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Abstract—We estimate the capacity value of concentrating M, energy price at hout
solar power (CSP) plants with thermal energy storage (TES)ri /X capacity price
the southwestern U.S. Our results show that incorporating ES P ;
in CSP plants significantly increases their capacity valueWhile K* capacity shortfall penalty factor
CSP plants without TES have capacity values ranging between
60% and 86% of maximum capacity, plants with TES can have B, Optimization Model Variables
capacity values between 79% and 92%. We demonstrate the
effect of location and configuration on the operation and capcity Tt
value of CSP plants. We also show that using a capacity paymen €
mechanism can increase the capacity value of CSP, since the |,
capacity value of CSP is highly sensitive to operational désions
and energy prices are not a perfect indicator of scarcity of spply.

thermal energy delivered to powerblock at hour

net electric output of CSP plant at hotur

amount of energy in TES system at end of heur

amount of thermal energy charged into TES in hour

amount of thermal energy discharged from TES in hour

t

binary variable that equals 1 if powerblock is started up
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A. Optimization Model Sets and Parameters 7/ maximum thermal energy that can be delivered to the
powerblock in hourt

index set for time e/ maximum potential electric output of CSP plant in hour
index set for shortage event hours +

7~ minimum operating level of powerblock when it is online 4" maximum thermal energy that can discharged from TES
7 maximum operating level of powerblock when itis online ~ in hour+

u minimum up-time of powerblock when it is started Up K capacity sold by the CSP plant in the capacity market
s maximum amount of energy that can be charged mtg; capacity shortfall during hour
thermal energy storage (TES) during one hour
d maximum amount of energy that can be discharged fr
TES during one hour
n hours of storage in TES system
eSY thermal energy required to startup powerblock
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Index Terms—Capacity value, equivalent conventional power,
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concentrating solar power
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I. NOMENCLATURE

(o] . N .
8 Capacity Value Estimation Variables and Parameters

T highest-load or -LOLP hours used for capacity value
estimation

f(r) powerblock heat rate function p: loss of load probability (LOLP) in hour
Py, (d) heat transfer fluid pump parasitic load function G conventional generating capacity available in hour
p amount of thermal energy retained by the TES syster¥: output of benchmark plant in hour
from one hour to the next L; hour+ load
¢ roundtrip efficiency of TES system EC loss of load expectation (LOLE) when CSP plant is added
Py(1) powerblock parasitic load function to the system
eSF thermal energy collected by the solar field of the conce#” LOLE when benchmark plant is added to the system
trating solar power (CSP) plant at hotr C nameplate capacity of CSP plant
¢ variable generation cost of CSP plant w LOLP-based weight used in hour
S set of solar multiples examined
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[I. INTRODUCTION per kWh [11]. Moreover, demonstration CSP plants with large

ESOURCE adequacy is an important issue with whichES Systéms, that can be charged and discharged for many
R power system planners contend [1]. Renewables proviBQurS' have shown hlgh roundtrip efficiencies, often in esce
an alternative to traditional sources of capacity and gner F98% [12], [13]. This can be compared to electrochemical

Some renewables pose capacity planning challenges, howela!te"y storage, which can cost upwards of $300 per kWh
due to variable and uncertain real-time output [2]-[6]. FhyeXcluding high-cost power conversion equipment) and tend

accurate capacity value estimates of such resources ale \i¢ve lower efficiencies [14]. TES is significantly more etfiut

for long-term planning purposes because the thermal energy does not have to go through a

Due to excellent solar resource availability, the southeres conversion process to be stored or discharged. Rather, hgat
U.S. has great potential for concentrating solar power ocsg,xchangers transfer the thermal energy between the HTF in

development, with a number of plants currently operationg]e plant and 3 s:jorage (rjne(_:iium, \;]V.hiﬁh is typi(lzall_y a mo_Iéen
and others in development. Although the capacity value pfit: One standard TES design, which our analysis considers

CSP plants without thermal eneray storage (TES) has bdSrR two-tank indirect system, which consists of two storage
P 9y ge (TES) tanks (one hot, the other cold) [13], [15], [16]. When energy

analyzed [7], TES is a promising technology that can inaea;
the >(/:apa<[:it]y value oprSP. 'Ighis papergyuses a model |§bstored, the HTF flows through heat exchangers and the salt

optimize the operation of a CSP plant with TES and applid@Ws from the cold to hot tank while being heated by the HTF.
reliability-based and approximation techniques to estintae =N€'9Y is discharged by operating the system in reverse and
capacity value of CSP plants at a number of locations in tﬂée salt is used to heat the HTF. Other TES technologies are

southwestern U.S. We show that TES can significantly ineredd"der development and could further reduce costs [16]-[19]

a plant's capacity value—plants without TES have capacétﬁ-rhe three components of the CSP plant can be sized

values between 60% and 86% of maximum capacity, wher gerently, qffecting the operation. and .capacity valuettod
adding one hour of TES can increase the capacity value RGNt The size of the powerblock is typically measured Base
between 79% and 90%. We also examine the effect of capadify ItS rated output, measured in MW of electricity (MW-e).
payments, demonstrating that they can increase the cypazﬁle size of the solqr fleld_can be measureq by its solar mlnpl
value of CSP. This is because the capacity value of CSP vvﬁM) _[20]' A solar field with an SM of 1.0 is sized to provide
TES is highly sensitive to operational decisions and energyﬁ'c'gm thermgl energy to Qpergte the powerblock %itsda
prices are not a perfect signal of system capacity scaity. CcoPacity with direct normal |rrad|akr)1_ce (DNI) of 950 fmi
remainder of this paper is organized as follows: seclioh yind speed of 5 m/s, and %n ambient temperature f‘ @5
describes CSP technology and the model used to optimize fifle> has both a power and an energy capacity. The power
operation of the CSP plants, sectlod IV discusses the dzypa&'apac'ty of TES_ IS typlcally.set t(_) allow the ppwerblock o
value estimation methods used in our analysis, sediibn qperate at maximum capa}cny using energy discharged fro.m
provides details of our case study, sectlodl VI summarizé5> Only, and we make this assumption. The energy capacity

our results, sectiofi Il examines the effect of some of oGA" be measured in terms of the number of consecutive hours
assumptior;s, and sectiB Y1l concludes. that the TES system can be charged at its power capacity
before filling the system, which is the convention we use.

Hours of storage is occasionally defined as the number of
Hl. CSP MoDEL consecutive hours that a fully-charged TES system can be
CSP plants consist of three separate but interrelated: partslischarged. Due to the high roundtrip efficiency of TES, ¢hes
solar field, which collects solar thermal energy; a powerklo two definitions are similar. Because the solar field and TES
which uses a heat engine to convert the thermal energy islgstem are sized in relation to the powerblock, we hold the
electricity; and a TES system, which can store thermal gnergowerblock size fixed in our analysis and consider plantk wit
collected by the solar field for later use. There are algiifferent SMs and hours of storage.
hybridized CSP plants that include a fossil-fueled backup We optimize the operation of the CSP plants using the
system. Since our analysis only considers pure CSP plamts®del that Sioshansi and Denholm [21] develop. This model is
we exclude such systems from this discussion. composed of two parts. We first use the Solar Advisor Model
One common CSP plant design is a parabolic trough syst¢BAM) [20], which is a dynamic model that uses weather
[8]-[10]. The solar field of such a plant consists of trougldata to determine the amount of thermal energy collected by
shaped mirrors, which concentrate the thermal energy of suhe solar field in each hour. SAM assumes that the parabolic
light onto a heat-transfer fluid (HTF). The HTF is circulatedroughs in the solar field have a single-axis tracking system
through the field and is used to drive the powerblock. Anothay follow the sun. It further accounts for the affect of anttiie
design is a power tower, which consists of a field of mirrorsemperature, relative humidity, and other weather paramaet
called heliostats, that concentrate sunlight on an HTF an the efficiency of the solar field in collecting thermal egyer
the top of a tower in the center of the field. Although ouBAM has been validated against empirical data from the Solar
analysis assumes parabolic trough technology, our appro&iectric Generating Stations [22]. In the second part of the
is sufficiently general that it can be applied to trough desig model the thermal energy collected by the solar field, as
TES has several advantages compared to mechanicalnmdeled by SAM, is input to a mixed-integer program (MIP)
chemical storage technologies. TES typically has very lothat optimizes the operation of the CSP plants by determinin
capital costs, with recent estimates between $72 and $2#w the powerblock and TES should be operated, subject to



thermal energy availability and plant-operating constisai per MW of capacity provided. The generator must have the
We model the CSP plants under two different markeontracted capacity available during SO-designated agert
structures, which affect their operations. The first assumevents, otherwise it is subject to financial penalties. Most
an energy-only market, in which the CSP plants receive payarkets set the capacity payment price and non-performance
ments for only energy supplied. The second assumes that pemalties using a combination of a capacity auction and ad-
CSP plants receive energy payments as well as supplementadistrative rules. Following the design of ISO New England
payments for providing firm capacity. The formulation of thé&orward Capacity Market we assume that if the CSP plant
energy-only model is given by: contracts to provide capacity that cannot be deliverednduri
a shortage event, a penalty based on the percentage of the

Slii ;(Mte — o) e @) contracted capacity not provided is levied.
” When the capacity payments and penalties are included, the
Stly=p-liy+s —d, VieT; () cgp optimization model becomes:
0<l,<n-s, ViteT; (3)
0<s <5, VieT, (4) . max > (Mf —c) e+ MEK! (12)
0<d <d, vieT, ) @ WEUEEE )
sp—¢-di+m+eYr <elf VteT; (6) —MKKPZ%
— . teT”
it, 'i(z)n j;(ft')uhpb(ﬁ)’ : i i ;: g; s.t. ccinstrailntﬂl through ([{); (13)
Ty > U — Up1, vteT; (9) KtZK—et, _ vieT; (14)
. df <min{p-l;_1,d}, VteT; (15)
w> Y e, VteT; (10) —¢-di +1f+e5Y r <eff, VteT; (16)
=t ey = f(rf') = Pu(d}) = Py(7f'), YteT; (17)
ug, e € {0,1}; ViteT. (11) o < T < g, VieT: (18)
Objective function [{ll) maximizes revenues from energy KI,d' K'>0, VieT. (19)

sales less variable generation costs. Constrdihts (2ighr[B)
impose restrictions on the TES system. Constra[dts (2) éefin Objective function [I2) maximizes the sum of energy
the storage level in each hour in terms of the previous storagnd capacity payments, less penalties for non-performance
level, less thermal energy losses, and current-hour stcaad in the capacity market. ConstraintBl (2) throudhl(11) are
discharge decisions. Constrairs (3) impose the energsjares included since the underlying operating capabilities o th
tions, and constraint§l(4) anfl (5) impose power restristiorplant are unchanged when capacity payments are included.
Constraints [[6) restrict the amount of thermal energy us&wnstraints[(14) throughi{lL9) define the maximum amount of
in net in each hour to be less than the amount collected bgergy that the CSP plant can generate in each hour and the
the solar field. Constraint§l(7) define net generation at ea@sulting capacity shortfall. Constrain{S{14) define tloerh
hour to equal gross powerblock output less parasitic loadscapacity shortfall to at least equal the difference between
The heat rate and parasitic load functions in constralts the contracted quantity and the maximum amount of energy
account for the effects of weather on powerblock efficiencthat the plant can feasibly produce in hauConstraints[{1l5)
Constraints [[8) impose the minimum and maximum outpdefine the maximum amount of energy that can be discharged
restrictions when the powerblock is online, fixing powedio from TES in each hour to be the minimum of the discharge
output to zero otherwise. Constrairiik (9) define the powekbl capacity and the energy in TES carried over from the pre-
startup state variables in terms of changes in online staeus hour. Constraints[ {]L6) define the maximum amount
variables, while constraintE{{L0) enforce the minimuminpet of thermal energy that can be delivered to the powerblock
restriction when the powerblock is started up. Constrgfil3 in each hour based on the solar field energy and energy
impose the integrality restriction on the state variables. in TES. Constraints[{17) define the maximum amount of
While scarcity pricing in an energy-only spot market thecelectricity that can be generated in each hour based on the
retically signals the need for additional capacity, sugnals amount of thermal energy that can be feasibly deliveredeo th
are not perfect in practice. Some markets employ capagcity fiowerblock. Constraintd{IL8) and{19) impose minimum and
addition to energy) payments to induce generation to ehter fmaximum powerblock loading and non-negativity restric§o
market and provide capacity when it is needed in real-tim€onstraints[[II8) further require the powerblock to be anlin
Since such payments are subject to performance requirsmetat provide capacity to the system in a given hour.
they could provide stronger incentives for a CSP plant teehav These types of ‘price-taking’ models yield dispatch paiter
energy available when it is most needed—thereby improvitigat are generally similar to demand patterns. In summer
the plant's capacity value—which we explore in secfionl VIimonths output tends to peak in the late afternoon, whereas
Although the details of capacity payment mechanisms différ the winter a morning and evening peak is often observed
between markets, they all have some common elemerdse to demand peaks driven by lighting and heating loads.
Generally, generators contract with the system operat®) (SSioshansi and Denholm [21], [23] and Madaesial. [7]
to provide capacity over some fixed time period for a paymeptovide examples of CSP dispatch patterns during different



periods of the year. this dispatch and the amount of energy in storage in each hour
the maximum amount of energy that the PHS could feasibly
IV. CAPACITY VALUE ESTIMATION METHODS generate in a subset of hours during which the system has
o a high likelihood of experiencing an outage. This maximum
A. Reliability-Based Method potential generation is used to estimate the capacity vaiue
Numerous techniques have been used to approximate the plant. In our analysis, we focus on the 10 hours of each
capacity value of conventional and renewable generatoygar with the highest LOLPs, since the capacity value of CSP
Reliability-based methods are among the most robust awithout TES is most sensitive to its operation during these
widely accepted of these [6], [7], [24]-[30]. These teclugi§ most critical hours [7]. This can be contrasted with wind,
use a standard power system reliability index, loss of loaghich can require up to the top 900 hours of the year to be
probability (LOLP), to determine how a generator affects thconsidered to accurately estimate its capacity value [3].
reliability of the system. LOLP is defined as the probability To apply this method to CSP, we first define the maximum
that generator or transmission outages leave the system wve@itnount of energy that can be generated by the CSP plant
insufficient capacity to serve the load in a given hour. Ateda in each hour, based on the optimized operation of the plant.
reliability index, loss of load expectation (LOLE), is defth In the case with capacity payments, this quantity is defined
as the sum of LOLPs over some planning horizon, and giveadogenously by the optimized values of #jevariables. In
the expected number of outage hours within that horizothe case with only energy payments, we compute this by first
Conventional generator and transmission outages arealjjpic defining the maximum amount of thermal energy that could
modeled using an equivalent forced outage rate (EFORE delivered to the powerblock in each hour as:

which captures the probability of a failure at any given o= .max{o min{7+ oSF _ SU . (20)
time. With variable renewables, one must model mechanical k K L !
failures using an EFOR and capture resource variabilitg Th +¢-min{d,p-l-1}}}.

latter is typically done using historical resource data gr bEquation [2D) defines as the minimum of the powerblock’s
simulating such data from underlying probability disttibns. rated capacity and the sum of the thermal energy collected
Reliability-based methods determine the capacity value ofpy the solar field and energy available in TES. Equatich (20)
generator by how it affects the system’s LOLPs and LOLE further assumes that the powerblock must be online in order
Standard reliability-based methods include the effectig generate energy, precluding the possibility of an imraiedi
load-carrying capability (ELCC), equivalent firm power BF emergency startup during a contingency event. We explere th
and equivalent conventional power (ECP), which is theffects of relaxing this assumption in sectiad VI.
reliability-based metric that we focus on. The ELCC of a We next determine the amount of that is taken out of
generator is defined as the amount by which system loapss as:
can increase when the generator is added while maintaining di = maX{O,TtH — efF}, (21)
the same LOLE [31]. The EFC of a generatgy,is defined
to be the capacity of a fully reliable generatore(with a
0% EFOR) that can replace while maintaining the same
LOLE [32], [33]. A generator will generally have a different et = f(r') — Pu(d}) — Py(}"). (22)
ELCC and EFC since changing the generation mix ofasystemTO estimate the CSP plant's ECP, we first compute the

wil ch_an_ge the probability distributipn of availa.ble geatng LOLPs of the base system without the CSP plant as the prob-
_capgc!ty in an hour, whereas changing loads will npt [30]P_Ecability that the load cannot be met by the existing genesator
is similar to EFC, except that the generator against wiich

is benchmarked is not fully reliable and instead assumed to -

have a positive EFOR. This metric is particularly attraetiv pe = Prob{G; < Lt} (23)

for renewable generators, since it allows the capacityevalwhere the probability function accounts for the likelihood
to be compared to a conventional dispatchable resource. Pbroutages. We letl” denote the subset of hours with the
instance, one may find that a 100 MW wind plant has Righest LOLPs, which are considered for the capacity value
capacity value that is equivalent to a 30 MW natural gas-fir@sgtimation. We then compute the LOLE when the CSP plant
combustion turbine, which corresponds to a 30% ECP.  is added to the system as:

Estimating the capacity value of a CSP plant with TES is EC — Z Prob{G; + ¢ < L} . (24)
complicated by the fact that one must account for both the
energy that the plant actually plans to generate, as well as
stored energy. This is because if a system shortage evemt i
occur, stored energy could be used to increase the outpul(
the CSP plant and help mitigate the capacity shortfall. Juoh EB = Z Prob{G; + B; < L;}. (25)
and O’'Malley [34] propose a capacity value approximation T
technique for pumped _hydroelectric_ storage (PHS) t_hat e ECP of the system is found by adjusting the nameplate
apply to a CSP plant Wlth T_E_S. Th_elr method determines %ﬁpacity of the benchmark unit until:
optimal .g. revenue-maximizing) dispatch of the PHS plant
subject to technical constraints. They then determinesdas EC =E". (26)

We finally define the maximum potential generation of the
CSP plant in each hour as:

teT
also compute the LOLE when a benchmark unit only
ioqe. without the CSP plant) is added to the system as:



B. Capacity Factor-Based Approximation Method historical conventional generator, load, and weather ftata

Although reliability-based methods, such as ECP, provid@98 to 2005. The capacity values of CSP plants without TES
robust capacity value estimates, they require detailed sy}&Vve significant interannual variability [7], and studyieight
tem data. They can also be computationally expensive, sir¥&&rs provides a more robust long-term estimate. We study
LOLPs must be iteratively recalculated until achieving -corfhese locations in isolation, considering a CSP plant added
diton (Z8). This is less of an issue today, however, with? each S|te_|_nd|V|d_uaIIy. Thus our capacity value estirmate
computational resources currently available [35]. As sucfl® not add|t|ve,_ since they do not account for correlation
approximation techniques have been developed. One sifgveather conditions between the locations. Moreover, our
class of techniques, which we call capacity factor-based ##Pacity values are calculated by assuming a single CSP plan
proximations, consider the capacity factor of a generaver o IS @dded and do not account for the fact that the marginal
a subset of hours during which the system faces a high rigkPacity value of CSP decreases as more CSP capacity is
of a shortage—for instance hours with high loads or L psadded to the system. Our estimates also _neglect transmissio
A generator’s capacity factor is defined as its average out@nstraints, which can reduce the capacity value of CSP if
during a set of hours divided by its maximum capacity. Ahe_re is insufficient capacity to deliver power to loads. Our
number of studies apply capacity factor-based approxamati €Stimates use hourly_data as the_c;apacny value of CSP plants
to wind [3], [36], [37] and photovoltaic solar [38], compag W|thou_t_ TES is relatively insensitive to subhourly resairc
them with reliability-based methods to assess their acguravariability, and we expect this to be true of plants with TES
Madaeniet al. [7] compare the accuracy of applying different’]-

capacity factor-based approximations as opposed to iiélab TABLE |

based methods to CSP plants without TES. They approximate LOCATION OF CSP RANTS STUDIED

the capacity value of CSP as the average capacny_factmrgjurl CSP Site | Coordinates

the 10 and 100 hours of each year with the highest loads Thermal, California 33.65 N, 116.05 W
and LOLPs, where the LOLPs of the base system without the Amargosa Valley, Nev‘ad% 36.55 N, 116.458 W
CSP plant added are used. We refer to these as the top-load Magdalena, New Mexico| 34.35 N, 107.3% W

and -LOLP methods. They also examine a method, which we
refer to as the LOLP-weighted method, which uses a weighted .
average capacity factor during the highest-load hour$ thi¢ R cep Plant§ and Operation
LOLPs used as weights. They show that the LOLP-weighted©Our analysis assumes that the components and performance
method provides the closest approximation of the relighili Of the CSP plants correspond to the default trough system
based methods, and that using the 10 highest-load hoursTtdeled in version 2.0 of SAM [20]. This plant has a
the year provides the best approximation. 110 MW-e wet-cooled powerblock, which can be operated
We compare ECP and capacity factor-based approximatiéHsUP 10 115%, a two-hour powerblock minimum up-time,
using the 10 hours of each year with the highest loads aR@n-linear parasitic loads, and no auxiliary fossil-fubteeat
LOLPs, as well as the LOLP-weighted method. The top-lo&purce. When the parasitic component loads are taken into

and -LOLP methods approximate a plant’s capacity value g&gcount, the maximum net electric output of the CSP plant is
about 120 MW-e. We use this 120 MW-e maximum net output

7
ZT € to normalize the capacity values of the plants. The defaBR C
A (27) plant in SAM has a 6% EFOR, which we assume.
T|-C In order to make our model computationally tractable, we
whereT is the set of hours with the highest system loads @ptimize the operation of the CSP plants one day at a time
LOLPs and|T| is the cardinality of". The weights used in using a rolling 48-hour optimization horizon. Inclusion of

the LOLP-weighted approximation are: hours 25 through 48 in the model ensures that thermal energy
D that would be valuable on the subsequent day is kept in TES
W= (28) at the end of hour 24 [39]. We further assume that price

cer and weather data are perfectly known to the plant operator

. L . a priori. Sioshansi and Denholm [21] use a ‘backcasting’

The LQLP-W§|ghted approximation of the capacity value Reuristic to demonstrate that the operation and profitgbili

then given by: S wy - et of CSP are relatively insensitive to these assumptionss Thi

L heuristic determines the operation of a plant on each day by

assuming that prices and solar availability from the presio

day will repeat themselves and can capture at least 87% of the
V. CASE STUDY profits that are possible with perfect foresight. The heigris

We estimate the capacity values of CSP plants at three sitérks well because price patterns are relatively similamfr
in the southwestern U.S., which are listed in Table I, usir@ne day to the next.

teT
e (

C

1Although loads and LOLPs are correlated, they are not pyfeoinci- B. Data Sources

dent, since generator EFORs and capacities can vary sdgstunato factors . . .
such as planned maintenance outages and water inflows tmeigdiric Since the locations that we StUdy are in the Western Elec-

plants. tricity Coordinating Council (WECC) region, we model the



entire WECC to determine LOLPs. Since we use the samsce is assumed to be set based on the capital cost of a hatura
underlying system in our calculations, capacity valueediff gas-fired combustion turbine (NGCT), since such generators
ences between the locations are solely due to solar resouape often used for peak-capacity purposes. We assume an
and CSP dispatch differences. System planners often use G CT cost of $625/kW in 2005 dollars [41] and use a capital
limited regions in capacity planning, however. Because tlobarge rate (CCR) to convert this total capital cost into an
capacity value of CSP depends on the relationship betwesmmualized cost [42]. Using an 11% CCR yields an annualized
LOLPs and generation patterns, the capacity value of a C8&pacity payment af/ X = $68.75/kW-year. Most SOs define
plant may differ depending on whether a more limited studshortage events as hours with low operating reserves, giate
region is used. is when the system faces the highest probability of a system
WECC LOLPs are estimated by calculating the system@itage. We assume that the 10 hours of each year with the
capacity outage table, which assumes that generator autdgighest LOLPs are shortage event hours. The penalty price
follow Bernoulli distributions that are serially and joiyt for not providing contracted capacity is assumed to be Half o
independent [24]. Data requirements and sources used in the annualized capacity coste{ K? = $34.38/kW-year). All
calculations are detailed below. of the capacity payments and penalties are deflated to 1998
1) Conventional Generators. The rated capacities of con-through 2005 dollars using consumer price index data regort
ventional generators are obtained from Form 860 data cbly the U.S. Bureau of Labor Statistics. The capacity payment
lected by the U.S. Department of Energy’s Energy Infornmaticand penalty parameters used are based on the design of the
Administration. Form 860 reports winter and summer capa€Eerward Capacity Market operated by ISO New England.
ities for each generator, which we use in our analysis. The4) Weather: SAM requires detailed weather data, including
WECC had between 1,016 and 1,622 generating units abdll, dry-bulb and dew-point temperatures, relative hutyidi
123 GW and 163 GW of generating capacity during the yedssrometric pressure, and wind speed. These data are abtaine
that we study, reflecting load growth during this period.  from the National Solar Radiation Data Base [43], which
We model generator outages using a simple two-stadecounts for cloud cover and other factors in determinicgllo
(online/offline) model. We use the North American Electrigveather conditions.
Reliability Corporation’s Generating Availability DatayS§em
(GADS) to estimate generator EFORs. The GADS specifies V1. CAPACITY VALUE ESTIMATES
historical annual average EFORs for generators based on.
generating capacity and technology, which we combine with Fig. [ shows the average (over the years 1998 to 2005)

generating technology data given in Form 860. The EFOIQE'nuaI capacity values of a CSP plant with an SM of 1.9 at

used range between 2% and 17% and have a capacity-weig Cf_;\lif(;rnia I(E)cati(zjn in an gner_gy-onlyhrnﬁrket. ECPs ?jnd
average of 7% for the entire WECC. capacity factor-based approximations, which are repoate

2) Load: Hourly historical load data for each year ar@®rcentages of the 120 MW-e maximum net output of the
obtained from Form 714 filings with the Federal Energ lant, art::‘ g|ven._The figure shows that TES can increase
Regulatory Commission (FERC). Form 714 includes loa e plants ca_\pacny value by up to 7%. It also ShOV\_’S that
reports for nearly all of the load-serving entities (LSErjla the LOLP'WG'theo_' method provides the best approximation
utilities in the WECC, although some small municipalitiesia ©f the ECP, with similar results for CSP plants at the other
cooperatives are not included. We assume loads are fixed Jfptions and with different configurations. Madaenal. [7]
deterministic based on these data, which have annual pegQ_anare the different capacity factor-based approan_atlo_
ranging between 107 GW and 124 GW. Since the system lodtfé"d a root mean squared error (RMSE) metric, which is
increased over the study period and capacity expansion éjaﬁ{'ned as:
lead or lag such growth, we adjust the hourly load profiles in 1 2
each year individually so that the LOLPs of the base system \/m Z Z Z (Ufw,k - “sc,w,k) - (30)
in each year sum to 2.4. This corresponds to the standard seSYeT Ach
planning target of one outage-day every 10 years [40]. Thitie LOLP-weighted method has an RMSE of 0.71 as opposed
load adjustment is done by scaling all of the hourly loads 2.62 and 2.61 for the top-load and -LOLP methods, respec-
by a fixed percentage, ranging between 0.1% and 5% in theely.
different years. Fig. @ through[# show average annual LOLP-weighted

3) Prices: In the energy-only market, the operations of thapproximations for CSP plants with different configurasion
CSP plants is optimized to maximize energy revenues. Houdy all three locations in an energy-only market. They show
day-ahead prices for the California ISO’s SP15 zone are udbe sensitivity of the capacity value to both plant locatéomd
to optimize the plant in California. Hourly load lambda datssize, and that the values can range between 61% and 91%.
obtained from FERC Form 714 filings by Nevada Power anil larger solar field increases total plant generation, wéere
Public Service Company of New Mexico, are used for th€ES allows generation to be shifted to higher-priced hours.
other locations. Since prices are correlated with supply scarcity, which is

The capacity market case is modeled by assuming that tieéated to system LOLPS, this generation shifting increase
plant receives a supplemental fixed payment for its corgtactcapacity values. Energy prices in California provide ety
capacity, which carries an obligation to be able to providgrong scarcity signals, which is theoretically true of rgiye
energy during SO-designated shortage events. The capasjipt markets [44]. Conversely, the Nevada and New Mexico




95

90 PV al B »
l./ 7 - -
85 b
g
3 sof |
3
>
2
g 75 1
Qo
]
O
70+ E
ECP
651 =——4#— Top Weighted|-
== Top Load
Top LOLP
60 . . . . . . . I I I I

0 1 2 3 4 5 6 7 8 9
Hours of TES

10 11 12

Fig. 1. Average (over the years 1998 to 2005) annual capaeilye of
a CSP plant with SM of 1.9 at the California location, as a petage of
120 MW-e maximum net output of the plant. ECPs and capacitiofebased
approximations are given.

plants are dispatched against load lambda data, which do
incorporate such factors. Thus these plants have weakslsig
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Fig. 3. Average annual LOLP-weighted approximation for aPQ8ant at
the Nevada location, as a percentage of 120 MW-e maximum utpub of
the plant.
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to have energy in storage and be online during high-LOL
hours. Indeed, although the New Mexico plant has low:_
capacity values, its energy yield is about 0.5% higher than t=

plant in California. The figures also show that the margin% 80

value of TES quickly tapers off after about two to three hourz,

851

of storage. This is because energy prices and LOLPs are |
perfectly correlated, thus there are high-LOLP hours dyrir

which it is less profitable for CSP to generate.
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Fig. 4. Average annual LOLP-weighted approximation for aPGQ8ant at
the New Mexico location, as a percentage of 120 MW-e maximetrontput
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offline or having less energy in TES during a critical hour
when the system has a high LOLP. To further illustrate these
effects, Fig[b summarizes the operation of CSP plants with
four hours of TES and SMs of 2.2 and 2.7 in Nevada on
July 12, 1999—a day with relatively high LOLPs—and on
the previous day. The figure shows LOLPs and the amount of
thermal energy available from TES and the solar field in each
hour. Contrasting the profiles of the two plants shows that th
larger CSP plant with an SM of 2.7 has less stored energy
available on July 12 and, importantly, during the high-LOLP
hours of the afternoon. The reason for this is that this plant

Fig. 0 through¥ also show that the relationship betweevas able to startup and generate electricity during higbepr
plant size and capacity value is not perfectly monotones THiours in the afternoon of the previous day. The plant with an
non-monotonicity is because changing the configuration ofSM of 2.2 was not able to due to the powerblock minimum-

CSP plant can affect its operation, resulting in the plaimde

load and up-time constraints, and as such more energy is kept



. . . X . .. TABLE Il
in TES, yielding the higher capacity value. Similarly, ag@r syumary STATISTICS OF COEFFICIENT OFVARIATION OF ANNUAL CSP

TES system can affect the operation of a plant, for instance CAPACITY VALUE
allowing it to startup during a high-priced hour due to more . L
. . . Coefficient of Variation
stored energy be!ng a\{allable. This reduces the amount of Hours of TES | Minimum Maximum  Average
stored energy available in subsequent hours, which carceedu 0 0.17 0.34 0.27
the plant's capacity value. 1 0.04 0.29 0.15
2 0.02 0.26 0.12
M2z 4 0.01 0.25 0.09
vvvvvvvvvvvvvvvvvvvvvvvvv‘vvvvvvvvvvvvvvvvvvvvvvv08 8 0.02 0.25 0.08
600 1 12 0.02 0.25 0.08
10.6
T 400 1 o
s {04 3 . . .
= 3 to a limited extent, since energy prices and LOLPs are some-
200 lo2  what correlated. Energy prices do not provide perfect sggna
—— however. For instance, plants in Nevada and New Mexico that
0 SM2.7 0 are dispatched against load lambdas have relatively loaaap
O e ity values due to a lack of strong scarcity signals. Even atpla
los in California does not attain the 94% theoretical maximum
+ 400 1 . LOLP-weighted capacity value approximation (accountiog f
s n 1045 the 6% EFOR).
= - L .
200 1o We use the model consisting of objective functidnl (12)
HH and constraintd{13) through{19) to explore the benefits of a
0 e — capacity payment mechanism in increasing the capacityevalu
2 4 6 81012141618202224262830323436384042444648 . . .
Hour of CSP. To overcome computational issues raised by the non-
[ Stored Energy linear objective function, we solve the model using a grid-
I Solar Field Energy

search method wherein we hold the valiié fixed, solve the
Fig. 5. Hourly LOLPs and energy in TES and collected by soleld fof resulting linear MIP’ apd find a p_rOﬁt'maXimiZir_]g choice _Of
CSP plant with four hours of TES and different solar field siaethe Nevada K'. K' = 120, which is the maximum generating capacity
location on July 11-12, 1999. of the CSP plant, is profit-maximizing at all locations. The
optimized values of the) variables are used to compute
In addition to increasing the capacity value of CSP, TES al$@|p-weighted estimates of the capacity values of the plant
reduces interannual capacity value variability. The cépac Fig. @ shows the annual average capacity value estimates

value of CSP plants without TES can have significant integz cgp plants with SM of 1.5 when the capacity payment is
annual variability, due to differences in resource avalilgb | ded. Contrasting this with Figl 1 through 4 shows that
[7]. A CSP plant with an SM of 1.5 and no TES can haVge capacity payment can significantly increase the capacit
an annual capacity value that ranges between 12% and 94,65, Nevertheless, the capacity values of the plantatre
depending on the year and location. Adding four hours @fa 11y 949 despite the plants selling 120 MW-e of capacity.
TES to such a plant increases the minimum annual capacilyfis is because the non-performance penalty is less than the
value to 38%. Tabldlll provides summary statistics of theyenye that the plants earn from selling capacity. Thusethe
coefficient of variation, which is the ratio between the sl . high energy-price hours with low LOLPs during which
deviation and mean, of the annual capacity value of CSPlagi plants sell energy, with the energy revenues outweighin

with different amounts of TES. The summary statistics affe associated capacity-related penalties in anotherlh@jtP
given over the different locations and solar field sizes tat |,

analyze. The table shows that TES can have a significant effec

in reducing interannual capacity value variability—adgone

hour of TES nearly halves the variability relative to a plant

without TES. This can be attractive from a system planniriy Immediate CSP Startup
perspective, since less variability implies that a CSP tptan

planning purposes. plant using[(IB) orl{20) we assume that for the CSP plant to be

able to generate in howiit must already be online. In practice,

a CSP plant that would otherwise be offline, may technically

be able to startup and generate energy in a system contiyngenc

or emergency situation. We bound the effect of relaxing the

A. Capacity Payments startup assumption by estimating the capacity value of a CSP
Our analysis illustrates that the capacity value of CSP dant that can startup immediately and generate elegtricit

very sensitive to signaling the need for capacity, sinces it Without any ramping constraints, so long as the necesssary

critically related to the dispatch of the plant and TES. Owtartup energy is expended.

analysis thus far shows that energy prices provide suclalsign To do so we define the maximum amount of thermal energy

VII. SENSITIVITY OF CAPACITY VALUES TO
ASSUMPTIONS
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Fig. 6. Average annual LOLP-weighted approximation for Gi&hts with  Fig. 7. Average annual LOLP-weighted approximation for &2Qffant at the
SM of 1.5 at the three locations when a capacity payment isided, as a Nevada location if immediate powerblock startups are alibvas a percentage
percentage of 120 MW-e maximum net output of the plant. of 120 MW-e maximum net output of the plant.

that be deli d to th block in h : . L .
at can be dellvered fo the powerblock in hous method provides the best approximations, with an RMSE of
I

' = max{0,min {7t e — ¥ (1+r, —u)(31) 0.71. We find that only the most critical hours of each year
+¢-min{d,p-li_1}}}. need to be considered when estimating the capacity value of
CSP. This is an important consideration, since SOs often rel
If the pOWEFb'OCk is not scheduled to be online (as determingn such approximation techniques to estimate the Capacity
by the optimization model) in hout, thenr, = u, = 0. value of renewables. Clearly, CSP should be treated difftre
Thus [31) allows the powerblock to be started up and electrigan wind in such calculations. Using a case study of the
ity to be generated, so long a8” MWh-t is used for startup southwestern U.S. we show that CSP plants with TES can
energy. Otherwise, if the powerblock is already scheduted fiave extremely high capacity values ranging between 79% and
be online, then[{20) and(B1) yield the same value #6r 929 of maximum capacity, as opposed to only 60% to 86%
Defining /" this way, the maximum potential generation of th@jithout TES. TES also reduces interannual variability ia th
CSP plant in each hour can be computed uding (21) &dd (23pacity value of CSP, which can be beneficial for long-term
and an LOLP-weighted approximation can be computed gfanning. This further implies that multiple years of dataym
before. not be as crucial for estimating the capacity value of CSB wit
Fig.[d summarizes the capacity value of a CSP plant at ttes as it is for other renewables. Larger CSP plants tend to
Nevada location in an energy-only market when the startyave higher capacity values, although this relationshipois
assumption is relaxed. Contrasting this with . 3 shoves thyerfectly monotone, demonstrating some of the limitatiohs
allowing a CSP plant to startup immediately during an systeamergy prices in signaling resource scarcity. We dematestra
Shortage event has two noticeable effects. One is that mgt induding Capacity payments can Signiﬁcanﬂy inceeas
capacity values tend to increase. The other is that the @gpagapacity values, especially in the absence of organizetl spo
values are slightly more monotone in the plant size. Both @farkets that signal scarcity through energy prices. Sityila
these effects are because in some cases a CSP plant has e EYning the powerblock to be able to startup immediately
in TES, but the powerblock is not online since the energy ifuring a system shortage event can significantly increase th
being saved to exploit higher prices during subsequentrioweapacity value.
LOLP hours. If the powerblock is able to startup to provide Although we estimate capacity values by modeling the

capacity during a contingency event, this allows the em.ﬁgyentire WECC system, system planners often use more limited

TES to increase the plant's capacity value. Relaxing tma@ystem footprints in their analyses. This could affect the

assumption has similar effects on CSP plants at the other a?pacity value of CSP, depending on the extent to which
locations—the plants have capacity values of at least 8896 an '

: ) e plant’s generation is coincident with the ‘local’ syste
are almost completely monotone in the plant size.

load. By modeling the entire WECC system we further as-
sume that the system has sufficient transmission capacity to
deliver power wherever it is needed. If binding transmissio

This paper adapts an approximation method to estimate tanstraints prevent this, actual capacity values coulcdbbed
capacity value of CSP plants with TES. We demonstrate thithein our calculations suggest [45]. Further work is needed t
capacity factor-based methods can provide reasonablexppbetter understand the effects of such considerations,haikic
imations of reliability-based methods. The LOLP-weightedn area of future research that we are pursuing.

VIIl. CONCLUSIONS
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While our analysis is limited to locations within the WECCJ16] A. Gil, M. Medrano, I. Martorell, A. Lazaro, P. DoladdB. Zalba,
we expect similar capacity values, especially in plantshwit
TES, in regions of the world with solar resources that are

favorable for CSP development. Nevertheless, furtherarese
is needed to examine how CSP plants would be operated &Hd

associated capacity value implications in other systents an

regions. Other areas for future research include examitiag

marginal capacity value of CSP as a function of penetratidAél
and developing more detailed models of tower, linear Filesne
reflector, and dry-cooled CSP plants. These are incregsingl
important issues, as a number of tower plants under constrli€]
tion in the U.S. and internationally.

ACKNOWLEDGMENT

[20]

The authors would like to thank M. Mehos, C. Turchi, M.
Milligan, A. Green, W. Short, R. Newmark, and A. Sorooshiari?1]
the editor, and five anonymous reviewers for helpful discus-
sions and suggestions.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

A. Keane, M. R. Milligan, C. J. Dent, B. Hasche, C. D’'Anrzia,
K. Dragoon, H. Holttinen, N. Samaan, L. Soder, and M. O'Mgll
“Capacity value of wind power,1EEE Transactions on Power Systems,
vol. 26, pp. 564-572, May 2011.

M. R. Milligan, “Measuring wind plant capacity value,” ational Re-
newable Energy Laboratory, Tech. Rep. NREL/TP-441-204996.
M. R. Milligan and B. Parsons, “Comparison and case stofdgapacity
credit algorithms for wind power plantsyMnd Engineering, vol. 23, pp.
159-166, May 1999.

M. R. Milligan and T. Factor, “Optimizing the geographdtistribution
of wind plants in iowa for maximum economic benefit and relighy
Wind Engineering, vol. 24, pp. 271-290, July 2000.

M. R. Milligan and K. Porter, “The capacity value of wind the united
states: Methods and implementatiofhe Electricity Journal, vol. 19,
pp. 91-99, March 2006.

G. R. Pudaruth and F. Li, “Capacity credit evaluation: iferdature re-
view,” in Third International Conference on Electric Utility Deregulation
and Restructuring and Power Technologies. Nanjing, China: Institute
of Electrical and Electronics Engineers, 6-9 April 2008, pp19-2724.
S. H. Madaeni, R. Sioshansi, and P. Denholm, “Estimathmeycapacity
value of concentrating solar power plants: A case study efsbuth-
western United States/EEE Transactions on Power Systems, vol. 27,
pp. 1116-1124, May 2012.

H. Price, E. Lupfert, D. Kearney, E. Zarza, G. Cohen, ReeGand
R. Mahoney, “Advances in parabolic trough solar power tetbyy,”

Journal of Solar Energy Engineering, vol. 124, pp. 109-125, May 2002.

“Assessment of parabolic trough and power tower solahrtelogy cost
and performance forecasts,” National Renewable Energyorzddry,
Tech. Rep. NREL/SR-550-34440, October 2003.

M. Selig and M. Mertins, “From saturated to superheatié@ct solar
steam generation—technical challenges and economicafitegh in

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

SolarPACES 2010 Conference, Perpignan, France, 21-24 Septembef33]

2010.

C. Turchi, M. Mehos, C. K. Ho, and G. J. Kolb, “Current ahdure
costs for parabolic trough and power tower systems in the arken”

National Renewable Energy Laboratory, Tech. Rep. NREL3660-
49303, October 2010.

J. E. Pacheco and R. Gilbert, “Overview of recent resoft the solar
two test and evaluations program,” Sandia National Laboiet, Tech.
Rep. SAND99-0091C, January 1999.

U. Herrmann and D. W. Kearney, “Survey of thermal enestgyrage for
parabolic trough power plantsJournal of Solar Energy Engineering,

vol. 124, pp. 145-152, May 2002.

P. W. Parfomak, “Energy storage for power grids andteletransporta-
tion: A technology assessment,” Congressional ResearolicBeTech.
Rep. R42455, March 2012.

D. W. Kearney, B. Kelly, U. Herrmann, R. Cable, J. E. Raah

[34]

[35]

[36]

[37]

A. R. Mahoney, H. Price, D. M. Blake, P. Nava, and N. Potrayitz [38]

“Engineering aspects of a molten salt heat transfer fluid imoagh
solar field,” Energy, vol. 29, pp. 861-870, April-May 2004.

and L. F. Cabeza, “State of the art on high temperature tHerma
energy storage for power generation. part 1—concepts, rialateand
modellization,” Renewable and Sustainable Energy Reviews, vol. 14,
pp. 31-55, January 2010.

J. E. Pacheco, S. K. Showalter, and W. J. Kolb, “Develepmof a
molten-salt thermocline thermal storage system for pdi@kioough
plants,” Journal of Solar Energy Engineering, vol. 124, pp. 153-159,
May 2002.

D. L. Barth, J. E. Pacheco, W. J. Kolb, and E. E. Rush, ‘@awyment
of a high-temperature, long-shafted, molten-salt pumppfawer tower
applications,”Journal of Solar Energy Engineering, vol. 124, pp. 170-
175, May 2002.

M. Medrano, A. Gil, I. Martorell, X. Potau, and L. F. Cats “State of
the art on high-temperature thermal energy storage for pgesmeration.
part 2—case studies,Renewable and Sustainable Energy Reviews,
vol. 14, pp. 56-72, January 2010.

P. Gilman, N. Blair, M. Mehos, C. B. Christensen, and &1zbu, “Solar
advisor model user guide for version 2.0,” National Renda/dnergy
Laboratory, Tech. Rep. NREL/TP-670-43704, August 2008.

R. Sioshansi and P. Denholm, “The value of concentgasiolar power
and thermal energy storageFEE Transactions on Sustainable Energy,
vol. 1, pp. 173-183, October 2010.

H. Price, “Parabolic trough solar power plant simwatimodel,” Na-
tional Renewable Energy Laboratory, Tech. Rep. NREL/CO-5%209,
January 2003.

R. Sioshansi and P. Denholm, “The value of concentgasiolar power
and thermal energy storage,” National Renewable Energyoraddry,
Tech. Rep. NREL/TP-6A2-45833, February 2010.

R. Billinton and R. N. Allan,Reliability Evaluation of Power Systems.
Boston: Pitman Advanced Publishing Program, 1984.

M. R. Milligan and B. Parsons, “Comparison and case wtoficapac-
ity credit algorithms for intermittent generators,” Nata Renewable
Energy Laboratory, Tech. Rep. NREL/CP-440-22591, March719

C. D’Annunzio and S. Santoso, “Noniterative method pprximate the
effective load carrying capability of a wind plantEEE Transactions
on Energy Conversion, vol. 23, pp. 544-550, June 2008.

M. R. Milligan and K. Porter, “Determining the capacityalue of
wind: An updated survey of methods and implementation,”idhail
Renewable Energy Laboratory, Tech. Rep. NREL/CP-500-334Bne
2008.

L. S6der and M. Amelin, “A review of different methodmies used for
calculation of wind power capacity credit,” iB008 |IEEE Power and
Energy Society General Meeting.  Pittsburgh, PA, USA: Institute of
Electrical and Electronics Engineers, 20-24 July 2008.

C. Ensslin, M. R. Milligan, H. Holttinen, M. O'Malley, red A. Keane,
“Current methods to calculate capacity credit of wind powea col-
laboration,” in2008 |EEE Power and Energy Society General Meeting.
Pittsburgh, PA, USA: Institute of Electrical and ElectremiEngineers,
20-24 July 2008.

M. Amelin, “Comparison of capacity credit calculatiomethods for
conventional power plants and wind powetEEE Transactions on
Power Systems, vol. 24, pp. 685-691, May 2009.

L. L. Garver, “Effective load carrying capability of gerating units,”
|EEE Transactions on Power Apparatus and Systems, vol. PAS-85, pp.
910-919, August 1966.

J. Haslett and M. Diesendorf, “The capacity credit ohdipower: A
theoretical analysis,Solar Energy, vol. 26, pp. 391-401, 1981.

L. Soder and J. Bubenko, “Capacity credit and energyevaf wind
power in hydro-thermal power system,” iRroceedings of the 9th
Power Systems Computation Conference, Cascais, Portugal, 30 August-4
September 1987.

A. Tuohy and M. O’Malley, “Impact of pumped storage onwes
systems with increasing wind penetration,” Rower & Energy Society
General Meeting. Calgary, Alberta, Canada: Institute of Electrical and
Electronics Engineers, 26-30 July 2009, pp. 1-8.

B. Hasche, A. Keane, and M. O’'Malley, “Capacity valuewihd power,
calculation, and data requirements: the irish power systese,”| EEE
Transactions on Power Systems, vol. 26, pp. 420-430, February 2011.
S. Bernow, B. Biewald, J. Hall, and D. Singh, “Modellimgnewable
electric resources: A case study of wind,” Oak Ridge Natidrabora-
tory, Tech. Rep. ORNL/Sub-93-03370, July 1994.

M. A. H. El-Sayed, “Substitution potential of wind eiggrin egypt,”
Energy Policy, vol. 30, pp. 681-687, June 2002.

S. Pelland and |. Abboud, “Comparing photovoltaic adfya value
metrics: A case study for the city of Toront®togressin Photovoltaics:
Research and Applications, vol. 16, pp. 715-724, December 2008.



[39]

[40]

[41]

[42]

[43]

[44]

[45]

R. Sioshansi, P. Denholm, T. Jenkin, and J. Weiss, fiating the
value of electricity storage in PJM: Arbitrage and some arelfeffects,”
Energy Economics, vol. 31, pp. 269-277, March 2009.

E. P. Kahn, “Effective load carrying capability of wirggtneration: Initial
results with public data,The Electricity Journal, vol. 17, pp. 85-95,
December 2004.

“20% wind energy by 2030: Increasing wind energy’s citmition
to U.S. electricity supply,” U.S. Department of Energy, fedRep.
DOE/G0-102008-2567, July 2008.

P. Denholm and R. Sioshansi, “The value of compressecreérgy
storage with wind in transmission-constrained electrisv@osystems,”
Energy Policy, vol. 37, pp. 3149-3158, August 2009.

S. Wilcox, “National solar radiation database 199D2pdate: User's
manual,” National Renewable Energy Laboratory, Tech. REREL/TP-
581-41364, April 2007.

D. Finon and V. Pignon, “Capacity mechanisms in impetrfelectricity
markets,”Utilities Policy, vol. 16, pp. 141-142, September 2008.
Methods to Model and Calculate Capacity Contributions of Variable
Generation for Resource Adeguacy Planning, North American Electric

Reliability Corporation, Princeton, New Jersey, March 201

Seyed Hossein Madaen(S’11) is a Ph.D. candidate

in the Integrated Systems Engineering Department
at The Ohio State University. His research focuses
on renewable energy analysis and restructured power
systems. He holds a B.S. and an M.S. in electrical
engineering from the University of Tehran.

Ramteen Sioshans{M’11) is an assistant professor
in the Integrated Systems Engineering Department
at The Ohio State University. His research focuses
on renewable and sustainable energy system analysis
and the design of restructured competitive electricity
markets.

He holds a B.A. in economics and applied math-
ematics and an M.S. and Ph.D. in industrial engi-
neering and operations research from the University
of California, Berkeley, and an M.Sc. in economet-
rics and mathematical economics from The London

School of Economics and Political Science.

Paul Denholm (M’11-SM’12) is a senior analyst in
the Strategic Energy Analysis Center at the National
Renewable Energy Laboratory. His research interests
are in the effects of large-scale renewable energy de-
ployment in electric power systems, and renewable
energy enabling technologies such as energy storage
and long distance transmission.

He holds a B.S. in physics from James Madi-
son University, an M.S. in instrumentation physics
from the University of Utah, and a Ph.D. in land
resources/energy analysis and policy from the Uni-

versity of Wisconsin-Madison.

11



	Nomenclature
	Optimization Model Sets and Parameters
	Optimization Model Variables
	Capacity Value Estimation Variables and Parameters

	Introduction
	CSP Model
	Capacity Value Estimation Methods
	Reliability-Based Method
	Capacity Factor-Based Approximation Method

	Case Study
	CSP Plants and Operation
	Data Sources
	Conventional Generators
	Load
	Prices
	Weather


	Capacity Value Estimates
	Sensitivity of Capacity Values to Assumptions
	Capacity Payments
	Immediate CSP Startup

	Conclusions
	References
	Biographies
	Seyed Hossein Madaeni
	Ramteen Sioshansi
	Paul Denholm


