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Abstract

This paper specifies and estimates state-level models of short- and long-term electricity demand in the United
States. The short-term model predicts hourly load based on weather and calendar inputs. The long-term
model estimates interannual demand, and includes population, prices, and gross state product as predictors.
These models are combined to incorporate the short- and long-term trends in electricity consumption when
generating forecasts of diurnal patterns into the future. Finally, the authors investigate the effects of short-
run price elasticities of demand. The short-term model is shown to be within 95% accuracy of actual levels
in out-of-sample tests.
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1. Introduction

The demand for electricity fluctuates on familiar cycles and with known influences in the short-term, and
its long-term growth coincides with trends in macroeconomic indicators. Accurately forecasting the level of
demand on disparate time scales is necessary for utilities to schedule generators, plan system maintenance,
and devise long-term investments. Short-term forecasts are commonly made in half- or one-hour intervals 24
to 168 hours in advance of the pertinent period. Seasonal patterns such as day of week and month of year, as
well as temperature and humidity, are the most significant factors influencing demand within a year. Both
types of factors work in conjunction with each other—although on a day-to-day basis the specific day of the
week is of great importance, temperature also matters. Monthly seasonality primarily reflects meteorological
conditions. These variables become less significant with longer time horizons; models of long-run electricity
demand typically forecast aggregate monthly or annual levels. Changes in long-run demand are normally
correlated with changes in economic indicators such as gross domestic product and prices of electricity and
other fuels.

In the short-term, regression techniques are common for modeling the quantity of electricity demanded.
Pardo et al. (1) use autoregressive least squares regression to explore the effects of temperature and sea-
sonality on daily load. For modeling the daily peak and monthly aggregate demand levels, Mirasgedis et

al. (2) also use regressions which include seasonal and temperature variables. Both of these papers are
primarily concerned with the role of weather in demand quantity fluctuations. The peak load, average load,
temperature, and calendar particulars of the previous day are the basis for the bivariate model of next-day
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hourly peak in the work of Engle et al. (3). Forecasts for diurnal load profiles can be made in a comparable
manner; Ramanathan et al. (4) build 24 separate regression models, one for each hour of the day with unique
regressors. A similar approach is used by Taylor and Buizza (5) to forecast load at various cardinal points
of the day, including midday and midnight.

Similar methods are applied to long-term forecasts as well. For example, Mohamed and Bodger (6),
Amarawickrama and Hunt (7) and Bianco et al. (8) use annual demand regression models that consider
macroeconomic factors, such as gross domestic product and population. Efforts to combine monthly and
annual aggregate forecasts from the same data set through cointegration of time series can be found in the
work of Engle et al. (9). The authors capture short-term effects in a monthly model, and then improve
it by introducing a factor from a separate annual model influenced more by long-term trends. Artificial
neural networks are another method common in the literature for both time scales. Ringwood et al. (10)
investigate the influences on demand in multiple time frames by modeling daily, weekly, and yearly quantity
demanded using neural networks. More recently, Taylor et al. (11) develop an intra-hour neural network
and compare it to double exponential smoothing, regression with principal component analysis, and seasonal
ARMA models for two data sets of diurnal load profiles on hourly and half-hourly intervals.

A natural extension of predicting the quantity of electricity demand is investigating how this quantity
changes under different pricing policies. Price elasticities are a measure of how much the quantity demanded
for a good changes given a change in price. These elasticities can be estimated for changes in the price of
the good itself (own) or a change in the price of a different good (cross). With respect to electricity load, the
different goods can be thought of as electricity in different hours of the day. An increase (decrease) in price
in an hour may decrease (increase) demand in that hour, and change the quantity demanded in adjacent
hours as well. Prices can be structured in several ways, for instance a constant time-invariant price or a
time-of-use tariff, with different prices applied to consumption during different blocks of time. The hourly
own- and cross-price elasticities of demand used in this work are determined by Taylor et al. (12). These
elasticities are estimated from eight years of data for industrial customers across all hours of the day.

Despite the existing body of literature on short- and long-term forecasting, little work which utilizes
multiple time horizons is available. In the short-run, models frequently only predict peak or aggregate daily
load. We investigate how similar modeling techniques to those found in the literature can be used to predict
continuous demand with one function. Furthermore, by predicting the entire diurnal load profile with a
single regression model, exploring the interactions in quantity demanded between different hours is possible.
Thus, effects of different pricing strategies can be captured by utilizing customers’ price elasticities. We
explore cases where there is a simple peak and off-peak structure and where the price increases with the
consumption level. In addition, as a population and economy grow, the amount of electricity demanded in
aggregate can grow as well. We develop a second model of annual aggregate electricity demand regressed
against macroeconomic variables. Using the long-term growth rates, as determined by this annual aggregate
model, fine-grain predictions further into the future are possible. Although predictions of peak and aggregate
load as found in the literature are necessary for planning, forecasting temporally disaggregated load allows
further refinement.

The remainder of this paper is organized as follows. Section 2 details the development of the two models;
first, the diurnal model form and the data used to develop it are considered and then a similar treatment
for the annual regression is undertaken. How these models are combined to forecast loads in the future
is also discussed. In section 3, the estimated regression coefficients are reported along with results from
out-of-sample validation of the proposed short-term model and forecasted results and the application of
cross- and own-price elasticities. Section 4 concludes and summarizes the work.

2. Data and Methodology

2.1. Diurnal Model

Our initial regression model for diurnal load profiles is of a log-linear form incorporating calendar and
weather variables. Electricity demand has daily, weekly, and monthly cycles which can be described by
Fourier series over the respective period. A Fourier series is a linear combination of sine and cosine functions
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of differing frequencies used to approximate a given function arbitrarily well. This method is advantageous
over the classic approach of dummy variables to represent the particular hour, day, and month of an obser-
vation. Fewer variables are necessary to represent each time frame; a model with two frequencies at each
time scale is optimal with our data, for a total of 16 predictors instead of 40. The three cycles modeled with
this method are hour of the day patterns, hour of the week patterns, and month of the year patterns. The
longest of these cycles is evident in figure 1, which shows hourly load in the state of Ohio by a subset of
American Electric Power’s (AEP’s) commercial and industrial customers in the year 2010. Demand peaks
during the summer months, but otherwise is relatively steady on a seasonal basis. This may be in part be-
cause cooling technologies used in the summer tend to be electric, while heating technologies used in winter
months are not. Figure 2 displays the first two weeks of hourly demand levels from the same consumers as in
figure 1. The weekly and daily cycles are apparent. Also evident is the difference in demand from weekdays
to weekends, as the first 48 hours are over a holiday weekend, and the next 120 represent Monday through
Friday. The quantity demanded in the first 48 hours is particularly low, even for Saturdays and Sundays,
because of the holiday, and motivates the inclusion of variables to capture this effect. The data shown in
figures 1 and 2 are obtained from AEP.

In addition to these seasonal terms, there are indicator variables for each year in the sample. The three
final calendar regressors represent weekends and holidays. This holiday variable includes days which are
not considered holidays, but immediately precede or follow a holiday and exhibit holiday-like tendencies.
Indicator variables for Saturdays and Sundays also capture the behavior over the entire respective day.
This model structure allows even atypical patterns such as floating holidays to be represented. Variability
from weather conditions is modeled by heating degrees (HD) and cooling degrees (CD), defined as HDt =
max{Tref − Tt, 0} and CDt = max{Tt − Tref , 0} where Tt is the mean daily temperature for hour t and
Tref is a reference temperature. Following the work of Engel et al. (3) and Pardo et al. (1), we assume
Tref = 65◦ F. The relationship between total quantity demanded and temperature is nonlinear due to
some electric heating; hence, a single temperature variable is not sufficient. Combining these terms in a
least-squares regression results in the following model:

%∆Qt = β0 + β1HDt + β2HD2
t + β3CDt + β4CD2

t + β5HOLt + β6SUNt + β7SATt (1)

+
12∑

i=1

3∑

j=1

2∑

m=1

[γi sin(2πmτj,t) + γi cos(2πmτj,t)] +
4∑

k=1

δkYk,t + ǫt.

The variables τj,t represent the time of the respective Fourier expansion for a particular observation. For
instance, the first hour of the year (t = 1) would have τ1,1 = 1/24, τ2,1 = 1/168, and τ3,1 = 1/12, for
hour of the day, hour of the week, and month of the year periods, respectively. HOLt, SUNt, SATt, and
Yk,t are binary indicator variables for holidays, Sundays, Saturdays, and the years 2006-2009, respectively,
and ǫt is the residual term. The percent difference of the dependent variable is to prevent scaling and
heteroscedasticity issues.

Our data for the short-term diurnal regressions consist of hourly electricity demand and daily weather
information. Three data sets contain load data for a subset of approximately 105,000, 65,500, and 78,000
AEP commercial and industrial customers from the states Texas, Virginia, and Ohio, respectively, from
January 1, 2006 to December 31, 2010 with 43,824 hourly observations. A fourth data set of roughly 16,000
customers in Michigan has 43,080 observations, spanning the same time frame except for December 2009.
The average load for the customers in these samples are 183, 1447, 1372, and 1016 MW for Michigan, Ohio,
Texas, and Virginia, respectively. Each of these data sets is used to estimate a separate model specific
to the location. Of these data, 35,064 (34,320 for Michigan) observations are used to estimate the model
coefficients, and the final year of data, consisting of 8,760 observations, is used for out-of-sample validation.
Maximum and minimum daily temperatures from three weather stations1 in each state, as obtained from
the U.S. National Climatic Data Center, are averaged to determine HD and CD in the model.

1We choose weather stations based on data availability and geographic diversity. The locations, by state, of the stations are:
Adrian, Chatham, and Gladwin, Michigan, Akron, Bellefontaine, and Jackson, Ohio, Camp Pickett, Clintwood, and Edinburg,
Virginia, and Borger, Dell City, and Refugio, Texas.
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Diagnostic tests on the model determined by (1) indicate positive autocorrelation of the residuals, a
common issue in time series, suggesting model adjustments are needed. The Durbin-Watson (DW) test
of the residuals checks for evidence of correlation; a statistic from this test differing significantly from 2
(with a possible range of 0-4) indicates correlation. Despite the model seeming well fit, with R2 values of
approximately 0.8 for all of the data sets used, these and other statistics such as t-tests are misleading and
biased if autocorrelation is present. To correct this issue, autoregressive residual terms with 1-, 2-, 3-, 144-,
145-, and 168-hour lags are included in the model. These are determined by analysis of autocorrelation and
partial autocorrelation functions. The modified model is given by:

%∆Qt = β0 + β1HDt + β2HD2
t + β3CDt + β4CD2

t + β5HOLt + β6SUNt + β7SATt (2)

+
12∑

i=1

3∑

j=1

2∑

m=1

[γi sin(2πmτj,t) + γi cos(2πmτj,t)] +
4∑

k=1

δkYk,t

+ρ1ǫt−1 + ρ2ǫt−2 + ρ3ǫt−3 + ρ4ǫt−144 + ρ5ǫt−145 + ρ6ǫt−168 + ǫt.

Terms that are also found in (1) retain their meanings and ǫt−i represents the ith lag from time t of the
residual term. The coefficients of these autoregressive terms are determined by minimizing the sum of
squared errors.

2.2. Annual Aggregate Model

Although calendar and weather factors best predict short-run levels of electricity demand, macroeconomic
changes predominately determine long-term trends in aggregate quantities demanded. For our model, these
include the gross state product (GSP) and average annual retail price of electricity. In addition, industrial
customers are those most capable of fuel switching in response to the relative prices of electricity and its
alternatives; therefore, average annual retail natural gas prices are included to capture this substitutability.
Finally, the level of economic activity is correlated to the population in an area. Our model takes the form:

%∆Ay = α0 + α1%∆GSPy + α2%∆Py + α3%∆NGPy + α4%∆POPy + α5Ty + ǫy, (3)

where Ay is the annual aggregate commercial and industrial quantity demanded, GSPy is the gross state
product, Py is the annual quantity-weighted mean price of electricity, NGPy is the annual quantity-weighted
mean price of natural gas, POPy is the state population, Ty is a time trend variable, and ǫy is the error term,
all in year y. The percent difference operator from y−1 to y is used to make the data stationary. Augmented
Dickey Fuller (ADF) unit root tests of the variables find them to be nonstationary, as is typical for such
time series. An ADF test rejects the null hypothesis that the percent difference data are nonstationary at a
95% confidence level, so these values are taken to be stationary. Results from these tests for the dependent
variable can be found in Table 1—results for the other variables are similar.

For the long-run model, aggregate annual electricity demanded quantities of commercial and industrial
sectors from 1990 to 2010 are used as the dependent variable. These data are available from the U.S.
Department of Energy’s Energy Information Administration (EIA), as are the electricity and natural gas
price data also used. Electricity prices are state average retail prices in cents per kilowatt hour. The natural
gas prices used are state average retail prices in dollars per thousand cubic feet. For both electricity and
natural gas, the prices are the mean as weighted by the respective commercial and industrial sector load.
GSP is publicly available from the Bureau of Economic Analysis. Lastly, population estimates are from the
U.S. Census Bureau.

2.3. Simultaneous Use of Short- and Long-Run Models

The two models described in sections 2.1 and 2.2 convey informative predictions separately, but used in
conjunction they allow forecasts of hourly demand level further into the future than otherwise possible. The
process follows three steps. First, the short-run forecasts are made. Then the long-run growth rates are
predicted and applied to the short-run forecasts. Finally, changes in the quantity demanded as a consequence
of short-run inter-hourly price changes are calculated using short-run own- and cross-price elasticities.
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As most of the regressors in (2) are dependent on the time being forecasted, predictions based on this
model are simple to produce. Because the short-run model includes indicator variables for 2006-2009, a
base year for predictions is necessary. The year variable must be within the sample period, but the other
calendar variables should reflect the actual year of the forecast, to accurately represent when holidays and
weekends occur. Once a given time frame is decided, pertinent weather data must be input to (2). This
gives a diurnal load profile corresponding to the base year selected, which we denote y0, with the calendar
and weather data for the future year to be modeled, which is denoted {Q̂t}.

The model (3) describes how aggregate annual electricity demand changes as a result of differences in
macroeconomic variables. The interannual demand growth rates estimated by this model can be used to
improve the short-run forecasts generated by (2) into the future. If we let ỹ denote the future year for which
a diurnal load forecast is desired, the base-year load profile is scaled to the future year as:

Q̃t = Q̂t ·

ỹ∏

y=y0+1

(1 + %∆Ay), (4)

where the %∆Ay’s are estimated using model (3), based on estimates of future macroeconomic variables.
Equation (4) assumes that the change in annual aggregate demand applies uniformly to all hours of the day.

The load profiles given by (4) can be further refined to account for the effect of time-variant pricing
schemes using interhourly demand elasticities. If we let ηt,j denote the elasticity of quantity demanded in
hour t relative to a price change in hour j, pb

j denote an assumed baseline price in hour j, and pj the actual
price in hour j, the resulting change in hour-t quantity demanded is given by:

%∆Q̃t =

24∑

j=1

ηt,j

pj − pb
j

pb
j

. (5)

Equation (5) assumes that the change in hour-t quantity demanded depends on price changes during all 24
hours of the corresponding day, although the model can be generalized to consider the effects of less or more
hours. The changes in quantity demanded determined in (5) can be applied to the load profiles computed
in (4) to arrive at the load profile:

Q̄t = Q̃t · (1 + %∆Q̃t), (6)

which corresponds to year ỹ and includes interhourly demand elasticities.
For our application of the model, we assume a base year of 2009. The calendar variables are determined

based on the specific year forecast. For diurnal forecasts, the 30-year norm temperatures from the same
weather stations used for estimating the models are used as the future weather. Some assumptions are
necessary to facilitate long-run forecasting as well; independent variables such as GSP and population in (3)
must first be estimated before the regression model can be used. We assume these variables grow linearly into
the future. Figure 3 shows the GSP of Virginia for the years 1990-2009, published by the U.S. Department
of Commerce’s Bureau of Economic Analysis, and the linear fit used to forecast future GSP. The model has
an R2 of 0.9826. Although prices are more volatile than GSP, this approximation is representative of the fits
for all the data sets and independent variables, thus a simple linear regression is justifiable. The elasticities
used are values reported by Taylor et al. (12), and the baseline price is the predicted price from the linear
approximation of retail price used in (3). The results from these two models, and how the price elasticities
affect the quantity demand forecasted, are explained further in the section 3.

3. Results and Forecasts

3.1. Model Results

Regression coefficients for short-run models (1) and (2) are given in tables 2 through 5. Each table
contains the results for one particular data set and associated t-values for the models with and without
autoregressive residual variables. As expected, when considering the results from (1), holidays and weekends
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are highly significant for all the data sets. In general, the values for these variables are negative, which follows
the intuition that demand is lower during these periods. The Fourier terms representing hour of the day and
hour of the week are also significant. These terms together are capable of capturing most of the trend on an
hour-to-hour basis; however, variables representing the year-to-year growth are also important, which in part
necessitates models for longer time scales for forecasts to be accurate. The weather-related terms—heating
and cooling degrees and their squared terms—are most significant for Texas.

Relative summer temperatures in Texas are higher than in the other three states, which may explain the
increased importance. Other potential predictors, such as an indicator for daylight savings time and a set
of Fourier terms for seasons of the year are found to be insignificant. The remaining variables are used to
maintain the same model structure for all four data sets, despite varying levels of significance.

As discussed in the previous section, a second formulation is developed, motivated by the low DW
statistics indicating positive residual autocorrelation in (1). With the inclusion of autoregressive residual
terms in equation (2), some changes in the results are observed. Coefficients of some of the original variables
change in magnitude and significance, but relative size and direction remain the same for most. In all cases,
the constant term remains or increases in significance. The additional autoregressive terms are significant
as well. The hour of day, holiday, Saturday, and Sunday terms remain large in relative magnitude. In all
cases the R2 improves from (1) to (2), especially for Virginia and Texas.

Values in tables 2 through 5 are estimated using four of the five years of available data, with the remaining
observations excluded to use for out-of-sample validation. To check the fitness of the models, we compare
the actual observations to the forecasted values for this final year. A common measurement of this deviation
is mean absolute percentage error (MAPE), which measures the difference between actual and predicted
values averaged over the time horizon. MAPE is given by:

100

T

T∑

t=1

|Qt − Q̂t|

Qt

, (7)

where Qt represents the actual value at time t and Q̂t is the corresponding predicted value. Table 6 details
these results for both formulations of the short-run model, where T = 8760. The inclusion of autoregressive
error terms improves the forecasts significantly, and our MAPE values are comparable to values reported in
the literature.

The results of the long-term model of aggregate annual demand are reported in table 7. We only estimate
the long-term model for the four states for which we have data to fit the short-term model. Nevertheless,
the long-term model could be estimated for other states, since the required data are publicly available.
Coefficients from the regression are the first value of each column and state, and the associated t-values are
reported in parentheses. In general, changes in GSP and the price of electricity are the most significant
factors in determining changes in quantity demanded. On the other hand the time trend, the final regressor,
is less significant. As the data have been made stationary, it is logical that little time-varying trend remains.
Our R2 values are in line with the long-run models estimated by Engle et al. (9). Although a model with
absolute levels (as opposed to percent differences) of annual aggregate demand yields higher R2 values, the
use of such non-stationary data yield inconsistent coefficient estimates and spurious regression results (13).

3.2. Load Predictions: The Effects of Growth and Price Elasticity

Figure 4 summarizes how diurnal load patterns change over the long term when interannual growth
rates are applied. It shows a one-week load pattern in June during a base year of 2009, computed using
model (2). It also shows the load pattern during the same week in 2014, with growth rates derived from
model (3) applied using equation (4). This load pattern assumes 2.6% and 3.5% annual GSP and electricity
price growth, respectively, based on a linear fit to historical data as illustrated in figure 3. For purposes
of comparative statics, the figure also shows load profiles for the same week in 2014 with different rates of
macroeconomic growth. One of the load patterns considers a case in which the economy experiences high
growth during the five years, with an annual GSP growth rate of 8%. The other load pattern assumes annual
electricity price increases of 5%.
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Because the diurnal load data used to estimate the short-term diurnal model represents only a small
subset of all commercial and industrial customers in each of the four states, the diurnal load profiles generated
by model (2) are scaled to represent aggregate statewide consumption. This is done by comparing the total
quantity demand in 2009 in the short-run data sets to aggregate statewide consumption reported by the
EIA. If we let Ay denote aggregate annual statewide consumption and Qt the hourly consumption of the
customer subset in the diurnal data, the scaling factor for the year is given by:

Sy =
Ay∑8760

t=1 Qt

. (8)

For instance, the hourly quantity demand by the subset of commercial and industrial customers in Ohio in
2009 is approximately 15% of the total statewide consumption, thus the outputs of model (2) are scaled by
a factor of 6.667 to forecast statewide commercial and industrial consumption. This scaling factor is applied
to all of the hourly loads generated by the short-term model, and is included in figure 4 and all subsequent
figures.

Although the days shown in figure 4 represent different calendar days of the month in the years 2009
and 2014, they represent the same days of the first week of June. In the base case with long-run average
macroeconomic growth rates, natural gas price increases and GSP growth increase electricity consumption.
However, there are increases in electricity prices as well, causing a net decrease in consumption relative to
2009. Population growth in Ohio is also forecasted to decline, further reducing demand. This results in a
295 MW reduction in the maximum peak during the week between 2009 and 2014. When electricity prices
increase 5% annually, this negative impact dominates the other macroeconomic changes, with further declines
in consumption levels. On the other hand, high GSP growth results in increasing quantities demanded.

In addition to modeling the diurnal load profile, we also explore the effects of short-run interhourly price
changes on demand. This is done using own- and cross-price elasticities of demand, which describe how
consumers’ electricity demand changes due to price changes during different hours of the day. For instance,
if the price during the middle of the afternoon, which tends to be a peak demand period, is higher relative
to the price during other hours of the day, an industrial consumer may move production and associated
electricity demand away from this period. A utility scheduling generators can use this information to create
a price structure which minimizes costs by shifting some demand away from the peak. Given our prediction
of the entire diurnal load profile, we can utilize hourly elasticity estimates to capture such effects. Taylor
et al. (12) report estimated own- and cross-price elasticities of demand between each pair of hour within a
day. Many customers do not face complex tariff structure with hourly prices, thus our analysis uses these
elasticities to estimate the effects of simpler pricing schemes.

Figure 5 shows the results of applying these elasticities over a 35-hour period in February under three
different pricing schemes. The first is a standard time-invariant tariff, with the price of energy being uniform
across all hours. The loads in this case are not affected when the elasticities are applied using equation (5),
since all of the hourly price changes are zero. The second case considers a two-tier price structure in which
prices between 9 am and 6 pm are 12.5% higher than the price in the time-invariant tariff and prices in
the remaining hours are 12.5% lower. The third case considers a more complex multi-tiered price structure.
From from 8 pm to 6 am, prices are 20% lower than the baseline price in the time-invariant tariff, from 7
to 8 am prices are 12.5% lower than the baseline, from 11 am to 5 pm prices are 12.5% higher than the
baseline, and in the remaining hours prices are 6.25% above the baseline. Both of these price tariffs result in
shifting of demand away from high-price hours towards lower-price hours and a flattening of the load profile.
The multi-tiered tariff yields a 20% reduction in the peak quantity demanded and an overall consumption
decrease of 2% relative to the time-invariant tariff.

4. Conclusion

In this paper we develop a model to represent the level of electricity demand in commercial and industrial
sectors as a combination of short-term and long-term trends. The short-term model, which is based on
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weather and calendar data, can predict diurnal load profiles within a year with 95% accuracy in out-
of-sample forecast validation. We employ Fourier series of varying periodicities to capture the effects of
different seasonalities. This model is of a percent difference autoregressive form. Incorporating forecasts of
weather variables, instead of historical averages, and evaluating how forecasts change is of future interest,
as well as investigating the impact of other weather conditions, such as humidity, wind speed, and ambient
sunlight.

In addition, a second model of aggregate electricity demand levels measures interannual growth rates
based on population, GSP, and price changes. In combination, these allow for fine-grain forecasts into the
future. Presently, the model assumes, when shifting the diurnal predictions by this interannual growth rate,
that the change affects all hours uniformly. Whether or not peak and off-peak loads do indeed grow at equal
rates in the long-term is a topic worthy of further investigation. Finally, changes in quantity demanded are
observed when different pricing policies are enacted based on measurements of commercial and industrial
customers’ hourly own- and cross-price elasticity of demand. Peak loads are found to shift up to 20% with
only a modest change in relative prices.

The models are calibrated, validated, and demonstrated based on four states for which we have hourly
data to fit the short-term model. Results from each of these states, in terms of model fit and predictive
ability, are similar. Thus, the model seems applicable for a variety of underlying data sets. The same
techniques could be used to forecast and model electricity demands in other states or countries, if similar
data are available. The results of this model can be a useful input for long-term generation, transmission,
and distribution capacity planning done by utilities and system operators. Utilities, system operators, and
policy makers may also be interested in using this model to study the effects of different pricing tariffs on
electricity demand and ancillary impacts associated with that energy use.
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Figure 1: Hourly electricity demand of 78,000 commercial and industrial customers in the state of Ohio in
the year 2010. Data obtained from AEP.
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Figure 2: Diurnal demand patterns for same subset of commercial and industrial customers shown in figure 1
in the first two weeks of the year. Data obtained from AEP.

Table 1: Results of ADF test on dependent variable in (3)

State Test Statistic p-value
Michigan -2.381 0.020
Ohio -3.060 0.005
Texas -2.429 0.018
Virginia -2.968 0.005
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Figure 3: Actual and predicted values of gross state product in Virginia for the years 1990-2009. R2 = 0.9826.

Table 2: Regression estimates for short-term models in equations (1) and (2) for Michigan. Regression R2’s
are 0.653 and 0.793, respectively. Model (1) has a DW statistic of 1.078.

Equation (1) Equation (2)
Variable Coefficient t-value Coefficient t-value
Constant -0.144 -1.990 -0.089 -9.990
HD 0.001 0.231 -0.003 -0.030
CD 0.025 1.170 0.027 0.002
HD2 0.000 -0.334 0.000 0.021
CD2 -0.003 -1.310 -0.002 -0.006
Day Hour 1 4.400 212.000 4.400 2.360
Day Hour 2 -1.380 -66.500 -1.380 -0.741
Day Hour 3 -1.210 -58.100 -1.210 -0.648
Day Hour 4 -1.980 -95.400 -1.990 -1.070
Week Hour 1 0.808 36.000 0.761 0.408
Week Hour 2 -0.497 -10.800 -0.438 -0.235
Week Hour 3 0.834 33.600 0.762 0.408
Week Hour 4 -0.470 -14.300 -0.428 -0.230
Month 1 -0.006 -0.162 -0.012 -0.006
Month 2 -0.002 -0.035 -0.008 -0.005
Month 3 0.006 0.217 -0.037 -0.020
Month 4 -0.001 -0.030 -0.002 -0.001
Y2006 0.037 0.874 0.009 0.004
Y2007 -0.007 -0.172 0.007 0.003
Y2008 0.001 0.031 -0.001 0.000
HOL -0.184 -2.210 -0.063 -0.033
SAT 1.240 13.900 0.942 0.433
SUN 0.393 4.400 0.463 0.213
ǫt−1 35.700 0.000
ǫt−2 8.750 19.200
ǫt−3 1.300 4.700
ǫt−144 20.100 0.697
ǫt−145 13.700 10.800
ǫt−168 30.500 7.360
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Table 3: Regression estimates for short-term models in equations (1) and (2) for Ohio. Regression R2’s are
0.389 and 0.433, respectively. Model (1) has a DW statistic of 1.848.

Equation (1) Equation (2)
Variable Coefficient t-value Coefficient t-value
Constant 0.221 2.300 0.195 10.600
HD 0.002 0.290 0.003 0.013
CD 0.003 0.111 0.005 0.001
HD2 0.000 -1.080 0.000 -0.019
CD2 0.000 -0.229 -0.001 -0.002
Day Hour 1 4.300 128.000 4.310 1.120
Day Hour 2 -1.590 -47.300 -1.590 -0.413
Day Hour 3 -0.864 -25.700 -0.868 -0.225
Day Hour 4 -1.690 -50.100 -1.690 -0.437
Week Hour 1 0.595 16.400 0.568 0.147
Week Hour 2 -0.206 -2.770 -0.203 -0.053
Week Hour 3 0.688 17.100 0.647 0.168
Week Hour 4 -0.218 -4.100 -0.211 -0.055
Month 1 0.086 1.670 0.075 0.019
Month 2 0.070 1.060 0.053 0.014
Month 3 0.092 2.280 0.076 0.020
Month 4 -0.027 -0.790 -0.027 -0.007
Y2006 -0.196 -2.880 -0.188 -0.037
Y2007 -0.140 -2.060 -0.138 -0.027
Y2008 -0.148 -2.200 -0.144 -0.028
HOL -0.119 -0.772 -0.007 -0.001
SAT 0.892 4.330 0.670 0.149
SUN -0.179 -0.888 -0.188 -0.042
ǫt−1 1.060 0.275
ǫt−2 5.480 1.420
ǫt−3 -0.102 -0.026
ǫt−144 12.800 3.330
ǫt−145 4.130 1.070
ǫt−168 15.400 4.000
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Table 4: Regression estimates for short-term models in equations (1) and (2) for Texas. Regression R2’s are
0.563 and 0.705, respectively. Model (1) has a DW statistic of 1.256.

Equation (1) Equation (2)
Variable Coefficient t-value Coefficient t-value
Constant 0.243 3.350 0.262 20.800
HD -0.007 -0.724 -0.017 -0.033
CD 0.005 0.382 0.008 0.014
HD2 0.000 0.506 0.000 0.015
CD2 0.000 -0.583 -0.001 -0.020
Day Hour 1 4.630 198.000 4.790 1.820
Day Hour 2 -2.540 -108.000 -2.700 -1.030
Day Hour 3 -1.080 -46.200 -1.130 -0.430
Day Hour 4 -1.230 -52.400 -1.280 -0.485
Week Hour 1 0.457 18.100 0.427 0.162
Week Hour 2 0.016 0.306 -0.058 -0.022
Week Hour 3 0.545 19.500 0.501 0.190
Week Hour 4 -0.103 -2.790 -0.140 -0.053
Month 1 0.009 0.210 -0.005 -0.002
Month 2 0.020 0.324 0.059 0.022
Month 3 0.038 1.140 0.035 0.013
Month 4 0.001 0.051 0.072 0.027
Y2006 0.010 0.216 -0.041 -0.012
Y2007 -0.033 -0.707 -0.005 -0.002
Y2008 -0.051 -1.110 -0.074 -0.021
HOL -0.361 -3.350 -0.141 -0.037
SAT 0.700 4.900 0.437 0.142
SUN -0.431 -3.070 -0.394 -0.128
ǫt−1 34.300 13.000
ǫt−2 5.340 2.030
ǫt−3 -0.161 -0.061
ǫt−144 18.900 7.150
ǫt−145 12.100 4.590
ǫt−168 18.800 7.130
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Table 5: Regression estimates for short-term models in equations (1) and (2) for Virginia. Regression R2’s
are 0.544 and 0.726, respectively. Model (1) has a DW statistic of 1.123.

Equation (1) Equation (2)
Variable Coefficient t-value Coefficient t-value
Constant 0.177 3.210 0.176 20.800
HD 0.003 0.509 0.001 0.008
CD -0.010 -0.687 -0.017 -0.012
HD2 0.000 -1.890 0.000 -0.029
CD2 0.001 0.519 0.001 0.009
Day Hour 1 3.290 173.000 3.300 1.860
Day Hour 2 -0.766 -40.200 -0.767 -0.433
Day Hour 3 -0.788 -41.400 -0.793 -0.447
Day Hour 4 -1.640 -86.300 -1.640 -0.928
Week Hour 1 0.508 24.700 0.475 0.268
Week Hour 2 -0.008 -0.192 0.020 0.012
Week Hour 3 0.524 23.100 0.473 0.266
Week Hour 4 -0.071 -2.360 -0.038 -0.021
Month 1 0.021 0.728 0.002 0.001
Month 2 0.030 0.793 -0.001 -0.001
Month 3 0.038 1.590 0.028 0.015
Month 4 0.014 0.742 -0.044 -0.024
Y2006 -0.062 -1.600 -0.041 -0.017
Y2007 -0.057 -1.470 -0.010 -0.004
Y2008 -0.014 -0.359 -0.003 -0.001
HOL -0.260 -2.970 -0.237 -0.092
SAT 0.592 5.080 0.397 0.192
SUN -0.223 -1.950 -0.153 -0.074
ǫt−1 29.500 16.700
ǫt−2 5.520 3.110
ǫt−3 -1.500 -0.844
ǫt−144 20.300 11.400
ǫt−145 15.600 8.820
ǫt−168 30.100 17.000

Table 6: MAPE of models (1) and (2) for one year of out-of-sample data used in the model validation
process.

State Equation (1) Equation(2)
Michigan 4.326 3.744
Ohio 4.031 3.870
Texas 3.638 3.443
Virginia 4.508 3.725
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Table 7: Regression estimates for long-term model in equations (3). t-values for each coefficient are reported
in parentheses.

State Constant GSP P NGP POP T R2 DW
Michigan 0.008 0.736 -0.223 0.101 -2.155 -0.002

(0.157) (2.434) (-0.814) (1.151) (-0.536) (-0.551) 0.556 2.28
Ohio -0.029 0.763 -0.698 0.046 -0.699 0.002

(-0.599) (1.330) (-1.516) (0.957) (-0.161) (0.728) 0.615 1.41
Texas 0.001 0.281 -0.014 0.015 0.275 -0.000

(0.027) (1.448) (-0.136) (0.447) (0.298) (-0.242) 0.278 2.37
Virginia 0.105 -1.377 -0.730 0.211 -1.133 0.002

(1.701) (-1.444) (-2.046) (2.529) (-0.512) (0.898) 0.420 2.31
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Figure 4: Modeled diurnal demand of entire commercial and industrial sector in Ohio during the first week
of June in 2009 and 2014.
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Figure 5: Modeled diurnal demand of entire commercial and industrial sector in Ohio between 8 am of 3
February, 2009 and 6 pm of 4 February, 2009.
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