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Abstract

Electric vehicles (EVs) hold promise to improve the energy efficiency and environmental impacts of trans-
portation. However, widespread EV use can impose significant stress on electricity-distribution systems due
to their added charging loads.

This paper proposes a centralized EV charging-control model, which schedules the charging of EVs that
have flexibility. This flexibility stems from EVs that are parked at the charging station for a longer duration
of time than is needed to fully recharge the battery. The model is formulated as a two-stage stochastic
optimization problem. The model captures the use of distributed energy resources and uncertainties around
EV arrival times and charging demands upon arrival, non-EV loads on the distribution system, energy prices,
and availability of energy from the distributed energy resources. We use a Monte Carlo-based sample-average
approximation technique and an L-shaped method to solve the resulting optimization problem efficiently.
We also apply a sequential sampling technique to dynamically determine the optimal size of the randomly
sampled scenario tree to give a solution with a desired quality at minimal computational cost.

We demonstrate the use of our model on a Central-Ohio-based case study. We show the benefits of the
model in reducing charging costs, negative impacts on the distribution system, and unserved EV-charging
demand compared to simpler heuristics. We also conduct sensitivity analyses, to show how the model
performs and the resulting costs and load profiles when the design of the station or EV-usage parameters
are changed.

Keywords: Electric vehicle, vehicle charging, charging control, stochastic optimization, sample-average
approximation

1. Introduction

Electric vehicles (EVs) hold great promise to improve the energy efficiency and environmental impacts of
transportation. However, widespread EV use brings uncertain impacts to electric power systems, especially
at the distribution level. Clement-Nyns et al. (2010) find that uncontrolled EV charging (i.e., EVs charging
without any coordination) can result in power losses and voltage deviations on the local distribution network.
Razeghi et al. (2014) study the impacts of charging 10 EVs in an uncontrolled fashion on a residential
transformer. They demonstrate that the resulting charging loads can result in catastrophic failure of the
transformer and conclude that management of charging loads is critical for prolonging transformer life.
Weiller (2011) estimates the impacts of EV recharging using standard wall outlets on electric loads in the
United States. The results of this analysis show that residential, workplace, and retail-shopping-center loads
can be increased by 74%.
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One way to accommodate these impacts of widespread EV use is to upgrade distribution-system infras-
tructure, including transformers. This solution would see the distribution system sized to accommodate the
anticipated peak load. Indeed, because distribution-infrastructure investments are typically long-lived (e.g.,
most distribution transformers have a design life of 20.5 years), the system would be sized based on antici-
pated future peak loads. This is an inefficient solution, however, because the peak load on many distribution
circuits may only be reached a few hours each year. This means that the distribution system would have
excess unused capacity the overwhelming majority of the time. Uncontrolled EV charging may exacerbate
this inefficiency, because uncontrolled EV charging tends to give the distribution load profile more extreme
peaks.

An alternate solution is control or management of EV-charging loads. The basic premise of charging
control is that an EV may be connected to a charging station for a longer duration of time than is required
to fully recharge its battery. If so, the charging demand could be shifted within this window of time.
By properly managing such flexible EV loads, the peaks in the distribution load profile can be reduced,
alleviating the need for expensive transformer upgrades. Moreover, controlling EV charging can increase the
load factor of the distribution system, meaning that the distribution infrastructure is used more efficiently.

The literature typically focuses on two forms of EV-charging control: centralized and decentralized.
Decentralized control is a price-signal based method to coordinate EV charging. This method usually
requires individual EVs and an EV aggregator to communicate their demands for charging energy and the
availability of energy in an iterative before reaching an equilibrium. In this context, an equilibrium is a set of
charging loads that are optimal from the perspective of the EVs (i.e., it satisfies their demands for charging
energy) and the EV aggregator (i.e., the aggregator can feasibly serve the charging loads). Ma et al. (2013)
introduce a price-based decentralized control scheme. In their proposal, EVs communicate their charging
demands iteratively based on a set pricing scheme. They demonstrate that the iterative scheme can reach an
equilibrium under mild conditions. Wu et al. (2012) propose a decentralized scheme which uses a price policy
that encourages individual EVs to provide frequency regulation. Bayram et al. (2013) propose an admission-
control mechanism that applies congestion pricing to mitigate station-level overloads and guarantee quality
of service among EVs. Xi and Sioshansi (2014) introduce a decentralized pricing scheme that conveys both
price and quantity from the power system operator to an EV aggregator or to individual EVs.

Conversely, centralized control relies on a single entity to manage EV charging. Thus, it relies on
EV owners letting someone else determine when their vehicles are recharged. Sathaye (2014) proposes an
optimization framework for an electrified taxi-service operator to schedule taxi-charging loads. This approach
takes the optimality and feasibility of the transportation system into account, assuming a Level-2 DC
charging station and that the power system can always fulfill the station’s charging demand. This approach
taken by Sathaye (2014) differs from many other works examining charging management. Sathaye (2014)
assumes that the power system can always serve charging loads and optimizes charging from the perspective
of the taxi service. Many other works, conversely, focus on optimality and feasibility, taking into account
that the power system may not be able to accommodate charging loads that are not properly managed. For
instance, Hu et al. (2014) introduce a linear programming model that determines an optimal EV-charging
schedule to minimize charging cost to an EV aggregator while preventing distribution-system congestion.
Rotering and Ilić (2011) propose a dynamic programming model to control and optimize accumulated EV-
charging demand. Sundström and Binding (2012) develop a quadratic programming model that minimizes
the operation cost of an EV aggregator’s operation cost while imposing distribution-network constraints.

More recent works pay increasing attention to uncertainty in when EVs may arrive at a charging station
and their charging demands upon arrival. Pantoš (2012) proposes a stochastic optimization model with
uncertainty in EV-usage patterns to create strategies for an individual EV that wants to participate in
energy and ancillary service markets by providing charging flexibility. Momber et al. (2015) introduce an
EV-charging control model for a risk-averse EV aggregator. They use conditional value-at-risk as the risk
metric in the objective function. Their work focuses on modeling uncertainty in EV-usage patterns and
energy prices.

The use of stochastic optimization techniques typically raises computational challenges, because of the im-
mense number of scenarios needed to capture all of the uncertainties modeled. Pantoš (2012); Momber et al.
(2015) deal with this issue through scenario reduction, wherein a large starting set of scenarios is reduced to
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a smaller set that is meant to represent the range of possible sample paths in the starting set of scenarios.
This use of scenario reduction raises two important and related questions, however. The first is whether
scenario reduction guarantees a high-quality solution. The second is how to choose appropriate starting and
reduced sample sizes that give a desired solution quality with the least amount of computational effort. This
second issue is especially important if a charging-control model is to be used for actual real-time control of
EV-charging loads.

In this paper we introduce a centralized control model that concentrates on high-power fast-charging
stations. The aim of the model is to optimize EV-charging loads within a fixed window of time after each
EV arrives at the charging station to minimize costs. The costs modeled include a penalty, based on the
associated accelerated aging, of operating the distribution transformer above its rated capacity. The core
methodology of our approach is a two-stage stochastic optimization problem. We model uncertainties in
EV-arrival times and charging demands upon arrival. The model also captures uncertainties in energy
prices, non-EV load (which shares the distribution transformer with the charging station), and energy from
distributed energy resources (DERs), such as a photovoltaic (PV) solar panel.

To obtain a high-quality solution within the minimum amount of time, we use sample-average approxi-
mation (SAA) and an L-shaped method to solve the problem. We also apply the averaged two-replication
procedure (A2RP) of Bayraksan and Morton (2011) to control solution quality and the sample sizes in the
SAA. Our solution methodology borrows heavily from the work of Bayraksan and Morton (2011). One of
the main contributions of our work is that it is the first (to our knowledge) to employ a theoretically valid
sampling technique to obtain solutions with statistically valid optimality bounds. Although the solution
technique employed is not our own, our use of it to provide robust control of a charging station in real-time
is novel.

The remainder of this paper is organized as follows. Section 2 gives an explicit formulation of our station-
control model. This model schedules EV charging using a two-stage stochastic optimization framework. It
also allows EV charging to be co-optimized with the use of DERs, such as PV and a battery energy storage
system (BESS). Section 3 outlines our proposed solution technique, which uses a Monte Carlo-based SAA
method to solve the station-control problem and an A2RP to control solution quality and sample sizes. We
then demonstrate the use of the model using a case study based on Central Ohio. Section 4 provides detailed
case-study data. Case study results are summarized and discussed in Section 5. This includes a comparison
of our proposed station-control model to simple heuristics in terms of operation costs, transformer loading
and aging, and how much EV-charging demand is unserved. Taking all of these metrics together, our model
outperforms the heuristics. We also conduct some sensitivity analyses, in which the design of the charging
station or some parameters relating to EV use are varied. This analysis shows the sensitivity of the resulting
load profile to different possible EV-usage cases.

The contributions of this work are developing a charging station-control model that captures the unique
characteristics of fast charging stations that are not considered in other works in the literature. This includes
the ability to model and optimize the use of DERs and capturing uncertainties around EV usage, non-EV
load, energy prices, and supply from the DERs. Moreover, we use a Monte Carlo-based SAA technique to
efficiently solve the resulting two-stage stochastic program, without having to rely on scenario reduction.
Finally, our use of an A2RP allows us to dynamically determine the size of the randomly sampled scenario
tree to provide a solution satisfying a desired quality level at minimal computational cost.

2. Electric Vehicle Charging Station-Control Model

This section details our EV charging station-control model. The model assumes that the charging
station is electrically co-located with a building, with which it shares a distribution-level transformer. This
transformer must serve the electrical load of the building, as well as EV-charging loads. The station can
also have DERs in the form of a PV plant and a BESS.

There are two types of EVs that arrive to the charging station. The first, which we term inflexible EVs,
must have their charging demands met immediately. The others, which we term flexible EVs, have a fixed
window of time within which to be recharged. The station-control model determines how to schedule flexible
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charging loads and the use of the DERs to meet station load at minimum cost. Our model formulation
assumes a one-minute time scale at which control decisions are modeled and made. A one-minute time
interval is reasonable for the types of dynamics (e.g., EV arrivals and departures and PV output) modeled.

The station-control model is formulated as a two-stage stochastic optimization problem, which minimizes
expected charging station-operation costs over a fixed time horizon. The first stage represents the present
time unit (i.e., the next minute), for which here-and-now EV-charging and DER-operational decisions are
made. The second stage represents the remainder of the model horizon. The model assumes that the system
state (e.g., energy prices, EV and non-EV loads, and PV output) are known for stage one, but that these
are uncertain for stage two. A scenario tree represents possible realizations of these random variables in
subsequent minutes of the model’s time horizon.

Our model determines here-and-now decisions for the next minute only. Our proposed use of this model
is in a rolling-horizon fashion. That is to say, the model is used starting from minute j to determine
minute-j station-control decisions. The model then rolls forward one minute, updates the stage-one system
state and stage-two scenario forecasts, and is re-solved to determine minute-(j + 1) decisions. This process
repeats to control the charging station. We use the notational convention throughout our formulation that
any random parameter with the subscript t is known with certainty at time t (and thereafter) but may be
uncertain before time t. We use the subscript ω to represent different second-stage scenarios. We also let
the subscript j denote the current minute (i.e., random parameters and decision variables with a j subscript
represent known stage-one parameters and here-and-now decisions).

2.1. Model Parameters and Functions

We begin by defining the following model parameters and functions.
Ω Set of second-stage scenarios
T Optimization horizon [min]
W Charging window for flexible EVs [min]
H̄ EV-charger nameplate capacity [kW]
R̄ Nameplate transformer capacity [kW]
RC(·) Penalty for operating transformer above nameplate capacity [$/min]
S̄E,+ Maximum state of charge (SOC) of the BESS [kW-min]
S̄E,− Minimum SOC of the BESS [kW-min]
S̄P Charging and discharging capacity of the BESS [kW]
µc Charging efficiency of the BESS
µd Discharging efficiency of the BESS

Our model has a T -minute optimization horizon. The flexible EVs are assumed to have a W -minute
window of time, within which they must be recharged. We assume that all flexible EVs have the same
charging duration for notational brevity. We could, alternately, subdivide the flexible EVs based on the
window of time within which they must be recharged. We do not do this, as it would further complicate the
model notation.

Each EV is assumed to connect to an H̄ kW charger. MW and MWh are typically used as units to
measure power and energy, respectively, in electricity systems. We use kW and kW-min throughout our
formulation, however. This is because the amount of power transacted in a charging station is on the order
of kW and our model has a one-minute temporal granularity.

The charging-station is connected to the electric power system through a distribution transformer, which
has a nameplate capacity of R̄ kW. As is common utility practice, the transformer can be operated above this
nameplate capacity. Doing so has the effect of reducing its usable life. We capture this effect of overloading
the transformer through RC(·), which gives the per-minute cost of overloading the transformer as a function
of the amount that the transformer is overloaded (based on the expected loss of transformer life and its
replacement cost).

The BESS is represented by its capacity and efficiency in our model. The BESS is assumed to have
maximum and minimum SOCs, S̄E,+ and S̄E,−, respectively. The maximum SOC represents the amount
of energy that can be safely stored in the BESS without overloading it. The minimum SOC, which may be
nonzero, is modeled because some storage technologies can suffer extreme cycle-life loss if the SOC gets too
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low. The BESS also has a power capacity, S̄P , which limits the rate at which it can be charged or discharged.
We also assume that energy can be lost when charging or discharging the BESS. The parameters, µc and
µd, represent these efficiencies. They also implicitly define the cost of storing energy in the BESS (through
the energy lost).

2.2. State Parameters

We now define two sets of state parameters. The first, which we term deterministic state parameters,
provide all of the system state information up to the current time (i.e., minute j). These parameters include
exogenous state information (e.g., the minute-j energy price and amount of non-EV and EV-charging loads),
as well as decisions that have already been made (e.g., energy that has already been recharged into flexible
EVs that arrived before minute j). The second, which we term stochastic state parameters, provide possible
realizations of the system state in the future (i.e., after minute j). Because these parameters represent
possible future states of the system (e.g., EV arrivals, PV output, energy prices, and non-EV loads), they
are indexed by the second-stage scenarios, ω.

2.2.1. Deterministic State Parameters
Lj Minute-j inflexible energy demand [kW]
Ft Total charging demand of flexible EVs that arrived to the charging station in minute t, where

t ∈ {j −W + 1, . . . , j} [kW-min]
Nt Total number of flexible EVs that arrived to the charging station in minute t, where t ∈

{j −W + 1, . . . , j}
f̄t Total charging demand of flexible EVs that arrived to the charging station in minute t, where

t ∈ {j −W + 1, . . . , j}, that has been satisfied as of the beginning of minute j [kW-min]
Vj Minute-j PV output [kW]
pj Minute-j electricity price [$/kW-min]
xj Beginning minute-j SOC of the BESS [kW-min]

The charging station faces two types of demands. The first are inflexible demands. These include non-EV
demands (i.e., the load of the commercial building sharing the transformer with the charging station) and
the charging loads of inflexible EVs. Both of these loads are included in Lj .

The second are the demands of flexible EVs. Flexible-EV demands are represented by two parameters.
Ft represents the total charging demand of flexible EVs that arrived to the charging station in minute t and
Nt represents the total number of EVs that arrived in minute t. We assume that the Ft kW-min of charging
demand are uniformly spread among the Nt EVs. This assumption is made for notational convenience. We
could further subdivide the EVs based on their battery SOC upon arrival to the charging station. Doing
so would further complicate the model notation. We let f̄t denote the total cumulative charging demand
of flexible EVs that arrived in minute t that has been satisfied as of the beginning of minute j. This is a
deterministic state parameter that represents previously made charging-control decisions.

The parameters Ft, Nt, and f̄t are defined for values of t ∈ {j −W + 1, . . . , j}. This is because of the
assumed W -minute charging window. Any EVs that arrived prior to minute (j −W + 1) would no longer
be in the station as of minute j.

We also define ξj = (Lj , Ft, Nt, f̄t, Vj , pj , xj), where t ∈ {j −W + 1, . . . , j}, as the deterministic state-
parameter vector.

2.2.2. Stochastic State Parameters
Lt,ω Minute-t inflexible energy demand in scenario ω [kW]
Ft,ω Total charging demand of flexible EVs that arrive to the charging station in minute t of sce-

nario ω [kW-min]
Nt,ω Total number of flexible EVs that arrive to the charging station in minute t of scenario ω
Vt,ω Minute-t PV output in scenario ω [kW]
pt,ω Minute-t electricity price in scenario ω [$/kW-min]
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The stochastic state parameters are all analogous to the deterministic state parameters, except that
they are indexed by scenario. This is because the stochastic state parameters represent the second-
stage system state, which is unknown when making minute-j here-and-now decisions. We define ψt,ω =
(Lt,ω, Ft,ω, Nt,ω, Vt,ω, pt,ω) as a vector of scenario-ω minute-t stochastic state parameters. We also define
ψω = (ψj+1,ω , . . . , ψj+T,ω) ∈ Ψ as the scenario-ω sample path of stochastic state parameters.

2.3. Decision Variables

We define two sets of decision variables: those corresponding to first- and second-stage decisions.

2.3.1. First-Stage Decision Variables
esj Minute-j power sales to the power system [kW]
ebj Minute-j power purchases from the power system [kW]
ecj Minute-j power charged into the BESS [kW]
edj Minute-j power discharged from the BESS [kW]
xj+1 Beginning minute-(j + 1) SOC of battery energy storage [kW-min]
fj,τ Total kW provided in minute j to recharge flexible EVs that arrived to the charging station in

minute τ , where τ ∈ {j −W + 1, . . . , j} [kW]
fj Total kW provided in minute j to recharge flexible EVs [kW]
vj Minute-j transformer overload [kW]

The first-stage decision variables pertain to the minute-j here-and-now decisions. The first pair of vari-
ables, esj and e

b
j , represent energy transacted between the charging station and the power system. Depending

on local demand and energy production from the DERs, the charging station may purchase energy from
or sell energy to the power system (in net) at a given point in time. These transactions are settled at the
energy price, pj .

The variables, ecj and edj , represent BESS charging and discharging decisions and xj+1 represents the
resulting beginning minute-(j+1) SOC of the BESS. We let fj,τ denote the amount of charging load provided
to flexible EVs that arrived to the charging station in minute τ and fj the sum of the fj,τ ’s.

We also define aj = (esj , e
b
j , e

c
j, e

d
j , xj+1, fj,τ , fj, vj), where τ ∈ {j − W + 1, . . . , j} as the first-stage

decision-variable vector.

2.3.2. Second-Stage Decision Variables
est,ω Minute-t power sales to the power system in scenario ω [kW]
ebt,ω Minute-t power purchases from the power system in scenario ω [kW]
ect,ω Minute-t power charged into the BESS in scenario ω [kW]
edt,ω Minute-t power discharged from the BESS in scenario ω [kW]
xt+1,ω Beginning minute-(t+ 1) SOC of the BESS in scenario ω [kW-min]
ft,τ,ω Total kW provided in minute t of scenario ω to recharge flexible EVs that arrived to the

charging station in minute τ [kW]
ft,ω Total kW provided in minute t of scenario ω to recharge flexible EVs [kW]
vt,ω Minute-t transformer overload in scenario ω [kW]

The second-stage decision variables are analogous to the first-stage decision variables, except that they
represent second-stage recourse decisions. As such, the second-stage variables are all indexed by the second-
stage scenarios, ω. We define ut,ω = (est,ω, e

b
t,ω, e

c
t,ω, e

d
t,ω, xt+1,ω, ft,τ,ω, ft,ω, vt,ω) as the scenario-ω/minute-t

second-stage decision-variable vector. We also define uω = (uj+1,ω, . . . , uj+T,ω) as the scenario-ω second-
stage decision-variable vector.

2.4. Constraints

We define two types of problem constraints: first- and second-stage constraints. In the first stage, we
first have a power-balance constraint:

Lj + fj + ecj = Vj + edj + ebj − esj . (1)
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This constraint ensures that power consumed within the charging station for serving inflexible or flexible
loads or charging the BESS equals the sum of power produced by the PV system, discharged from the BESS,
or transacted with the power system. We next have constraints:

vj + R̄ ≥ ebj − esj ; (2)

and:
−vj − R̄ ≤ ebj − esj ; (3)

imposing the transformer’s capacity. These constraints restrict net power transactions with the power
system, (ebj − esj), based on the transformer capacity, R̄. The constraint allows the transformer to operate
above its capacity, in which case vj must take on a positive value.

We next have an energy-balance constraint defining the evolution of the BESS SOC:

xj+1 = xj + µc · ecj − edj/µd; (4)

bounds on the BESS SOC:
S̄E,− ≤ xj+1 ≤ S̄E,+; (5)

and power limits on charging and discharging:

ecj , e
d
j ≤ S̄P . (6)

The next set of constraints involve flexible-EV recharging. We first have constraints:

fj,τ ≤ H̄ ·Nτ ; ∀τ = j −W + 1, . . . , j; (7)

which restrict the total amount that flexible EVs that arrived in minute τ can be recharged based on the
charger capacity and the total number of EVs. We next have a constraint defining the total amount that
flexible EVs are recharged in minute j:

fj =

j
∑

τ=j−W+1

fj,τ . (8)

We also have sets of constraints that ensure that none of the flexible EVs are over- or undercharged. The
first:

fj,τ ≤ Fτ − f̄τ ; ∀τ = j −W + 1, . . . , j; (9)

restricts the amount recharged in EVs that arrived in minute τ to be no greater than the remaining unfulfilled
charging demand as of the beginning of minute j. The second:

Fτ − f̄τ − fj,τ ≤ H̄ ·Nτ · (W − j + τ − 1); ∀τ = j −W + 1, . . . , j; (10)

ensures that the remaining unfulfilled charging demand (as of the end of minute j) of EVs that arrived in
minute τ could be feasibly met if they are recharged at the charger’s maximum capacity for the remainder
of the charging window.

We finally have non-negativity constraints:

esj , e
b
j , e

c
j, e

d
j , xj+1, fj, vj ≥ 0; (11)

and:
fj,τ ≥ 0, ∀τ = j −W + 1, . . . , j. (12)

The second-stage constraints have a very similar structure, in that they impose the same sets of re-
strictions. The major difference between the first- and second-stage constraints is that the second-stage
constraints are scenario-dependent. We define the scenario-ω second-stage constraints here. We first have a
set of power-balance constraints:

Lt,ω + ft,ω + ect,ω = Vt,ω + edt,ω + ebt,ω − est,ω; ∀t = j + 1, . . . , j + T. (13)
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We next have transformer-capacity constraints:

vt,ω + R̄ ≥ ebt,ω − est,ω; ∀t = j + 1, . . . , j + T. (14)

and:
−vt,ω − R̄ ≤ ebt,ω − est,ω; ∀t = j + 1, . . . , j + T. (15)

Next are constraints for the BESS. The constraint sets:

xj+2,ω = xj+1 + µc · ecj+1,ω − edj+1,ω/µ
d; (16)

and:
xt+1,ω = xt,ω + µc · ect,ω − edt,ω/µd; ∀t = j + 2, . . . , j +W ; (17)

define the evolution of the BESS SOC in each minute. Constraint sets:

S̄E,− ≤ xt,ω ≤ S̄E,+; ∀t = j + 2, . . . , j +W + 1; (18)

and:
ect,ω, e

d
t,ω ≤ S̄P ; ∀t = j + 2, . . . , j +W ; (19)

impose the SOC and charging and discharging power limits of the BESS, respectively.
We next have constraints related to flexible-EV charging. The first set imposes the chargers’ capacities:

ft,τ,ω ≤ H̄ ·Nτ,ω; ∀t = j + 1, . . . , j + T ; τ = t−W + 1, . . . , t; (20)

and the second defines total flexible-EV charging in each minute of each scenario:

ft,ω =

t
∑

τ=t−W+1

ft,τ,ω; ∀t = j + 1, . . . , j + T. (21)

We finally need additional sets of constraints to ensure that all of the flexible EVs are recharged. First, we
ensure that all vehicles that have already arrived as of minute j will be fully recharged within the charging
window under all scenarios:

τ+W
∑

t=j+1

ft,τ,ω + fj,τ = Fτ − f̄τ ; ∀τ = j −W + 1, . . . , j. (22)

Next, we ensure that all flexible EVs that arrive after minute j and that have a charging window that ends
before the T -minute model horizon are fully recharged:

τ+W
∑

t=τ

ft,τ,ω = Fτ ; ∀τ = j + 1, . . . , j + T −W. (23)

We finally ensure that the remaining EVs (i.e., those that will arrive after minute j but have a charging
window that ends after the T -minute model horizon) are not overcharged but have been charged sufficiently
to be able to recharge before their charging windows expire. These constraint sets are written as:

j+T
∑

t=τ

ft,τ,ω ≤ Fτ ; ∀τ = j + T −W + 1, . . . , j + T ; (24)

and:

Fτ −
j+T
∑

t=τ

ft,τ,ω ≤ H̄ ·Nτ,ω · (W − j − T + τ); ∀τ = j + T −W + 1, . . . , j + T. (25)
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We finally have non-negativity constraints:

est,ω, e
b
t,ω, e

c
t,ω, e

d
t,ω, xt+1,ω, ft,ω, vt,ω ≥ 0; ∀t = j + 1, . . . , j + T ; (26)

and:
ft,τ,ω ≥ 0; ∀t = j + 1, . . . , j + T ; τ = t−W + 1, . . . , t. (27)

For notional convenience, we also define the first-stage feasible region as:

Aj = {aj | (1)–(12)} .

We similarly define the second-stage feasible region on sample path ω as:

Uω = {uω| (13)–(27)} .

We finally note that (10) ensures that this problem has relatively complete recourse. These constraints
ensure that all of the EVs that are in the charging station as of minute j are charged sufficiently so that
they could be fully recharged within the W -minute charging window.

2.5. Objective Function

To define the objective function, we begin by defining the minute-j charging station-operation cost as:

cj(aj , ξj) = pj · (ebj − esj) +RC(vj). (28)

The first term in (28) gives the cost of energy transacted with the power system, while the second term
represents the cost of overloading the distribution-level transformer. We similarly define the second-stage
cost in minute t of scenario ω as:

ct,ω(ut,ω, ψt,ω) = pt,ω · (ebt,ω − est,ω) +RC(vt,ω).

The two terms in this function have the same interpretations as those in (28). The charging station-control
problem is then formulated as:

min
aj∈Aj

{g(aj) = cj(aj , ξj) + E [r(aj , ψω)]} , (29)

where we define:

r(aj , ψω) = min
uω∈Uω

j+T
∑

t=j+1

ct,ω(ut,ω, ψt,ω). (30)

Objective function (29) minimizes the sum of the stage-one cost, which is the first term, and the expected
second-stage cost, which is the second term. The second-stage is cost is defined by (30) as the sum of costs
accumulated in each of minutes (j + 1) through (j + T ).

3. Solution Technique

First-stage objective function (29) is implicitly defined by the second-stage problems. As such, all of
the second-stage problems must be solved to obtain an optimal solution to the station-control problem.
The second-stage problems are defined by forecasting second-stage scenarios through the end of the T -
minute model horizon. These second-stage scenarios are defined by different realizations of the second-stage
parameter vector, ψω. Some of the second-stage parameters are continuous random variables, implying
that there are an infinite number of second-stage parameter vectors and, as such, an infinite number of
second-stage problems.

These properties of the station-control problem make it computationally challenging. Our proposed use
of the station-control problem is in a rolling-horizon fashion, whereby it is re-solved every minute. Thus,
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the station-control problem must be solved quickly. To accomplish this, we apply a SAA approach to
quickly obtain near-optimal solutions within seconds. We also apply a sequential sampling procedure (SSP)
proposed by Bayraksan and Morton (2011) to estimate and control the quality of the solutions obtained
from the SAA.

We proceed in this section by first defining the SAA problem and then detailing the algorithm used to
solve it. We next discuss the gap and variance estimators used to assess the quality of a solution given by
the SAA problem and determine the stopping criterion for our solution algorithm. We finally discuss the
convergence properties of our solution method.

3.1. Sample Average Approximation Problem

An SAA problem replaces the infinite number of second-stage problems that define the true station-
control problem with a finite random sample of second-stage scenarios. We solve the SAA problem in an
iterative fashion, in which the number of second-stage scenarios sampled is increased until the solution to
the SAA problem satisfies a desired termination criterion.

To formulate the SAA problem, we first define ψ1, . . . , ψmκ
asmκ independent and identically distributed

(i.i.d.) samples of the second-stage sample paths (i.e., samples of ψω). The κ subscript on mκ denotes the
iteration number of the algorithm employed to solve the SAA problem (cf. Algorithm 1). The samples,
ψ1, . . . , ψmκ

, are randomly generated by a Monte Carlo simulation. The method used to generate the
sequence of mκ’s is further discussed in Section 3.4 (cf. Equation (39) in particular) and all of the mκ’s are
integral. The SAA problem is formulated as:

min
aj∈Aj

{

gmκ(aj) =
1

mκ

mκ
∑

m=1

[cj(aj , ξj) + r(aj , ψm)]

}

; (31)

where we define:

r(aj , ψm) = min
um∈Um

j+T
∑

t=j+1

ct,m(ut,m, ψt,m). (32)

Algorithm 1 provides a high-level overview of the method used to solve the SAA problem. Step 1 begins
by choosing sample-size sequences, {mκ} and {lκ}, and a termination criterion, Υ (cf. Sections 3.3 and 3.4).
The sample-size sequence, {lκ}, is used to estimate the optimality gap of the solution to the SAA problem
solved in each iteration. Steps 3–8 are the main iterative loop. In Step 4 of iteration κ, the mκ i.i.d. random
samples are generated to define an SAA problem. This problem is solved using an L-shaped method (cf.
Section 3.2) in Step 5. In Step 6, lκ i.i.d. samples of the random variables are generated to estimate the
optimality gap of the solution to the SAA problem found in Step 5. This gap estimator is used in the
termination criterion (cf. Sections 3.3 and 3.4). The iterative process repeats, with the sample size of the
SAA problems increasing, until stopping criterion Υ, is satisfied.

Algorithm 1 SAA Method

1: input: sample-size sequences {mκ} and {lκ}, stopping criterion Υ
2: κ← 0
3: repeat

4: generate mκ i.i.d. random samples, ψ1, . . . , ψmκ
of second-stage sample path

5: solve SAA problem (31) using L-shaped method
6: generate lκ i.i.d. random samples and optimality gap estimator
7: κ← κ+ 1
8: until Υ is satisfied

The following subsections provide further details of the L-shaped method (cf. Step 5) and the selection
of the sample-size sequences and stopping criterion (cf. Step 1).
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3.2. Solution of SAA method

We use an L-shaped method to solve the SAA problem in Step 5 of Algorithm 1. This method works by
doing a Benders-type decomposition of (31). We define the master problem:

min
aj∈Aj,θ

1

mκ

mκ
∑

m=1

[cj(aj , ξj) + θm] ; (33)

where θ1, . . . , θmκ
is a set of new variables. The variable, θm, is an estimate of the second-stage objective-

function value under sample path ψm. Thus, θm is estimating r(aj , ψm).
Problem (33) relaxes the optimality of the second-stage decisions, which is required to solve (31). Thus,

any optimal solution of (33) should be checked to verify whether it satisfies or violates second-stage opti-
mality. If one of the θm’s violates this optimality, i.e., if:

θm < r(aj , ψm);

for some m, then an optimality cut should be added to (33). These optimality cuts are obtained from the
optimal solution of the dual of (32). More specifically, let πm and Πm denote the variable vector and feasible
region, respectively, of the dual of the sample path-m second-stage problem. The dual of (32) can then be
written as:

max
πm∈Πm

φ(πm, aj , ψm). (34)

Note that φ(πm, aj , ψm) is the optimal objective-function value of the sample path-m second-stage problem
with first-stage decision-variable values, aj . Because of strong duality, r(aj , ψm) is equal to the optimal
objective-function value of (34). Thus, the separated optimality cuts are:

θm ≥ φ(π∗
m, aj , ψm); (35)

where π∗
m is the optimal dual-variable vector of (34).

Benders’s-type decomposition schemes typically also require adding feasibility cuts to the master problem.
This is because master problem (33) relaxes feasibility of the second-stage problems (i.e., first-stage decisions
are made without explicit consideration of second-stage constraints). Feasibility cuts are not necessary for
our problem, however, because (10) guarantees that Problem (29) has relatively complete recourse. Because
Constraints (10) are imposed in master problem (33) as well (it is minimizing over the same first-stage
feasible set, Aj), feasibility cuts are not necessary.

The L-shaped method iteratively adds optimality cuts to master problem (33). To more explicitly specify
this iterative technique, we first define the L-shaped master SAA problem. To do this, we let K1, . . . ,Kmκ

denote the number of optimality cuts that have already been added to the problem for each of sample paths,
ψ1, . . . , ψmκ

, respectively. We also let πkm denote the optimal dual vector, which is obtained from (34), to
generate the kth optimality cut for sample path m. The L-shaped master SAA problem is then given by:

min
aj ,θ

1

mκ

mκ
∑

m=1

[cj(aj , ξj) + θm] (36)

s.t. aj ∈ Aj ;
θm ≥ φ(πkm, aj, ψm); ∀m = 1, . . . ,mκ; k = 1, . . . ,Km. (37)

For notational convenience, we define the feasible region of the L-shaped master problem as:

Ãj = {(aj , θ) ∈ Aj × R
mκ | (37)} .

Algorithm 2 outlines the L-shaped method. The set of optimality cuts is first initialized to be empty in
Step 1. In Step 3, the incumbent master problem is solved to obtain the solution, (âj , θ̂). We then iterate
through each second-stage sample path and solve the cut-separation problem in Step 5. If, in Step 6, we
find that the value of θ̂m underestimates the true second-stage objective-function value, φ(π̂m, âj , ψm), then

a new sample path-m optimality cut is added in Steps 7 and 8. This iterative procedure repeats until θ̂ does
not underestimate the true second-stage objective-function value of any sample path.
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Algorithm 2 L-Shaped method for SAA Problem

1: Km ← 0, ∀m = 1, . . . ,mκ

2: repeat

3: (âj , θ̂)← arg min
(aj ,θ)∈Ãj

(36)

4: for m = 1, . . . ,mκ do

5: π̂m ← arg max
πm∈Πm

(34)

6: if φ(π̂m, âj , ψm) > θ̂m then ⊲ add a new sample path-m optimality cut
7: Km ← Km + 1
8: πKm

m ← π̂m
9: end if

10: end for

11: until 1
mκ

mκ
∑

m=1
θ̂m ≥ 1

mκ

mκ
∑

m=1
r(âj , ψm)

3.3. Gap and Variance Estimators

The termination criterion, Υ, in Algorithm 1 requires us to assess the quality of the solution found in
Step 5. We do this by applying SSP with A2RP. More specifically, SSP gives gap and variance estimators
using the optimality-gap estimators provided by the A2RP. We first introduce the gap and variance estimates
provided by the A2RP.

A2RP is a batch-mean-based method suggested by Bayraksan and Morton (2006). We begin by defining
g∗ to be the optimal objective value of the original problem:

g∗ = min
aj∈Aj

g(aj);

where g(aj) is defined in (29). We also let:

A∗ = {aj ∈ Aj |g(aj) = g∗} ;

denote the set of optimal solutions of (29). We similarly define ĝmκ as the optimal objective-function value
of SAA problem (31) with mκ randomly generated sample paths:

ĝmκ = min
aj∈Aj

gmκ(aj);

and Âmκ as the corresponding optimal-solution set:

Âmκ = {aj ∈ Aj |gmκ(aj) = ĝmκ} .

The optimality gap and gap variance are defined, respectively, as:

µ(aj) = g(aj)− g∗;

and:
σ2(aj) = Var

(

r(aj , ψω)− r(a∗j , ψω)
)

;

where a∗j ∈ A∗.
A2RP compares an optimal solution obtained from solving the SAA problem with the mκ random

sample paths in Step 5 of Algorithm 1, to an optimal solution obtained from solving an SAA problem with
a different set of stochastic parameters. We only provide an outline of the A2RP method here and refer
interested readers to the work of Bayraksan and Morton (2006) for further details.
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We begin by defining two new randomly generated sample paths, ψ̇1
1 , . . . , ψ̇

lκ/2
1 and ψ̇1

2 , . . . , ψ̇
lκ/2
2 , each

of size lκ/2. The optimality-gap estimators are then defined as:

Gilκ/2(a
mκ

j
∗
) = glκ/2,i(amκ

j
∗
)− min

aj∈Aj

glκ/2,i(aj); ∀i = 1, 2;

where amκ

j
∗ is the optimal solution from Step 5 of Algorithm 1 (i.e., amκ

j
∗ ∈ Âmκ) and glκ/2,i(·) is defined

by (31) with the parameter mκ on the right-hand side replaced with lκ/2. Note that:

glκ/2,i(aj) = cj(aj , ξj) +
2

lκ

lκ/2
∑

l=1

r(aj , ψ̇
l
i).

We also define:
a
lκ/2,i
j

∗
= arg min

aj∈Aj

glκ/2,i(aj);

as the minimizer of the second term defining Gilκ/2(a
mκ

j
∗). Thus, we can write:

Gilκ/2(a
mκ

j
∗) = glκ/2,i(amκ

j
∗)− glκ/2,i(alκ/2,ij

∗
); ∀i = 1, 2.

The variance estimators of the optimality gaps are defined as:

s2lκ/2(a
lκ/2,i
j

∗
) =

2

lκ − 2

lκ/2
∑

l=1

{[(

cj(a
mκ

j
∗, ξj) + r(amκ

j
∗, ψ̇li)

)

−
(

cj(a
lκ/2,i
j

∗
, ξj) + r(a

lκ/2,i
j

∗
, ψ̇li)

)]

−Gilκ/2(a
mκ

j
∗)
}2

;

for all i = 1 and 2. The mean and variance estimates are calculated as:

Ḡlκ/2(a
mκ

j
∗
) =

1

2

[

G1
lκ/2

(amκ

j
∗
) +G2

lκ/2
(amκ

j
∗
)
]

;

and:

s̄2lκ(a
mκ

j
∗
) =

1

2

[

s2lκ/2(a
lκ/2,1
j

∗
) + s2lκ/2(a

lκ/2,2
j

∗
)
]

.

3.4. Stopping Criterion and Sample Sizes

We use an SSP stopping criterion proposed by Bayraksan and Morton (2011). We denote the stopping
criterion as Υ. Υ should ensure that the algorithm provides a high-quality solution in a finite number of
iterations. The stopping criterion, Υ, is defined as:

Ḡlκ/2(a
mκ

j
∗) ≤ h′s̄lκ(amκ

j
∗) + ǫ′; (38)

where h′ > 0 is a relative tolerance and ǫ′ > 0 ensures finite stopping. We define the first iteration that
satisfies Υ as:

Γ = inf
κ≥1

{

κ
∣

∣Ḡlκ/2(a
mκ

j
∗) ≤ h′s̄lκ(amκ

j
∗) + ǫ′

}

.

Stopping criterion (38) requires that the optimality gap, Ḡlκ/2(a
mκ

j
∗
), be no more than a fraction, h′, of its

standard deviation, s̄lκ(a
mκ

j
∗
). Criterion (38) is satisfied with probability 1 if lκ < +∞, mκ < +∞, and

ǫ′ > 0. In fact, ǫ′ limits the order of magnitude of the optimality gap when the algorithm terminates. For
instance, the algorithm terminates if Ḡlκ/2(a

mκ

j
∗) = 10−8 and ǫ′ = 10−7 no mater what value s̄lκ(a

mκ

j
∗)

takes. Thus, ǫ′ should be appropriately small to avoid interfering with Algorithm 1 stopping when the
optimality gap and the corresponding standard deviation are large. For further details of finite stopping
with positive ǫ′, we refer interested readers to the work of Bayraksan and Morton (2011).
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Stopping criterion (38) is defined in terms of parameters h′ and ǫ′. However, the confidence interval on
the optimality gap, once the stopping criterion is satisfied, is actually given in terms of:

h · s̄lκ(amΓ

j
∗) + ǫ;

where h > h′ and ǫ > ǫ′. The reason that the confidence interval is inflated (i.e., is given in terms of h and
ǫ as opposed to h′ and ǫ′) is because of the sequential nature of the sampling method employed. We choose
the sample-size sequence, {mκ}, such that:

mκ ≥
(

1

h− h′
)2
(

ηq + 2q · [log(κ)]2
)

; (39)

where:

ηq = max

{

2 log

(

∑+∞
ι=1 ι

−q log ι

√
2πα

)

, 1

}

;

(1 − α) is the desired confidence level of the confidence interval obtained, with α ∈ (0, 1), and q > 0 is a
parameter that governs the sample sizes. The value of q is chosen to minimize the computational effort,
which is defined by the total number of samples required in Algorithm 1 (i.e.,

∑Γ
κ=1mκ). Further details

on the choice of q are provided by Bayraksan and Morton (2011).
Algorithm 3 outlines the procedure employed to determine the stopping criterion and the sample-size

sequence. For notational convenience, we define ∆h = h − h′ and ∆ǫ = ǫ − ǫ′. The algorithm takes two
inputs in Step 1—an initial sample size, m0, and a desired number of iterations, Γ0, for Algorithm 1. These
inputs are used to determine Υ and {mκ}. Γ0 represents a tradeoff between the amount of computational
work involved in solving the station-control problem and the tightness of the confidence interval on the
optimality gap obtained. A higher value of Γ0 tightens the confidence interval but also increases:

Γ0
∑

κ=1

mκ;

the number and size of the SAA problems that must be solved. Step 4 calculates ηq. In practice, the:

+∞
∑

ι=1

ι−q log ι; (40)

term is approximated by replacing +∞ in the upper limit of the sum with a large but finite number. Note
that (40) converges to a finite value because q > 0.

In Steps 6–9 we generate and solve ρ SAA problems with sample sizes of m0. The results of these initial
SAA problems are used to generate a set of gap and variance estimates, which are averaged in Steps 10
and 11. These average gap and variance estimates are used in Step 12 to determine h′. The reasoning
behind choosing h′ in this way is that the initial ρ SAA problems give us a sense of the ratio between the
optimality gap and its variance for near-optimal solutions. Ḡ and ∫̄ are random samples of these two values.
Thus, we use Ḡ and ∫̄ to determine h′. Indeed, h′ specifies the instance stochasticity and h′ ∝ Ḡ/∫̄ . The
reason for solving multiple SAA problems is to avoid a biased set of samples and to estimate the average
uncertainty using a set of near-optimal solutions. Values of ρ between 2 and 5 are common and we use
ρ = 2. β is a user-specified positive relative stopping constant and is usually fixed between 0.9 and 1. We
use β = 1. In this setting, the tightness of stopping criterion (38) is decided by the variance of the objective
function around the optimal solution. For instance, criterion (38) is tight if the variance is small. Otherwise,
a relatively loose stopping criterion is given.

The values of ǫ′ and ǫ are fixed in Steps 14 and 15. In practice, these two parameters can be set to any
reasonable positive numbers, based on observed behavior of the optimality and variance of the problem being
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Algorithm 3 Stopping Criterion and Sample Sizes Initialization

1: input: m0 and Γ0 ⊲ m0: initial sample size, Γ0: desired iterations
2: l0 ← 2 · ⌈m0/2⌉
3: choose q based on Γ0 ⊲ cf. Bayraksan and Morton (2011)
4: ηq ← max{2 log(∑+∞

ι=1 ι
−q log ι/

√
2πα), 1}

5: ∆h←
√

ηq
m0

⊲ based on (39) with κ = 1

6: for ̺ = 1, . . . , ρ do

7: solve (31) with m0 second-stage sample paths using Algorithm 2 ⊲ let a
m̺

0

j

∗
denote solution

8: solve A2RP problems to obtain Ḡlκ/2(a
m̺

0

j

∗
) and s̄2(a

m̺
0

j

∗
)

9: end for

10: Ḡ ← 1
ρ

∑ρ
̺=1 Ḡlκ/2(a

m̺

0

j

∗
)

11: ∫̄2 ← 1
ρ

∑ρ
̺=1 s̄

2
lκ
(a
m̺

0

j

∗
)

12: h′ ← β · (Ḡ/∫̄)
13: h← h′ +∆h
14: ǫ′ ← 1× 10−7

15: ǫ← 2× 10−7

16: generate {mκ} using (39)
17: lκ ← 2 · ⌈mκ/2⌉, ∀k
18: output: h′, h, ǫ′, ǫ, {mκ}, and {lκ}

solved. Finally, the sample-size sequences, {mκ} and {lκ}, are generated in Steps 16 and 17, using (39). We
generate the mκ’s as:

mκ ←
⌈

(

1

h− h′
)2
(

ηq + 2q · [log(κ)]2
)

⌉

.

A consequence of using the sample sizes and stopping criterion found in Algorithm 3 is that:

[0, h · s̄lκ(amΓ

j
∗) + ǫ];

is a valid (1− α) confidence interval on the optimality gap, so long as ∆h has order of magnitude less than
∆ǫ/M, whereM is the supremum of the optimality gap’s variance. Further details regarding the asymptotic
validity of the stopping criterion are given in Section 3.6.

3.5. Convergence Properties of SAA

An important question in applying Algorithm 1 is whether there are any guarantees that SAA prob-
lem (31) converges to the true station-control problem given by (29). Convergence of the SAA problem
relies on the results of Shapiro et al. (2014). Before answering this question, we first place an additional
assumption on the stochastic properties of the station-control problem and show four additional properties
of the original and SAA problems. These are then used to appeal to a theorem shown by Shapiro et al.
(2014), which provides our convergence result.

Assumption 1. pt,ω has a finite moment-generating function (MGF). Moreover, random vectors Vt,ω, Lt,ω,
Nt,ω and Ft,ω are all bounded.

The assumption on the MGF of pt,ω says that there exists a γ0 > 0 such that for all γ ∈ (−γ0, γ0) we
have that M(γ) is finite, where:

M(γ) = E [eγ·pt,ω ] < +∞;

is the MGF of pt,ω.
We now show the additional properties of the original and SAA problems through the following lemma

and propositions.
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Lemma 1. Suppose that there exist N independent random variables, X1, X2, . . . , XN , for some N ∈ Z
+

and that Xi has finite MGF ∀i = 1, . . . , N . Define Z = min {X1, X2, . . . , XN}. Then, the random variable,
Z has a finite MGF.

Proof. See Appendix A.

Proposition 1. If Assumption 1 is satisfied, then the random variable, r(aj , ψω), has a finite MGF.

Proof. See Appendix B.

Proposition 2. Suppose that Assumption 1 is satisfied. Then the following two properties hold for Prob-
lem (29):

a. for every aj ∈ Aj, r(aj , ψω) is finite for almost every ψω ∈ Ψ; and

b. the function g(aj) is well defined and finite-valued for all aj ∈ Aj .

Proof. See Appendix C.

Proposition 2 implies that both g(aj) and g
M (aj) are convex and continuous on Aj .

Proposition 3. The objective function of SAA problem (31), gM (aj), uniformly converges to the objective
function of original problem (29), g(aj), with probability 1 (w.p.1) on Aj , as M → +∞.

Proof. See Appendix D.

Using the results of Propositions 2 and 3, we can appeal to the following theorem shown by Shapiro et al.
(2014), which gives the convergence of an SAA. We only state this result and refer interested readers to the
work of Shapiro et al. (2014) for the proof and further details.

Theorem 1. Suppose that the following four properties hold:

a. A∗ 6= ∅;

b. g(aj) is finite-valued and continuous on Aj;

c. gmκ(aj) converges to g(aj) w.p.1, as mκ → +∞; and

d. Âmκ 6= ∅ w.p.1 for mκ sufficiently large.

Then, gmκ → g∗ and D(Âmκ , A∗)→ 0 w.p.1 as mκ → +∞, where:

D(Âmκ , A∗) := max
aj∈Âmκ

dist(aj , A
∗).

Proof. See the work of Shapiro et al. (2014).

Proposition 2 implies Property b. We get Property c from Proposition 3. Properties a and d are satisfied
because of feasibility of the first stage and the relatively complete recourse property, which comes from
Constraint (10).

3.6. Asymptotic Validity and Finite Termination

The two other important questions about Algorithm 1 are whether it provides an asymptotically valid
confidence interval on the optimality gap and whether the algorithm terminates, by satisfying termination
criterion Υ, in a finite number of iterations. We answer the two questions by relying on the results of
Bayraksan and Morton (2011).

To answer these questions, we first show the following proposition.

Proposition 4. If Assumption 1 is satisfied, r(aj , ψω) is Lipschitz continuous on Aj w.p.1.

Proof. See Appendix E
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We can now use Proposition 4 to appeal to the following theorem proven by Bayraksan and Morton
(2011), which gives the asymptotic validity of the confidence interval and finite termination of the SAA
algorithm. We only state this theorem and refer interested readers to the work of Bayraksan and Morton
(2011) for further details and the proof.

Theorem 2. Suppose that the following five properties hold:

a. gmκ → g∗ and D(Âmκ , A∗)→ 0 w.p.1 as mκ → +∞;

b. Glκ(aj) ≥ Dlκ(aj), w.p.1 for all aj ∈ Aj and lκ ≥ 1, where:

Glκ(aj) = glκ(aj)− glκ(alκj
∗
);

and:
Dlκ(aj) = glκ(aj)− glκ(a∗j );

where glκ(·) is defined by (31) with the parameter mκ on the right-hand side replaced with lκ, a
∗
j ∈ A∗,

and alκj
∗ ∈ Âlκ , where:

Âlκ =

{

aj ∈ Aj
∣

∣

∣

∣

glκ(aj) = min
aj∈Aj

glκ(aj)

}

;

c. lim inf lκ→∞ s2lκ(aj) ≥ σ2(aj), w.p.1 for all aj ∈ Aj;
d.
√
lκ(Dlκ(aj) − µ(aj))

P−→ N(0, σ2(aj)) as lκ → +∞ for all aj ∈ Aj, where P−→ means convergence in
probability; and

e. r(aj , ψω) is Lipschitz continuous on Aj .

If the sample sizes used in Step 4 of Algorithm 1 satisfy (39) and the algorithm terminates by satisfy-
ing (38), then for any ǫ > ǫ′ > 0, q > 0, and α ∈ (0, 1) we have that:

lim
h→h′+

inf Prob
{

µ(amΓ

j
∗) ≤ h · s̄(amΓ

j
∗) + ǫ

}

≥ 1− α;

where amΓ

j
∗ is the final solution found when Algorithm 1 terminates. Moreover, for any h > h′ > 0 we have

that:
Prob{Γ < +∞} = 1.

Proof. See the work of Bayraksan and Morton (2011)

Our original and SAA problems satisfy the requirements of Theorem 2. Theorem 1 implies Property a.
We get Property b from the fact that glκ(alκ∗j ) ≤ glκ(a∗j ). Bayraksan and Morton (2006) show that Prop-

erty c holds if r(aj , ψω) is continuous with respect to aj ∈ Aj w.p.1, E
[

supaj∈Aj
r2(aj , ψω)

]

< +∞, and

Aj is non-empty and compact. Property d is satisfied because of the central limit theorem for i.i.d. random
variables. Finally, Proposition 4 gives Property e.

4. Case Study

The station-control model and solution technique introduced in Sections 2 and 3 are demonstrated
using a case study. The case study is used to analyze the optimal scheduling of EV-charging loads and
the resulting cost of operating the charging station. These cost calculations can be used to estimate the
impact of building a public EV-charging station from energy- and infrastructure-cost perspectives. We also
contrast the charging profiles and resulting cost given by our proposed model to three simple heuristic
charging techniques. This is done to demonstrate the benefits of the proposed model in scheduling flexible
EV-charging loads more intelligently than heuristics do.

The case study is based on the Central-Ohio region. It assumes that a public EV-charging station is built
in the parking area of a major retail shopping center in northeastern Columbus, Ohio. The shopping center
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is connected to the electricity-distribution system through an R̄ = 500 kVA transformer. This transformer,
which is shared by the buildings in the retail shopping center, is also used by the EV-charging station.
Thus, the transformer must serve the total EV and non-EV loads. Station operations are modeled over a
representative year, using electricity-price, weather, and vehicle-usage data for the year 2013.

A number of the case study parameters (e.g., the non-EV load, electricity prices, and transformer char-
acteristics) are fixed. We examine the effects of other parameters through a fractional factorial experiment.
Specifically, we examine the effects of the EV charger power capacity, whether distributed PV and BESS
are installed, the EV penetration level, and the charging window through this experimental design.

We detail the datasets used and how these data are processed in constructing our case study in Sec-
tions 4.1–4.7. Section 4.8 describes our fractional factorial experimental design.

4.1. Electric Vehicle Usage

EV-usage data, which are implicitly needed to determine EV arrival times and the charging demands of
EVs upon their arrivals, are modeled using vehicle-driving data provided by the Mid-Ohio Regional Planning
Commission (MORPC). More specifically, our work relies on two MORPC datasets: (1) tour-record data
specifying the use of the approximately 1.1 million light-duty vehicles in the Central-Ohio region and (2)
geographic information system data for the region, which include average vehicle-speed data for all of the
road segments in the road network.

The tour records provide modeled data on the use of the 1.1 million light-duty vehicles in Central
Ohio during a typical day. The data are generated using the multi-step tour-based approach discussed by
Sener et al. (2009). Each tour is associated with a specific vehicle in the modeled dataset and information
on subtours (e.g., stopping at a retail shopping location en route while commuting from work to home) are
included as well. The dataset also provides the starting and ending times and locations of each tour and
subtour.

The MORPC data are used to simulate EV-usage patterns by following a four-step process. The first
step is to determine what subset of the 1.1 million light-duty vehicles in the MORPC dataset are EVs by
bootstrapping from the tour-record data. This is done by assuming an EV penetration level (as discussed
in Section 4.8, we consider cases in which the EV-penetration level is 3% and 8% of the light-duty vehicle
fleet of Central Ohio) and randomly selecting a corresponding number of vehicles in the tour-record data to
be EVs.

The second step is to determine the path taken by each randomly selected EV as it completes each
driving trip during the day. This is done by assuming that each EV owner takes the shortest-time path on
each vehicle trip. Using this assumption and the road-network and average-vehicle-speed data provided by
MORPC, the EV routes are determined by solving a shortest-time-path problem.

Once the vehicle paths are determined, the third step is to determine the SOC of each EV battery as it
travels along its path. This is done using an assumed battery capacity of 24 kWh and a driving efficiency
of 3.73 kWh/km. These values correspond to reported characteristics of a Nissan Leaf.

The fourth step is to determine which EVs use the modeled charging station. In doing so, we make two
additional assumptions. The first, which follows the work of Wu and Sioshansi (2017), is that an EV driver
only uses the charging station if the vehicle comes within 1.6 km (1.0 mile) of the charging station while
traveling along the intended shortest path from origin to destination. The second is that an EV driver will
only use the charging station if the EV battery’s SOC is below some set threshold value, which we take to
be 50%. This threshold value is meant to capture the perceived inconvenience of using a public charging
station. An EV driver only uses one if the SOC of the EV battery is sufficiently low.

The arrival time of an EV that does use the charging station is determined based on its departure time
to begin the tour that brings it within the 1.6 km radius of the station (which is reported in the tour-
record data) and the driving time to arrive to the station (which is determined from the shortest-time-path
problem). Its charging demand is determined based on its modeled battery SOC upon arrival at the station
(assuming that the EV driver wishes its battery fully recharged). We further assume that 80% of EVs are
flexible, in the sense that the charging station can schedule their charging within a W -minute window of
time. The others are assumed to be inflexible and begin charging immediately at the H̄ kW rated charger
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capacity upon arrival to the station. The loads of such EVs are modeled by including them in the Lj and
Lt,ω state parameters. EVs are randomly assigned to be either flexible or inflexible.

Our assumptions of a fixed deviation radius (i.e., that EV drivers only use a charging station if the
vehicle comes within a 1.6 km radius of the charging station), is consistent with other works in the literature.
Kuby et al. (2013) investigate refueling behavior of early alternative-fuel vehicle adopters. They find that
the median refueling-deviation tolerance is between 0.8 miles and 1.3 miles. Our assumption of an EV driver
only using the charging station if the battery SOC is below a certain threshold also follows other works in
the literature. The work of Kuby et al. (2013) finds that 83.4% of alternative-fuel vehicle owners refuel their
vehicles when the fuel tank is at less than 3/8 capacity. Nevertheless, our assumptions may be optimistic in
modeling the charging demands EVs. Wang et al. (2011); He et al. (2013, 2016) note that in practice some
EV owners may not use a public charging station while en route from origin to destination. They surmise,
rather, that charging demands may be more concentrated among EVs that have the location of the charging
station as their final destination.

Numerical simulations show that the temporal distribution of the number of vehicles that come within
the 1.6 km capture radius of the charging station is bimodal. 18.6% of the vehicles that come within the
capture radius in a typical day arrive between 7:00 am and 9:00 am and another 19.0% arrive between
4:00 pm and 7:00 pm, which are typical commuting times. However, very few of the EVs that come within
the capture radius during the morning commute have a sufficiently low SOC to use the charging station.
Less than 0.5% of the EVs that come within the capture radius between 7:00 am and 9:00 am have a battery
SOC below the 50% threshold, meaning that the overwhelming majority of them would not use the charging
station in the morning. This is because we assume that each EV begins each day with a fully charged
battery (from overnight at-home vehicle recharging) and the relatively short cumulative driving distance
that each EV has gone in the morning. Conversely, 5% of EVs that come within the capture radius between
4:00 pm and 7:00 pm have a battery SOC below the 50% threshold, meaning greater use of the charging
station during the evening commute. Averaging across all of the hours, about 3% of EVs that come within
the capture radius during the course of a typical day have a battery SOC below the 50% threshold. With
an EV penetration level of 3% of the total light-duty vehicle fleet in Central Ohio, the charging station has
17 expected EV arrivals per day with an SOC threshold of 50%. This number increases to 45 expected daily
EV arrivals with an EV penetration level of 8%.

4.2. Non-Electric Vehicle Load

We model the non-EV load using data from the year 2013 provided by American Electric Power Ohio
(AEP Ohio), the distribution utility company that operates in Central Ohio. The data consist of anonymized
load profiles on a number of 500 kVA commercial transformers, recorded at a 15-minute time resolution.
We fit an order-16 autoregressive model (i.e., an AR(16) model) to generate forecasts of non-EV load for
the scenarios used in the station-control model.

4.3. Photovoltaic Generation

We model the real-time output of the distributed PV generator using historical weather data from the
year 2013 for the city of Columbus. These weather data are input to version 5 of the PVWatts model, the
use of which is described by Dobos (2014). PVWatts uses weather data to simulate the output of a hypothet-
ical PV generator. We obtain historical solar-insolation data from the National Solar Radiation Database
(NSRDB). As discussed by Sengupta et al. (2014b,a), the NSRDB models ground-level solar insolation us-
ing satellite-image data. Other weather data needed by PVWatts (i.e., wind speed and temperature) are
obtained from the National Oceanic and Atmospheric Administration. We run PVWatts with a one-minute
temporal resolution, to obtain simulated one-minute PV-output data.

We fit an AR(6) model to the PV-output data simulated by the PVWatts model. This model is used
to generate forecasts of PV availability for the scenarios used in the station-control model. The reason for
using an AR(6) is that one-minute PV output is relatively unpredictable compared to forecasting PV output
at longer time intervals (e.g., hourly-average PV output). This is because minor weather events, such as a
small patch of clouds, can drastically affect the one-minute output of a single PV panel. Conversely, a small
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patch of clouds would have a relatively muted effect on the hourly-average output of the same PV panel.
Our forecasting technique assumes that solar output over a longer (e.g., hour-long) horizon is essentially
stationary. The AR(6) model is used to generate sample paths of possible PV output at one-minute intervals,
which tend to exhibit greater variability and uncertainty.

Figure 1 shows modeled PV availability data from a 200 kW panel on 5 December, 2013. The solid
blue curve shows modeled actual PV output available from the between 14:54 and 15:51. These data are
obtained from the PVWatts model, and are taken as actual available PV output in our simulation. The
green line with dots represents one sample path of possible PV output, forecasted as of 15:11, over the
remaining 40 minutes depicted in the figure. This curve shows considerable variability, as expected of a
model generating forecasts at a one-minute interval. The dashed red line shows the sample-average PV
output, which is obtained by generating multiple sample paths of the forecasts.
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Figure 1: Modeled PV Availability From a 200 kW Panel on 5 December, 2013: Actual and Forecast Mean, Three-Standard
Deviation Band, and Scenario-1 Forecast as of 15:11

As expected, the sample-average PV output exhibits considerably less variability than an individual
sample path. Moreover, the sample average is roughly stationary. The pair of red curves labeled with
squares shows a three-standard deviation band around the sample-average mean. Again, the wide (and
growing) range of this band shows that individual sample paths can have significant variability and that
this variability grows as we generate forecasts further into the future. The band is truncated below at zero,
because it is physically meaningless to have a PV panel produce a negative amount of power.

4.4. Electricity Price

Real-time electricity prices are forecasted using an AR(8) model that is fit to hourly historical real-time
prices from 2013. Specifically, we use real-time prices for the AEP zone of the PJM Interconnection market,
which covers the AEP Ohio service territory. Our model assumes that the real-time price is constant over
each one-hour period, which is consistent with wholesale-pricing practice in PJM. Thus, unlike the AR
model that is used for PV forecasting, which uses a one-minute timestep, this AR(8) model uses an hourly
timestep. This is because the types of variability in PV output that we seek to capture occur on one-minute
timescales. Conversely, the important variability in energy prices occur on hourly timescales. As is common
practice in wholesale electricity markets, our model allows for negative energy prices.

4.5. Battery Energy Storage System Characteristics

We assume that the BESS has upper and lower bounds on its SOC of S̄E,+ = 4200 kW-min (70 kWh)
and S̄E,− = 1200 kWh (20 kWh), respectively, and a power capacity of S̄P = 100 kW. We also assume
charging and discharging efficiencies of µc = µd = 0.99. These values are typical for a lithium-ion BESS, as
reported by Xi and Sioshansi (2016).
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4.6. Transformer Characteristics

Our case study assumes that the charging station is connected to the power system through a 500 kVA
transformer, which it shares with the retail shopping center where the station is located. Our model allows
the transformer to operate above its 500 kVA design capacity. However, doing so places additional strain
on the transformer, causing it to age and deteriorate more rapidly.

We capture this accelerated aging using the model introduced by Gong et al. (2011). This model sim-
ulates the effects of operating a transformer above its design capacity on the temperature of the windings
in the transformer, which is the component that is typically prone to failure from such overloading. More
specifically, we use the model to estimate the service life of the transformer if it is operated at its design
capacity of 500 kVA. We then determine what effect operating the transformer above the 500 kVA design
capacity has on reducing its service life. This reduction in service life is combined with an assumed $10000
replacement cost for a transformer, to derive the following piecewise-linear convex penalty function:

RC(vj) =















1.16vt, if vt ∈ [0, 0.4R̄);
42.65(vt − 0.4R̄) + 232.70, if vt ∈ [0.4R̄, 0.6R̄);
764.62(vt − 0.6R̄) + 4497.35, if vt ∈ [0.6R̄, 0.8R̄);
12309.73(vt − 0.8R̄) + 80959.50, if vt ∈ [0.8R̄,+∞);

for operating the transformer above its design capacity. Although we model RC(·) as being piecewise-linear,
it is a convex function. Thus, binary variables are not needed and this cost can be modeled using continuous
variables while maintaining a linear objective function in our model.

4.7. Temporal Resolution

Our model uses a one-minute temporal granularity in scheduling EV charging and making BESS-charging
and -discharging decisions. The model has a T = 60 minute optimization horizon. This is a reasonable model
horizon, because each EV can be fully recharged within at most 30 minutes, based on the assumed capacity
of the EV batteries and the power capacity of the EV chargers (i.e., 30 minutes is how long it would take
for a fully depleted EV battery to be fully recharged). As a result, the primary control decision, which is
how much EV-charging load to schedule in the current minute as opposed to deferring for later, can only
be delayed by at most 30 minutes into the future. As such, the state of the charging station more than
60 minutes in the future is expected to have a relatively insignificant effect on the current-minute scheduling
decision.

4.8. Fractional Factorial Experimental Design

The operations of a public EV charging station depend on a number of factors that are either uncertain
or need to be determined by the station designer. We examine the impacts of five such factors—H̄ (the
power capacity of the EV charger), whether distributed PV or BESS are installed in the charging station,
the EV penetration level (as a percentage of the light-duty vehicle fleet in Central Ohio), and W (the
charging window for flexible EVs)—through a fractional factorial experiment. We assume that each of these
five factors have two possible values. Table 1 lists the eight cases, with different combinations of factors,
examined. Note that a full factorial experiment would require the evaluation of 25 = 32 cases. We opt to
conduct the fractional design summarized in Table 1, which assumes only first- and second-order interactions
amongst the factors. We conduct this fractional experiment because a full factorial experiment would be
computationally expensive.

We can examine the effects of different factors by averaging the cases corresponding to that factor. For
instance, we can estimate the operating cost with a BESS installed in the charging station by averaging the
operating costs given in Cases 2, 4, 6, and 8. We can then contrast this with the operating cost without
a BESS installed, which is given by averaging across Cases 1, 3, 5, and 7. This averaging allows us to
determine the impacts on operating cost of having a BESS installed, without other factors confounding the
results.
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Table 1: Fractional Factorial Experimental Design

Case H̄ [kW] PV BESS EV Penetration W [min]

1 120 no PV no BESS 3% 40
2 50 no PV BESS 3% 30
3 50 200 kW no BESS 3% 40
4 120 200 kW BESS 3% 30
5 120 no PV no BESS 8% 30
6 50 no PV BESS 8% 40
7 50 200 kW no BESS 8% 30
8 120 200 kW BESS 8% 40

5. Case-Study Results

We use the case study outlined in Section 4 to analyze the EV-charging station in two ways. First, in
Section 5.1 we demonstrate the use of the station-control model over a one-year period assuming a fixed
station design that consists of a 70 kWh/100 kW BESS, a 200 kW distributed PV system, H̄ = 120 kW EV
chargers, an EV-penetration level of 8%, and a W = 40 minute charging window for flexible EVs. We also
compare the charging profiles given by our station-control model to three simple heuristics, demonstrating
the benefits of our proposed model. This analysis is done using the fractional factorial experiment, which
is outlined in Section 4.8, to examine cases with EV penetration levels of 3% and 8% and with 30- and
40-minute charging windows. Next, in Section 5.2 we examine the sensitivity of charging-station operations
to having distributed BESS and PV solar or not and the power capacity of the EV chargers. This analysis
is also conducted using the fractional factorial experiment.

5.1. Station-Control Model Results

We first examine the charging profiles and resulting transformer-load profiles given by the station-
control model under a fixed station-design. This analysis assumes that the charging station consists of
a 70 kWh/100 kW BESS, 200 kW distributed PV system, and H̄ = 120 kW EV chargers. We further
assume an EV-penetration level of 8% and a W = 40 minute charging window for flexible EVs. Figure 2
shows the total load on the transformer over a 2.5-hour-long period of time if EV charging loads are sched-
uled using the proposed station-control model. It also shows the transformer load if EV charging is instead
scheduled using a simple first-come, first-served (FCFS) heuristic. This FCFS heuristic assumes that each
EV immediately begins charging at the H̄ = 120 kW charger capacity until it is fully recharged (i.e., it
assumes that the flexibility in scheduling EV-charging loads is not used).

Figure 2a shows that under a FCFS heuristic, the transformer is operated above its 500 kVA design
capacity whereas the station-control model schedules EV charging loads to keep the load below this level.
Over the course of the entire day shown in Figure 2, the FCFS heuristic results in the transformer operating
above the 500 kVA design capacity for 54 minutes, as opposed to never operating above this capacity with
the proposed station-control model.

Figure 2b shows that the distributed PV and BESS play limited roles in helping to manage EV-charging
loads. As discussed in Section 4.1, most of the EV arrivals to the charging station occur during the evening
commute home, when PV output is beginning to taper off as the sun is setting. As a result, the primary
benefit of the distributed PV system is to help reduce the use of grid-purchased energy to serve the non-EV
load midday.

Moreover, EV loads are mostly managed by shifting them within the W -minute charging window. The
BESS is only used in a limited fashion when there is insufficient flexibility to keep the transformer load below
its 500 kVA capacity. The BESS is only discharged in 17 minutes of the entire day shown in Figure 2. During
these 17 minutes it is discharged, on average, at 70 kW, which is far short of its S̄P = 100 kW capacity.
The reason for this is that shifting EV-charging loads is a cost-free means of keeping the transformer load
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Figure 2: Transformer-Load Profile From Station-Control Model and Using First-Come, First-Served Heuristic

below 500 kVA. Using the BESS imposes a small cost of about 2% (relative to the wholesale energy price),
due to the loss of energy when charging and discharging the BESS. As a result, the model prefers shifting
EV-charging loads and only uses the BESS when there is insufficient flexibility to keep the load below
500 kVA. Otherwise, if there is no BESS capacity available (or in cases without a BESS installed) and there
is insufficient flexibility availability to shift EV-charging loads, the model is forced to load the transformer
above its 500 kVA capacity. Instances in which this occurs are illustrated in Sections 5.1.2 and 5.2.

The station-control model and the solution method proposed in Section 3 are implemented using CPLEX
version 12.6.1. When run on a computer with a 3.0 GHz Intel Pentium G3220 Processor and 16 GB of
memory, each instance of the one-minute station-control models takes an average of 39.44 seconds of CPU
time to run.

5.1.1. Effect of First-Come, First-Served Policy on Transformer Aging

Figure 2 shows that one of the most severe impacts of relying on a simple heuristic, such as FCFS, is that
the transformer can be easily overloaded, especially in the afternoon when many EVs simultaneously arrive
to the station. Figure 3 shows the effects on the expected operational life of the 500 kVA transformer of
relying on a FCFS heuristic. It shows the expected lifetime of the transformer under different EV penetration
levels and with different threshold SOC levels at which EV owners use the public charging station.

We estimate the expected lifetime of the transformer by randomly simulating 1000 replications of EV-
usage, PV generation, and non-EV load data over a one-year period. Each of the 1000 resulting load profiles
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Figure 3: Expected Operational Life of 500 kVA Transformer Using a First-Come, First-Served Heuristic With Different Electric
Vehicle Penetration Levels and Charging Thresholds

are then simulated in the transformer aging model of Gong et al. (2011), by assuming that the load profiles
repeat year after year, to determine the lifetime of the transformer under that load profile. Thus, we do
not account for load growth over the lifetime of the transformer, which would accelerate transformer aging
relative to what is reported in Figure 3.

Distribution transformers normally have a planned operational life of 20.5 years. The figure shows that
in many instances, the FCFS heuristic does not reduce the expected life of the transformer below this level.
However, in cases in which the SOC threshold is below 40% and the EV-penetration level is above 4%, the
expected life of the transformer can be reduced, on average, by up to 32% relative to the 20.5-year design
life. Moreover, some of the random replications used to simulate transformer aging result in load profiles
with extreme peaks that reduce the expected life of the transformer to 0.057 years (21 days). Although
the likelihood of such a load profile is small, this result nevertheless points out the importance of managing
EV-charging loads from the perspective of reducing the cost of having to replace distribution infrastructure.
Without some form of charging management, which would yield FCFS EV-charging profiles, there would be
considerable risk of added costs associated with upgrading electricity-distribution infrastructure.

5.1.2. Comparison of Station-Control Model and Heuristic Scheduling Techniques

FCFS is a relatively simple heuristic in which the flexibility of EV charging is not exploited in any way,
because EV-charging loads are served immediately without any scheduling. Thus, we examine two other
heuristic charging-control techniques.

The first, which we refer to as Constrained FCFS, has the same basic premise as the FCFS heuristic.
When an EV arrives to the station, it immediately begins charging at the H̄ kW capacity of the charger, so
long as doing so does not overload the transformer. If charging the newly arrived EV would overload the
transformer, the newly arrived EV instead queues and waits for one of the EVs that is currently charging to
finish charging, at which point the newly arrived EV begins charging. If another EV arrives while an earlier
arrival is queuing, this newly arrived EV also queues. The Constrained FCFS heuristic is guaranteed not to
overload the transformer, because each EV only charges so long as there is transformer capacity available.
However, the Constrained FCFS heuristic may result in an EV not being able to fully recharge within the
W -minute window of time.

We refer to the other heuristic as Uniform Charging. Upon arrival to the charging station, each EV
charges at (F/W ) kW, where F is the total charging demand of the EV upon arrival to the station measured
in kW-min. Thus, the Uniform Charging heuristic has each EV spread its charging demand uniformly over
the W -minute charging window. By design, the Uniform Charging heuristic is guaranteed to fully recharge
each EV. However, it is possible that the transformer can be overloaded if too many EVs arrive within a
short span of time.
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Figure 4 shows the load-duration curves of the 1000 hours of the year with the highest load on the
transformer when EV charging is scheduled using our proposed station-control model and the three heuristics.
The four figures show the load-duration curve for four different settings, in which the charging window is
either 30 or 40 minutes and the EV penetration level is 3% or 8% of the light-duty vehicle fleet of Central
Ohio. The figures are generated by conducting the fractional factorial design discussed in Section 4.8, and
each figure shows the corresponding average load-duration curve. For instance, Figure 4a, which corresponds
to having a 3% EV penetration, shows the average load-duration curve among Cases 1–4 in Table 1.
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(c) W = 30 Minutes
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Figure 4: Load-Duration Curve of 1000 Hours of the Year With Highest Transformer Loads Under Station-Control Model and
Three Heuristics

As expected, the figure shows that the proposed model significantly reduces the number of hours in which
the transformer is operated above its 500 kVA capacity. The only heuristic that outperforms the station-
control model on this metric is the Constrained FCFS heuristic, which is designed to keep the transformer
load below 500 kVA at all times. Tables 2 and 3 summarize the performance of the station-control model
and the three heuristics on two key metrics.

Table 2 lists the average (using the fractional factorial experimental design) number of hours in which the
transformer is operated above its 500 kVA capacity in the different cases examined and the peak transformer
load. Values for the Constrained FCFS heuristic are not listed, because, by definition, this heuristic never
overloads the transformer. The table shows that the station-control model outperforms the heuristics in
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Table 2: Average Peak Load and Number of Hours Over the Year That the Transformer is Overloaded With Station-Control
Model and First-Come, First-Served and Uniform Charging Heuristics

Case
3% EV 8% EV
Penetration Penetration W = 30 Minutes W = 40 Minutes

Overload Control Model 0.2 36.8 36.4 0.6
Duration FCFS 40.1 244.9 145.5 139.5
[hours] Uniform Charging 1.4 61.2 38.4 24.1

Peak Control Model 542 916 725 734
Load FCFS 869 1325 1325 1050
[kW] Uniform Charging 591 727 727 680

Table 3: Average Unserved Electric Vehicle-Charging Load Over the Year With Constrained First-Come, First-Served Heuristic

Case
3% EV 8% EV
Penetration Penetration W = 30 Minutes W = 40 Minutes

Unserved EVs 678 4935 3050 2562
Unserved EV Load [kWh] 5663 47664 28667 24661

terms of the number of hours in which the transformer is overloaded. However, in some of the cases the
station-control model puts a higher peak load on the transformer. This is because there is an inherent
tradeoff when there are many EVs needing to have their charging loads satisfied. The Uniform Charging
heuristic spreads these loads more evenly, which can result in a lower peak load but the transformer being
overloaded in more hours. The station-control model, conversely, opts to concentrate these loads in a fewer
number of hours, which can give a higher peak but fewer overloaded hours.

Unlike the other heuristics and station-control model, the Constrained FCFS heuristic can result in
EVs not being fully recharged. Table 3 summarizes the average (using the fractional factorial experiment)
number of EVs that are not fully recharged over the course of the year and the total unserved EV charging
load if the Constrained FCFS heuristic is employed. With our assumed EV efficiency of 3.73 kWh/km, the
Constrained FCFS results in the equivalent of between 1518 km and 12779 km of EV charging demand not
being satisfied over the course of the year.

Table 4 provides summary statistics of the resulting average daily operation cost of the charging station
using our proposed station-control model and the three heuristics. The summary statistics reported are
the mean, median, third quartile, and maximum (among the 450 replications of EV-usage, PV generation,
and non-EV load data over the one-year period simulated). The proposed control model and the two ‘more
intelligent’ heuristics (Constrained FCFS and Uniform Charging) all outperform FCFS in terms of all four
summary statistics. Moreover, our proposal charging-control model outperforms the two intelligent heuristics
on this cost metric as well. Although the daily operation costs reported in Table 4 for the Constrained FCFS
heuristic are lower than those reported for the control model, these costs do not account for unserved EV-
charging demand under the Constrained FCFS heuristic. If we assume a value of lost of load of $3.72/kWh,
which is the value reported by Kariuki and Allan (1996), unserved EV-charging loads increase the daily
operation cost of the Constrained FCFS heuristic by an average of at least $251.34. This makes the control
strategies given by this heuristic twice as costly as those provided by our proposed charging-control model.

5.2. Parameter Sensitivity Analysis

We now examine the effects of changing a number of the model parameters in our case study on the
performance of our station-control model, using the fractional factorial experimental design discussed in
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Table 4: Average Daily Operation Cost [$] of Charging Station with Station-Control Model and First-Come, First-Served;
Constrained First-Come, First Served; and Uniform Charging Heuristics Assuming 8% Electric Vehicle Penetration and a
W = 40 Minute Charging Window

Control Method

Control Model FCFS Constrained FCFS Uniform Charging

Mean 262.90 1080.50 261.00 266.70
Median 237.56 336.69 236.71 238.30
Third Quartile 282.06 782.72 281.25 283.26
Maximum 1151.40 1.97× 105 1134.40 1253.60

Section 4.8. Specifically, we examine the effect of removing the BESS and distributed PV generator and the
effect of reducing the power capacity of the EV chargers. This analysis is done by simulating the station-
control model over a one-year period using 450 replications of EV-usage, PV generation, and non-EV load
data) under the different cases listed in Table 1, and averaging the resulting costs, load profiles, and other
key metrics across the cases corresponding to each parameter examined.

5.2.1. Battery Energy Storage System

Figure 5 shows the average load-duration curves of the 1000 hours of the year with the highest load
on the transformer with and without the distributed BESS installed in the charging station. The figure
shows that the BESS improves the loading on the transformer by allowing some relief of the transformer
during high-load periods. The BESS reduces the average duration of time that the transformer is overloaded
during the year from 36.6 hours without the BESS to 0.4 hours with the BESS. The BESS also reduces
the average peak load on the transformer from 766.7 kW to 691.4 kW. This comes with an increase in the
average number of hours that the transformer is operating close to its capacity, however, because the BESS
must be charged to provide this relief. Without the BESS the transformer is operated at between 400 kVA
and 500 kVA for an average of about 786.4 hours as opposed to 834.8 hours with the BESS.
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Figure 5: Average Load-Duration Curve of 1000 Hours of the Year With Highest Transformer Loads With and Without Battery
Energy Storage System

The BESS also increases total average energy consumption of the distribution circuit (i.e., including EV
and non-EV loads) over the year by about 1 MWh. The increased load is due to energy losses when storing
and discharging energy into and from the BESS. However, the BESS gives an average annual reduction
in operation costs of about 72%, from $720000 without the BESS to $200000 with the BESS. These cost
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savings are entirely from reduced transformer aging, which are very slightly offset by the increased energy
consumption.

5.2.2. Photovoltaic Generator

Figure 6 shows the average load-duration curves of the 1000 hours of the year with the highest load
on the transformer with and without the distributed PV generator. While the PV generator does improve
the load profile, its impact is more limited compared to the BESS. This is because PV generation tends to
taper off during the afternoon and evening commute hours, when most EVs arrive at the charging station.
More specifically, on average about 75.3% of daily EV-charging demand arrives to the charging station after
5:00 pm. However, the PV generator only produces 0.5% of its total output after 5:00 pm.
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Figure 6: Average Load-Duration Curve of 1000 Hours of the Year With Highest Transformer Loads With and Without
Photovoltaic System

Nevertheless, the PV generator does reduce the average load on the transformer by 12% from 316.7 kW
to 279.6 kW. It has a more limited effect on the peak load, reducing it from 745.0 kW to 713.1 kW. The
PV generator also reduces the average duration of time that the transformer is overloaded by 42% from
23.4 hours to 13.6 hours. However, the PV generator has a greater load-reduction effect during relatively
low-load periods than during peak-load periods. During hours that the total EV and non-EV load is between
0 kW and 500 kW, the PV generator reduces transformer loading by an average of 12.0%. On the other
hand, the PV generator only gives an average of a 6.8% reduction in transformer loading during hours that
the total EV and non-EV load is greater than 500 kW. There is, nevertheless, a 58% reduction in average
annual station-operation costs from $650000 without the PV generator to $270000 with the PV generator.

5.2.3. Electric Vehicle Charger Power Capacity

Figure 7 shows the average load-duration curves of the 1000 hours of the year with the highest load
on the transformer with 120 kW and 50 kW EV chargers. 50 kW chargers reduce transformer loading by
simply reducing the maximum amount of power that the EVs can draw. In net, the duration of time that
the transformer is overloaded during the year is reduced on average by 43% from 23.6 hours to 13.4 hours
with 50 kW chargers. There is also a 15% average reduction in the peak load from 786.4 kW to 671.7 kW.

6. Conclusion

This paper presents a model to schedule EV charging. Our proposed use of the model is to manage EV-
charging loads at a public station that has fast chargers installed. Fast chargers can result in extreme peaks
in the load on a radial distribution line serving the station. One way to accommodate such a load profile is
to increase the capacity of the distribution infrastructure, including distributed transformers. This is likely
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Figure 7: Average Load-Duration Curve of 1000 Hours of the Year With Highest Transformer Loads With 120 kW and 50 kW
Electric Vehicle Chargers

an inefficient solution, however, because the peaks in the load profile only occur during a limited window of
time when EVs are commuting home from work. Our model manages these loads by using the flexibility in
recharging EVs while they are parked. Our model also allows for the use of distributed resources, such as
PV and BESS, to help manage the load.

We also propose a solution technique, which employs SAA and Benders’s decomposition, to efficiently
solve the resulting two-stage station-control problem. We employ an SSP to estimate and control the
quality of the solutions obtained from the SAA. Our numerical experiments show that when implemented
on a standard computer, the proposed technique is able to give solutions that have an optimality-gap-to-
standard-deviation ratio of 0.9 within an average of 39.44 seconds. This means that the model could be
employed in the control system of a public charging station.

We demonstrate the use of the model using a case study based on Central Ohio. We show the benefit
of the proposed model in serving EV-charging loads while minimizing the impacts of the resulting load
profile on the distribution transformer. We also show the benefits of the proposed model compared to using
simple heuristics, such as Constrained FCFS and Uniform Charging. Our results suggest that without a
control model, such as the one that we propose, a public EV fast charging station would likely require costly
transformer upgrades.

We also conduct a fractional factorial experiment to determine the impacts of distributed BESS and PV
on managing charging-station loads. While these technologies have some benefits, they are relatively small
compared to the benefits obtained from directly managing and scheduling EV-charging loads. Thus, our
results suggest that if EVs have flexibility in having their charging loads scheduled, this flexibility provides
an effective and cost-free means of reducing the distribution-impacts of EV charging. One question that our
work does not address is what the optimal mix of transformer upgrades and distributed PV and BESS are
to minimize the infrastructure and energy cost of operating the charging station. This is an area of future
research that our model could be employed to address.
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Appendix A. Proof of Lemma 1

Proof. Because each Xi has a finite MGF, this means that if we define:

Mi(γ) = E
[

eγXi
]

=

∫ +∞

0

Prob
{

eγXi ≥ y
}

dy; ∀i = 1, . . . , N ;

then there exist values γi0 > 0, ∀i = 1, . . . , N such that:

Mi(γ) < +∞, ∀i = 1, . . . , N ; γ ∈ (−γi0, γi0).

Define:

MZ(γ) = E
[

eγZ
]

=

∫ +∞

0

Prob
{

eγZ ≥ y
}

dy.

It is trivial to show that MZ(0) = 1. Fix a value of γ0 = min
{

γ10 , . . . , γ
N
0

}

. For any γ ∈ (0, γ0) we have
that:

MZ(γ) =

∫ +∞

0

Prob
{

eγZ ≥ y
}

dy

=

∫ +∞

0

Prob
{

eγX1 ≥ y, . . . , eγXN ≥ y
}

dy (A.1)

=

∫ +∞

0

N
∏

i=1

Prob
{

eγXi ≥ y
}

dy (A.2)

≤
∫ +∞

0

Prob
{

eγXk ≥ y
}

dy (A.3)

= Mk(γ)

< +∞.

Equation (A.1) follows because we have that eγx monotonically increases with respect to x for γ > 0. As
such:

{

eγmin{X1,...,XN} ≥ y
}

≡
{

eγXi ≥ y; ∀i = 1, . . . , N
}

.

Equation (A.2) then follows because of the assumed independence of the Xi’s. We define the k in (A.3) as:

k ∈ argmax
i

{

Prob
{

eγXi ≥ y
}}

.

Inequality (A.3) follows because:

0 ≤ Prob
{

eγXi ≤ y
}

≤ Prob
{

eγXk ≤ y
}

≤ 1; ∀i = 1, . . . , N.
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We next examine the case of any γ ∈ (−γ0, 0), which has that:

MZ(γ) =

∫ +∞

0

Prob
{

eγZ ≥ y
}

dy

=

∫ +∞

0

Prob
{

max{eγX1, . . . , eγXN} ≥ y
}

dy (A.4)

=

∫ +∞

0

(

1− Prob
{

max{eγX1 , . . . , eγXN} < y
})

dy

=

∫ +∞

0

(

1−
N
∏

i=1

Prob
{

eγXi < y
}

)

dy (A.5)

=

∫ +∞

0

(

1−
N
∏

i=1

(

1− Prob
{

eγXi ≥ y
})

)

dy

≤
J
∑

j=1

∫

χj

(

1−
(

1− Prob
{

eγXνj ≥ y
})N

)

dy (A.6)

≤
J
∑

j=1

∫

χj

(

1−
(

1−N · Prob
{

eγXνj ≥ y
}))

dy (A.7)

= N ·
J
∑

j=1

∫

χj

Prob
{

eγXνj ≥ y
}

dy

= N ·
N
∑

i=1

∫

Yi

Prob
{

eγXi ≥ y
}

dy

≤ N ·
N
∑

i=1

∫ +∞

0

Prob
{

eγXi ≥ y
}

dy

= N ·
N
∑

i=1

Mi(γ)

< +∞.

Equation (A.4) holds because eγx monotonically decreases with respect to x for γ < 0 and (A.5) follows
because of the independence of the Xi’s. The intervals, χj , in (A.6) are defined as χj = [δ−j , δ

+
j ) and

partition the interval, [0,+∞), such that |Vj | = 1, where:

Vj = argmin
i

{

1− Prob
{

eγXi ≥ y
}
∣

∣ y ∈ χj
}

.

That is, there is a single random variable, Xi, which dominates all of the others in the sense that:

1− Prob
{

eγXi ≥ y
}

< 1− Prob
{

eγXj ≥ y
}

;

for all j 6= i and y ∈ χj . The breakpoints of the intervals (i.e., the δ−j ’s and δ+j ’s) are crossing points at which
the dominant random variable changes. Thus, we have that

⋃J
j=1 χj = [0,+∞) and χj

⋂

χk = ∅, ∀j 6= k.
Each interval, χj , has a corresponding index of the Xi’s, νj , associated with it. We have that νj ∈ Vj .

Thus, Xνj is the random variable that minimizes the probability, 1 − Prob
{

eγXi ≥ y
}

, on the interval χj .
We also define Yi =

⋃

νj=i
χνj . Because |Vj | = 1, Yi

⋂Yk = ∅, ∀i 6= k. We also note that Yi ⊂ [0,+∞).

Inequality (A.6) follows from these definitions of χj and νj . Inequality (A.7) then follows by applying
Bernoulli’s inequality to (A.6). Thus, we have that the random variable, Z, has a finite MGF.
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Appendix B. Proof of Proposition 1

Proof. We begin by rewriting (30) as:

r(aj , ψω) = min
uω∈Uω

j+T
∑

t=j+1

pt,ω · (ect,ω − edt,ω + ft,ω + Lt,ω − Vt,ω) +RC(vt,ω).

For notational convenience, we define:

r̃(uω, aj , ψω) =

j+T
∑

t=j+1

pt,ω · (ect,ω − edt,ω + ft,ω + Lt,ω − Vt,ω) +RC(vt,ω).

We define the random vector:

ζ = (Vj+1,ω , . . . , Vj+T,ω , Lj+1,ω, . . . , Lj+T,ω , Nj+1,ω, . . . , Nj+T,ω, Fj+1,ω , . . . , Fj+T,ω).

For all aj ∈ Aj and ûω ∈ Uω, the conditional random variable, {h(ûω, aj , ψω)|ζ}, has a finite MGF. This is
because (10) guarantees relatively complete recourse and because of Assumption 1. Thus, we have that the
conditional random variable:

{r(aj , ψω)|ζ} = min
λ∈Λ(aj ,ψω)

{

r̃(uλω, aj , ψω)|ζ
}

;

where Λ(aj , ψω) is the set of extreme-points of feasible region Uω, given aj and ψω. Note that |Λ(aj, ψ)| is
finite. Based on Lemma 1, the conditional random variable, {r(aj , ψω)|ζ}, has a finite MGF. Assumption 1
ensures that ζ is bounded. Therefore, r(aj , ψω) has a finite MGF.

Appendix C. Proof of Proposition 2

Proof. To show Property a, we note that (10) guarantees that the problem has relatively complete recourse.
This guarantees the existence of a feasible second-stage solution for all aj ∈ Aj and for almost every ψω ∈ Ψ
(i.e., the event {r(aj , ψω) = +∞} has measure zero ∀aj ∈ Aj). Moreover, because Uω is bounded for all
ψω ∈ Ψ, we have that r(aj , ψω) > −∞ for almost every ψω ∈ Ψ and for every aj .

To show Property b, we first note that it is easy to show that r(aj , ψω) is piecewise-linear convex in aj
for almost every ψω ∈ Ψ. Thus, E [r(aj , ψω)] is well defined. Because of Proposition 1, the first moment of
r(aj , ψω) is finite. We further have that cj(aj , ξj) is well defined and finite. Thus, g(aj) is well defined and
finite.

Appendix D. Proof of Proposition 3

Proof. We know from Proposition 1, that the second moment of r(aj , ψω) is finite. Because cj(aj , ξj) is also
finite, we have that Var (cj(aj , ξj) + r(aj , ψω)) < +∞. For notational convenience, we define:

ς2(aj) = Var (cj(aj , ξj) + r(aj , ψω)) .

Due to the law of large numbers, gM (aj) pointwise converges to g(aj) w.p.1. By Chebyshev’s inequality,
for every fixed aj ∈ Aj and every ε > 0 there exists an M(aj, ε) ∈ Z

+ such that for all m > M(aj, ε) we
have that:

Prob {|gm(aj)− g(aj)| < ε} ≥ 1− ς2(aj)

mε
.

Define:
ς2max = sup

aj∈Aj

ς2(aj);
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and:
M(ε) = max

aj∈Aj

M(aj, ε);

for any ε > 0. Thus, for all aj ∈ Aj and for all ε > 0, we have that:

Prob{|gm(aj)− g(aj)| < ε} ≥ 1− ς2max

mε
;

if m > M(ε). Therefore, gM (aj) converges to g(aj) uniformly on Aj w.p.1 as M → +∞.

Appendix E. Proof of Proposition 4

Proof. To show that r(aj , ψω) is Lipschitz continuous, we need to show that there exists a Lipschitz constant,
N (ψ), such that:

|r(a1j , ψω)− r(a2j , ψω)| ≤ N (ψ)‖a1j − a2j‖;
w.p.1 for all a1j , a

2
j ∈ Aj .

From Proposition 2 we know that r(aj , ψω) is finite for almost every ψω ∈ Ψ. We further know that
r(aj , ψω) is piecewise-linear convex on Aj . Thus, r(aj , ψω) is subdifferentiable and has finite subgradients
for all aj ∈ Aj and almost every ψω ∈ Ψ. Thus, there must exist a finite Lipschitz constant, N (ψ), such
that the Lipschitz condition is satisfied for almost every ψω ∈ Ψ. This implies that the Lipschitz constant
has a finite MGF. Therefore, r(aj , ψω) is Lipschitz continuous w.p.1.
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Pantoš, M., May 2012. Exploitation of Electric-Drive Vehicles in Electricity Markets. IEEE Transactions on Power Systems 27,
682–694.

Razeghi, G., Zhang, L., Brown, T., Samuelsen, S., 15 April 2014. Impacts of plug-in hybrid electric vehicles on a residential
transformer using stochastic and empirical analysis. Journal of Power Sources 252, 277–285.

Rotering, N., Ilić, M., August 2011. Optimal Charge Control of Plug-In Hybrid Electric Vehicles in Deregulated Electricity
Markets. IEEE Transactions on Power Systems 26, 1021–1029.

Sathaye, N., September 2014. The optimal design and cost implications of electric vehicle taxi systems. Transportation Research
Part B: Methodological 67, 264–283.

33



Sener, I. N., Ferdous, N., Bhat, C. R., Reeder, P., October 2009. Tour-Based Model Development for TxDOT: Evaluation and
Transition Steps. Tech. Rep. FHWA/TX-10/0-6210-2, Center for Transportation Research at The University of Texas at
Austin, Austin, Texas.

Sengupta, M., Habte, A., Gotseff, P., Weekley, A., Lopez, A., Anderberg, M., Molling, C., Heidinger, A., September 2014a. A
Physics-Based GOES Product for Use in NREL’s National Solar Radiation Database. Tech. Rep. NREL/CP-5D00-62776,
National Renewable Energy Laboratory.

Sengupta, M., Habte, A., Gotseff, P., Weekley, A., Lopez, A., Molling, C., Heidinger, A., July 2014b. A Physics-Based
GOES Satellite Product for Use in NREL’s National Solar Radiation Database. Tech. Rep. NREL/CP-5D00-62237, National
Renewable Energy Laboratory.
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