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Abstract—We estimate the capacity value of concentrating Il. INTRODUCTION
solar power (CSP) plants without thermal energy storage in he ) )
southwestern U.S. Our results show that CSP plants have capity N issue that power system planners face is resource ade-
values that are between 45% and 95% of maximum capacity, quacy [1]. Although planners have a variety of generation

depending on their location and configuration. We also exaniie  technologies to choose from, there is increasing intemest i

the sensitivity of the capacity value of CSP to a number of
factors and show that capacity factor-based methods can pxide
reasonable approximations of reliability-based estimatse.

Index Terms—Capacity value, equivalent conventional power,
concentrating solar power

the use of renewables. Some renewables can pose capacity
planning challenges, however, due to the variable and uncer
tain nature of their real-time output [2]-[6]. Thus, acdera
estimates of the capacity value of such resources are wvital f
planning purposes.

Due to excellent solar resource availability, the southenes
U.S. has great potential for concentrating solar power jJCSP
plant development, with a number of plants currently opera-
tional. Tabldll lists these plants, of which only the Nevada S
: : lar One plant includes thermal energy storage (TES), asasell
load in periodt _ , _ _ , their capacity and the type of CSP technology used. Theplant
conventional generating capacity available in period  ¢or \yhich data are available typically have capacity fastor
generating capacﬂy_avaﬂqble from the concentraﬂngsol@inging from 20% to 25%. This paper applies reliability thyeo
power (CSP) plant in period and the concept of equivalent conventional power (ECP) to
nameplate capacity of CSP plant estimate the capacity value of CSP plants without TES in
generating capacity available from the benchmark plagfe southwestern U.S. By studying a number of locations
in period? individually, we show that CSP plants can have ECPs that
probability that the evenk occurs range between 45% and 95% of maximum capacity, depending
loss of load probability (LOLP) in period on the plant's configuration and location. We also examiee th
loss of load expectation (LOLE) without CSP or benchsttect of load estimation errors, dry-cooled CSP, and subiio
mark plant added to the system weather variations on the capacity value of CSP. We further
LOLE with CSP plant added to the system show that capacity value estimation techniques based orPa CS
LOLE with benchmark plant added to the system plant’s capacity factor can provide reasonable approxonat
LOLP-based weight in period _ _ of ECP. The remainder of this paper is organized as follows:
average annqal equivalent conve_ntlonal power eSt'mateééfctiorﬂI] surveys different capacity value estimatiortimels,
CSP plant with SM ofs at location using data from jncj,ding those that we examine; sectiof IV details our case

the set of yeary” . , study, sectiondV througi_MIl summarize our results and
average annual capacity factor-based estimate of Capa%'é\ﬁsitivity analyses, and sectibi VIl concludes.
value of CSP plant with SM of at location\

I. NOMENCLATURE

index set for time
set of solar multiples (SMs) modeled
set of locations modeled

Ill. CAPACITY VALUE ESTIMATION METHODS
A. Reliability-Based Methods and ECP

Reliability-based methods are a set of techniques used to
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TABLE |
LOCATION OFCSP RANTS IN THE SOUTHWESTERNU.S.AS OF NOVEMBER, 2011

Plant Name Location Technology Capacity (MW)
Solar Electric Generating Stations  Mojave Desert, CA  Ramafrough 353.8

Nevada Solar One Boulder City, NV Parabolic Trough 72
Kimberlina Bakersfield, CA Linear Fresnel Reflector 5

Sierra Lancaster, CA Power Tower 5

Maricopa Solar Peoria, AZ Stirling Dish 15

(EFOR), which captures the probability that a particulan-ge Since the CSP plant and benchmark unit add capacity to the
erator can experience a failure at any given time. With \deia system, by definition one always has th&t< e ande” < e.
renewable generators one must model failures using an EFORe ECP of the CSP plant is found by adjusting the nameplate
and capture resource variability. The latter is typicalnd capacity of the benchmark generator until:
using historical resource data or by simulating such dasadba c B
on underlying probability distributions. ez ®)
Reliability-based estimates include the effective loadyca  Reliability-based methods are generally accepted as ghrovi
ing capability (ELCC), equivalent firm capacity (EFC), andhg robust capacity value estimates, since they fully antou
ECP methods. The ELCC of a generator is defined as tlee the effect of a generator on the reliability of a power
amount by which the system’s loads can increase when thestem and have been applied to estimate the capacity value
generator is added to the system, while maintaining the saofesolar photovoltaic (PV) and CSP plants [17]-[19]. Witk th
system reliability (as measured by LOLE) [14]. The EFQatter, an ELCC method shows that a 100 MW CSP plant
of a generatorg, is defined to be the capacity of a fullyin Colorado would have a capacity value ranging between
reliable generatori . with an EFOR of 0%) that can replace65% and 81%. These methods require detailed system data,
¢ while maintaining the same LOLE [15], [16]. A generator'fiowever, including EFORs of all of the generators, generato
ELCC and EFC will generally differ, since changing theapacities, and loads. These methods have also histgricall
generation mix of a system will change the distribution dfeen computationally expensive, since they can require com
the available capacity in a given hour whereas adjustinddogputing system LOLPs multiple times to achieve the desired
will not [13]. ECP is similar to EFC, except that the generat@ondition in equation[d5), although this is less of an issue
against whichy is benchmarked is not fully reliable and thugoday [20].
has a positive EFOR [13]. This latter definition is espegiall
attractive for a renewable generator since it allows thec#yp B Capacity Factor-Based Methods

value to be measured in terms of a dispatchable generator. FOAnother popular approximation technique considers the

example, one may find that a 100 MW wind generator hasc(%_‘pacity factor of a generator over a subset of periods durin

capacny.value that is equivalent to a 30 MW natural gas—flr%v ich the system faces a high risk of a shortage—for instance
combustion turbine.

, . eriods with high loads or LOLPs. A generator's capacity
To express the ECP of a CSP plant one first defines - - . : :
LOLP in period of the base system without the CSP pla fttor is defined as its average output during a set of periods

. : . ivided by its nameplate generating capacity.
as the probability that the load in perieccannot be met by These )t/echniquesphavegbeen apgliedpto V\%nd [21], [22] and
the conventional generators: '

PV solar [23] and compared with reliability-based methods
to assess their accuracy. Milligan and Parsons [3] compare
a capacity factor-based approximation that uses the highes
where the probability function implicitly accounts for theéload periods to other techniques that consider the LOLPs
likelihood of generator outages and can also account fef the base system without added generation. One of the
stochastic loads. The LOLE is defined as the sum of tiethods that they examine approximates the capacity value
LOLPs: Z of wind as the average capacity factor during the highest-
€= by,

Pt = Prob{Gt < Lt}, (1)

)

LOLP periods. Although loads and LOLPs are closely related,
teT they are not necessarily perfectly correlated since géorera
capacities and EFORs can vary seasonally. Moreover planned
aintenance outages and seasonal differences in watexsnflo
to energy-limited hydroelectric generators can compdiche
relationship between loads and LOLPs. If, however, such
variations do not occur during the study period, then this
method will give the exact same capacity value estimate as
using the highest-load periods. They also consider a method

and is typically computed over a year or a longer period.

The LOLE of the system when the CSP plant is added il

e =Y "Prob{G, + C; < L},
teT

®3)

where the probability function also accounts for varidpili
in solar resource. The LOLE of the system when only t

benchmark planti(e. without the CSP plant) is added is:

e? = Prob{G, + B, < L} . (4)
teT

he

In which the capacity value is approximated as a weighted
average of the capacity factor of wind during the highest-
load periods, with the LOLPs used as weights. This technique
places higher weight on the capacity factor during periods



TABLE Il

with high LOLPs. They apply these techniques considering LOCATION OF CSP RANTS STUDIED
between the top 1% and 30% of periods, and show that _ _
the approximation can approach reliability-based ests#t CSP Site | Coordinates
itable number of periods are considered. Their results Arzona it 3257 N H2a5 W
a sul ) p X ] o = Death Valley California | 36.03 N, 117.4% W
suggest that using the top 10% of periods is typically sufiti Imperial Valley California | 33.65 N, 116.05 W
These three estimation techniques can be applied to estimat Nevada 36.55 N, 116.45 W
New Mexico 34.35 N, 107.35% W

the capacity value of a CSP plant. The highest-load and
highest-LOLP methods approximate the capacity value as:

> Cy A. CSP Model
F;T'C" (6) We analyze parabolic trough CSP plants, although our

. . _ ~approach can be generalized to study other CSP technalogies
whereT is the set of either highest-load or -LOLP periodsgSp plants consist of two separate but interrelated parts:
and|T'| denotes the cardinality df. The weights used in the 3 solar field, which collects solar thermal energy, and a

LOLP-weighted approximation are: powerblock, which uses a heat engine to convert the thermal
w, = Dt @ energy into electricity. CSP plants can also include TES,
S opt which we exclude from this discussion since we focus on
teT CSP plants without TES. These components can be sized
whereT is the set of highest-load periods. The capacity valukfferently, which will affect the operation and capacitglwe
is then approximated as: of the plant. The size of the powerblock is typically meadure
S we - G based on its rated output, measured in MW of electricity (MW-
teT ®8) e). The size of the solar field can be measured by the area that

C the field covers or by using the concept of the solar multiple

Since only a subset of periods is considered and beca(SM) [25]. A solar field with an SM of 1.0 is sized to provide
the capacity factor is relatively easy to compute, thesehmesufficient thermal energy to operate the powerblock at tsdra
ods can reduce the computational burden of the estimatié@pacity with direct normal irradiance (DNI) of 950 Wima
Moreover, these types of estimation techniques and simp¥énd speed of 5 m/s, and an ambient temperature 6f@5
heuristics are used by utilities and system operators terdet3ecause the SM allows the solar field to be scaled in relation
mine the capacity value of renewables for long-term capact© the powerblock size, we hold the powerblock capacity fixed
planning purposes. A recent North American Electric Réliaband consider CSP plants with different SMs.
ity Corporation (NERC) report shows that most NERC system We simulate CSP generation using the model developed
operators, with the exceptions of ERCOT, Midwest 1SO, arfty Sioshansi and Denholm [26], which is based on the Solar
Quebec Balancing Authority, use such approximation methofidvisor Model (SAM). SAM is a software package that uses
[24]. System LOLPs must be computed for the highest-LOLgetailed weather data to model the dynamics of a solar field.
and LOLP_We|ghted approximationS, requiring Conventlon§AM has been validated against empirical CSP data from the
generator capacities and EFORs. However, the LOLPs miglar Electric Generating Stations [27]. The thermal eyerg
only be computed once, as opposed to in an iterative fashiégllected by the solar field, as modeled by SAM, is input

as with reliability-based estimates. to a mixed-integer programming (MIP) model to optimize
the dispatch of the plant. The MIP model assumes that the
IV. CASE STUDY components and performance of the CSP plant correspond to

We estimate the ECP of CSP plants at five sites in t
southwestern U.S., which are listed in Talle I, using histd
conventional generator, load, and weather data from 1998

2005. We study these locations in isolatidre.( considering led heat When th o ¢ load
a CSP plant added to each site individually). Thus our EC gled heat source. €n the parasiiic component loads are
faken into account, the maximum net electric output of the

are not additive, since they do not account for correlation _
weather conditions between the locations. Moreover, orECESP plant is about 120 MW-e. The default trough system has

are calculated by assuming a single CSP plant is added %EFOR of 6%, which we assume.

do not account for the fact that the marginal capacity value o

CSP will be decreasing as more CSP capacity is added to FheData Sources

system. Our estimates also neglect transmission constrain Since the locations that we study are in the Western Elec-
which can reduce the capacity value of CSP if there tsicity Coordinating Council (WECC) region, we model the
insufficient capacity to deliver power to loads when LOLRs aentire WECC to determine LOLPs and LOLEs. Since we
high. Our estimates use hourly data, and in sediionVI-C wese the same underlying system in our calculations, ECP
demonstrate that the ECPs are relatively insensitive togusidifferences between the locations are solely due to solar
subhourly data. This shows that hourly data are sufficient tesource differences. System planners often use more=timit
capture the effect of solar resource variability on the cédpa regions in capacity planning, however. Because the cgpacit
value of CSP. value of CSP depends on the relationship between LOLPs and

e default trough system modeled in version 2.0 of SAM
I? 5]. This plant has a 110 MW-e powerblock, which can be
%erated at up to 115%, a two-hour powerblock minimum up-
time, non-linear component parasitics, and no auxiliagsile



solar availability, the capacity value of a CSP plant mayedif 120 MW-e maximum net output of the CSP plant. The figure
depending on whether a more limited study region is usedshows that the solar field size has a direct impact on the ECP.
WECC LOLPs are estimated by calculating the system¥his is because a CSP plant with a small field will often
capacity outage table, which assumes that generator cutaggerate below its rated capacity, reducing its ECP. As the
follow Bernoulli distributions that are serially and joiynt field size increases, more thermal energy will be available
independent [7]. Data requirements and sources used in during such hours, increasing the ECP. On the other hand,
calculations are outlined below. a large solar field incurs greater capital costs and excess
1) Conventional Generators. The rated capacities of con-thermal energy that would overload the powerblock will be
ventional generators are obtained from Form 860 data c@lasted [26]. For these reasons, CSP plants without TES have
lected by the U.S. Department of Energy’s Energy Infornmatidhistorically been built with SMs of less than 1.5. Hig. 1 also
Administration. Form 860 reports winter and summer capaghows that the rank ordering of the locations, in terms of ECP
ities for each generator, which we use in our analysis. Tlean vary as a function of solar field size. This is because
WECC had between 1,016 and 1,622 generating units amdfusting the solar field size will change the operation of
123 GW and 163 GW of generating capacity during the yedi®® plants. In some cases increasing the SM will allow the
that we study. This reflects load growth between the yeagwewerblock to startup during a high-LOLP hour, when it would
1998 and 2005. otherwise not be able to with a smaller solar field due to
We model generator outages using a simple two stat@nimum-load constraints on the powerblock.
(online/offline) model. We use the NERC’s Generating Avail-
ability Data System (GADS) to estimate generator EFOR
The GADS specifies historical annual average EFORs f g5l i
generators based on generating capacity and technologgh wt /“Bﬂ_ﬁ_:*
we combine with generating technology data given in For =
860. The EFORs used range between 2% and 17% and h
a capacity-weighted average of 7%. The benchmark unit \&
use in the ECP calculation is a natural gas-fired combusti%
turbine, and we use an EFOR of 7% based on the GADS. 7
2) Load: Hourly historical load data for each year are§ 50
obtained from Form 714 filings with the Federal Energsd
Regulatory Commission. Form 714 includes load reports f

. L. i Arizona
nearly all of the load-serving entities _(LS!E_S) and utifitia the _ 30 »— Death Valley
WECC, although some small municipalities and cooperativ —E— Imperial Valley
are not included. We assume loads are fixed and determinit 29 Nevada 1
=—f— New Mexico

based on these data, which have annual peaks ranging betw ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
107 GW and 124 GW. Since the system loads increase o 1 11 12 13 1-; | 1'\-/'5', ll-G 17 18 18 2
time and capacity expansion can lead or lag such growth, we olar Multiple
adjust the hourly load profiles in each year individually8e t rig. 1. Average (over the years 1998 to 2005) annual ECP of R gi&nt,
base systemi.g. without the CSP or benchmark plant added)s a percentage of 120 MW-e maximum net output of the plant.
has an annual LOLE of 2.4. This corresponds to the standard
planning target of one outage-day every 10 years [28]. ThisFig. [@ shows annual ECPs at the New Mexico location,
load adjustment is done by scaling all of the hourly load®d demonstrates that there can be significant interannual
by a fixed percentage, ranging between 0.1% and 5% in tf@riability in the capacity value. For instance with an SM of
different years. One additional issue with these data is thaO the ECP of the plant in the year 2000 is more than four
LSEs do not always properly account for daylight savingémes greater than that in 2004. Comparing the operations of
time (DST) in their load reports. Sectid_VI-A describes #e plant during high-LOLP hours in these two years illustsa
sensitivity analysis in which we shift all loads forward andhe cause of these differences. In the year 2000, the highest
backward one hour to bound the effect of misreported lod@LP hours occur on 1 August. Figl 3 shows hourly LOLPs
data on the ECPs. and generation from the New Mexico plant with an SM of 1.0
3) Weather: SAM requires detailed weather data, includin@n this day. The CSP plant has an average output of about
DNI, dry-bulb and dew-point temperatures, relative hutgidi 85 MW-e during the high-LOLP hours, and this coincidence
barometric pressure, and wind speed. These data are abtafRiween CSP generation and LOLPs yields the high ECP in
from the National Solar Radiation Data Base [29], whicR000. Fig[¥# shows the hourly DNI and load data on this day,

accounts for cloud cover and other factors in determinigllo Which are also coincident. This coincidence is common in
weather conditions. many parts of North America, including the WECC, which

have summer peak loads that are driven by cooling needs that
will be correlated with solar availability.
The highest LOLPs in 2004 occur on 10 August. Hijy. 3
Fig.[ summarizes the average (over the eight years studisdpws hourly CSP generation and LOLPs on this day. The
annual ECP values. The ECP values are normalized by th&tput of the CSP plant is significantly less coincident with

V. ECP BESTIMATES
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Perezet al. [18] study the relationship between the capacity
o} { value of PV and the ratio of the summer to winter peak load
of a system. By examining systems with different ratios they
8or are able to show the sensitivity of the capacity value to this
— ratio. While such an approach may be useful for CSP, it does
% not provide meaningful results for our case study since we
2 6 estimate capacity values using the same underlying system
2 during a set of years which had little change in the ratio of
2 =0 the load peaks.
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g‘ 03r 150 @ The interannual variability in ECPs illustrates that sever
[ . . .
1o © years of data are required to provide a robust capacity value
02k 1 ¥ estimate, as has been shown with conventional generation
1** 2 and wind [8], [20]. Table[dll further demonstrates this by
ol {20 summarizing the average root mean squared error (RMSE)
' i between the average ECP using all eight of the years studied
| 1 . . . .
; H and a subset of the data. This RMSE metric is defined as:
123456 7 8 9101112131415161718192021222324 1 2
our 1S 1A > (“g,k,Y’ - ”;A,Y) ) ©)
SES AEA

Fig. 3. Hourly LOLPs and generation from a CSP plant at the N&xico
location with an SM of 1.0 on 1 August, 2000 and 10 August, 2004 whereY is the full set of eight years studied and is a
subset of these years. Thus the quantity, y» — v{  y, is

_ _ the difference in the ECP when a subset as opposed to all
the LOLPs and drops off in hour 15 when the LOLPS increasgignt years of data are used. The RMSE is averaged over the
giving the lower ECP in this year. Figl 4 shows the diumgjitferent possible sets of consecutive years of data that ca
DNI pattern on this day and illustrates why the output of thge ysed. For instance, if six years of data are used the ECP
CSP plant falls in this way—the sharp decrease in DNI igg pe computed using data from 1998-2003, 1999-2004, or
hours 15 and 16 forces the CSP plant to shutdown due 10 3#§00-2005, and the average of three corresponding RMSEs
minimum-load constraint. Although DNI increases in hour 14 reported in the table. The table demonstrates that using
the powerblock cannot startup due to its two-hour minimuRore data provides a more accurate ECP estimate. It can also

up-time constraint. Thgse findings point to the fact thaal'sollpe used to weigh the costs of gathering additional system dat
resource and loads will not be perfectly correlated, even HYyainst increased ECP estimate accuracy.

the summer. This is because ambient temperatures can be high
even with cloud cover.

These findings also show that CSP capacity values are o
highly system specific—many European systems, for instanée Sensitivity to Load Errors
have winter or night peaks, which could lower ECPs. TES An issue with the loads used in our analysis is that some
could provide added value in such systems since it couldlities do not account for DST when reporting Form 714
allow solar energy to be shifted to the peak. Future chang#mta. Thus it is possible that the simulated output of the
in diurnal or seasonal load patterns could also affect ECR3SP plants could be offset from actual loads and LOLPs.

V1. SENSITIVITY OF ECP



TABLE Il

AVERAGE ROOT MEAN SQUARED ERRORBETWEENECP ESTIMATES The annual net generation of a dry-cooled plant is between
USINGALL EIGHT YEARS AND A SUBSET OF THEDATA 1% and 8% lower than a wet-cooled one, depending on
location and SM. The New Mexico location suffers the least
Years Used| RMSE . . .
T 133 from dry cooling, with less than a 1.8% reduction, whereas th
2 9.4 Arizona sees an up to 8.4% generation drop. Hig. 6 shows the
3 6.4 average annual ECP of the dry-cooled CSP plants. Comparing
4 5.5 : . ) .
5 17 this to Fig.[0 shows that dry cooling will have a much
6 3.1 greater impact on capacity value than the change in generati
7 0.8 suggests, with between an 8% and 17% ECP reduction. This

is because the effect of dry cooling on CSP output will be

concentrated during high-temperature hours, which aled te
To bound the effect of such misreporting, we calculate ECRg$ e high-load hours. Fifl] 6 may overstate the effect of dry
with all of the system loads shifted one hour forward ango()"ng on Capacity value, however. This is because if dry-
backward. Fig[l6 shows the resulting ECPs for the Imperigholing systems are designed for summer high-temperature
Valley location, which can be up to 5% less than the ECRgn(ditions, the impact to CSP generation and capacity value
with unshifted loads. We observe similar results at the mthgan pe reduced [30]. A full cost and performance analysis

locations. The fact that the ECP drops regardless of wheth@suld be necessary to determine an optimal design for such
the load is shifted forward or backward suggests that most ®fsystem.

the loads reported in Form 714 are correct. This is because

solar resource and CSP generation will have some correlat’ 100 x x x x x x x x x
with system loads, and this correlation is maximized when tl
loads are not shifted.
95
90 S
(2]
=
85 g
2
o)
z 8 %
[} 40+ |
375 1
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S 70 —3— Death Valley
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S 65 201 Nevada i
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—F— Loads Shifted One Hour Forward Fig. 6. Average (over the years 1998 to 2005) annual ECP ofzabled
50 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ CSP plant, as a percentage of 120 MW-e maximum net outputeoplimt.

1 11 1.2 1.3 1.4 1.5 1.6 17 18 1.9 2
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Fig. 5. Average (over the years 1998 to 2005) annual ECP of R @é&nt
at Imperial Valley location with loads shifted, as a pereget of 120 MW-e
maximum net output of the plant.

C. Senditivity to Subhourly Weather Variability

Although our ECP estimates use hourly weather data,
these parameters can have non-trivial subhourly variafam
instance due to passing cloud cover. While subhourly DNI
variability can impact the capacity value of CSP, it may only
have a limited effect since the heat-transfer fluid (HTF)ref t

The default CSP plant configuration modeled in SAMlant has thermal inertia, which can maintain some eleditric
assumes a wet-cooled powerblock. Although the currenthytput during brief DNI reductions.
operational CSP plants listed in Talfle | are wet-cooled; thi To determine the effect of subhourly DNI variability on the
may not be a feasible option going forward, given the arichpacity value of CSP, we compare ECPs calculated using one-
conditions of the southwestern U.S. Indeed, a number of C&fnute and hourly weather data. We model the operation of the
plants under development will be dry-cooled. Dry coolin@SP plant using the same SAM- and MIP-based model, which
can reduce the powerblock efficiency, which will reduce CSB adapted to model one-minute operations by appropriate
generation, especially at high ambient temperatures. Wiemoscaling of the variables and parameters. SAM accounts for
a dry-cooled CSP plant by including a factor in the MIP mod@lTF thermal inertia in computing the solar energy collected
that accounts for these efficiency losses in computing the iy the solar field, and this is captured in greater detail & th
electrical output of the CSP plant [26]. one-minute model.

B. Sensitivity to Powerblock Dry Cooling



We use one-minute weather data, obtained from the Univ&8o and 9%. The figure also shows that using the top-10 hours
sity of Nevada, Las Vegas, from the year 2007 for a locatiggrovides a better approximation than using the top# 0fis
in Boulder City, Nevadd.We also use the one-minute modelllustrates that the capacity value of CSP is highly sewssiti
with hourly averages of the weather data to represent a nas¢oi the most critical hours of the year. This is due to the
which hourly weather data are used to model CSP generatisttong correlation between system loads and CSP generation
We compute ECPs using the one-minute generation data aul#ling more hours to the calculation reduces the approgiinat
hourly WECC loads. Since the underlying modeling techniqualue, biasing the result. Conversely, a capacity factsed
and load and conventional generator data are identicaldsgtw approximation of the capacity value of wind requires the top
the two cases, any differences in the ECP estimates arg/ sold% of the periods of the year to be considered [3]. Wind
due to the use of one-minute weather data as opposed to howelyuires significantly more periods to be included becatise o
averages. the much weaker correlation between system loads and wind

Fig. [ shows these ECPs and demonstrates that usgemeration. Thus a greater number of periods must be ind¢jude
hourly-average data provides a close approximation of théherwise the approximation will be biased downward.
ECP obtained with one-minute data—the maximum difference
is 1.5%. Using hourly-average data overestimates the Ei
for most SMs, since subhourly DNI variations can keep tt g0}
powerblock from running above its minimum operating poin
These effects are not fully captured when the one-mint
data are averaged. Nevertheless, the small ECP differen go}
suggest that hourly data can provide relatively good capacX
value estimates if subhourly data are not available (or t(‘” =T
computationally expensive to work with). This has also bee> 70t
shown for wind [20].
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Fig. 8. Average (over the years 1998 to 2005) annual ECP apdcity
factor-based approximations of a CSP plant at Imperialeyaibcation, as a
percentage of 120 MW-e maximum net output of the plant.
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a1 Table[TM summarizes the RMSE of the capacity factor-based

approximations compared to the ECP for all of the locations
studied. This RMSE metric is defined as:

One-Minute Data

+ Hourly Average Data

NP
‘ ‘ ‘ ‘ ‘ o f
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! . _ . The table shows that using the top-10 hours and the LOLP-
Fig. 7. ECP of a CSP plant at Boulder City, Nevada location0872using . . . .
one-minute and hourly-average weather data, as a pereenfat20 MW-e weighted method provides the best approximation of the ECP.

maximum net output of the plant.
TABLE IV

AVERAGE ROOT MEAN SQUARED ERROR OFCAPACITY FACTOR-BASED
APPROXIMATIONS OFECP

VII. CAPACITY FACTOR-BASED APPROXIMATIONS | Top-Load Top-LOLP LOLP-Weighted

Fig.[8 shows the average (over the eight years studied) an- = Top-10 Hours | 8.47 7.65 4.65
nual ECPs at the Imperial Valley location, as well as cagacit ~ '°P-100 Hours| 11.14 9.85 5.34
factor-based approximations. The figure shows the top;load
top-LOLP, and LOLP-weighted approximations and considers
cases in which the top-10 and top-100 hours of each year VIIl. CONCLUSIONS
are used. The figure shows that the LOLP-weighted methodThis paper analyzes the capacity value of CSP plants
provides the best approximation of the ECP, although tléthout TES at a number of locations in the southwestern U.S.
approximations are all biased slightly downward by betweey examining these locations in isolation, we show that CSP

1The site is around the Nevada One CSP plant and is at cocedinat 2Moreover, capacity factor-based approximations usingttipe10% load
35.80° N, 114.97 W. and LOLP hours yield even worse results than those usingofird @0 hours.



plants with SMs between 1.3 and 1.5, which are the most likeGSP is unlikely to be a pressing issue for some time, however,
configurations for plants without TES, can have ECPs betwesince the 21 CSP plants under development in the U.S. will
60% and 88% of maximum capacity, depending on locatioamount to less than 4 GW of generating capacity. Moreover,
This is because summer cooling loads and LOLPs tend dar analysis considers the locations modeled in isolatimh a
be correlated with solar resource. Although the majority afithout considering the effects of weather correlation be t
existing CSP plants and plants under development do roatpacity value of a portfolio of generators. Thus our ECP
include TES the technology is viable and would increasestimates are likely non-additive. If properly sited, gexquhic
capacity values by allowing generation to be shifted whén thdiversity could improve the overall ECP of a portfolio of CSP
coincidence is not perfect. Thus evaluating the benefit & Tiplants, since the correlation in real-time solar resourae c
in improving the capacity value of CSP is an important ardse weaker between dispersed locations. This could yield an
of future research. output profile from the plants that is more constant and bette
As with other renewables, CSP capacity values can havapacity values, as has been shown for wind [4]. This benefit,
significant interannual variation, and multiple years ofadaagain, requires a strong transmission system, but the value
are needed to provide robust long-term estimates. Our sisalyof such an optimized portfolio of CSP resources is an open
also examines the sensitivity of the ECP to a number gfiestion that requires further research.
factors. Importantly, we show that subhourly DNI variagon
have a small effect, suggesting that hourly data are sufficie ACKNOWLEDGMENT

for capacity value estimation. This is largely due to thertred ~ The authors would like to thank M. Mehos, C. Turchi, M
inertia of a CSP plant meaning that even without TES the typ#illigan, A. Green, W. Short, R. Newmark, A. Sorooshian, A.
of CSP plant considered here has the ability to ride througibnejo, the associate editor, and seven anonymous resiewer
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