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Abstract—We estimate the capacity value of concentrating
solar power (CSP) plants without thermal energy storage in the
southwestern U.S. Our results show that CSP plants have capacity
values that are between 45% and 95% of maximum capacity,
depending on their location and configuration. We also examine
the sensitivity of the capacity value of CSP to a number of
factors and show that capacity factor-based methods can provide
reasonable approximations of reliability-based estimates.

Index Terms—Capacity value, equivalent conventional power,
concentrating solar power

I. NOMENCLATURE

T index set for time
S set of solar multiples (SMs) modeled
Λ set of locations modeled

Lt load in periodt

Gt conventional generating capacity available in periodt

Ct generating capacity available from the concentrating solar
power (CSP) plant in periodt

C̄ nameplate capacity of CSP plant
Bt generating capacity available from the benchmark plant

in period t

Prob{X} probability that the eventX occurs
pt loss of load probability (LOLP) in periodt
e loss of load expectation (LOLE) without CSP or bench-

mark plant added to the system
eC LOLE with CSP plant added to the system
eB LOLE with benchmark plant added to the system
wt LOLP-based weight in periodt

vr
s,λ,Y average annual equivalent conventional power estimate of

CSP plant with SM ofs at locationλ using data from
the set of yearsY

v
f
s,λ average annual capacity factor-based estimate of capacity

value of CSP plant with SM ofs at locationλ
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II. I NTRODUCTION

A N issue that power system planners face is resource ade-
quacy [1]. Although planners have a variety of generation

technologies to choose from, there is increasing interest in
the use of renewables. Some renewables can pose capacity
planning challenges, however, due to the variable and uncer-
tain nature of their real-time output [2]–[6]. Thus, accurate
estimates of the capacity value of such resources are vital for
planning purposes.

Due to excellent solar resource availability, the southwestern
U.S. has great potential for concentrating solar power (CSP)
plant development, with a number of plants currently opera-
tional. Table I lists these plants, of which only the Nevada So-
lar One plant includes thermal energy storage (TES), as wellas
their capacity and the type of CSP technology used. The plants
for which data are available typically have capacity factors
ranging from 20% to 25%. This paper applies reliability theory
and the concept of equivalent conventional power (ECP) to
estimate the capacity value of CSP plants without TES in
the southwestern U.S. By studying a number of locations
individually, we show that CSP plants can have ECPs that
range between 45% and 95% of maximum capacity, depending
on the plant’s configuration and location. We also examine the
effect of load estimation errors, dry-cooled CSP, and subhourly
weather variations on the capacity value of CSP. We further
show that capacity value estimation techniques based on a CSP
plant’s capacity factor can provide reasonable approximations
of ECP. The remainder of this paper is organized as follows:
section III surveys different capacity value estimation methods,
including those that we examine; section IV details our case
study, sections V through VII summarize our results and
sensitivity analyses, and section VIII concludes.

III. C APACITY VALUE ESTIMATION METHODS

A. Reliability-Based Methods and ECP

Reliability-based methods are a set of techniques used to
estimate the capacity value of renewable and conventional
generators [6]–[13]. These methods are based on two stan-
dard reliability indices—loss of load probability (LOLP) and
loss of load expectation (LOLE). These indices measure the
likelihood that outages may leave the system with insufficient
capacity to serve the load. Conventional generator outages
are typically modeled using an equivalent forced outage rate
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TABLE I
LOCATION OF CSP PLANTS IN THE SOUTHWESTERNU.S.AS OF NOVEMBER, 2011

Plant Name Location Technology Capacity (MW)
Solar Electric Generating Stations Mojave Desert, CA Parabolic Trough 353.8
Nevada Solar One Boulder City, NV Parabolic Trough 72
Kimberlina Bakersfield, CA Linear Fresnel Reflector 5
Sierra Lancaster, CA Power Tower 5
Maricopa Solar Peoria, AZ Stirling Dish 1.5

(EFOR), which captures the probability that a particular gen-
erator can experience a failure at any given time. With variable
renewable generators one must model failures using an EFOR
and capture resource variability. The latter is typically done
using historical resource data or by simulating such data based
on underlying probability distributions.

Reliability-based estimates include the effective load carry-
ing capability (ELCC), equivalent firm capacity (EFC), and
ECP methods. The ELCC of a generator is defined as the
amount by which the system’s loads can increase when the
generator is added to the system, while maintaining the same
system reliability (as measured by LOLE) [14]. The EFC
of a generator,g, is defined to be the capacity of a fully
reliable generator (i.e. with an EFOR of 0%) that can replace
g while maintaining the same LOLE [15], [16]. A generator’s
ELCC and EFC will generally differ, since changing the
generation mix of a system will change the distribution of
the available capacity in a given hour whereas adjusting loads
will not [13]. ECP is similar to EFC, except that the generator
against whichg is benchmarked is not fully reliable and thus
has a positive EFOR [13]. This latter definition is especially
attractive for a renewable generator since it allows the capacity
value to be measured in terms of a dispatchable generator. For
example, one may find that a 100 MW wind generator has a
capacity value that is equivalent to a 30 MW natural gas-fired
combustion turbine.

To express the ECP of a CSP plant one first defines the
LOLP in periodt of the base system without the CSP plant
as the probability that the load in periodt cannot be met by
the conventional generators:

pt = Prob{Gt < Lt} , (1)

where the probability function implicitly accounts for the
likelihood of generator outages and can also account for
stochastic loads. The LOLE is defined as the sum of the
LOLPs:

e =
∑

t∈T

pt, (2)

and is typically computed over a year or a longer period.
The LOLE of the system when the CSP plant is added is:

eC
=

∑

t∈T

Prob{Gt + Ct < Lt} , (3)

where the probability function also accounts for variability
in solar resource. The LOLE of the system when only the
benchmark plant (i.e. without the CSP plant) is added is:

eB
=

∑

t∈T

Prob{Gt + Bt < Lt} . (4)

Since the CSP plant and benchmark unit add capacity to the
system, by definition one always has thateC ≤ e andeB ≤ e.
The ECP of the CSP plant is found by adjusting the nameplate
capacity of the benchmark generator until:

eC
= eB. (5)

Reliability-based methods are generally accepted as provid-
ing robust capacity value estimates, since they fully account
for the effect of a generator on the reliability of a power
system and have been applied to estimate the capacity value
of solar photovoltaic (PV) and CSP plants [17]–[19]. With the
latter, an ELCC method shows that a 100 MW CSP plant
in Colorado would have a capacity value ranging between
65% and 81%. These methods require detailed system data,
however, including EFORs of all of the generators, generator
capacities, and loads. These methods have also historically
been computationally expensive, since they can require com-
puting system LOLPs multiple times to achieve the desired
condition in equation (5), although this is less of an issue
today [20].

B. Capacity Factor-Based Methods

Another popular approximation technique considers the
capacity factor of a generator over a subset of periods during
which the system faces a high risk of a shortage—for instance
periods with high loads or LOLPs. A generator’s capacity
factor is defined as its average output during a set of periods
divided by its nameplate generating capacity.

These techniques have been applied to wind [21], [22] and
PV solar [23] and compared with reliability-based methods
to assess their accuracy. Milligan and Parsons [3] compare
a capacity factor-based approximation that uses the highest-
load periods to other techniques that consider the LOLPs
of the base system without added generation. One of the
methods that they examine approximates the capacity value
of wind as the average capacity factor during the highest-
LOLP periods. Although loads and LOLPs are closely related,
they are not necessarily perfectly correlated since generator
capacities and EFORs can vary seasonally. Moreover planned
maintenance outages and seasonal differences in water inflows
to energy-limited hydroelectric generators can complicate the
relationship between loads and LOLPs. If, however, such
variations do not occur during the study period, then this
method will give the exact same capacity value estimate as
using the highest-load periods. They also consider a method
in which the capacity value is approximated as a weighted
average of the capacity factor of wind during the highest-
load periods, with the LOLPs used as weights. This technique
places higher weight on the capacity factor during periods
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with high LOLPs. They apply these techniques considering
between the top 1% and 30% of periods, and show that
the approximation can approach reliability-based estimates if
a suitable number of periods are considered. Their results
suggest that using the top 10% of periods is typically sufficient.

These three estimation techniques can be applied to estimate
the capacity value of a CSP plant. The highest-load and
highest-LOLP methods approximate the capacity value as:

∑

t∈T

Ct

|T | · C̄
, (6)

whereT is the set of either highest-load or -LOLP periods,
and |T | denotes the cardinality ofT . The weights used in the
LOLP-weighted approximation are:

wt =
pt

∑

t∈T

pt

, (7)

whereT is the set of highest-load periods. The capacity value
is then approximated as:

∑

t∈T

wt · Ct

C̄
. (8)

Since only a subset of periods is considered and because
the capacity factor is relatively easy to compute, these meth-
ods can reduce the computational burden of the estimation.
Moreover, these types of estimation techniques and simpler
heuristics are used by utilities and system operators to deter-
mine the capacity value of renewables for long-term capacity
planning purposes. A recent North American Electric Reliabil-
ity Corporation (NERC) report shows that most NERC system
operators, with the exceptions of ERCOT, Midwest ISO, and
Quebec Balancing Authority, use such approximation methods
[24]. System LOLPs must be computed for the highest-LOLP
and LOLP-weighted approximations, requiring conventional
generator capacities and EFORs. However, the LOLPs must
only be computed once, as opposed to in an iterative fashion
as with reliability-based estimates.

IV. CASE STUDY

We estimate the ECP of CSP plants at five sites in the
southwestern U.S., which are listed in Table II, using historical
conventional generator, load, and weather data from 1998 to
2005. We study these locations in isolation (i.e. considering
a CSP plant added to each site individually). Thus our ECPs
are not additive, since they do not account for correlation in
weather conditions between the locations. Moreover, our ECPs
are calculated by assuming a single CSP plant is added and
do not account for the fact that the marginal capacity value of
CSP will be decreasing as more CSP capacity is added to the
system. Our estimates also neglect transmission constraints,
which can reduce the capacity value of CSP if there is
insufficient capacity to deliver power to loads when LOLPs are
high. Our estimates use hourly data, and in section VI-C we
demonstrate that the ECPs are relatively insensitive to using
subhourly data. This shows that hourly data are sufficient to
capture the effect of solar resource variability on the capacity
value of CSP.

TABLE II
LOCATION OF CSP PLANTS STUDIED

CSP Site Coordinates
Arizona 32.57◦ N, 112.45◦ W
Death Valley California 36.03◦ N, 117.45◦ W
Imperial Valley California 33.65◦ N, 116.05◦ W
Nevada 36.55◦ N, 116.45◦ W
New Mexico 34.35◦ N, 107.35◦ W

A. CSP Model

We analyze parabolic trough CSP plants, although our
approach can be generalized to study other CSP technologies.
CSP plants consist of two separate but interrelated parts:
a solar field, which collects solar thermal energy, and a
powerblock, which uses a heat engine to convert the thermal
energy into electricity. CSP plants can also include TES,
which we exclude from this discussion since we focus on
CSP plants without TES. These components can be sized
differently, which will affect the operation and capacity value
of the plant. The size of the powerblock is typically measured
based on its rated output, measured in MW of electricity (MW-
e). The size of the solar field can be measured by the area that
the field covers or by using the concept of the solar multiple
(SM) [25]. A solar field with an SM of 1.0 is sized to provide
sufficient thermal energy to operate the powerblock at its rated
capacity with direct normal irradiance (DNI) of 950 W/m2, a
wind speed of 5 m/s, and an ambient temperature of 25◦ C.
Because the SM allows the solar field to be scaled in relation
to the powerblock size, we hold the powerblock capacity fixed
and consider CSP plants with different SMs.

We simulate CSP generation using the model developed
by Sioshansi and Denholm [26], which is based on the Solar
Advisor Model (SAM). SAM is a software package that uses
detailed weather data to model the dynamics of a solar field.
SAM has been validated against empirical CSP data from the
Solar Electric Generating Stations [27]. The thermal energy
collected by the solar field, as modeled by SAM, is input
to a mixed-integer programming (MIP) model to optimize
the dispatch of the plant. The MIP model assumes that the
components and performance of the CSP plant correspond to
the default trough system modeled in version 2.0 of SAM
[25]. This plant has a 110 MW-e powerblock, which can be
operated at up to 115%, a two-hour powerblock minimum up-
time, non-linear component parasitics, and no auxiliary fossil-
fueled heat source. When the parasitic component loads are
taken into account, the maximum net electric output of the
CSP plant is about 120 MW-e. The default trough system has
an EFOR of 6%, which we assume.

B. Data Sources

Since the locations that we study are in the Western Elec-
tricity Coordinating Council (WECC) region, we model the
entire WECC to determine LOLPs and LOLEs. Since we
use the same underlying system in our calculations, ECP
differences between the locations are solely due to solar
resource differences. System planners often use more limited
regions in capacity planning, however. Because the capacity
value of CSP depends on the relationship between LOLPs and
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solar availability, the capacity value of a CSP plant may differ
depending on whether a more limited study region is used.

WECC LOLPs are estimated by calculating the system’s
capacity outage table, which assumes that generator outages
follow Bernoulli distributions that are serially and jointly
independent [7]. Data requirements and sources used in our
calculations are outlined below.

1) Conventional Generators: The rated capacities of con-
ventional generators are obtained from Form 860 data col-
lected by the U.S. Department of Energy’s Energy Information
Administration. Form 860 reports winter and summer capac-
ities for each generator, which we use in our analysis. The
WECC had between 1,016 and 1,622 generating units and
123 GW and 163 GW of generating capacity during the years
that we study. This reflects load growth between the years
1998 and 2005.

We model generator outages using a simple two state
(online/offline) model. We use the NERC’s Generating Avail-
ability Data System (GADS) to estimate generator EFORs.
The GADS specifies historical annual average EFORs for
generators based on generating capacity and technology, which
we combine with generating technology data given in Form
860. The EFORs used range between 2% and 17% and have
a capacity-weighted average of 7%. The benchmark unit we
use in the ECP calculation is a natural gas-fired combustion
turbine, and we use an EFOR of 7% based on the GADS.

2) Load: Hourly historical load data for each year are
obtained from Form 714 filings with the Federal Energy
Regulatory Commission. Form 714 includes load reports for
nearly all of the load-serving entities (LSEs) and utilities in the
WECC, although some small municipalities and cooperatives
are not included. We assume loads are fixed and deterministic
based on these data, which have annual peaks ranging between
107 GW and 124 GW. Since the system loads increase over
time and capacity expansion can lead or lag such growth, we
adjust the hourly load profiles in each year individually so the
base system (i.e. without the CSP or benchmark plant added)
has an annual LOLE of 2.4. This corresponds to the standard
planning target of one outage-day every 10 years [28]. This
load adjustment is done by scaling all of the hourly loads
by a fixed percentage, ranging between 0.1% and 5% in the
different years. One additional issue with these data is that
LSEs do not always properly account for daylight savings
time (DST) in their load reports. Section VI-A describes a
sensitivity analysis in which we shift all loads forward and
backward one hour to bound the effect of misreported load
data on the ECPs.

3) Weather: SAM requires detailed weather data, including
DNI, dry-bulb and dew-point temperatures, relative humidity,
barometric pressure, and wind speed. These data are obtained
from the National Solar Radiation Data Base [29], which
accounts for cloud cover and other factors in determining local
weather conditions.

V. ECP ESTIMATES

Fig. 1 summarizes the average (over the eight years studied)
annual ECP values. The ECP values are normalized by the

120 MW-e maximum net output of the CSP plant. The figure
shows that the solar field size has a direct impact on the ECP.
This is because a CSP plant with a small field will often
operate below its rated capacity, reducing its ECP. As the
field size increases, more thermal energy will be available
during such hours, increasing the ECP. On the other hand,
a large solar field incurs greater capital costs and excess
thermal energy that would overload the powerblock will be
wasted [26]. For these reasons, CSP plants without TES have
historically been built with SMs of less than 1.5. Fig. 1 also
shows that the rank ordering of the locations, in terms of ECP,
can vary as a function of solar field size. This is because
adjusting the solar field size will change the operation of
the plants. In some cases increasing the SM will allow the
powerblock to startup during a high-LOLP hour, when it would
otherwise not be able to with a smaller solar field due to
minimum-load constraints on the powerblock.
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Fig. 1. Average (over the years 1998 to 2005) annual ECP of a CSP plant,
as a percentage of 120 MW-e maximum net output of the plant.

Fig. 2 shows annual ECPs at the New Mexico location,
and demonstrates that there can be significant interannual
variability in the capacity value. For instance with an SM of
1.0 the ECP of the plant in the year 2000 is more than four
times greater than that in 2004. Comparing the operations of
the plant during high-LOLP hours in these two years illustrates
the cause of these differences. In the year 2000, the highest-
LOLP hours occur on 1 August. Fig. 3 shows hourly LOLPs
and generation from the New Mexico plant with an SM of 1.0
on this day. The CSP plant has an average output of about
85 MW-e during the high-LOLP hours, and this coincidence
between CSP generation and LOLPs yields the high ECP in
2000. Fig. 4 shows the hourly DNI and load data on this day,
which are also coincident. This coincidence is common in
many parts of North America, including the WECC, which
have summer peak loads that are driven by cooling needs that
will be correlated with solar availability.

The highest LOLPs in 2004 occur on 10 August. Fig. 3
shows hourly CSP generation and LOLPs on this day. The
output of the CSP plant is significantly less coincident with
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Fig. 2. Annual ECP of a CSP plant at the New Mexico location, asa
percentage of 120 MW-e maximum net output of the plant.
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Fig. 3. Hourly LOLPs and generation from a CSP plant at the NewMexico
location with an SM of 1.0 on 1 August, 2000 and 10 August, 2004.

the LOLPs and drops off in hour 15 when the LOLPs increase,
giving the lower ECP in this year. Fig. 4 shows the diurnal
DNI pattern on this day and illustrates why the output of the
CSP plant falls in this way—the sharp decrease in DNI in
hours 15 and 16 forces the CSP plant to shutdown due to its
minimum-load constraint. Although DNI increases in hour 17,
the powerblock cannot startup due to its two-hour minimum
up-time constraint. These findings point to the fact that solar
resource and loads will not be perfectly correlated, even in
the summer. This is because ambient temperatures can be high
even with cloud cover.

These findings also show that CSP capacity values are
highly system specific—many European systems, for instance,
have winter or night peaks, which could lower ECPs. TES
could provide added value in such systems since it could
allow solar energy to be shifted to the peak. Future changes
in diurnal or seasonal load patterns could also affect ECPs.

Perezet al. [18] study the relationship between the capacity
value of PV and the ratio of the summer to winter peak load
of a system. By examining systems with different ratios they
are able to show the sensitivity of the capacity value to this
ratio. While such an approach may be useful for CSP, it does
not provide meaningful results for our case study since we
estimate capacity values using the same underlying system
during a set of years which had little change in the ratio of
the load peaks.
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Fig. 4. Hourly DNI and load on 1 August, 2000 and 10 August, 2004.

The interannual variability in ECPs illustrates that several
years of data are required to provide a robust capacity value
estimate, as has been shown with conventional generation
and wind [8], [20]. Table III further demonstrates this by
summarizing the average root mean squared error (RMSE)
between the average ECP using all eight of the years studied
and a subset of the data. This RMSE metric is defined as:

√

1

|S| · |Λ|

∑

s∈S

∑

λ∈Λ

(

vr
s,λ,Y ′ − vr

s,λ,Y

)2

, (9)

where Y is the full set of eight years studied andY ′ is a
subset of these years. Thus the quantity,vr

s,λ,Y ′ − vr
s,λ,Y , is

the difference in the ECP when a subset as opposed to all
eight years of data are used. The RMSE is averaged over the
different possible sets of consecutive years of data that can
be used. For instance, if six years of data are used the ECP
can be computed using data from 1998-2003, 1999-2004, or
2000-2005, and the average of three corresponding RMSEs
are reported in the table. The table demonstrates that using
more data provides a more accurate ECP estimate. It can also
be used to weigh the costs of gathering additional system data
against increased ECP estimate accuracy.

VI. SENSITIVITY OF ECP

A. Sensitivity to Load Errors

An issue with the loads used in our analysis is that some
utilities do not account for DST when reporting Form 714
data. Thus it is possible that the simulated output of the
CSP plants could be offset from actual loads and LOLPs.
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TABLE III
AVERAGE ROOT MEAN SQUARED ERRORBETWEEN ECP ESTIMATES

USING ALL EIGHT YEARS AND A SUBSET OF THEDATA

Years Used RMSE
1 13.3
2 9.4
3 6.4
4 5.5
5 4.7
6 3.1
7 0.8

To bound the effect of such misreporting, we calculate ECPs
with all of the system loads shifted one hour forward and
backward. Fig. 5 shows the resulting ECPs for the Imperial
Valley location, which can be up to 5% less than the ECPs
with unshifted loads. We observe similar results at the other
locations. The fact that the ECP drops regardless of whether
the load is shifted forward or backward suggests that most of
the loads reported in Form 714 are correct. This is because
solar resource and CSP generation will have some correlation
with system loads, and this correlation is maximized when the
loads are not shifted.
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Fig. 5. Average (over the years 1998 to 2005) annual ECP of a CSP plant
at Imperial Valley location with loads shifted, as a percentage of 120 MW-e
maximum net output of the plant.

B. Sensitivity to Powerblock Dry Cooling

The default CSP plant configuration modeled in SAM
assumes a wet-cooled powerblock. Although the currently
operational CSP plants listed in Table I are wet-cooled, this
may not be a feasible option going forward, given the arid
conditions of the southwestern U.S. Indeed, a number of CSP
plants under development will be dry-cooled. Dry cooling
can reduce the powerblock efficiency, which will reduce CSP
generation, especially at high ambient temperatures. We model
a dry-cooled CSP plant by including a factor in the MIP model
that accounts for these efficiency losses in computing the net
electrical output of the CSP plant [26].

The annual net generation of a dry-cooled plant is between
1% and 8% lower than a wet-cooled one, depending on
location and SM. The New Mexico location suffers the least
from dry cooling, with less than a 1.8% reduction, whereas the
Arizona sees an up to 8.4% generation drop. Fig. 6 shows the
average annual ECP of the dry-cooled CSP plants. Comparing
this to Fig. 1 shows that dry cooling will have a much
greater impact on capacity value than the change in generation
suggests, with between an 8% and 17% ECP reduction. This
is because the effect of dry cooling on CSP output will be
concentrated during high-temperature hours, which also tend
to be high-load hours. Fig. 6 may overstate the effect of dry
cooling on capacity value, however. This is because if dry-
cooling systems are designed for summer high-temperature
conditions, the impact to CSP generation and capacity value
can be reduced [30]. A full cost and performance analysis
would be necessary to determine an optimal design for such
a system.
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Fig. 6. Average (over the years 1998 to 2005) annual ECP of a dry-cooled
CSP plant, as a percentage of 120 MW-e maximum net output of the plant.

C. Sensitivity to Subhourly Weather Variability

Although our ECP estimates use hourly weather data,
these parameters can have non-trivial subhourly variation, for
instance due to passing cloud cover. While subhourly DNI
variability can impact the capacity value of CSP, it may only
have a limited effect since the heat-transfer fluid (HTF) of the
plant has thermal inertia, which can maintain some electrical
output during brief DNI reductions.

To determine the effect of subhourly DNI variability on the
capacity value of CSP, we compare ECPs calculated using one-
minute and hourly weather data. We model the operation of the
CSP plant using the same SAM- and MIP-based model, which
is adapted to model one-minute operations by appropriate
scaling of the variables and parameters. SAM accounts for
HTF thermal inertia in computing the solar energy collected
by the solar field, and this is captured in greater detail in the
one-minute model.
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We use one-minute weather data, obtained from the Univer-
sity of Nevada, Las Vegas, from the year 2007 for a location
in Boulder City, Nevada.1 We also use the one-minute model
with hourly averages of the weather data to represent a case in
which hourly weather data are used to model CSP generation.
We compute ECPs using the one-minute generation data and
hourly WECC loads. Since the underlying modeling technique
and load and conventional generator data are identical between
the two cases, any differences in the ECP estimates are solely
due to the use of one-minute weather data as opposed to hourly
averages.

Fig. 7 shows these ECPs and demonstrates that using
hourly-average data provides a close approximation of the
ECP obtained with one-minute data—the maximum difference
is 1.5%. Using hourly-average data overestimates the ECP
for most SMs, since subhourly DNI variations can keep the
powerblock from running above its minimum operating point.
These effects are not fully captured when the one-minute
data are averaged. Nevertheless, the small ECP differences
suggest that hourly data can provide relatively good capacity
value estimates if subhourly data are not available (or too
computationally expensive to work with). This has also been
shown for wind [20].
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Fig. 7. ECP of a CSP plant at Boulder City, Nevada location in 2007 using
one-minute and hourly-average weather data, as a percentage of 120 MW-e
maximum net output of the plant.

VII. C APACITY FACTOR-BASED APPROXIMATIONS

Fig. 8 shows the average (over the eight years studied) an-
nual ECPs at the Imperial Valley location, as well as capacity
factor-based approximations. The figure shows the top-load,
top-LOLP, and LOLP-weighted approximations and considers
cases in which the top-10 and top-100 hours of each year
are used. The figure shows that the LOLP-weighted method
provides the best approximation of the ECP, although the
approximations are all biased slightly downward by between

1The site is around the Nevada One CSP plant and is at coordinates
35.80◦ N, 114.97◦ W.

7% and 9%. The figure also shows that using the top-10 hours
provides a better approximation than using the top-100.2 This
illustrates that the capacity value of CSP is highly sensitive
to the most critical hours of the year. This is due to the
strong correlation between system loads and CSP generation—
adding more hours to the calculation reduces the approximated
value, biasing the result. Conversely, a capacity factor-based
approximation of the capacity value of wind requires the top-
10% of the periods of the year to be considered [3]. Wind
requires significantly more periods to be included because of
the much weaker correlation between system loads and wind
generation. Thus a greater number of periods must be included,
otherwise the approximation will be biased downward.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
45

50

55

60

65

70

75

80

85

90

95

Solar Multiple

C
ap

ac
ity

 V
al

ue
 [%

]

 

 

ECP
Top−10 Load
Top−10 LOLP
Top−10 Weighted
Top−100 Load
Top−100 LOLP
Top−100 Weighted

Fig. 8. Average (over the years 1998 to 2005) annual ECP and capacity
factor-based approximations of a CSP plant at Imperial Valley location, as a
percentage of 120 MW-e maximum net output of the plant.

Table IV summarizes the RMSE of the capacity factor-based
approximations compared to the ECP for all of the locations
studied. This RMSE metric is defined as:

√

1

|S| · |Λ|

∑

s∈S

∑

λ∈Λ

(

vr
s,λ,Y − v

f
s,λ

)2

. (10)

The table shows that using the top-10 hours and the LOLP-
weighted method provides the best approximation of the ECP.

TABLE IV
AVERAGE ROOT MEAN SQUARED ERROR OFCAPACITY FACTOR-BASED

APPROXIMATIONS OFECP

Top-Load Top-LOLP LOLP-Weighted
Top-10 Hours 8.47 7.65 4.65
Top-100 Hours 11.14 9.85 5.34

VIII. C ONCLUSIONS

This paper analyzes the capacity value of CSP plants
without TES at a number of locations in the southwestern U.S.
By examining these locations in isolation, we show that CSP

2Moreover, capacity factor-based approximations using thetop-10% load
and LOLP hours yield even worse results than those using the top-100 hours.
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plants with SMs between 1.3 and 1.5, which are the most likely
configurations for plants without TES, can have ECPs between
60% and 88% of maximum capacity, depending on location.
This is because summer cooling loads and LOLPs tend to
be correlated with solar resource. Although the majority of
existing CSP plants and plants under development do not
include TES,3 the technology is viable and would increase
capacity values by allowing generation to be shifted when this
coincidence is not perfect. Thus evaluating the benefit of TES
in improving the capacity value of CSP is an important area
of future research.

As with other renewables, CSP capacity values can have
significant interannual variation, and multiple years of data
are needed to provide robust long-term estimates. Our analysis
also examines the sensitivity of the ECP to a number of
factors. Importantly, we show that subhourly DNI variations
have a small effect, suggesting that hourly data are sufficient
for capacity value estimation. This is largely due to the thermal
inertia of a CSP plant meaning that even without TES the type
of CSP plant considered here has the ability to ride through
brief cloud cover, which is a potentially important difference
between CSP and other solar technologies, such as PV.

We also examine the use of capacity factor-based methods
and show that while these tend to be biased downward,
they can provide reasonable ECP approximations. This is
especially useful given the use of such approximations by
system operators [24]. Although we use a standard method
for estimating LOLPs, more complex techniques have been
developed and warrant further research. This includes mod-
eling load uncertainty, using Markovian failure models that
capture serial correlation in generator failures and repairs, and
seasonally varying EFORs that capture planned outages and
hydrological conditions for hydroelectric generators.

Although we estimate ECPs by modeling the entire WECC
system, system planners often use a more limited system
footprint. This could affect the ECPs, depending on the
extent to which solar resource is coincident with the ‘local’
system load. By modeling the entire WECC system we also
assume that the system has sufficient transmission capacityto
deliver power wherever it is needed. If binding transmission
constraints prevent this, actual ECPs could be lower than our
estimates [24].

Our results capture the ECP of CSP in the near-term under
current market conditions, since we neglect a number of issues
that are currently not pertinent but can affect CSP in the future.
Future changes in the generation mix, especially higher solar
penetrations, can affect ECPs. This is because the peak of the
net system load can be affected by changes in the generation
mix, potentially reducing the ECP of CSP. Perezet al. [18]
demonstrate this in the case of PV. Similarly, as more CSP is
added to the system the marginal capacity value of added CSP
should diminish. TES should help to alleviate this issue, since
it adds flexibility to shift generation to serve the peak of the
net system load. This diminishing marginal capacity value of

3The National Renewable Energy Laboratory maintains a list of CSP plants
in the U.S., which is available at http://www.nrel.gov/csp/solarpaces/. As of
November 2011, it lists 21 plants in various stages of development, of which
only four include TES.

CSP is unlikely to be a pressing issue for some time, however,
since the 21 CSP plants under development in the U.S. will
amount to less than 4 GW of generating capacity. Moreover,
our analysis considers the locations modeled in isolation and
without considering the effects of weather correlation on the
capacity value of a portfolio of generators. Thus our ECP
estimates are likely non-additive. If properly sited, geographic
diversity could improve the overall ECP of a portfolio of CSP
plants, since the correlation in real-time solar resource can
be weaker between dispersed locations. This could yield an
output profile from the plants that is more constant and better
capacity values, as has been shown for wind [4]. This benefit,
again, requires a strong transmission system, but the value
of such an optimized portfolio of CSP resources is an open
question that requires further research.
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