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Abstract

The charging of battery electric vehicles (BEVs) is a potential source of flexibility and ancillary services to
power systems. This paper proposes a two-stage stochastic problem that can be used to optimize the charging
of BEVs in a public charging station to provide frequency regulation and energy arbitrage. The model also
co-optimizes the use of distributed energy resources, including battery energy storage and photovoltaic solar
panels. We demonstrate the performance of the proposed model using a case study based on the Central-
Ohio region. The case study shows that proper management of flexibility in BEV charging can provide
high-quality frequency regulation services, which is also of significant financial value to the station operator.
As such, the modeling methodology that we propose here can further accelerate the adoption of BEVs. This
is because the value streams generated by the provision of frequency regulation can reduce the cost of BEV
ownership and the net cost of owning and operating a public BEV-charging station.
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1. Introduction

Ancillary services (AS) are necessary to maintain real-time balance between electricity supply and de-
mand. Mismatches between supply and demand can lead to a frequency deviation or other unacceptable
power-quality issues. Kempton and Tomić (2005a,b); Dallinger et al. (2011) examine the technical potential
and economic value of battery electric vehicles (BEVs) providing some of these types of services.

Providing grid services, including AS, can play an outsize role in enabling greater BEV adoption. A
number of works, including formative studies by Kempton and Letendre (1997); Denholm and Letendre
(2007), show that the total net cost of BEV ownership can be significantly reduced through the revenues
that can be earned by providing grid services. The revenues that are generated from the provision of such
services can also incentivize the deployment of public BEV-charging stations. There is a massive literature,
including the works of Hodgson (1990); Kuby and Lim (2005); Upchurch et al. (2009); Wang and Lin (2009);
Wang and Wang (2010); Upchurch and Kuby (2010); Frade et al. (2011); He et al. (2013); Xi et al. (2013);
Shi and Zheng (2014); Cai et al. (2014); He et al. (2015); Shahraki et al. (2015); Li et al. (2016); Dong et al.
(2016); Wu and Sioshansi (2017a), studying the optimal deployment of public BEV-charging infrastructure.
An important consideration that is neglected by much of this literature is how to finance the development
of such infrastructure. Fetene et al. (2016) examine the economics of public workplace charging. They
find that it is extremely difficult to structure a workplace-charging contract that is mutually beneficial to
the BEV and station owners. The provision of grid services can provide an additional value stream to be
shared between the counterparties. This may, in turn, ease such contracting difficulties and the associated
challenges in financing the construction of a public charging station.
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The provision of grid services by BEVs via a public charging station may also help alleviate transactions-
costs issues. Bessa and Matos (2012) survey the role of a BEV aggregator, which essentially acts as an
intermediary between individual BEV owners and the wholesale electricity market. They indicate that such
an entity can play an important role in efficiently allowing collections of BEVs to participate in wholesale
markets. Today’s wholesale-market designs do not allow individual BEVs to participate in the markets,
because they are too small. The owner of a public BEV-charging station, which acts as a BEV aggregator,
can also use other resources, such as battery energy storage (BES) and other distributed energy resources
(DERs), to provide grid services. Arsie et al. (2009); Drury et al. (2011) examine the value of energy storage
providing grid services within restructured wholesale electricity markets.

Studies that examine the value of BEVs providing grid services suggest that much of the associated value
is generated through the provision of AS. This is because providing energy service (e.g., by discharging a
BEV’s battery) is costly due to the associated cycle-life degradation of the battery. Many AS products (e.g.,
spinning and non-spinning reserves), conversely, entail rarely having to discharge a BEV battery, because
the services are rarely needed in real-time. For instance, Sioshansi and Denholm (2010) find that the vast
majority of benefits that accrue to a BEV from providing grid services are due to the provision of spinning
and non-spinning reserves.

Frequency regulation is a much higher-quality AS product, compared to spinning and non-spinning
reserves. Rebours et al. (2007a,b) provide a comprehensive survey of frequency regulation services. The
basic premise is that the generation level of frequency regulation providers is modulated up and down on
a second-to-second basis to maintain real-time balance between electricity supply and demand in a power
system. Because of this quick response time, frequency regulation is often the highest-priced of all AS.

BEVs have the technical potential to serve as frequency regulation sources, further generating value
for BEV and charging-station owners. However, providing frequency regulation can be costly if it entails
discharging a BEV battery. Xu et al. (2018) show that considering the degradation of a battery can be
important in determining how to offer it in the frequency regulation market. On the other hand, Uddin et al.
(2017) suggest that light cycling of a BEV’s battery, for instance from providing small amounts of frequency
regulation, can improve the battery’s health. These works and others suggest that the provision of frequency
regulation by discharging a BEV’s battery may have mixed effects on battery degradation, which may be
highly technology-specific and depend on the overall use of the battery. Thus, the station-control model
would have to account for the chemistry of each BEV’s battery and have knowledge of the BEV’s past and
potential future usage profile. A further complication is that it is not clear how BEV manufacturers will
treat discharging a BEV’s battery from the perspective of battery warranties. Given these complexities in
understanding the physical and financial implications of additional battery cycling, this paper focuses on
BEVs providing frequency regulation by modulating the rate at which they are recharged to respond to the
frequency regulation needs of a power system. Thus, we exclude the potentially costly option of discharging
a BEV’s battery for providing grid services.

Specifically, we examine the case of a public dc fast BEV-charging station that is used to recharge multiple
BEVs. The station may also have access to DERs, including BES and photovoltaic (PV) solar panels, the
operation of which can be co-optimized with BEV charging to provide grid services. The charging station
is assumed to have a limited window of time within which to recharge BEVs. This window provides some
flexibility in scheduling charging loads to provide grid services. The station may also use DERs as added
sources of flexibility.

We propose a two-stage stochastic optimization model that can be used for scheduling the use of these
various sources of flexibility. The model aims to maximize the value of the services that are provided while
meeting technical charging-station requirements. Technical constraints can include a transformer capacity,
which limits the amount of power that can be imported to or exported from the charging station, the need
to fully recharge each BEV within its charging window, and power and energy capacities of the DERs. The
proposed model captures uncertainties, including BEV-arrival times and -charging demands, the frequency
regulation signal, and PV output. By capturing the relevant dynamics and sources of uncertainty in the
charging system the two-stage stochastic optimization problem that we propose is an advance over existing
models that appear in the literature. Moreover, the model that we propose can be used in a rolling-horizon
fashion to re-optimize the operation of the system (we conduct this on a one-minute basis), which makes
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the model practical for real-world station management.
Our model builds upon works in the existing literature that examine the use of distributed resources

and controlled BEV charging for the provision of grid services, including frequency regulation. Pantoš
(2012) develops a stochastic optimization model, which focuses on uncertainty in BEV-usage patterns, to
determine how individual BEVs should participate in energy and AS markets. The resulting tractability
issue is addressed by employing scenario reduction, which gives a problem with a manageable scenario tree.
This can be contrasted with our method, which dynamically determines the scenario-tree size to give the
proper tradeoff between computational complexity and model fidelity. Janjic et al. (2017) develop a multi-
objective optimization model that schedules BEV charging for the provision of frequency regulation while
minimizing cost. Their model is solved using a genetic algorithm, which does not provide any guarantees
on solution optimality. This can be contrasted with our solution algorithm, which provides valid statistical
bounds on the quality of the solution that is obtained from the model. Wu and Sioshansi (2017b); Yan et al.
(2018) examine the impacts of distributed PV generators and a BES system in improving the operational
performance of a BEV charging station. Wu and Sioshansi (2017b) employ a rolling-horizon stochastic
optimization-based approach, on which we base the methodology that we use in this paper. Yan et al.
(2018) develop a four-stage hierarchical-optimization framework, which makes planning decisions at day-
ahead, hour-ahead, and real-time time frames to minimize the operating cost of the charging station while
also maximizing BEV-owners’ satisfaction.

There are other works in the extant literature that use different modeling and algorithmic approaches
to optimize the operation of BEV-charging stations. Amini et al. (2018) use a decentralized co-ordination
scheme that is based on Dantzig-Wolfe decomposition for scheduling BEV charging. The BEV aggregator
solves the master problem, which aims to schedule BEV charging for optimal participation in the day-ahead
energy market. Individual BEV owners solve subproblems that are co-ordinated by the master problem.
The key novelty of their work is that charging co-ordination is handled in a decentralized manner, with
minimal information exchange between BEV owners. However, their model is deterministic and does not
consider the complexities that our work does. Cao et al. (2018) propose a system to co-ordinate, manage,
and schedule BEV charging with the aim of minimizing drivers’ wait times while respecting the capacity
of the charging station. Their work does not focus on the provision of grid services, such as frequency
regulation. Wenzel et al. (2018) develop a modelling framework for a BEV aggregator to provide ancillary
services, which can be provided by discharging BEV batteries. Their work employs model predictive control,
which does not provide the same types of optimality guarantees that our methodology does.

In light of this existing literature, our work makes two primary contributions. First, we employ a two-
stage stochastic optimization framework to control the BEV-charging station in a rolling-horizon fashion.
The uncertainties that the charging station faces are not truly revealed in a two-stage nature (i.e., in the
real-world, these uncertainties are revealed in a fully sequential manner). Nevertheless, we demonstrate
that our two-stage optimization model provides high-quality solutions. Second, we adapt a sample-average
approximation (SAA) approach to efficiently solve the model. Importantly, we are able to solve the opti-
mization models on standard computing hardware (i.e., without the use of a high-performance computing
system) in less than one minute. This means that the proposed model could be used for real-time control
of a BEV-charging station.

The remainder of this paper is organized as follows. Section 2 details the proposed two-stage stochastic
optimization model while Section 3 outlines the solution algorithm that we employ to efficiently obtain
solutions with statistically valid bounds on optimality. Section 4 summarizes data for a numerical case
study, which is based on the Central-Ohio region. This case study is used to demonstrate the model and
case-study results are presented in Section 5. Section 6 concludes.

2. Model

Our model considers the case of a public BEV-charging station that is connected to the bulk power
system through a distribution transformer. This transformer may be used to serve BEV-charging loads as
well as other non-BEV-charging loads (e.g., the charging station may be co-located with a retail shopping
center, which is served by the same distribution circuit). The charging station may have DERs, including
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BES and PV solar panels, installed. In addition to serving BEV-charging and non-BEV-charging loads, the
station can also participate in the wholesale market to provide energy or frequency regulation services.

We formulate the charging-station management problem as a two-stage stochastic optimization problem.
The first stage represents the current time step, which in our model is taken to be a single minute. We use
the notational convention that the current (stage-one) time step is minute j, while all other time steps are
denoted minute t. All parameters and decisions at or before minute j are deterministic. The second stage
represents the remaining time steps until the end of the optimization horizon. Second-stage parameters can
be stochastic and this randomness is characterized through scenarios, ω.

2.1. Model Notation

We begin by defining model notation.

2.1.1. Parameters and Sets
H̄ Nameplate capacity of BEV chargers [kW].
R̄ Nameplate transformer capacity [kW].
RC(·) Penalty for operating transformer above nameplate capacity [$/min].
S̄E,+ Maximum state of charge (SOC) of BES [kW-min].
S̄E,− Minimum SOC of BES [kW-min].
S̄P Power capacity of BES [kW].
T Optimization horizon [min].
W Charging window for flexible EVs [min].
µc BES charging efficiency.
µd BES discharging efficiency.
φ Price premium for unsatisfied frequency regulation.
Ω Set of second-stage scenarios.

We assume that some of the BEVs arriving to the charging station are flexible in that their charging
demands can be met at any point within a fixedW -minute window of time, so long as they are fully recharged
within this window. This charging window is assumed to be sufficiently wide that every flexible BEV can be
fully recharged within it. This assumption guarantees problem feasibility. We assume that all flexible BEVs
have the same charging window, mainly to ease the model notation. In practice, the flexibility windows of
BEVs may vary. It is a simple extension of our model to make the flexibility windows differ for each BEV.
The parameter, φ, is used to penalize unfulfilled demand for frequency regulation energy that the station has
committed to provide. This penalty is applied as a multiplicative factor of the energy price (cf. Section 2.2
for details).

2.1.2. Deterministic State Parameters
Ft Total charging demand of flexible BEVs that arrived to the charging station in minute t [kW-min].
f̄t Total charging demand of flexible BEVs that arrived to the charging station in minute t that has

been satisfied as of the beginning of minute j [kW-min].
Lj Minute-j inflexible electric load [kW].
Nt Total number of flexible BEVs that arrived to the charging station in minute t.
pj Minute-j electricity price [$/kW-min].
pCj Minute-j frequency regulation-capacity price [$/kW-min].
Vj Minute-j PV output [kW].
xj SOC of BES at beginning of minute j [kW-min].
δdj Minute-j regulation-down dispatch-to-contract ratio [per unit (p.u.)]
δuj Minute-j regulation-up dispatch-to-contract ratio [p.u.].

Following the work of Xi et al. (2014), we model the frequency regulation signal using so-called dispatch-
to-contract ratios, which we denote δuj and δdj . These ratios indicate the amount of frequency regulation
energy that the charging station must provide in real-time in each minute, on a p.u. basis relative to the
amount of frequency regulation capacity that the station has committed itself to providing. In reality, a
resource that is providing frequency regulation must respond to a control signal that is updated on the
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time scale of seconds. Thus, the dispatch-to-contract ratios represent the aggregation of these signals over a
minute, as they indicate how much energy in net the charging station must provide to respond to the signal.
We also define the state-parameter vector, ξj = (Ft, f̄t, Lj , Nt, pj, p

C
j , Vj , xj , δ

d
j , δ

u
j ).

2.1.3. Stochastic State Parameters
Ft,ω Total charging demand of flexible BEVs that arrive to the charging station in minute t of scenario ω

[kW-min].
Lt,ω Minute-t/scenario-ω inflexible energy load [kW].
Nt,ω Total number of flexible BEVs that arrive to the charging station in minute t of scenario ω [kW-

min].
pt,ω Minute-t/scenario-ω electricity price [$/kW-min].
pCt,ω Minute-t/scenario-ω frequency regulation-capacity price [$/kW-min].
Vt,ω Minute-t/scenario-ω PV output [kW].
δut,ω Minute-t/scenario-ω regulation-up dispatch-to-contract ratio [p.u.].
δdt,ω Minute-t/scenario-ω regulation-down dispatch-to-contract ratio [p.u.].

Let ψt,ω = (Ft,ω , Lt,ω, Nt,ω, pt,ω, p
C
t,ω, Vt,ω, δ

d
t,ωδ

u
t,ω) be a vector of minute-t/scenario-ω stochastic state

parameters and ψω = (ψj+1,ω , . . . , ψj+T,ω) ∈ Ψ be a stochastic-parameter vector from minute j + 1 to the
end of the problem horizon. These vectors define the second-stage scenarios.

2.1.4. First-Stage Decision Variables

ebj Minute-j power purchases from the power system [kW].
ecj Minute-j power charged into BES [kW].

edj Minute-j power discharged from BES [kW].
edown
j Minute-j served regulation-down power [kW].
erj Minute-j frequency regulation-capacity commitment [kW].
esj Minute-j power sales to the power system [kW].
eupj Minute-j served regulation-up power [kW].

fj Total minute-j power provided to recharge flexible BEVs [kW].
fj,τ Total minute-j power provided to recharge flexible BEVs that arrived to the charging station in

minute τ [kW].
sdown
j Minute-j unserved regulation-down power [kW].
supj Minute-j unserved regulation-up power [kW].

vj Minute-j tranformer overload [kW].
xj+1 Beginning minute-(j + 1) SOC of the BESS [kW-min].

We define aj = (ebj , e
c
j , e

d
j , e

down
j , erj , e

s
j , e

up
j , fj , fj,τ , s

down
j , supj , vj , xj+1) as the vector of first-stage minute-

j decision variables.

2.1.5. Second-Stage Decision Variables

ebt,ω Minute-t/scenario-ω power purchases from the power system [kW].
ect,ω Minute-t/scenario-ω power charged into BES [kW].
edt,ω Minute-t/scenario-ω power discharged from BES [kW].
edown
t,ω Minute-t/scenario-ω served regulation-down power [kW].
ert,ω Minute-t/scenario-ω frequency regulation-capacity commitment [kW].
est,ω Minute-t/scenario-ω power sales to the power system [kW].
eupt,ω Minute-t/scenario-ω served regulation-up power [kW].
ft,ω Total minute-t/scenario-ω power provided to recharge flexible BEVs [kW].
ft,τ,ω Total minute-t/scenario-ω power provided to recharge flexible BEVs that arrive to the charging

station in minute τ [kW].
sdown
t,ω Minute-t/scenario-ω unserved regulation-down power [kW].
supt,ω Minute-t/scenario-ω unserved regulation-up power [kW].
vt,ω Minute-t/scenario-ω transformer overload [kW].
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xt+1,ω Beginning minute-(t+ 1)/scenario-ω SOC of the BES [kW-min].
The second-stage decision variables define the operating strategies if scenario ω is realized. Scenario ω is

a sample path, which is defined by the stochastic state parameters from minute j + 1 to j + T − 1 (i.e., t ∈
j+1, . . . , j+T − 1). We define ut,ω = (ebt,ω, e

c
t,ω, e

d
t,ω, e

down
t,ω , ert,ω, e

s
t,ω, e

up
t,ω, ft,ω, ft,τ,ω, s

down
t,ω , supt,ω, vt,ω, xt+1,ω)

as the minute-t/scenario-ω decision variable-vector and uω = (uj+1,ω, . . . , uj+T,ω) as the scenario-ω second-
stage decision-variable vector.

2.2. Model Formulation

To formulate the station-management problem, we first define Bj = j −W + 1, . . . , j as the set of time
steps with the property that BEV arrivals that occurred during Bj are still in their charging window as of
minute j. We also define Φj = j + 1, . . . , j + T as the second-stage time steps.

We next define the minute-j station-operation cost as:

cj(aj , ξj) = pj · (e
b
j − e

s
j) +RC(vj)− p

C
j e

r
j + pj · (1 + φ)(supj + sdown

j ),

which is the sum of four cost terms. The first is the net cost of purchasing energy from and selling energy
to the power system. The second is the cost incurred if the transformer that connects the charging station
to the power system is overloaded. This cost, which is assumed to be convex piecewise-linear, represents
the degradation of the transformer which accelerates its eventually needing to be replaced. The third term
is the revenue earned by the charging station for providing frequency regulation capacity. The fourth term
is the penalty incurred for unserved frequency regulation power in real-time. We assume that this penalty
is a multiplicative premium above the prevailing energy price.

We analogously define the second-stage scenario-ω cost, as of minute j, as:

cω(uω, ψω) =
∑

t∈Φj

[

pt,ω · (e
b
t,ω − e

s
t,ω) +RC(vt,ω)− p

C
t,ωe

r
t,ω + pt,ω · (1 + φ)(supt,ω + sdown

t,ω )
]

. (1)

We can then formulate the station-management problem as:

min cj(aj , ξj) + E [cω(uω, ψω)] (2)

s.t. ebj + edj + edown
j + Vj = esj + ecj + eupj + fj + Lj (3)

vj + R̄ ≥ ebj − e
s
j (4)

− vj − R̄ ≤ e
b
j − e

s
j (5)

xj+1 = x̂j + µcecj − e
d
j/µd (6)

S̄E,− ≤ xj+1 ≤ S̄
E,+ (7)

ecj, e
d
j ≤ S̄

P (8)

fj,τ ≤ H̄ ·N
τ
j ; ∀τ ∈ Bj (9)

fj =
∑

τ∈Bj

fj,τ (10)

fj,τ ≤ Fτ − f̄τ ; ∀τ ∈ Bj (11)

Fτ − f̄τ − fj,τ ≤ H̄ ·Nτ · (W − j + τ − 1); ∀τ ∈ Bj (12)

erj ≤ R̄ (13)

erj = erj−1; if (j mod 60) 6= 0 (14)

edown
j ≤ δdj e

r
j (15)

eupj ≤ δ
u
j e
r
j (16)

sdown
j ≥ δdj e

r
j − e

down
j (17)

supj ≥ δ
u
j e
r
j − e

up
j (18)
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aj ≥ 0 (19)

ebt,ω + edt,ω + edown
t,ω + Vt,ω = est,ω + ect,ω + eupt,ω + ft,ω + Lt,ω; ∀t ∈ Φj ;ω ∈ Ω (20)

vt,ω + R̄ ≥ ebt,ω − e
s
t,ω; ∀t ∈ Φj ;ω ∈ Ω (21)

− vt,ω − R̄ ≤ e
b
t,ω − e

s
t,ω; ∀t ∈ Φj ;ω ∈ Ω (22)

xj+2,ω = xj+1 + µcecj+1,ω − e
d
j+1,ω/µd (23)

xt+1,ω = xt,ω + µcect,ω − e
d
t,ω/µd; ∀t ∈ Φj ;ω ∈ Ω (24)

S̄E,− ≤ xt,ω ≤ S̄
E,+; ∀t ∈ Φj\j + 1;ω ∈ Ω (25)

ect,ω, e
d
t,ω ≤ S̄

P ; ∀t ∈ Φj ;ω ∈ Ω (26)

ft,τ,ω ≤ H̄ ·N
τ
t,ω; ∀t ∈ Φj ; τ ∈ Bt;ω ∈ Ω (27)

ft,ω =
∑

τ∈Bt

ft,τ,ω; ∀t ∈ Φj ;ω ∈ Ω (28)

τ+W
∑

t=j+1

ft,τ,ω + fj,τ = Fτ − f̄τ ; ∀τ ∈ Bj ;ω ∈ Ω (29)

τ+W
∑

t=τ

ft,τ,ω = Fτ ; ∀τ = j + 1, . . . , j + T −W ;ω ∈ Ω (30)

j+T
∑

t=τ

ft,τ,ω ≤ Fτ ; ∀τ ∈ Bj+T ;ω ∈ Ω (31)

Fτ −

j+T
∑

t=τ

ft,τ,ω ≤ H̄ ·Nτ,ω · (W − j − T + τ); ∀τ ∈ Bj+T ;ω ∈ Ω (32)

ert,ω ≤ R̄; ∀t ∈ Φj ;ω ∈ Ω (33)

ert,ω = ert−1,ω; ∀t ∈ Φj :(t mod 60) 6= 0;ω ∈ Ω (34)

edown
t,ω ≤ δdt,ωe

r
t,ω; ∀t ∈ Φj ;ω ∈ Ω (35)

eupt,ω ≤ δ
u
t,ωe

r
t,ω; ∀t ∈ Φj ;ω ∈ Ω (36)

sdown
t,ω ≥ δdt,ωe

r
t,ω − e

down
t,ω ; ∀t ∈ Φj ;ω ∈ Ω (37)

supt,ω ≥ δ
u
t,ωe

r
t,ω − e

up
t,ω; ∀t ∈ Φj ;ω ∈ Ω (38)

uω ≥ 0; ∀ω ∈ Ω (39)

Objective function (2) minimizes the expected cost of operating the charging station over the T -minute
optimization horizon. The model has two sets of constraints—constraints (3)–(19) pertain to the first stage
while constraints (20)–(39) pertain to the second stage.

Constraint (3) imposes load balance on the charging station. Constraints (4) and (5) define the amount
that the transformer is overloaded in terms of the net power that is exchanged between the charging station
and the power system. Constraints (6)–(8) pertain to the BES. The first defines how the SOC of the BES
evolves from minute j to (j + 1), the second imposes the bounds on the minute-(j + 1) SOC, and the third
imposes the power capacity on charging and discharging.

Constraints (9)–(12) pertain to BEV charging. Constraints (9) restrict the total amount of charging to
BEVs that arrive in minute τ based on the chargers’ assumed capacities and the number of BEV arrivals.
Constraint (10) defines fj as the sum of the fj,τ ’s. Constraints (11) restrict the amount of energy charged
into BEVs that arrived in minute τ to be no greater than the remaining unfulfilled charging demand.
Constraints (12) ensure that any remaining unfulfilled BEV-charging demands at the end of minute j can
be feasibly met if the BEVs are charged at the chargers’ power capacity for the remainder of the charging
window. We model BEV charging assuming a linear relationship between energy that is recharged and the
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SOC of a BEV’s battery. In some cases a nonlinear or piecewise-linear relationship may be more appropriate.
For instance, BEV manufacturers may reduce the maximum charging rate as the SOC of a BEV’s battery
approaches the maximum.

Constraints (13)–(18) relate to offering and serving frequency regulation commitments. Constraint (13)
restricts the amount of frequency regulation capacity that the charging station can provide to be less than the
transformer capacity. Constraint (14) imposes the restriction that the charging station can only change its
frequency regulation commitment on an hourly basis, which is a typical rule in most wholesale markets. This
constraint also enforces a time dynamic in the provision of frequency regulation. The charging station must
commit itself a priori to the amount of frequency regulation capacity that it will provide, before knowing
how much energy it must provide (which is governed by the dispatch-to-contract ratios, which are random
in subsequent time steps). Constraints (15) and (16) bound the amount of frequency regulation power
provided in real-time to be less than the amount requested by the system, which is defined as the product of
the dispatch-to-contract ratio and the frequency regulation commitment. Constraints (17) and (18) define
the unserved frequency regulation power in terms of the served power. Finally, constraint (19) imposes
non-negativity on all of the first-stage decision variables.

The second-stage constraints largely have the same interpretation as the first-stage constraints, with
the notable difference that they are imposed on a per-minute and -scenario basis. Constraints (20) impose
load-balance on the charging station. Constraints (21) and (22) define transformer loading.

Constraints (23) and (24) define the evolution of the BES SOC, constraints (25) impose bounds on the
BES SOC, and constraints (26) impose power limits on BES charging and discharging. Our model does not
include constraints that restrict the ending SOC of the BES to equal its starting SOC. Such constraints can
be used to ensure that an energy storage system is not fully discharged at the end of the planning horizon.
In a sense, constraints of this type heuristically ascribe carryover value to energy that remains in storage
at the end of the planning horizon. We, instead, employ the technique that is adopted by Sioshansi et al.
(2009) to assign carryover value to stored energy. This is done by including additional operating periods in
the optimization model that goes beyond the planning horizon. Including these additional operating periods
ensures that operating decisions over the planning horizon take account of future operation of the energy
storage system (after the planning horizon). Our two-stage model structure accomplishes the same because
only decisions that are made for the first stage (i.e., the first minute) are binding (in the sense that they are
implemented). Operating decisions for minutes j + 1, . . . , j + T are not binding and are instead included in
the model so that current-minute decisions account for future charging-station operations.

Constraints (27)–(32) pertain to BEV recharging. Constraints (27) restrict the total amount of recharging
energy that is provided based on the number of BEVs and the power capacity of the charging stations.
Constraints (28) define the ft,ω’s in terms of the ft,τ,ω’s. Constraints (29) ensure that all BEVs that have
already arrived as of minute j are fully recharged within the charging window. Constraints (30) ensure that
all flexible BEVs that arrive after minute j and that have a charging window that ends before the T -minute
optimization horizon are fully recharged. Constraints (31) ensures that the remaining flexible BEVs are not
overcharged while constraints (32) ensure that they are charged sufficiently to be able to be fully recharged
before their charging windows expire.

Constraints (33)–(38) relate to the provision of frequency regulation in the second stage. Constraints (33)
restrict the amount of frequency regulation capacity that the station can provide while constraints (34) only
allow the capacity commitment to be changed on an hourly basis. Constraints (35) and (36) bound the
amount of frequency regulation power provided to be no greater than the amount requested by the system.
Constraints (37) and (38) define the unserved frequency regulation power in terms of the served power.
Finally, constraints (39) impose non-negativity on the second-stage decision variables.

3. Solution Method

We use an SAA approach, which is outlined by Bayraksan and Morton (2006, 2011); Shapiro et al. (2014);
Wu and Sioshansi (2017b), to solve the proposed station-control problem. This is because the second stage is
defined on a sample space, Ψ, which has an uncountably infinite support. SAA allows us to approximate the
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second stage by randomly drawing a subset of sample paths, Ψl. The resulting SAA problem approximates
the true station-control problem. We provide an outline of the SAA approach, which is taken from the work
of Wu and Sioshansi (2017b). Interested readers are referred to their work for complete details of the SAA
method and its convergence properties.

To give the SAA problem, we first define the feasible region of the first-stage constraints as:

Aj = {aj|(3)− (19)},

and the feasible region of the second-stage constraints under scenario-ω as:

U(ψω) = {uω|(20)− (39)}.

We then define ψ1, . . . , ψmκ
as mκ independent and identically distributed (i.i.d.) samples of the second-

stage sample paths (i.e., samples of ψω). The κ subscript on mκ denotes the iteration number of the
algorithm that is employed to solve the station-control model (cf. Algorithm 1). ψ1, . . . , ψmκ

are randomly
generated by Monte Carlo simulation. Wu and Sioshansi (2017b) discuss the method used to generate the
sequence, {mκ}, which is integral. The SAA problem is then formulated as:

min
aj∈Aj

{

1

mκ

mκ
∑

m=1

[

cj(aj , ξj) + min
um∈U(ψm)

cm(um, ψm)

]

}

, (40)

where cm(um, ψm) is defined by (1).
Algorithm 1 provides a high-level overview of the SAA method that we employ. Step 1 begins by choosing

sample-size sequences, {mκ} and {lκ}, and a termination criterion, Υ. The first sample-size sequence, {mκ},
is used to generate random samples and resulting SAA problems in each iteration of the algorithm. The
second sample-size sequence, {lκ}, is used in each iteration to estimate the optimality gap of the solution to
the SAA problem. In essence, this optimality-gap estimate determines the robustness of the solution that is
obtained from the SAA problem to the set of sample paths that is used. This is because the solution that
is obtained in iteration κ comes from solving an SAA problem with the sample paths, ψ1, . . . , ψmκ

. The
optimality-gap estimator is then obtained by using this solution with the sample paths, ψ1, . . . , ψlκ . The
sample-path sequences should both be integral and grow faster than O(log κ). The termination criterion,
Υ, is typically based on the absolute or relative optimality gap.

Algorithm 1 SAA Method

1: input: sample-size sequence {mκ}, {lκ}, stopping criterion Υ
2: κ← 0
3: repeat

4: generate mκ i.i.d. random samples, ψ1, . . . , ψmκ
, of second-stage scenarios

5: solve SAA problem (40) using L-shaped method
6: generate lκ i.i.d. random samples and optimality-gap estimator
7: κ← κ+ 1
8: until Υ is satisfied

Steps 3–8 are the main iterative loop. In Step 4 of iteration κ, the mκ i.i.d. random samples are
generated to define an SAA problem. This problem is solved using an L-shaped method (i.e., Benders’s
decomposition) in Step 5. In Step 6, we use the averaged two-replication procedure that is proposed by
Bayraksan and Morton (2006) to compute an optimality-gap estimator and its variance. More specifically,
lκ i.i.d. samples of the random variables are generated to estimate the optimality gap of the solution to
the SAA problem that is found in Step 5. This gap estimator is used in the termination criterion, Υ. The
iterative process repeats, with the sample sizes increasing, until stopping criterion Υ, is satisfied.
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4. Case-Study Data

The proposed station-control model is demonstrated using a case study that is based on a simulated
public BEV-charging station with multiple dc fast chargers that is co-located with a commercial shopping
center in northeastern Columbus, Ohio. As such, the charging station is in the service territory of AEP Ohio,
which is the distribution utility in Central Ohio. Moreover, the charging station is assumed to participate in
the PJM Interconnection market, as the AEP service territory is in PJM’s footprint. We do not explicitly
specify the number of chargers that are installed at the station. Rather, we assume that there is a sufficient
number of chargers installed to ensure that there is a free charger available with which an arriving BEV can
commence charging immediately. This section describes the case study’s assumptions and input data.

4.1. Temporal Resolution and Case-Study Simulation

In keeping with the model formulation that is presented in Section 2, the case study assumes a one-
minute temporal resolution. Station operations are simulated over a representative year, using data for the
year 2013.

The model is used in a rolling-horizon fashion, whereby the two-stage stochastic problem is re-optimized
one minute at a time with updated deterministic and stochastic state parameters. The deterministic state
parameters, which represent actual system states (e.g., actual PV production or number of flexible BEVs
arriving in minute j), are simulated using distributions that are fitted to data or via Monte Carlo simulation
(cf. Sections 4.2–4.7 for descriptions of how the different random state parameters are simulated). The
stochastic state parameters, which are sample paths representing forecasts of future system conditions, are
generated in the same way.

Thus, our rolling-horizon technique allows sample paths of future stochastic state parameters to be
updated on a minute-to-minute basis. In practice, sample paths of many of these parameters may not be
updated that frequently. For instance, energy and frequency regulation prices are updated at five-minute
or longer time intervals by PJM. We update these parameters at the same temporal resolution. The model
uses a T = 90-minute optimization horizon, which is sufficiently long to account for the charging windows
of flexible BEVs and the hour-long persistence of frequency regulation commitments.

4.2. Battery Electric Vehicle Characteristics

BEV-travel patterns are modeled by bootstrapping from tour-record data that are obtained from the
Mid-Ohio Regional Planning Commission. The tour-record data, details of which are given by Sener et al.
(2009), contain modeled typical daily driving profiles for the 1.1 million light-duty vehicles in the Central-
Ohio region. We assume that BEVs constitute 8% of this light-duty vehicle fleet and simulate BEV-related
state parameters by randomly selecting 8% of the vehicles in the tour-record data to be BEVs.

Once we randomly select the subset of vehicles that are BEVs, we use a shortest-time-path model to
determine the exact driving path that each simulated BEV takes. We next determine the SOC of each
BEV’s battery as it travels along its path. We do this by assuming that each BEV has a battery capacity
of 24 kWh and a driving efficiency of 0.1875 kWh/km. This driving efficiency takes account of the average
energy that is used to propel the BEV and the efficiency losses that are incurred when recharging the BEV’s
battery. We then assume that any BEV that comes within a 1.6-km (1.0-mile) radius of the charging station
and that has a battery SOC below 50% at that time stops at the station to recharge.

We assume that 80% of BEVs are flexible, in that their charging can be scheduled by the station within
a W = 40-minute window. The remaining BEVs are assumed to be inflexible and their charging demands
are added to the non-BEV loads in determining Lj and Lt,ω.

4.3. Transformer Characteristics

The charging station is connected to the power system through an R̄ = 500-kVA transformer, which is
shared with the buildings in the commercial retail center where the station is located. A transformer can
be operated above its design capacity. Doing so can reduce its usable life below the standard 20-year design
life, however.
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We estimate the effect of this accelerated aging using a thermal model, which is based on the work of
Gong et al. (2011), that simulates the effects of transformer loading on the temperature of its windings. More
specifically, we use the model to simulate the impacts of different load profiles on reducing the transformer’s
life. This reduction in service life is combined with an assumed $10000 transformer-replacement cost, to
derive a convex piecewise-linear penalty function for operating the transformer above its capacity.

Our assumed parameters result in the transformer-overload-penalty function:

Rc(vt) =















1.16vt if vt ∈ [0, 200),
42.65(vt − 0.4R̄) + 232.70 if vt ∈ [200, 300),
764.62(vt − 0.6R̄) + 4497.35 if vt ∈ [300, 400),
12309.73(vt− 0.8R̄) + 80959.50 if vt ∈ [400,+∞),

which behaves in the way expected. The assumed 500-kVA transformer can be operated at up to 700 kVA
(i.e., 40% above its design capacity) with relatively modest degradation in its service life that translates
into a cost of $1.16/kVA. As the transformer is more highly loaded, the service life that is lost increases
drastically with significantly higher associated costs.

4.4. Non-Electric Vehicle Load

We model the non-BEV loads using data from the year 2013 that are provided by AEP Ohio. The
data consist of anonymized load profiles for numerous 500-kVA commercial transformers, recorded at a
15-minute time resolution. These types of commercial transformers tend to have fairly persistent demand
patterns from day to day. This is because commercial building load is largely driven by space conditioning
needs (which tend to be similar on a seasonal basis) and the behavior of building occupants. As such, we fit
an ARIMA (2, 1, 0)× (0, 1, 1)96 model to generate sample paths of non-BEV loads (in addition to the loads
of inflexible BEVs, as discussed in Section 4.2).

4.5. Solar Photovoltaic Generation

The charging station is assumed to have a 200-kW PV system installed. However, there are no solar PV
panels at the assumed location of the charging station. Thus, we do not have access to actual PV-production
data. We use modeled historical weather data from the year 2013, which are obtained from the National
Solar Radiation Database, and the PVWatts software package to model actual PV production at the station
location at a one-minute time resolution. Sengupta et al. (2014b,a) describe the National Solar Radiation
Database while Dobos (2014) details the PVWatts model.

PV production at a one-minute time resolution can be extremely noisy and difficult to forecast, due to
short-lived transient effects (e.g., a brief cloud formation). Hourly-averaged PV production, on the other
hand, can smooth-out this noise. We also find that the residuals between hourly-averaged and one-minute
PV production follow a mean-zero Laplace distribution. Thus, for purposes of PV simulation, we first
fit an ARIMA (5, 2, 0) × (2, 1, 0)24 model to hourly-averaged PV production data. This ARIMA model is
used to simulate and forecast hourly-average PV production in our case study. We then use a fitted Laplace
distribution to simulate residuals between hourly-average and one-minute PV production, to generate sample
paths of one-minute PV production.

4.6. Energy and Frequency Regulation-Capacity Prices

We model energy and frequency regulation-capacity prices using historical data for the AEP Zone in the
PJM Interconnection market for the year 2013. Energy prices relate to the cost of operating the charging
station as well as any revenues that are earned from selling excess PV or BES energy. The energy prices
average $44.03/MWh, have a standard deviation of $57.44/MWh, and range between -$55.20/MWh and
$1851.29/MWh over the year that is modeled. Using these historical data, we fit 24 log-normal distributions
to the prices corresponding to each hour of the day. Frequency regulation prices relate to revenues that
are earned for providing frequency regulation service. These prices average $43.70/MW-h, have a standard
deviation of $104.07/MW-h, and range between $0.01/MW-h and $3303.87/MW-h over the year that is
modeled. The same approach (i.e., using 24 log-normal distributions corresponding to each hour of the day)
is also used to model frequency regulation-capacity prices.
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4.7. Frequency Regulation-Dispatch-to-Contract Ratios

We model the dispatch-to-contract ratios using historical frequency regulation-signal data that are ob-
tained from PJM Interconnection for the year 2013. We fit 24 Gaussian distributions to the historical
frequency regulation-signal data for each hour of the day. The dispatch-to-contract ratios in our case study
are simulated using these Gaussian distributions, which are truncated to ensure that the ratios are bounded
between 0 and 1 (dispatch-to-contract ratios outside of this range are physically meaningless).

4.8. Battery Energy Storage Characteristics

We assume that the BES has upper and lower bounds on its SOC of S̄E,+ = 8400 kW-min (140 kWh)
and S̄E,− = 2400 kW-min (40 kWh) and a power capacity of S̄P = 200 kW, respectively. We also assume
charging and discharging efficiencies of µc = µd = 0.99. These values are typical for lithium-ion BES, as
reported by Xi and Sioshansi (2016b). We neglect the degradation effects of cycling the BES in our case
study. Degradation effects can be captured by adding a term to the objective function that accounts for
the implicit opportunity cost, or by successively updating the available energy storage capacity of the BES
from one operating period to the next. Xi and Sioshansi (2016a) study the impacts of degradation in using
distributed BES for the provision of grid services. While they find some impacts, they are overall relatively
muted. Degradation of the BES should also be contrasted with that of BEVs’ batteries (which is why we
do not consider discharging BEVs’ batteries to provide frequency regulation). The primary purpose of a
BEV’s battery is for transportation. As such, energy storage capacity is critically important for a BEV to
be a viable transportation technology. The energy storage capability of a stationary BEV system does not
entail the same level of criticality.

4.9. Sensitivity Analyses

The performance of the charging station and the operational strategies that are found by the model
are affected by a number of factors. We explore these effects through six sensitivity analyses, which are
summarized in Table 1. The table shows the cases that we examine, which differ in whether BES is installed,
the bias in the frequency regulation signal, the power capacity of the BEV chargers, H̄, and the size of the
BEV. Case 1 is the base case, while Cases 2–6 are sensitivity cases in which a single factor is changed.
Contrasting model results between each of these cases and Case 1 allows us to understand the impact of
each factor.

Table 1: Sensitivity Cases Examined

Case H̄ BES Frequency Regulation Bias [%] BEV Size

1 (Base) 100 Installed 0% Standard
2 (No BES) 100 Not Installed 0% Standard
3 (Regulation-Down Bias) 100 Installed −5% Standard
4 (Regulation-Up Bias) 100 Installed +5% Standard
5 (Large Charger) 200 Installed 0% Standard
6 (Large BEV) 100 Installed 0% Standard

We study the bias in the frequency regulation signal by modeling the frequency regulation signal in a
two-step process. First, in each minute we randomly generate a Bernoulli trial to determine if there is an ‘up’
or ‘down’ frequency regulation signal in that particular minute. Once the direction of the signal is known,
the dispatch-to-contract ratio is randomly simulated using the Gaussian distribution of the corresponding
hour. In Cases 1, 2, 5, and 6 the Bernoulli trials are unbiased whereas in the other two cases the Bernoulli
trials are biased in one direction or another.

Cases 1–4 and 6 assume 100-kW chargers whereas Case 5 assumes a 200-kW charger. Thus, we implicitly
assume that the BEVs and chargers conform to the proposed SAE J1772 standards for dc fast charging.
Cases 1–5 assume the standard BEV size, which is given in Section 4.2. Case 6 assumes large BEVs, which
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have 50-kWh batteries and 2.1 times the energy consumption of the standard BEVs, but the same 1.6-
km/50%-SOC threshold for using the charging station as with the standard BEVs. The purpose of this
sensitivity case is to examine the impact of having the charging station more constrained, vis-à-vis the
transformer capacity and charging window, on its ability to provide frequency regulation.

Although we study a number of sensitivity cases, there are additional cases that could be examined. We
limit the sensitivity cases that we analyze for two reasons. One is that despite the fact that Algorithm 1 can
solve a single instance of the station-control problem quickly, simulating a full year is time-consuming, as
it requires solving 525600 instances of the problem in sequence (i.e., one problem instance for each minute
of the year). The second reason is that many possible sensitivity cases would have limited impact on the
ability of the charging station to provide frequency regulation, which is the focus of our work. Instead, those
cases would mainly affect other aspects of operating the charging station. For instance, Wu and Sioshansi
(2017b) examine the impacts of having access to a PV system in a charging station. This previous work
finds that a PV system reduces the net load and operating cost of the charging station, by 12% and 58%,
respectively, on average. However, a PV system would have limited benefits in increasing the flexibility of
the charging station to provide frequency regulation.

5. Case-Study Results

We summarize our case-study results here. Section 5.1 first discusses the results of our base case (Case 1)
while Section 5.2 summarizes the results of our sensitivity analyses (Cases 2–6).

5.1. Base-Case Results

Figure 1 summarizes the operation of the charging station between 14:00 and 21:59 on 5 May. The top
pane of the figure shows the cumulative charging demand of flexible BEVs and the amount of frequency
regulation capacity that is committed and unserved by the charging station. The cumulative BEV-charging
demand reflects charging demand that is unmet. The 33 times that the cumulative BEV-charging demand
increases correspond to the 33 arrivals of flexible BEVs during the eight-hour period that is shown. Decreases
in the charging demand correspond to the flexible BEVs being progressively recharged. The bottom pane
of the figure shows energy and frequency regulation prices.

Figure 1: Operation of the Charging Station on 5 May

The provision of frequency regulation capacity is driven by its price, the energy price (which determines
the penalty for unserved frequency regulation), and the amount of flexibility (which is largely in the form of
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BEV-charging loads), that is available. All eight of the hours that are shown in Figure 1 have relatively high
frequency regulation prices of at least $16/MW-h. As such, the model aims to provide as much frequency
regulation as the second-stage scenarios suggest can be feasibly provided. Hour 19 has the fourth-highest
frequency regulation price during the eight-hour period that is shown. Nonetheless, the charging station sells
less frequency regulation capacity in hour 19 than it does during the other hours. This is due to the relatively
few flexible-BEV arrivals that are anticipated in that hour. Indeed, only one flexible BEV arrives during
the simulated hour and the charging station has no flexible BEV-charging loads for a 61-minute period of
time beginning at 19:35. During this time span, the BES and curtailed output from the PV panels are the
only sources of flexibility that the charging station has available. Because more flexible-BEV arrivals are
anticipated in hour 20 (four flexible BEVs arrive during the simulated hour), the model sells more frequency
regulation capacity in hour 20. The same is true of hour 18, which has the lowest frequency regulation price
during the eight hours that are shown. Because significantly more flexible-BEV arrivals are anticipated
(seven flexible BEVs arrive during the simulated hour), the charging station has more inherent flexibility
with which to serve frequency regulation demands. As such, the model sells more frequency regulation
service during hour 18.

Figure 1 also shows that the charging station is not able to fully meet all of its frequency regulation
obligations. The station has a frequency regulation shortfall in 15 of 480 minutes that are shown in Fig-
ure 1. Hour 18, which has many flexible-BEV arrivals, presents the greatest difficulty in meeting frequency
regulation obligations. This is largely due to the charging needs of inflexible BEVs. This finding shows that
BEV arrivals represent a ‘double-sided sword’—more BEV arrivals typically translate into greater flexibility
in the form of flexible BEVs but can also reduce flexibility due to the charging demands of inflexible BEVs.
These frequency regulation shortfalls affect the charging station in two ways. In the short-run, the charging
station is penalized for frequency regulation shortfalls. This is captured in the objective function of the
station-control model. In the long-run, PJM may disqualify a resource from providing frequency regulation
if its performance score, which is related to its ability to follow the frequency regulation signal, is too low.

The charging station provides an average (over the year that is simulated) of 6.31 MW-h of frequency
regulation capacity daily. This translates into an average daily revenue of $441.88 from the provision of
frequency regulation services (taking into account the penalties that are associated with unfulfilled obliga-
tions) and an average net selling price of $70.01/MW-h. This average selling price of frequency regulation
is greater than the annual average price of $43.70/MW-h (cf. Section 4.6). This finding indicates that the
model is ‘selective’ in only providing frequency regulation during high-value hours. This is because the model
must ultimately tradeoff the requirement that all BEVs be recharged with the cost of incurring penalties
for overloading the transformer. Providing frequency regulation at any time step increases the likelihood
that BEV charging must deferred to subsequent time steps. This is to reduce the charging rate and provide
frequency response in the current time step. This deferral of BEV charging exacerbates the likelihood of
transformer overloads in subsequent time steps.

Over the course of the year the station is able to fully meet its frequency regulation obligation 99.58%
of the time. Moreover, during the time periods that the station does not fully meet its frequency regulation
obligation, it is able to provide 85.61% of its obligation. These results indicate that our proposed optimization
model is able to provide relatively high-quality response to the frequency regulation signal. This is done
by properly managing the SOC of the BES, the inherent flexibility in BEV charging, and the amount of
frequency regulation capacity sold to the market. The charging station has more difficulty in fulfilling
regulation-up as opposed to regulation-down obligations. On average, the station is unable to meet 57 kWh
of daily regulation-up calls as opposed to only 6 kWh of regulation-down.

The 500-kW transformer that connects the co-located charging station and commercial building to the
power system may have a positive or negative net load. A negative net load implies that the charging
station is a net supplier of energy to the power system. This may happen if the station is selling excess PV
production or discharging BES. The transformer has a negative net load in about 1400 of the 8760 hours
in the year that is examined. We also find that the transformer operates near its 500-kW capacity in about
4000 hours of the year. The transformer is overloaded for two hours over the course of the simulated year,
operating at an average of 520 kW during these hours.
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5.2. Sensitivity Analyses

Table 2 provides summary statistics, across the days of the simulated year, of daily charging-station
operating cost and the net (of penalties for unserved power) revenue that is earned by the charging station
for providing frequency regulation. Contrasting these costs and revenues between the six cases provides
insights into how the different factors impact the economic performance of the charging station.

Contrasting Cases 1 and 2 shows that BES impacts the charging station in two important ways. First,
BES is able to reduce the operating cost of the charging station by providing more flexibility in accom-
modating BEV-charging loads. This effect is exemplified by the much higher standard deviation of the
station-operation cost in Case 2. The greater standard deviation is due to high transformer loading on
days when there is insufficient flexibility in BEV charging to keep transformer loading below 500 kW. BES
provides added flexibility to accommodate these loads in Case 1. The table also shows that BES allows the
charging station to provide more high-value frequency regulation. The station is still able to provide some
frequency regulation in Case 2, which primarily comes from the flexibility in managing BEV-charging loads.

Table 2: Mean and Standard Deviation Across the Days of the Simulated Year of Daily Station-Operation Cost and Net
Frequency Regulation Revenue in Sensitivity Cases

Case Operation Cost [$] Frequency Regulation Revenue [$]

Mean Standard Deviation Mean Standard Deviation

1 (Base) 890 1211 442 694
2 (No BES) 2768 5925 225 371
3 (Regulation-Down Bias) 830 1032 450 738
4 (Regulation-Up Bias) 933 1310 429 664
5 (Large Charger) 2466 8110 439 696
6 (Large BEV) 35617 1559 423 290

Cases 3 and 4 show that having a biased frequency regulation signal has a relatively small impact on
the economic performance of the charging station. However, we do find that having a negative bias in the
signal (i.e., favoring regulation-down) does slightly improve the performance of the charging station relative
to an unbiased signal. This is consistent with our findings in the base case that the charging station tends
to have more difficulty in serving regulation-up as opposed to -down. This is because the charging station is
ultimately a net consumer of energy. A regulation-down signal is met by increasing the charging-station load,
which is typically easier to accommodate. One way to address this difference in the charging station’s ability
to provide regulation-up and -down services is to bifurcate the two products, as is done in the California
Independent System Operator market.

Case 5 shows the impact of increasing the power capacity of the BEV chargers. In the other cases, a
BEV can be fully recharged in about 14 minutes. This charging time is reduced to seven minutes in Case 5.
Comparing the operating cost in Case 5 to Case 1 shows that the increased chargers’ capacities has the
same impact as removing BES in increasing transformer overloads. This is especially true with inflexible
BEVs, which are assumed to begin charging immediately upon arrival at the charging station. The peak
load on the transformer increases 13% from about 800 kW in Case 1 to 958 kW in Case 5. Table 2 shows
that increasing the chargers’ capacities does not have any major impact on frequency regulation revenues.

Case 6 shows that the performance of the charging station is severely impacted by increasing BEV
charging demands, which is the net impact of having larger BEVs. The operating cost of the charging
station increases by a factor of 40 relative to Case 1. This is largely due to the higher BEV loads resulting
in the transformer being overloaded an average of 17 minutes daily in Case 6 as opposed to an average of
0.3 minutes daily in Case 1. Even if transformer-degradation costs are excluded, the daily average cost of
operating the charging station is $3067. This is due to the higher BEV charging demands that must be
served, but also because the station has significantly less flexibility in scheduling BEV charging. Whereas a
BEV can be fully recharged in 14 minutes in Case 1, this charging time increases to 29 minutes in Case 6.
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Table 3 summarizes the performance of the charging station in providing frequency regulation services
in the sensitivity cases. It shows the average daily provision of frequency regulation capacity to the market,
along with the average daily duration and MW-h shortfall in following the regulation-down and -up signals.
The table shows that the availability of BES and the size of the BEV-charging loads are the biggest factors
in determining how much frequency regulation capacity the charging station provides. As expected, having
a negatively biased frequency regulation signal allows the charging station to slightly increase its provision
of the service. In all of the cases, except for Case 6, the frequency regulation signal is fully satisfied at least
97% of the time and the station is able to fulfill at least 99% of the regulation power that is requested by
the system. This, again, illustrates that our proposed model is able to effectively manage the provision of
frequency regulation, regardless of the configuration of the station.

Table 3: Average Daily Frequency Regulation Service Provided in Sensitivity Cases

Frequency Regulation Unfulfilled Unfulfilled
Case Capacity Provided [MW-h] Time [min] Power [MW-h]

Down Up Down Up

1 (Base) 6.31 0.74 41.99 0.005 0.057
2 (No BES) 3.18 0.70 61.95 0.004 0.078
3 (Frequency-Down Bias) 6.47 0.73 40.63 0.005 0.053
4 (Frequency-Up Bias) 6.07 0.66 41.91 0.005 0.065
5 (Large Charger) 6.30 0.75 38.61 0.005 0.057
6 (Large BEV) 11.49 0.75 148.31 0.005 0.478

Case 6 results in greater difficulty in supplying regulation-up services compared to the other cases. This is
due to the high BEV-charging loads relative to the transformer capacity in Case 6. In Cases 1–5 regulation-
up service is provided by decreasing BEV-charging loads and deferring BEV recharging until later in the
charging window. However, the charging station is limited in following such a strategy in Case 6. This is
because the relatively high BEV-charging demands result in a very limited amount of time within which to
defer BEV charging. A BEV with an empty battery requires 29 minutes to fully recharge in Case 6. This
means that there is only 11 minutes (out of the 40-minute window of recharging time) within which to shift
the charging loads of such a BEV. As such, the station-control model must choose between following the
regulation-up signal or leaving regulation-up service unserved. The former option may be infeasible (if there
is insufficient time remaining in the 40-minute window) or costly (if it entails overloading the transformer
in subsequent time step(s) to fully recharge all BEVs). The latter option is also costly, as it entails financial
penalities.

Contrasting the performance of the charging station in Case 6 can also provide a basis on which to
infer the impacts of changing the charging window or transformer characteristics. Increasing the charging
window or any changes that lower the cost of transformer loading (e.g., greater transformer capacity, slower
degradation, or lower replacement cost) should improve the performance of the charging station in supplying
frequency regulation in Case 6. These types of changes likely have more muted effects in the other cases,
where the provision of frequency regulation is not as constrained as in Case 6.

Our proposed optimization model and solution technique are implemented using CPLEX version 12.6.1.
When run on a computer with a 3.0 GHz Intel Pentium G3220 Processor and 16 GB of memory, each
instance of the one-minute station-control models requires an average of about 600 second-stage scenarios
and 40 seconds of CPU time to run and achieve the desired solution quality. Thus, the model can be
tractably solved in the rolling-horizon fashion that we propose.

6. Conclusions

This paper proposes a two-stage stochastic optimization problem to manage charging loads and co-
optimize the provision of energy arbitrage and frequency regulation services from a BEV-charging station.
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The model considers DERs, such as solar PV and BES. We use an SAA approach to efficiently solve the
problem and can use the model in a rolling-horizon fashion to control a charging station in real-time.

We demonstrate the model using a case study of a public dc fast charging station that is co-located with
a commercial retailer in Central Ohio. We examine the performance of the model and charging station in a
number of sensitivity cases. We demonstrate that the model is able to use the available flexibility from BEVs
and BES to provide high-quality and responsive frequency regulation. Our sensitivity analyses show that the
ability of the charging station to provide frequency regulation is closely tied to the availability of BES and
the size of the BEV-charging loads. It can provide frequency regulation in the absence of BES by exploiting
the flexibility in BEV charging, however. The power capacity of BEV chargers can impact transformer
loading, however the size of BEV-charging loads has a much greater impact. An asymmetric frequency
regulation signal has some small impacts on the ability of the station to provide frequency regulation, with
a negative bias being beneficial.

Many grid services, including frequency regulation, are transacted day ahead. However, real-time ad-
justments to the provision of these services can be made. We focus on such real-time provision of these
services. Doing so allows the charging station to fully utilize the flexibility that is afforded by BEV recharg-
ing. Otherwise, if one focuses solely on providing grid services day ahead, the charging station is severely
limited in only being able to make decisions based on its day-ahead assessment of how much BEV-charging
flexibility it will have.

Our case study shows that the provision of grid services, including frequency regulation, generates signif-
icant value. As noted before, this value stream can be divided between BEV and charging-station owners.
In doing so, the two parties are incentivized to adopt BEVs (in favor of conventional vehicles) and build
public BEV-charging stations, respectively. There is, however, an important issue of how to contract to
divide these benefits, which our work does not explore. As part of this contracting, BEV owners must
be provided with incentives to provide flexibility in having their vehicle batteries recharged. A number
of works, including those of Wu et al. (2012); Sioshansi (2012); Ma et al. (2013); Xi and Sioshansi (2014);
Latinopoulos et al. (2017), examine the use of decentralized price-based mechanisms for co-ordinating BEV
charging. These works assume that there is no centralized entity that directly controls and co-optimizes the
charging of BEVs. Rather, charging decisions are left to individual BEV owners. However, various dynamic
pricing schemes are developed in these works to incentivize BEV owners to charge their vehicles at times
that are beneficial from an overall system perspective. As such, these works could represent one method of
attaining the co-ordination that our model requires. Indeed, Donadee and Ilić (2014) build on this concept
by developing a methodology to optimize the strategies that are employed by BEV owners to offer frequency
regulation services into a market.

Another ‘agency’ issue that we do not examine is the relationship between the charging-station operator
and the transformer owner. Distribution transformers are normally owned, maintained, and replaced by
the local distribution utility, which may not be the owner of the charging station. Thus, implementing
our proposed model, which allows the transformer to be overloaded, may require some form of contracting
arrangement between those two parties. Namely, the utility must allow the charging station operator to
overload the transformer, in exchange for sharing the increased cost of infrastructure replacement, which is
necessitated by the resulting accelerated transformer aging. We do not explore how such arrangements might
be structured. However, private communications with a number of distribution utilities reveal an interest
in the concept that we propose here. More specifically, these utilities recognize that it is costly to resize
distribution transformers to accommodate the anticipated load peak of public charging stations (especially
in light of their relatively low capacity factors). Thus, they are interested in developing analytical capacities
to balance accelerated transformer aging with the cost of undertaking a transformer replacement. Our model
does such a balancing, insomuch as objective function (2) captures the financial tradeoff between overloading
the distribution transformer and providing BEV-charging and grid services. Absent such contracting, the
model formulation would have to be adjusted to exclude the possibility of overloading the distribution
transformer. This can be done by fixing vj and vt,ω to zero. Hu et al. (2014); Aravinthan and Jewell (2015);
Shao et al. (2017) also develop co-ordination models to ensure that BEV charging does not create such
transmission- or distribution-level overloads. These contracting questions (i.e., between BEV and charging-
station owners and between charging-station owners and utilities) are important topics for further study.
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Another issue that we do not examine here is the ‘net value’ of providing these services to the system.
Although using BEV-charging flexibility to provide frequency regulation generates market revenue, there
are important and non-trivial infrastructure and implementation costs. Chargers would need the physical
capability to control and modulate the rate at which BEVs are charged. Moreover, charging stations would
need on-site or cloud-based computational resources. Finally, robust two-way communications between
BEV-charging stations and power system operators would be needed. These necessary systems all entail
costs, analysis of which is beyond the scope of our work. Another important implementation question is how
to make BEV-charging control robust to intermittent loss of communication or computation, which may be
an issue in this type of setting. To our knowledge, the type of charging control that we envision here is not
yet implemented in a commercial setting. Rather, most charging-control pilot projects are more focused on
managing BEV charging to minimize retail costs (e.g., demand-charge management). We believe that once
the industry is more comfortable with these more formative forms of charging control, it will eventually
evolve toward the provision of services that we study in this paper.
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Kempton, W., Tomić, J., 1 June 2005b. Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-

scale renewable energy. Journal of Power Sources 144, 280–294.
Kuby, M., Lim, S., June 2005. The flow-refueling location problem for alternative-fuel vehicles. Socio-Economic Planning

Sciences 39, 125–154.
Latinopoulos, C., Sivakumar, A., Polak, J. W., July 2017. Response of electric vehicle drivers to dynamic pricing of parking and

charging services: Risky choice in early reservations. Transportation Research Part C: Emerging Technologies 80, 175–189.
Li, S., Huang, Y., Mason, S. J., April 2016. A multi-period optimization model for the deployment of public electric vehicle

charging stations on network. Transportation Research Part C: Emerging Technologies 65, 128–143.
Ma, Z., Callaway, D. S., Hiskens, I. A., January 2013. Decentralized Charging Control of Large Populations of Plug-in Electric

Vehicles. IEEE Transactions on Control Systems Technology 21, 67–78.
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