full output using only
energy from a fully charged TES system. For example, the Solana Generating Station, which is a CSP plant

1The National Renewable Energy Laboratory maintains a database of CSP projects, which is publicly available at
https://solarpaces.nrel.gov/ . Unless noted otherwise, the technical and cost characteristics of existing CSP plants that
we report are taken from this database.
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with a parabolic trough design, has an SM of 2.0 and a TES system with six hours of TES. This means
that if its TES system is charged fully, the plant can operate at its nameplate capacity for six consecutive
hours using stored energy only. Plants with higher SMs and greater amounts of TES are also in operation.
Collado and Guallar (2013) offer the Crescent Dunes Solar Energy Project, which has an SM of 2.0 and
12 hours of TES, and the Gemasolar Thermosolar Plant, which has an SM of 2.4 and 15 hours of TES as
two such examples.

3. Methods

3.1. Overview

Our overarching goal in this work is to explore the ability of a CSP plant with TES to provide reliably
peaking capacity in future power systems that may be dominated by renewable energy resources. The ability
of a resource to provide capacity reliably is measured often using a reliability-based capacity-value metric,
such as its effective load carrying capability (ELCC). For instance, Madaeni et al. (2012a, 2013) use ELCC
as a metric to estimate the capacity value of CSP plants without and with TES systems, respectively. Usaola
(2013) use ELCC and equivalent conventional power plant. Calculating the ELCC or equivalent conventional
power plant (or most other reliability-based measures of capacity value) of a new resource requires performing
a statistical analysis of the availability of all resources. In doing so, one can estimate how the new resource
changes the likelihood of a supply shortfall within the system (i.e., the loss of load probability). Loss of
load probabilities are calculated typically over an extended period of time (e.g., a year or more at hourly
or subhourly intervals is common). DeSieno and Stine (1965); Garver (1966); Billinton and Allan (1984);
Kariuki and Allan (1996) provide some of the formative works that develop reliability-based approaches to
modeling capacity value.

Reliability-based approaches are accepted widely as providing robust estimates of the contribution of
a new resource, including a CSP plant, to power system reliability. There are limitations to their use,
however. First, they rely on a well defined power system mix, with known capacities and outage (failure)
probabilities for each resource. Second, they depend on understanding daily and seasonal load patterns. In
practice, ELCC and related calculations depend on and are highly sensitive to the operating profile of the
new resource during only a relatively few peak-load periods of the year. These are typically hot weekday
afternoons for much of the United States. As an extreme example, Madaeni et al. (2012a) demonstrate that
under historical conditions, the examination of the output of a CSP plant during only the 10 highest-load
hours of the year can provide an accurate assessment of its capacity value. Overall, ELCC or related formal
capacity-value calculations rely heavily on historic conditions that may not reflect a future power system.

Considering the evolution of a power system, it can be quite challenging to project the power system
mix, future load patterns, and the impact of variable generation resources, such as wind and solar, therein.
Unlike traditional generation resources, the autocorrelation of solar and wind availability results in declining
marginal capacity value as the penetrations of these resources rise. This is in addition to dramatic changes
to the ‘net load’ patterns that must be met with dispatchable resources, such as a CSP plant with TES.
Awara et al. (2018) demonstrate the decline in the marginal capacity value of solar PV as a function of its
penetration. Given these complications, for this analysis, we perform a more general examination of the
availability of the solar resource, as utilized by a CSP plant with TES. While less formal than traditional
reliability-based approaches, the analysis that we conduct can provide insights into the ability of a CSP
plant to provide firm capacity that are not as dependent on a particular generation mix or load profile.

Our performance metric examines the ability of a CSP plant with TES to provide full capacity during
the eight highest-load hours of each day, while varying the number of days that is evaluated. In doing so,
our analysis of the ability of a CSP plant to provide firm capacity is more robust to future net-load patterns,
which may change due to the generation mix or underlying load of a power system. For comparison, currently
the California Public Utilities Commission requires a resource to be able to generate for four continuous
hours to provide full capacity credit under its resource adequacy program.2 We calculate the shortfall of

2http://www.cpuc.ca.gov/WorkArea/DownloadAsset.aspx?id=6442454920
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solar energy, which we term the ‘solar deficit.’ The solar deficit measures how much additional thermal
energy would be needed to meet this eight-hour-output requirement over multiple days (ranging between
one and 365 days). This shortfall could be used to understand whether a CSP plant could use an alternative
fuel source (e.g., natural gas, biofuels, or power system electricity that is stored in the TES system using
inductive or resistive heaters) to meet the solar deficit.

We simulate the hourly performance of a power tower CSP plant with direct TES. This means that
the heat-transfer fluid that drives the powerblock and the storage medium are the same molten salt. The
molten salt is kept in a high-temperature insulated tank when thermal energy is stored in the TES system.
The salt is circulated to the heat exchanger when the powerblock is operated and producing electricity.
Our analysis consists of a two-step simulation approach, which we detail in the remainder of this section.
First, we employ a physical model of the solar field of a hypothetical CSP plant to determine how much
thermal energy it captures in each hour of each year that we simulate. Second, we use a mixed-integer
linear optimization model to determine how the CSP plant should be operated to minimize its solar deficit
in meeting the capacity criterion that we outline above. Our optimization model assumes perfect foresight
of weather and load patterns. Zhang et al. (2019) show that solar forecasts are improving, but imperfect.
Forecast errors introduce some uncertaintly in the dispatch of CSP plants. To be conservative, we impose
in our analysis the production requirement during the eight highest-load hours of the target days, which is
longer than typical peak-load periods. This requirement allows for some uncertainty in the dispatch of the
CSP plant. We also conduct a sensitivity analysis on this parameter in Section 5.5.

3.2. Physical Solar Field Model

We simulate the operation of the solar field using version 2017.1.17.r1 of System Advisor Model (SAM).
Blair et al. (2018) provide a general description of SAM, summarizing its capabilities and use. SAM takes as
an input hourly weather data and determines the amount of thermal energy that is collected by the receiver
in the simulated CSP plant’s tower. Depending on physical constraints (i.e., the powerblock’s thermal-input
capacity and hours of storage in the TES system), this thermal energy either can be fed immediately into
the powerblock to produce electricity or can be stored in the TES system.

3.3. Optimization Model

The second step adapts the mixed-integer linear optimization model of Sioshansi and Denholm (2010,
2013) to determine the operation of the CSP plant. The optimization model determines whether thermal
energy that is collected by the solar field in each hour should be used to produce electricity or stored in
the TES system. It also determines whether thermal energy that is stored in the TES system should be
discharged in each hour to increase electricity production. SAM has the ability to dispatch CSP, but we opt
to develop and use a customized optimization model. This is to ensure that the CSP plant achieves the goal
of maximizing its production during the targeted eight-hour windows of peak demand. The optimization
model is formulated to minimize the solar deficit over the course of the simulated year. The model has
constraints that enforce the physical limits of the CSP plant and its TES. The constraints also restrict
the CSP plant to use only the thermal energy that is gathered by its solar field, which is determined by
SAM, and what is available from the TES. Additional discussion of the use of SAM and other optimization
approaches to simulate CSP performance is provided by Martinek et al. (2018).

3.3.1. Optimization Model Nomenclature

We begin by defining notation for the optimization model.

Sets, Parameters, and Functions
ESF

t thermal energy collected from the solar field in hour t [MWh-t]
ESU energy consumed to startup the powerblock [MWh-t]
Ft(·, ·) hour-t powerblock heat-rate function [MWh-e]
H hours of storage in TES system
K

p
t hour-t solar-deficit penalty [$/MWh-t]

PPB
t (·, ·) hour-t powerblock parasitic load function [MWh-e]
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P SF
t hour-t solar field parasitic load [MWh-e]

T set of hourly time periods in the optimization horizon
Θmax maximum input to the powerblock when it is online [MWh-t]
Θmin minimum input to the powerblock when it is online [MWh-t]
Υ self-discharge rate of TES system [p.u.]
We model the operation of the CSP plant over a set, T , of hourly time periods. Kp

t is a penalty parameter
on having a solar deficit in hour t. The plant’s solar field captures ESF

t MWh-t of thermal energy in hour t.
Operating the solar field imposes a parasitic load of P SF

t MWh-e in hour t. This parasitic load is met by the
powerblock’s electric energy output during hours that it is producing and is provided by the power system
during other hours. The thermal energy that is captured by the solar field can be used to produce energy
from the powerblock, stored in the TES system, or released to ambient (i.e., the energy that is collected can
be curtailed).

For the powerblock to produce energy, it must be online. ESU MWh-t of thermal energy must be
consumed from combined solar field and TES output to switch the powerblock on from an offline state (i.e.,
this thermal energy is not expended to keep on a powerblock that is already online). Any hour in which
the powerblock is online, it must operate at between Θmin MWh-t and Θmax MWh-t of input energy (from
combined solar field and TES output). The gross hour-t electric output of the powerblock is given by the
heat rate function, Ft(·, ·), which depends on the amount of thermal energy that is input to the powerblock
and the powerblock’s online/offline state in hour t. The powerblock also has parasitic loads. The hour-t
powerblock parasitic load is given by the function, PPB

t (·, ·), which depends also on the hour-t input thermal
energy and online/offline state of the powerblock.

Because the CSP plant has a direct TES system, there are no power-capacity constraints on the charging
and discharging of TES. There is an energy-capacity constraint. H represents the energy capacity of the
TES system in terms of the number of consecutive hours that a fully charged TES system can be discharged
to operate the powerblock at its thermal-input capacity. The TES system also has a self-discharge rate, Υ,
which represents thermal energy that is lost over time.

Variables
lt ending hour-t state of charge of TES [MWh-t]
rt binary variable that equals 1 if the powerblock is started up in hour t and equals 0 otherwise
ut binary variable that equals 1 if the powerblock is online in hour t and equals 0 otherwise
θt hour-t thermal energy input to the powerblock [MWh-t]
ωt hour-t net electric output of CSP plant [MWh-e]
rt and ut are binary variables that represent the start up and online states, respectively, of the powerblock

in hour t. rt = 1 if the powerblock is started up from an offline state in hour t and equals zero otherwise.
ut = 1 if the powerblock is online in hour t and equals zero otherwise. θt represents the amount of thermal
energy that is input to the powerblock in hour t and ωt is its net hour-t electric output. lt is the ending
hour-t state of charge of the TES system. There are no power-capacity limits on charging and discharging
the TES system. Thus, we do not need variables that represent explicitly the amount of energy that is
charged and discharged.

3.3.2. Optimization Model Formulation

The CSP-plant optimization model is formulated as:

min
∑

t∈T

K
p
t · (Θmax − θt) (1)

s.t. Θminut ≤ θt ≤ Θmaxut − ESUrt; ∀t ∈ T ; (2)

ωt = Ft(θt, ut)− PPB
t (θt, ut)− P SF

t ; ∀t ∈ T ; (3)

rt ≥ ut − ut−1; ∀t ∈ T ; (4)

rt ≤ 1− ut−1; ∀t ∈ T ; (5)

rt ≤ ut; ∀t ∈ T ; (6)
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lt ≤ Υlt−1 + ESF
t − ESUrt − θt; ∀t ∈ T ; (7)

0 ≤ lt ≤ HΘmax; ∀t ∈ T ; (8)

ut, rt ∈ {0, 1}; ∀t ∈ T. (9)

Objective function (1) measures the total penalty that is applied for any solar deficits. The hour-t solar
deficit is defined as the difference between the nameplate input capacity of the powerblock and the amount
of thermal energy that actually is delivered to the powerblock in hour t. Constraints (2) impose lower and
upper limits on the amount of thermal energy that can be delivered to the powerblock when it is online. The
maximum amount of thermal energy that can be delivered is reduced during hours in which the powerblock
is started up. Otherwise, if the powerblock is offline in hour t, meaning that ut = 0, then Constraint (2)
for hour t forces zero thermal energy to be delivered to the powerblock. Constraints (3) define the net
electrical output of the CSP plant as the gross electrical output, which is given by the heat-rate function,
less the powerblock- and solar-field-parasitic loads. Constraints (4) define the values of the startup binary
variables in terms of intertemporal changes in the values of the online binary variables. Constraints (5)
and (6) impose additional restrictions on the values of the startup binary variables in terms of the values of
the online binary variables.

Constraints (7) impose hourly thermal-energy balance and define implicitly the ending hourly state of
charge of the TES system. The left-hand side of the hour-t constraint gives the ending hour-t state of charge
of TES. The right-hand side gives the total amount of thermal energy that is available to be stored at the
end of hour t, which gives the implicit upper bound on lt. This bound is defined as sum of the amount of
energy that is carried over from hour (t − 1), which, when accounting for thermal energy losses, is Υlt−1,
and energy that is collected by the solar field. From this amount of thermal energy that is available, the
total amount of energy that is used to start the powerblock up, which is given by ESUrt, and fed to the
powerblock, which is given by θt, are subtracted. Constraints (8) impose state-of-charge limits on the TES
system. Finally, Constraints (9) impose integrality on the online and startup state variables.

Following the work of Martinek et al. (2018), ramp rate constraints are not included in the formulation.
This is because CSP plants can ramp over their full range in less than one hour. Moreover, our model does
not consider additional value or benefits provided by rapid ramping for provision of ancillary services.

4. Case-Study Data

Our simulations are performed at 28 locations in the southwestern United States, which are illustrated
in Figure 1. Table 1 provides coordinates for each location, which are grouped by the balancing authority
area where they are located, as well as its annual-average daily DNI. We study a range of locations where
CSP plants could be deployed, including some sites where CSP plants are already deployed or in planning
stages.

We model power tower CSP plants and use default characteristics that are given in SAM. The default
plant has a powerblock with a rated gross output capacity of 222 MW-e, which corresponds to a rated input
capacity of 538 MW-t. Based on recent CSP-deployment trends, our analysis focuses on two solar-field and
TES configurations. The first is a plant with an SM of 2.0 and six hours of TES while the second has
an SM of 3.0 and 12 hours of TES. Following the work of Wagner et al. (2017), the heat-rate function is
approximated as:

Ft(θt, ut) =
1

0.412
ηamb
t · (0.4335 · θt − 11.345 · ut),

where ηamb
t is an hourly factor that accounts for the effect of the ambient temperature on powerblock

efficiency.
The hourly solar-field parasitic loads, P SF

t , are obtained directly from the SAM simulation that is used
to determine ESF

t . This is because the solar-field parasitic loads depend solely on the amount of energy that
is required to operate the motors on the heliostats and have no dependence on how the TES or powerblock
are operated. This can be contrasted with the powerblock-parasitic load, which depends on the operation
of the plant and is determined by the optimization model (as opposed to by SAM) in our second modeling
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Figure 1: Map of 28 locations in the Southwestern United States that are studied and approximate boundaries of the balancing
authority areas.

step. We estimate the powerblock-parasitic function by fitting a linear regression model to operating data
that are obtained from SAM. A SAM simulation outputs the amount of thermal energy that is fed into the
powerblock in each hour, which measures the extent to which the molten salt must be pumped in the plant
and the condensers must operate, and the powerblock’s hourly parasitic loads. The linear regression gives
an estimate of PPB

t (θt, ut), meaning that we can capture endogenously the effect of dispatch decisions on
plant parasitics in the optimization.

We simulate plant operations over an 18-year period spanning 1998 through 2015. Weather data are
obtained from version 2.0.1 of the National Solar Radiation Database (NSRDB). Sengupta et al. (2014a,b,
2018) describe the physical modeling that underlies production of the NSRDB while Wilcox (2012) provides
a user manual for its use. We use historical load data, which are obtained from Federal Energy Regulatory
Commission (FERC) Form 714 for each balancing authority area that is listed in Table 1, to determine the
values of Kp

t in (1). K
p
t is set to $1/MWh-t in the 16 lowest-load hours of each day and to $1000/MWh-t

in the remaining eight highest-load hours. This is to drive the plant to operate at its nameplate capacity
during the eight highest-load hours of each day. There are seven balancing authority area/year combinations
for which load data are not available from FERC. For these seven cases, we use load data from the nearest
balancing authority area to set the values of Kp

t , taking into account any time-zone differences. Table 2 lists
the seven cases in which load data are not available from FERC and the alternative balancing authority
area that we use.

The optimization model that is detailed in Section 3.3 is formulated in Python 2.7 and solved using the
version 7.5.1 of Gurobi on a system with an Intel Core i7-3630QM processor with four 3.40-GHz cores and
12 GB of memory. Default solver settings are used except for the optimality gap, which is set at 2% to
reduce solution times. Each instance of the model, which is run over 13000 times to examine all location/year
combinations and to conduct all of our sensitivity analyses, takes an average of between 12 s and 420 s of
wall-clock time to run. The optimality-gap setting means that there may be feasible solutions that have
smaller solar deficits. Thus, our results are up to 2% conservative in determining solar deficits.

5. Case-Study Results

5.1. Overview

Our primary performance metric is solar deficit, which is the shortfall in thermal energy that is needed
to maintain nameplate output during the eight highest-load hours of the day. Section 5.2 demonstrates our
approach by focusing on a single location. Section 5.3 broadens our results by summarizing all locations
and years. Section 5.4 provides additional context for our results, by exploring how the solar deficit could
be fulfilled using other energy sources. Finally, Section 5.5 examines the sensitivity of our results to the
configuration of the CSP plant and the number of target hours during each day.
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Table 1: Coordinates and annual-average DNI of 28 locations in the Southwestern United States that are studied, categorized
by balancing authority areas.

Location Name Coordinates Annual-Average Daily DNI [kWh/m2/day]

California Independent System Operator (CAISO)
Fort Irwin, CA 35.26◦ N, 116.68◦ W 8.22
Kramer Junction, CA 35.01◦ N, 117.56◦ W 8.18
Rice, CA 34.07◦ N, 114.82◦ W 8.13
Harper Dry Lake, CA 35.03◦ N, 117.35◦ W 8.11
Armagosa Valley, NV 36.54◦ N, 116.52◦ W 8.00
Blythe, CA 33.67◦ N, 114.98◦ W 7.97
Harper Dry Lake, CA 35.02◦ N, 117.33◦ W 7.88
California City, CA 35.25◦ N, 118.01◦ W 7.86
Daggett, CA 34.86◦ N, 116.83◦ W 7.83
Primm, NV and CA 35.55◦ N, 115.46◦ W 7.81
Riverside County, CA 33.69◦ N, 115.22◦ W 7.79
Palmdale, CA 34.64◦ N, 118.11◦ W 7.61
Inyo County, CA 35.99◦ N, 115.90◦ W 7.60

Arizona Public Service Company (APS)
Yuma, AZ 32.68◦ N, 114.62◦ W 7.97
La Paz County, AZ 33.83◦ N, 114.22◦ W 7.92
Hyder, AZ 33.06◦ N, 113.26◦ W 7.82
Harquahala, AZ 33.47◦ N, 113.11◦ W 7.82
Gila Bend, AZ 32.95◦ N, 112.89◦ W 7.67
Phoenix, AZ 32.92◦ N, 112.97◦ W 7.57

NV Energy (NEVP)
Boulder City, NV 35.80◦ N, 114.98◦ W 7.60
Tonopah, NV 38.24◦ N, 117.36◦ W 7.52
Coyote Springs, NV 36.82◦ N, 114.93◦ W 7.52

Public Service Company of Colorado (PSC)
La Junta, CO 37.98◦ N, 103.54◦ W 6.77
Saguache County, CO 37.84◦ N, 105.98◦ W 6.76

El Paso Electric Company (ELP)
El Paso, TX 32.00◦ N, 106.77◦ W 8.12

PNM Resources (PNM)
Deming, NM 32.26◦ N, 107.75◦ W 7.94

Western Area Lower Colorado (WALC)
Riverside County, CA 33.46◦ N, 114.78◦ W 7.81

Electric Reliability Council of Texas (ERCOT)
Odessa, TX 31.80◦ N, 103.00◦ W 7.32

5.2. Results for a Single Location

Figure 2 illustrates the general framework for analyzing our results. It shows the hourly operation of a
CSP plant with an SM of 2.0 and six hours of TES that is located in Boulder City, NV on 1 July, 2014. It
also shows the hourly loads for the corresponding balancing authority. The day that is shown has the highest
load of the year. The two vertical bars in the figure indicate the eight-hour peak-load window on this day.
The operation of the CSP plant is summarized by showing the amount of thermal energy that is collected
by the solar field, the net electric output of the powerblock, and the state of charge of the TES in each
hour. The day that is shown in Figure 2 has eight consecutive peak-load hours. However, our method does
not impose the generation requirement during eight consecutive hours. Rather, it imposes the requirement
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Table 2: Seven balancing authority area/year combinations for which load data are not available and alternative load data that
are used.

Balancing Authority Area Year Alternate Balancing Authority Area

Arizona Public Service Company 2005 Western Area Lower Colorado
Electric Reliability Council of Texas 2001 El Paso Electric Company
Electric Reliability Council of Texas 2004 El Paso Electric Company
PNM Resources 2005 Western Area Lower Colorado
Public Service Company of Colorado 2005 Western Area Lower Colorado
Public Service Company of Colorado 2006 PNM Resources
California Independent System Operator 1998 Arizona Public Service Company

during the eight highest-load hours of the day. Thus, for example, if the load profile on a given day has two
peaks (which often occurs during winter days, which have morning and evening peaks), the requirement is
allocated across both periods.

Figure 2: Thermal energy that is collected by the solar field, powerblock output, and state of charge of TES on 1 July, 2014 of
a CSP plant in Boulder City, NV with an SM of 2.0 and six hours of TES and corresponding balancing-authority load. Solid
vertical lines indicate the eight-hour peak-load window on this day.

On the day that is shown in Figure 2 the CSP plant operates at its nameplate capacity during the full
eight-hour peak-load window. The operating patterns that are shown in the figure are typical for summer
days with high demand. During mornings and early afternoons, thermal energy from the solar field exceeds
the powerblock capacity. Thus, the plant both can generate at full output and store excess energy for later
use. The figure shows the mismatch between solar field output, which peaks around hour 12, and demand,
which peaks around hour 18. Energy from the solar field is available only for the first three to four hours of
the peak-load window. Thus, the plant must draw on stored energy to generate at full capacity during the
remaining hours of the peak-load window. This follows on previous results, which demonstrate that CSP
plants can have very high capacity value as measured by their performance on peak-load days. The day
that is shown in the figure likely has the highest probability of a generation shortfall (given that it has the
highest demand of the year). Therefore, this is an extremely important day to analyze from the perspective
of ensuring that the CSP plant can serve as a peaking resource. However, because our aim is to consider
future power system scenarios, with varying contributions from different resources, we extend the analysis
to all 365 days of the year.

Figure 3 shows results for 1 August, 2014, which is a day with lower demand but also lower solar
availability. The two vertical bars in the figure indicate the eight-hour peak-load window on this day.
Figure 3a shows that a CSP plant with an SM of 2.0 and six hours of TES cannot provide full output during
our eight-hour peak-load window. It has a deficit of about 5.3% of the 4.3 GWh-t of thermal energy that
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would be needed to meet our eight-hour peak-load window for the day, with the deficit occurring in hour 20.
Interestingly, the CSP plant produces electricity in hours 9–12, which is before the peak-load window,
because the six-hour TES system is saturated fully in hour 13. Thus, either the plant can curtail this excess
thermal energy or produce outside of the peak-load window. For purposes of comparison, Figure 3b shows
the operation of a CSP plant with an SM of 3.0 and 12 hours of TES. This plant can produce fully during the
eight-hour peak-load window. Indeed, this plant is able to sustain some level of output in all of hours 1–20.

(a) (b)

Figure 3: Thermal energy that is collected by the solar field, powerblock output, and state of charge of TES on 1 August, 2014
of a CSP plant in Boulder City, NV with (a) an SM of 2.0 and six hours of TES and (b) an SM of 3.0 and 12 hours of TES
and corresponding balancing-authority load. Solid vertical lines indicate the eight-hour peak-load window on this day.

As we move from peak-load days, which are typically sunny in the southwestern United States, to lower-
demand days, increasingly we experience cooler and potentially cloudy weather conditions. Figure 4 shows
standard box plots of the annual solar deficit for a CSP plant in Boulder City, NV using all 18 years of case
study data. The box plot is shown for different numbers of target days. For instance, 10 target days means
that we seek to have the CSP plant operate at its nameplate capacity during the eight highest-load hours of
the 10 days with the highest peak loads. The data in the figure are normalized as percentages of the total
amount of thermal energy that is needed to meet the eight-hour peak-load window during the target days.
This thermal energy requirement is about 4.3 GWh-t per day, which translates into a total of 1.57 TWh-t of
thermal energy being needed to meet the eight-hour peak-load window if the requirement is imposed during
all 365 days of the year (excluding energy that is required to startup the powerblock).

Figure 4b shows that a CSP plant with an SM of 3.0 and 12 hours of TES is able to meet effectively the
eight-hour peak-load window during the 50 target days with the highest loads. Conversely, Figure 4a shows
that a CSP plant with an SM of 2.0 and six hours of TES has a non-trivial solar deficit (of less than 5% of the
total energy requirement) if considering the 50 target days with the highest loads. Thus, the capacity value
of such a plant would likely be derated relative to its nameplate capacity. These findings follow previous
analyses that demonstrate high capacity value for CSP plants with TES. As we consider lower-demand days,
the CSP plant would need to draw energy from another source to supplement the thermal energy that is
gathered by the solar field. In some extreme years, as much as 17% of the annual energy requirement would
need to come from a supplemental source for a CSP plant with an SM of 2.0 and six hours of TES to meet
the eight-hour peak-load window in all 365 days of the year. This requirement drops to about 6% for a CSP
plant with an SM of 3.0 and 12 hours of TES.

5.3. Full Results

Figure 5 gives a broader feel for the results of our analysis by showing total annual solar deficits of CSP
plants across the years and locations that are studied. The figure shows the solar deficits as percentages
of the total amount of thermal energy that would be needed to meet the eight-hour peak-load window.
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(a) (b)

Figure 4: Standard box plots of total annual solar deficits as a percentage of target energy requirement across the years that
are studied of a CSP plant in Boulder City, NV with (a) an SM of 2.0 and six hours of TES and (b) an SM of 3.0 and 12 hours
of TES. Each box gives the 25th, 50th, and 75th percentiles, which we denote Q25, Q50, and Q75, respectively. The whiskers
represent the range of non-outlier observations, where outliers are defined as being less than Q25 − 1.5(Q75 −Q25) or greater
than Q75 + 1.5(Q75 −Q25). Outliers are indicated with ‘+’ signs.

Rather than plotting the solar deficits for all 28 locations, we show ranges for three clusters of locations that
have different ranges of annual-average daily DNI. The figures demonstrate that for current power system
conditions, wherein capacity value is dominated by the ability to generate on relatively few peak-load days
of the year, CSP plants with at least six hours of TES can provide very high capacity value throughout the
southwestern United States.

(a) (b)

Figure 5: Ranges across the locations and years that are studied of total annual solar deficits as a percentage of target energy
requirement of CSP plants with (a) an SM of 2.0 and six hours of TES and (b) an SM of 3.0 and 12 hours of TES, clustered
by annual-average daily DNI of locations.

Most of the results in Figure 5 are clustered around a limited range, with a few clear exceptions. The
solar deficit is monotonically increasing in the number of days analyzed for all locations, except for the
two in Colorado (i.e., the cluster with annual-average daily DNIs of 6.76 kWh/m2/day–6.77 kWh/m2/day).
Colorado has somewhat different weather patterns, as well as lower DNI, compared to the other locations
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that are analyzed. Colorado also has higher frequency of cold weather, with a number of high-demand days
occurring in the winter. This produces the rapid rise in the solar deficit in Colorado compared to other
regions (as seen in the figures for ranges of 50–200 days being analyzed).

The other location that has a relatively high solar deficit is Tonopah, NV. Tonopah, NV is the loca-
tion with the highest solar deficit of the cluster with annual-average daily DNIs of 7.32 kWh/m2/day–
7.67 kWh/m2/day. This location is the most northerly that we analyze and has many cloudy winter days.
These characteristics of the location lead to lower CSP output during many lower-demand winter days,
which gives rise to the higher solar deficit when evaluating a greater number of days.

Figure 5a shows also that DNI is not ‘perfectly’ correlated with solar deficit. The figure shows also that
there are variations in correlation between annual DNI, seasonal DNI, and load patterns. For example,
some locations with very good summer correlations (such as Harquahala, AZ, which is illustrated by the
‘maximum’ curve for the 7.82 kWh/m2/day–8.18 kWh/m2/day DNI range) have worse correlation in the
winter, compared to the ‘minimum’ curve for the same DNI range (which corresponds to Rice, CA) which
has somewhat better correlation in the winter and worse in the summer. We examine this in greater detail
in Figures 6 and 7.

We would expect to observe a negative correlation between annual-average daily DNI and solar deficit.
Figure 6 provides scatterplots showing the annual solar deficit versus the annual-average daily DNI, consider-
ing the 50 highest-load days of the year. The figures have two scatterplots each, with the circles representing
each observation (i.e., each location/year combination in our case study data) while the crosses represent
the average (across the years that are studied) for each individual location. Figure 6a provides a scatterplot
for a CSP plant with an SM of 2.0 and six hours of TES, while Figure 6b provides it for a plant with an SM
of 3.0 and 12 hours of TES.

(a) (b)

Figure 6: Scatterplot of total annual solar deficit across the 50 highest-load days of the year and annual-average daily DNI for
CSP plants with (a) an SM of 2.0 and six hours of TES and (b) an SM of 3.0 and 12 hours of TES. The circles represent each
observation while the crosses represent the average (across the years that are studied) for each location.

Surprisingly, Figure 6 does not show any clear relationship or pattern between the solar deficit and DNI.
Figure 7 provides the same scatterplots that are in Figure 6. However, Figure 7 considers all days of each
year. Interestingly, Figure 7 shows a more clear relationship between the solar deficit and DNI. These sets
of scatterplots suggest that a CSP plant that is built at a lower-DNI location could essentially serve as a
firm-capacity resource as effectively as a CSP plant that is at a higher-DNI location (within the range of
DNIs that we analyze), if we restrict attention to a limited number of days (e.g., 50 days in Figure 6). This
is likely, at least in the immediate future. This result is because the TES provides flexibility in shifting solar
energy from hours that are outside of the eight-hour peak-load window to the peak-load window. However,
as more lower-load days, many of which tend to have lower DNI, are considered, the flexibility of the TES
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system in shifting generation to meet the peak-load window is limited to a greater extent. This is because
the solar field cannot collect sufficient energy to meet the peak-load window on such low-DNI days.

(a) (b)

Figure 7: Scatterplot of total annual solar deficit across all days of the year and annual-average daily DNI for CSP plants with
(a) an SM of 2.0 and six hours of TES and (b) an SM of 3.0 and 12 hours of TES. The circles represent each observation while
the crosses represent the average (across the years that are studied) for each location.

There is considerable interannual variability in the results. However, much of this variability is due to
weather variations during low-demand periods of time. Figure 8 shows ranges of the standard deviations
(across the years that are studied) of the annual solar deficit for CSP plants with an SM of 3.0 and 12 hours
of TES. The locations are clustered into the same groups that are used in Figure 5. Most locations have
little interannual variation in the solar deficit if 100 or fewer highest-load days of the year are considered.
However, the variation grows considerably as more days are considered. These results suggest also that if
analyzing the peaking capability of CSP in today’s power system, with requirements being determined by a
small number of days, a single year’s (or a limited number of years’) data should provide relatively accurate
results. As net load profiles change and other days become important to a larger extent, multiple years’
data are needed to provide more robust estimates of peaking capability.

Figure 8: Ranges of standard deviation of total annual solar deficits of CSP plants with SM of 3.0 and 12 hours of TES,
clustered by annual-average daily DNI of locations.
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5.4. Supplementing Solar Energy for Improved Peaking Capability

The results in Sections 5.2 and 5.3 follow previous analyses, which show that CSP plants with TES can
have relatively high capacity values under current power system conditions, wherein peaking capacity is
needed mostly during a small number of peak-load periods. This is true of many parts of the southwestern
United States, where some of the greatest challenges in serving load arise on hot sunny days with high
air-conditioning loads. However, these results suggest also that significant shifts in net load patterns or
other power system changes may require CSP plants to supplement solar thermal energy to ensure that they
can provide peaking capacity. This is particularly true if CSP plants with a lower SM and fewer hours of
TES are deployed.

There are two main pathways to supplement solar thermal energy in a CSP plant. One option is to store
electric energy from the power system to mitigate any capacity shortfall. This can be done using resistive
or inductive heaters to convert electricity into thermal energy that can be stored in the TES system. The
thermal efficiencies of resistive or inductive heaters are near 100%. However, the overall round-trip efficiency
of this approach is well under 50%. This is because the overall conversion efficiency is limited by the efficiency
of the Rankine cycle, which is about 42% in our analysis.

If this approach is pursued, the energy that is stored could be derived from any conventional or renewable
source that is integrated in the power system. If the overarching goal is to store primarily renewable energy,
such as PV or wind, in the TES system, careful analysis is required to determine the availability of such
resources. To illustrate this challenge, Figure 9 shows the daily solar deficit for Boulder City, NV in 2014
for the two CSP-plant configurations that we analyze. These deficits would require supplemental energy
to maintain full CSP output during the eight-hour peak-load window of each day. Many of the deficit
days occur during the winter, implying limited solar PV availability, at least in close proximity to the CSP
plant. Alternatively, there may be significant wind availability, particularly in the spring. With sufficient
transmission capacity, this may allow a CSP plant to act as an additional mechanism to store otherwise
curtailed wind energy, albeit at a lower round-trip efficiency than other energy storage technologies.

Figure 9: Daily supplemental thermal energy needed for a CSP plant in Boulder City, NV to meet the eight-hour peak-load
window in 2014.

A second option is to add a supplemental combustible fuel source to the CSP plant. Conventional
CSP plants use Rankine steam cycles. Thus, solar thermal energy can be augmented using duct burners,
which heat the steam through the combustion of natural gas. This increases the peaking capability of a
CSP plant to be equivalent to that of a natural gas-fired unit, insomuch as the ability of the CSP plant to
produce during peak-load periods is limited only by natural gas availability and the forced outage rate of the
plant. Disadvantages to this approach include an increase in plant cost as well as in fuel use and associated
emissions.

We can use the solar deficit calculations that are summarized in Sections 5.2 and 5.3 to determine
the impact of adding natural gas-combustion capabilities to the CSP plants that we analyze. Specifically,
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we can estimate fuel use and emissions and compare them to the fuel use and emissions of a natural
gas-fired generating unit. For example, assuming the 85% net thermal efficiency of natural gas combus-
tion that Peterseim et al. (2016) employ in their work, each GWh-t of solar deficit requires about 4.2 TJ
(4014 MMBTU) of natural gas, which would produce 213 tons of CO2 emissions.

Figure 10 summarizes the impact of using supplemental natural gas to meet the eight-hour peak-load
window with a CSP plant and contrasts it with the impact of using a natural gas-fired unit. Rather than
showing results for all 28 locations, we show the locations with the most and least supplemental energy needs
and the average of the 22 locations with annual-average daily DNIs of 7.5 kWh/m2/day–8.0 kWh/m2/day.
The left-hand axis of the figure shows annual natural gas use as a function of the number of days on which the
peak-load window is met. The right-hand axis shows the associated CO2 emissions. The figure shows also
the fuel use and emissions if the eight-hour peak-load window is met entirely from a natural gas-fired plant.
We assume two efficiencies—35%, which corresponds to a simple-cycle unit, and 55%, which corresponds to
a combined-cycle unit.

Figure 10: Supplemental natural gas requirement and resulting emissions to meet eight-hour peak-load window with a CSP
plant and with combined- and simple-cycle natural gas-fired generating units.

The results in Figure 10 indicate that a CSP plant with an SM of 2.0 and six hours of TES that is located
in a typical-resource location in the southwestern United States (i.e., with an annual-average daily DNI of
7.5 kWh/m2/day–8.0 kWh/m2/day) can avoid both the construction of a natural gas-fired plant (due to its
high capacity credit) and the majority of its fuel use and resulting emissions. For example, supplementing
a CSP plant with an SM of 2.0 and six hours of TES with natural gas to ensure reliable peaking capability
during the 100 highest-demand days would use no more than about 4% of the fuel that would be consumed
by a natural gas-fired plant. A plant with an SM of 3.0 and 12 hours of TES would use no more than about
5% of the fuel that is consumed by a natural gas-fired unit even if the peak-load requirement is extended to
all of the days of the year. These relatively modest fuel usages also increase opportunities to use renewably
derived gas or liquid fuels for supplemental energy to produce an entirely renewable generation source.

5.5. Sensitivity Analyses

We summarize the results of three sensitivity analyses in this section. First, we examine the effect of
varying the number of target hours during which the plant must be operating at its nameplate capacity in
each day to be six and 10 hours. Figure 11 is a standard box plot showing the case of CSP plants with an
SM of 3.0 and 12 hours of TES. In case of 50 target days (which is shown in the left-hand half of the figure),
for the majority of location/year combinations, the solar deficit is near-zero regardless of the number of
target hours. Moving to the most extreme case of imposing the requirement in all 365 days (which is shown
in the right-hand side of the figure), the solar deficit increases typically by about one percentage point if
imposing the requirement during the 10 highest-load hours of each day.

Second, we show the effect of having different amounts of TES capacity. Figure 12 provides box plots
summarizing the energy deficits of CSP plants that have SMs of 3.0 and with different TES capacities.

15



Figure 11: Standard box plots of total annual solar deficits as percentages of target energy requirement across the years and
locations that are studied of a CSP plant with SM of 3.0 and 12 hours of TES and different numbers of target hours and
days. Each box gives the 25th, 50th, and 75th percentiles, which we denote Q25, Q50, and Q75, respectively. The whiskers
represent the range of non-outlier observations, where outliers are defined as being less than Q25 − 1.5(Q75 −Q25) or greater
than Q75 + 1.5(Q75 −Q25). Outliers are indicated with ‘+’ signs.

As before, all 504 location/year combinations are summarized in the box plots and results are shown for
imposing the peaking requirement during both the 50 and 365 highest-load days of the year (on the left-
and right-hand sides, respectively, of the figure). The figure shows that for many cases, the solar deficit is
near-zero regardless of TES size, but both numbers of target days show a substantial increase in solar deficit
with reduced hours of TES in some cases.

Figure 12: Standard box plots of total annual solar deficits as percentages of target energy requirement across the years and
locations that are studied of a CSP plant with SM of 3.0 with eight target hours and different numbers of target days and hours
of TES. Each box gives the 25th, 50th, and 75th percentiles, which we denote Q25, Q50, and Q75, respectively. The whiskers
represent the range of non-outlier observations, where outliers are defined as being less than Q25 − 1.5(Q75 −Q25) or greater
than Q75 + 1.5(Q75 −Q25). Outliers are indicated with ‘+’ signs.

Lastly, we examine the effect of a CSP plant’s SM on its solar deficit. Figure 13 shows standard box
plots for solar deficits for CSP plants with 12 hours of TES and with the original eight-hour requirement
imposed during the 50 and 365 highest-load days of the year (in left- and right-hand sides, respectively, of
the figure), while varying the SM. Overall, few of the cases show dramatic changes in the results.

16



Figure 13: Standard box plots of total annual solar deficits as percentages of target energy requirement across the years and
locations that are studied of a CSP plant with 12 hours of TES, eight target hours, and different numbers of target days and
plant SMs. Each box gives the 25th, 50th, and 75th percentiles, which we denote Q25, Q50, and Q75, respectively. The whiskers
represent the range of non-outlier observations, where outliers are defined as being less than Q25 − 1.5(Q75 −Q25) or greater
than Q75 + 1.5(Q75 −Q25). Outliers are indicated with ‘+’ signs.

The results of these sensitivity analyses should be considered as part of overall plant-design considera-
tions. Plant design should account for cost and benefits, which may include avoided system capacity and
the need for ‘makeup’ energy to address solar deficits.

6. Discussion and Conclusions

Well established methods demonstrate that CSP plants with TES can provide capacity value that is
similar to that of conventional plants. Our analysis uses multiple years of data at multiple sites to confirm
the availability of significant solar energy during nearly every high-demand day. This solar availability,
combined with at least six hours of TES, supports high capacity value for CSP plants throughout the
southwestern United States.

An outstanding question is what happens if and when large amounts of PV or wind or other changes in
demand alter the shape of demand patterns. Using multiple years’ data demonstrates that there may be a
shortfall in energy due to the need for peaking capacity during cloudy winter days. This energy could be
derived from energy that is stored from the power system, or by supplementing solar thermal energy with
natural gas firing. The amount of natural gas that would be consumed is less than 5% of that which is used
by a natural gas-fired unit when considering the 100 highest-load days for a CSP plant with an SM of 2.0
and six hours of TES. A CSP plant with an SM of 3.0 and 12 hours of TES has the same 5% energy deficit
to meet the peak-load window during every day of the year.

In the near term, peaking-capacity resources are not needed for anywhere close to all 365 days of the
year. As discussed above, analyses of many resources (both renewable and conventional) find that only a
relatively few days of the year drive reliability assessments. However, the use of a thermal generation cycle
is a realistic and potentially cost-effective mechanism to ensure that a CSP plant can provide cromulent
peaking capacity, while maintaining the majority of its fuel-reduction benefits.
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