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Abstract

The paper develops a simulation-optimization model that determines where to locate electric vehicle chargers
to maximize their use by privately owned electric vehicles. Applying this model to the central-Ohio region,
we demonstrate that a combination of level-one and -two chargers is preferable to level-two chargers only.
We further explore interactions between the optimization criterion used and the budget available. We finally
show that although the optimal location is sensitive to the specific optimization criterion considered, overall
service levels are less sensitive to the optimization strategy.
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1. Introduction

An important electric charging infrastructure design question focuses on what charging technology to
use. There are currently three major EV charging technologies available. Level-one charging uses a standard
wall outlet, providing a 110 V/15 A connection. Typical EV batteries, which range between 16 and 25 kWh,
can take 12 to 18 hours to fully charge using such a connection. Level-two charging uses a larger ‘appliance
circuit,” which is typically rated at 220 V and between 15 and 30 A. DC fast charging uses high-voltage
(often 400 to 500 V) direct current and can fully charge a typical EV battery in as little as 30 minutes.
Since DC fast charging requires special equipment, it is not expected to be deployed in standard residential
settings.

Another challenge is where to locate charging stations. Charging station location belongs to the general
class of refueling infrastructure problems, however most of the existing approaches to solving them are
more appropriate for ‘fast’ refueling. Indeed, most works typically neglect fueling times and assume that
all customers that arrive at or pass by a station are served. While valid for gasoline and hydrogen fueling,
this assumption is inappropriate for slower level-one and -two charging. A vehicle that arrives or passes
through a charging station may be ‘rejected’ if there are no free chargers and the driver is unwilling to wait.
Moreover, a vehicle may only be partially charged as the driver may be unwilling to wait for a full charge.
Thus, it is more appropriate to focus on EV arrival and departure times from parking lots, since this is when
slow charging can be reasonably done. Existing models do not determine the number or type of chargers
to install at each location, only where to place stations. This question is important for EVs because the
number of chargers directly affects how many vehicles are served (due to charger occupancy). Moreover, the
number of chargers determines infrastructure deployment cost. Upchurch et al. (2009) refine these typical
assumptions by restricting the number of vehicles that a station can serve. Thus, multiple stations might be
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required at a single location to capture a large flow. Their model assumes, however, that every station and
charger has a fixed flow-capture capacity. That is, the marginal service level is independent of the vehicle
arrival pattern. Furthermore, most existing studies use conventional vehicle flows or gasoline sales data to
estimate EV vehicle flows, with the underlying assumption that EV adoption rates are uniform within a
region.

This paper develops a charging infrastructure location model that maximizes EV service levels. It is
explicitly designed to model slow charging technologies (e.g., levels one and two) and accounts for the
impact of EV driving patterns and the chargers installed on flows that can be served.

2. Modeling Approach

Our modeling approach assumes a fixed study region, which is divided into sub-regions that can represent
specific vehicle origins and destinations, or aggregations of such locations. Our model assumes that tour
record data for vehicle trips between the sub-regions are available. At a minimum, these data should identify
the times during which vehicle trips occur. In our case study we also make use of more detailed data that
associate driving trips with specific vehicles, allowing complete vehicle tours to be constructed. Our tour
record data further specify the home sub-region of each vehicle owner and the purpose of each vehicle trip.

Our modeling approach consists of three steps. The first is to determine the volume of EV flows between
the sub-regions. We determine EV flows by assigning an EV adoption probability, which depends on demo-
graphic data, to vehicle owners living in each sub-region. The second step is to develop a simulation model
to determine the expected number of EVs that successfully charge at a candidate location, as a function of
the number of chargers built. The final step uses a linear integer programming (IP) model to determine the
location and size of charging stations.

Curtin et al. (2009) use a linear model of the form, y = X3 + ¢, to estimate EV adoption probabilities
(more specifically, they examine plug-in hybrid electric vehicle adoption) as a function of household demo-
graphic and macroeconomic variables. The household-specific explanatory variables in their model are: the
number and age of vehicles owned, average total and highway km driven daily, average monthly gasoline
usage, income, education level, gender, age, interest in green technologies, and urban versus rural location.
The macroeconomic variables are gasoline and electricity prices and the purchase price premium for an EV,
relative to a conventional vehicle.

We use this linear model, and the § estimated by Curtin et al. (2009), to estimate EV adoption proba-
bilities for individuals living within the sub-regions. We let ° denote the estimated adoption probability for
residents of sub-region i. The analysis assumes that a fixed proportion of the vehicles in the region are EVs.
To model this desired EV penetration, we assume that a fraction, w’, of the vehicles owned by individuals
in sub-region i are EVs and that the w'’s are proportional to the §’s, or that:

w=a-9, Yiel,
where « is a scaling factor. If we let ¢ denote the assumed EV penetration level and v* the vehicles owned

by individuals living in sub-region ¢, then the EV penetration condition gives:
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Since each vehicle in the tour record data is assigned a home sub-region, we can use the w'’s to determine
which of the vehicles are EVs by bootstrapping. This is done by randomly generating Bernoulli trials. We
use the trips in the tour record taken by the randomly assigned EVs to determine EV flows between the
different sub-regions.

We assume that we have a set, J, of candidate locations within the study region at which charging
stations can be built. The set J can, but must not necessarily, correspond to I. Ideally, the candidates
constituting J are sufficiently small in geographic area to correspond to a single location at which EVs park.
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The EVs that successfully charge and the amount of energy recharged at a candidate charging station
location depend on vehicle arrival and departure patterns, the chargers installed at the location, and charging
behavior. We capture these effects by simulating EV arrivals, departures, and charging at each candidate
location, using a simulation model with the structure illustrated in Figure 1. This model estimates the EVs
that successfully charge and the amount of energy recharged in EV batteries as a function of the chargers
installed at each location.

PHEV
Arrivals

chargers

PHEV
Departures

Figure 1: Schematic of charging model at a single candidate location with h; chargers.

The model first determines when EV arrivals and departures occur at each candidate location and uses
two simple rules to determine how many of the EVs that arrive charge. The first is that an EV charges if and
only if there is an unoccupied charger available upon arrival. If so, the EV occupies the charger and charges
for the entire parking duration. Otherwise, the EV parks at a spot without a charger and does not charge.
We also later examine cases in which some of these rules are relaxed. Because vehicle charging decisions
at each location are independent of the chargers installed elsewhere, we simulate each location individually.
We let f;(h;) denote the number of EVs that are simulated as successfully charging at candidate location j
if h; chargers are installed.

We use the same simulation model to estimate the battery energy recharged in EV batteries that use a
public charger. To do so, we compute the charge level of each EV battery upon arrival. If we let V' denote
the set of EVs and N, ; the times vehicle v arrives at location j, our model computes this charge level as:

Cojmn = max{c, , ¢l — 1, - dvjnt, VoeV,jedn=1,...,N,;. (1)

The ¢, and ¢ terms denote the minimum and maximum charge levels, respectively, within which the
battery operates. The 7, term is EV v’s average efficiency, measured in kWh of battery energy consumed
per km driven. The d, ;, term is the cumulative distance driven by EV v upon the nth arrival at location
7, including any intermediate stops en route.

Equation (1) assumes that each EV battery is fully charged (i.e., has ¢/ kWh of energy stored) at
the beginning of the study period. It also assumes that the charge level of each EV depends only on
the cumulative distance upon arrival. This second assumption ignores the possibility of charging in other
locations, and allows us to simulate EV charging at each location independently. Otherwise, one would have
to simulate all of the candidate locations jointly to account for intermediate charging elsewhere. We use a
more detailed simulation model to examine whether this independence assumption affects the results.

We compute the amount of energy recharged in the battery as:

€v,jn = min{c, — Cojmstojm -Tit, YoveVijedn=1...,N,;, (2)

if the vehicle recharges, where t, ; , is the parking duration, and r; is the net of efficiency losses charger
power capacity. Otherwise, if there are no unoccupied chargers upon arrival, e, ;, = 0. Equation (2)
assumes that all of the chargers installed at each location are homogeneous, with the same power capacity.
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We can simulate charging with different values for r;, which would represent replacing all of the chargers
with a different technology. We make this homogeneity assumption because if different chargers types are
installed, an additional assumption is required about what charger type EVs occupy upon arrival. We define:

-N.'U J

Fi(hiri) =30 evgms

veV n=1

as the amount of energy recharged in EV batteries at charging station j if h; chargers with charging rate r;
are installed.

The optimization model determines the chargers to place at each candidate location, with the objective
of maximizing fleet-wide EV charging. We consider two variants of this objective—maximizing the EVs that
charge and the amount of battery energy recharged. Our model includes two sets of constraints. One is that
enough distribution-level transformer capacity be installed at each location to accommodate the chargers.

The second is a general budget constraint.
To formulate our model, we first define the following model sets and parameters:

G: set of charging technologies available
S: set of transformer types available
P,: gross power capacity [kW] of a type-g charger
Ws: power capacity [kW] of a type-s transformer
kgt cost of a type-g charger
ws: cost of a type-s transformer
B: total budget available
We also define the following decision variables:
h?: type-g chargers installed at candidate location j
A? : binary variable that is 1 if type-g chargers are installed at j, equals 0 otherwise
m¥: type-s transformers installed at candidate location j

J
The formulation of the optimization model that maximizes the EVs that charge is:

max Z Z fi(h9) (3)

jedJ geG

st hd<AZ- L VieldgeG; (4)

veEV:N, ;>0

> A<, Vjed; (5)
geG
SN oPhd <> WL ems, VjeJ; (6)
geG ses
DD s b+ Y wsomi| < B, (7)
jed | geG ses
hdeZ*, VijelJgeG; (8)
A7 € {0,1}, VjeldgeG; (9)
mi e Z", VjedJseS. (10)



Objective function (3) maximizes the number of EVs that charge. Constraint set (4) only allows type-g
chargers to be built at location j if Ajg = 1. The:

>

vEVIN, ;>0

terms on the right-hand side of these constraints are the EVs that arrive at each location during the study
and represent upper-bounds on the chargers that may be optimally installed at each location. Constraint
set (5) allows at most one charger type to be installed at each location. Constraint set (6) requires sufficient
transformer capacity to be installed at each location to serve the potential peak load of the chargers.
Constraint (7) is the budget limit. Constraint sets (8) through (10) impose integrality restrictions on the
decision variables.

When maximizing the amount of energy recharged, the IP retains the same set of decision variables and
constraint sets (4) through (10). The objective function changes to:

max » Y fi(h9,¢- Py), (11)

jeJ geG

where ( is the charger efficiency.

3. Case Study: Central-Ohio Region

The case study is based on the central-Ohio region; the city of Columbus and its surrounding metropolitan
area. The area of study covers about 6000 km? and included 1.7 million inhabitants and 1.1 million light-
duty vehicles in 2010. Most of the data used are obtained from the Mid-Ohio Regional Planning Commission
(MORPC). The study period is a typical workday in 2010, as modeled by the MORPC. We examine a case
in which EVs constitute 1% of the light-duty vehicle fleet.

For purposes of transportation modeling, the MORPC divides the central-Ohio region into 1805 traffic
analysis zones (TAZs). The MORPC collects demographic, socioeconomic, and vehicle ownership and usage
data for inhabitants of each TAZ. It also generates typical weekday travel tours for the central-Ohio region
using the multi-step tour-based approach of Sener et al. (2009). The data include about 2.4 million trips,
of which 2.1 million involve a personal vehicle. Each vehicle tour is a round trip, with the trip having a
primary purpose. A tour can also include a side-trip. Although an individual tour is a round trip with
a single destination, a single vehicle can make multiple tours. When concatenated, these tours result in a
vehicle having multiple stops in the course of a day. The MORPC also has data regarding possible vehicle
destinations within each TAZ, which are used as candidate charging stations. Specifically, it tracks the
employers, categorized by the number of employees, retail shopping and grocery stores, and the number
of large public, private, and university-owned parking lots, categorized by the number of parking spaces
available, in each TAZ.

To estimate EV adoption probabilities we consider the average number of vehicles owned, highway
kilometers driven daily, household income, and education level of inhabitants of each TAZ. The MORPC
classifies each TAZ as being either urban of rural, which is used in the model. The values of the remaining
explanatory variables are based on more aggregate averages. Santos et al. (2011) estimate average U.S.
vehicle and driver ages in 2009, which are 6.85 and 37 years, respectively. We use data from the U.S.
Department of Energy’s Energy Information Administration to estimate the average retail price of gasoline
and electricity to be about $0.92/1 ($3.50/gallon) and $0.0988 /kWh. We combine a conventional vehicle
fuel efficiency of 20 miles/gallon—the survey average reported by Curtin et al. (2009)—with average daily
household driving distances for each TAZ to estimate monthly gasoline usage. We use a value of 0.5 for
the gender indicator variable. We use survey averages reported by Curtin et al. (2009) for interest in green
technologies, and a $5000 purchase price premium for an EV over a conventional vehicle, which is their base
case assumption. The EV adoption probabilities estimated for the TAZs range between 0.21 and 0.39 and
have a mean of 0.30. An a = 0.033 scaling factor is used to achieve the desired 1% penetration.
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Since the level-one and -two chargers that we focus on require multiple hours to fully recharge an EV,
public chargers must be at locations with long parking times. Moreover, for a charging station to be viable,
it needs a sufficient number of expected EV arrivals to make the investment cost-effective. For these reasons,
we model the parking lots of workplaces, universities, and retail shopping locations as candidate stations.
Trips to such locations typically entail extended stays. Moreover, each TAZ has few workplaces, universities,
and retail shopping locations, compared to the possible destinations for other trip types. For instance, an
EV traveling to visit a friend has thousands of possible destinations within a TAZ.

The tour record data specify each trip’s destination TAZ and purpose, and we use these data to assign
EVs to candidate locations upon arrival. A TAZ can, however, contain multiple locations of a single type
(e.g., multiple workplaces). We use a set of heuristic rules to assign EV arrivals to the different potential
locations. For retail shopping locations, we model each individual shopping center as a separate candidate
location and assume that EVs are equally likely to go to any of these shopping centers within a TAZ.

We assume that each employer that is located in a TAZ that is outside of downtown Columbus has
dedicated parking spaces for its employees. We model the parking lot of each of these employers as a
separate candidate location. We randomly allocate EVs that arrive to a TAZ for work to the different
candidate work locations in proportion to the employment size of the workplaces. Due to restricted land
availability, employers in downtown Columbus are assumed to use shared public parking garages. We model
public parking garages within a downtown TAZ as candidate locations and allocate work-related EV arrivals
to them in proportion to the number of parking spaces that they have.

The region that we model has one large university, The Ohio State University’s main campus, and a
number of smaller ones. The Ohio State University occupies a single TAZ and has multiple parking garages.
We model each of these garages as an individual location, and allocate arrivals in the same manner used
for work-related arrivals to TAZs in downtown Columbus. We model each of the smaller universities in
central-Ohio as individual candidate locations.

Considering the complete set of candidate locations yields a computationally intractable IP. Thus, we
filter out candidate locations with fewer than one expected daily EV arrival and neglect them in the IP.
Table 1 provides summary statistics of the set of candidate locations and the ones modeled in the IP.
Although we only model 13% of the candidate locations, our model considers 39% of the expected work-,
university-, and shopping-related EV arrivals.

Table 1: Candidate Location Summary Data

Working  University Shopping

All Locations 3029 25 350
Modeled Locations 275 25 158
Expected Total EV Arrivals 7422 286 1330
Expected Modeled EV Arrivals 2725 276 501

We assume that the EVs modeled are pure EVs with a 117 km (73 mile) driving distance and a
0.21 kWh/km (0.34 kWh/mile) driving efficiency. This driving efficiency accounts for inverter and bat-
tery losses. The values are based on tested efficiency and range data for the Nissan Leaf reported by the
U.S. Environmental Protection Agency.

Our case study assumes that two charging technologies, level-one and -two, are available. These have
1.4 kWh and 4 kWh power capacities and $425 and $925 per-charger installation costs, respectively, based
on values reported by Morrow et al. (2008). We assume that 25 kW, 50 kW, and 75 kW transformers, with
per-unit costs of $1265, $1668, and $2070, respectively, are available, based on values reported by American
Electric Power. We consider cases in which up to $3.5 million are allocated for charging infrastructure.



4. Results

To simulate expected service levels with different numbers of chargers we conduct 500 replications of the
simulation by bootstrapping EV trips from the tour record data. Figure 2 shows expected service levels
at six selected candidate locations, as a function of the number of level-two chargers installed. The figure
and the simulation results illustrate some relationships between the service levels of the candidate location
types. Charging stations at universities tend deliver the highest service levels. This is because EVs tend to
have extended parking times, but do not park the full eight or nine hours that an EV at a workplace does.
Thus, a charger can be used by multiple EVs daily, yet EVs are parked for a sufficiently long time that much
of the depleted battery energy is replaced. Installing two chargers at a university parking location captures,
on average, about 87% of expected EV arrivals and recharges about 90% of the battery energy that can be
recharged with an unlimited chargers. Significantly fewer EVs are able to charge at the average workplace
and shopping location—40% and 43%, respectively—if only two chargers are installed. Shopping locations
have multiple arrivals, that tend to be concentrated in the morning and afternoon, and two chargers can
only serve a small subset of the vehicles, despite being reused multiple times.

120 T 400 T
Working Location 1 Working Location 1

——— Working Location 2
100H —— University Location 1
—+&— University Location 2
Shopping Location 1
—&— Shopping Location 2

|| —— Working Location 2
—+— University Location 1
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(a) EVs Charged. (b) Energy Charged.
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Figure 2: Service Levels at a Select Set of Candidate Locations as a Function of the Number of Level-Two Chargers Installed.

Table 2 summarizes the deployment of chargers that maximizes the expected amount of EV energy
recharged with a $1 million and $3 million budget. The table shows that most charging stations are built
at workplaces. This is because the relatively long parking times at workplaces result in more energy being
provided compared to the other location types. Moreover, because of the prolonged parking times, there is
little incremental benefit of deploying level-two chargers, since most vehicles can be fully recharged using
level-one technology. Of the 847 chargers deployed among the 194 charging stations built with a $1 million
budget, only 14 are level-two.

As the budget increases, more chargers are deployed in retail shopping locations. Due to the short
parking time of vehicles at shopping locations (relative to workplaces), a greater proportion of the chargers
installed in retail shopping locations are level-two. For instance, with a $3 million budget 1191 chargers, of
which 77% are level-two, are installed in workplace charging stations. Conversely, 84% of the 153 chargers
installed in shopping centers are level-two.

Table 3 summarizes the charger deployment that maximizes the expected EVs charged. As opposed
to the energy-optimization case, level-two chargers are never installed in this case. This is because the
faster charging rate has no benefit in increasing the EVs charged. More stations are built in university and
shopping locations compared to the case in which energy charged is the optimization criterion. This is due
to the short parking durations at these locations (relative to workplaces), which allows a single charger to be
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Table 2: Charging Stations and Chargers Built at Location Types Under Energy-Maximization Optimization Criterion

Charging Stations Chargers

$1 million $3 million $1 million $3 million

Level-1 Level-2 Level-1 Level-2 Level-1 Level-2 Level-1 Level-2
Working 172 9 82 193 778 13 279 912
University 12 0 3 22 55 0 9 72
Shopping 0 1 25 109 0 1 25 128

reused multiple times daily. Because university and shopping locations have fewer daily EV arrivals relative
to workplaces, the majority of chargers are still deployed at workplaces.

Table 3: Charging Stations and Chargers Built at Location Types Under EV-Maximization Optimization Criterion

Charging Stations Chargers

$1 million  $3 million $1 million  $3 million
Working 136 275 731 1198
University 19 25 74 81
Shopping 48 145 45 165

Note: All Chargers Are Level-One

With both optimization criteria, the charging stations built with a $1 million budget are also built with a
$3 million allocation. Thus, the station locations are ‘robust,” in that they are used if the budget constraint
is relaxed. When maximizing energy recharged, however, 151 of the level-one stations built with a $1 million
budget are upgraded to level-two technology with a $3 million budget allocation.

Tables 2 and 3 show that locations of charging stations are somewhat sensitive to the optimization
criterion used. Figure 3 compares the charging station locations obtained using the two optimization criteria
in terms of the actual service level (objective function value) achieved. The figure shows the expected EVs
and kWh of energy recharged daily as a function of the budget with the two optimization criteria. The
expected EVs that successfully charge is relatively insensitive to the optimization criterion used. For any
budget level, the energy-maximizing infrastructure deployment allows at least 91% of the EVs that recharge
with the vehicle-maximizing deployment to charge. The amount of energy recharged is more sensitive to the
optimization criteria used. This is, in part, due to level-two chargers not being deployed when maximizing
the expected EVs that recharge. A $2.1 million investment in level-one chargers allows every EV to charge
(in expectation). However, not all EVs are able to fully recharge relative to the other optimization criterion.
For the purposes of actual infrastructure planning, these findings suggest that the particular performance
metric considered is relatively unimportant. The limitation of using the EVs charged as an optimization
criterion, however, is that it does not determine what charging stations should be upgraded to level-two
technology.

Figure 4 shows the expected EVs that cannot complete their daily tours when public charging infras-
tructures are built. About 96% of owners drive less than the assumed 117 km range of the EVs modeled,
meaning that 4% cannot complete their tours without midday recharging. Public chargers reduce the num-
ber of EVs that cannot complete their tours by up to 16%. Between 80% and 96% of the EVs that cannot
finish their tours drive to locations that are not modeled and would, thus, not have access to the public
chargers built. If we only consider EVs that drive to locations modeled in the IP, then 99% to 100% of EVs
are able to complete their daily tours.
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5. Sensitivity Analysis

The model used to estimate fj(hjg- ,¢ - P,) considers candidate locations independently, not accounting
for the possibility that an EV may have charged at other stops earlier in the day. This can result in
overestimating the energy recharged. To validate this assumption we develop a more detailed simulation, a
schematic of which is shown in Figure 5, which considers such interdependencies. The model takes as inputs
EV trips and an optimized charging station layout. When a simulated EV arrival occurs, the model updates
the vehicle’s charge level based on the cumulative distance traveled and other charging events before the
EV’s arrival. Specifically, we define M,, as the set of stops, in chronological order, made by EV v at the
candidate locations; d,, ,, as the distance driven by EV v between stops m —1 and m; ¢, », as v’s charge level
upon arrival at stop m; and e, ,, as the amount of energy recharged by v during stop m, which is defined
in equation (13). EV v’s charge level upon arrival at stop m is defined as:

— maX{C;,Cj — Mo 'dv,m}, 1fm: 1, o
Com = { max{c,, Co,m—1+ €ym—1— N dym}, otherwise; veeVm=1..., M. (12)
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Figure 5: Schematic of Validation Simulation Model.

The amount of energy that vehicle v recharges during stop m is:

in{c} — to.m - if B h during st ;
evm:{ min{c; — ¢ym,tom - Tom}, if EV v charges during stop m; YoeVim=1,. .. M, (13)

0, otherwise;

where t, , is the duration of vehicle v’s mth stop and r, ,, is the power capacity of the charger installed at
the location of the mth stop, if a charger is unoccupied when the EV arrives. Alternatively, it is assumed
to not charge. Equations (12) and (13) reinforce equations (1) and (2), because they account for midday
recharging. We conduct 500 replications of this simulation, in which the EV set if randomly sampled, to
estimate the expected amount of energy recharged in EV batteries by a given infrastructure. We compare this
to the optimized value of objective (11) to test the sensitivity of the results to the independence assumption.

Table 4 summarizes the energy recharged estimated by the two models, using infrastructure that max-
imizes the energy objective. As expected, the optimization model slightly overestimates EV charging, but
by less than 3.5% of the expected charged energy predicted by the simulation model. This suggests that
the simple approach of modeling locations independently is relatively accurate in capturing the amount of
energy charged because most EVs only use at most one charging station daily.

The base model assumes that if a charger is available upon arrival, an EV owner always occupies it. In
practice, they may not always charge, depending on several factors, including the price levied, the necessity
of charging (based on the distance of subsequent trips), and the duration that the vehicle is parked. Because
the exact effect of these factors is not well understood, we use an extreme assumption to bound the possible
effect of such factors on charging behavior and infrastructure design.

Specifically, we assume that a vehicle owner only ‘attempts’ to use a public charging station if it is needed
to complete all of the trips of the day, or if the EV battery could not be fully recharged before the first trip
of the following morning when it returns home at the end of the day. As before, a driver that attempts to
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Table 4: Expected Daily Energy Charged Estimates Provided by Optimization and Simulation Models

Budget Energy Charged [kWh]
[$ million] Optimization Model  Simulation Model

0.5 5659 5487
1 9873 9604
2 13606 13174
3 14540 14058

charge only does so successfully if a charger is available upon arrival at a location. The first condition can

be written as:
Z Ny * dv,m > Ci— - quv (14)
meM,

or that the amount of energy required by EV v to complete its trips is greater than the usable range of the
battery. The second is:

Z T - dv,m > Ty "Ev; (15)
meM,

where 7, is the power capacity of the charger installed at the home of EV v’s owner and £, is the parking
duration between the last trip of the night and the first trip of the following morning. We assume that EV
owners have a level-one charger, with a 1.4 kW power capacity, available at home.

Tables 5 and 6 summarize the location of chargers under the new charging conditions. This results
in significantly less infrastructure investment being needed, because of reduced charging demand. Indeed,
a $2 million budget allocation is sufficient to serve all of the EVs that have need for charging in the
energy-maximization optimization case, while $1 million is sufficient if maximizing EVs being charged. The
difference in budget stems from level-two chargers being used with the former optimization criterion. The
tables also show that almost all of the chargers are built at workplaces with none installed at retail locations.
This is because most shopping involves short trips, relative to commutes.

Table 5: Charging Stations and Chargers Built at Location Types Under Energy-Maximization Optimization Criterion if Only
EVs Requiring it Charge

Charging Stations Chargers

$0.5 million $2 million $0.5 million $2 million

Level-1 Level-2 Level-1 Level-2 Level-1 Level-2 Level-1 Level-2
Working 113 38 70 154 213 55 81 274
University 2 2 4 4 3 ) 4 9
Shopping 0 0 0 0 0 0 0 0

Despite the charging station ‘saturation,” 3% of EVs are unable to finish their tours, even if $2 million
of infrastructure is installed. Most of these travel to destinations that are not modeled in the IP. Less than
1% of EVs that travel to at least one location modeled in the IP are unable to complete their tours, and
these remaining EVs have unusually long trips at the end of the day or short midday parking durations,
which do not allow for charge level recovery.

6. Conclusions

This paper optimizes the locations of slow chargers to serve EVs. The modeling steps consist of pre-
dicting where EVs owners live, simulating the relationship between service rates and the chargers deployed,
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Table 6: Charging Stations and Chargers Built at Location Types Under EV-Maximization Optimization Criterion if Only
EVs Requiring it Charge

Charging Stations Chargers

$0.5 million  $1 million $0.5 million  $1 million
Working 172 224 298 351
University 7 8 12 13
Shopping 0 0 0 0

Note: All Chargers Are Level-One

and optimizing the deployment with an IP. We apply the model to the central-Ohio region. Our results
demonstrate that a combination of level-one and -two chargers maximize the charging energy available. If
sufficient funds are not available, level-one chargers are more economical. We also conduct sensitivity anal-
yses to validate our modeling approach and determine the effect of more conservative use of public charging
stations.
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